Linux 4.19-rc7
[linux-2.6/btrfs-unstable.git] / arch / arm64 / kernel / process.c
blob7f1628effe6d7b866e60712b338fedb6e885d6ed
1 /*
2 * Based on arch/arm/kernel/process.c
4 * Original Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6 * Copyright (C) 2012 ARM Ltd.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 #include <stdarg.h>
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/sched/debug.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/user.h>
35 #include <linux/delay.h>
36 #include <linux/reboot.h>
37 #include <linux/interrupt.h>
38 #include <linux/init.h>
39 #include <linux/cpu.h>
40 #include <linux/elfcore.h>
41 #include <linux/pm.h>
42 #include <linux/tick.h>
43 #include <linux/utsname.h>
44 #include <linux/uaccess.h>
45 #include <linux/random.h>
46 #include <linux/hw_breakpoint.h>
47 #include <linux/personality.h>
48 #include <linux/notifier.h>
49 #include <trace/events/power.h>
50 #include <linux/percpu.h>
51 #include <linux/thread_info.h>
53 #include <asm/alternative.h>
54 #include <asm/compat.h>
55 #include <asm/cacheflush.h>
56 #include <asm/exec.h>
57 #include <asm/fpsimd.h>
58 #include <asm/mmu_context.h>
59 #include <asm/processor.h>
60 #include <asm/stacktrace.h>
62 #ifdef CONFIG_STACKPROTECTOR
63 #include <linux/stackprotector.h>
64 unsigned long __stack_chk_guard __read_mostly;
65 EXPORT_SYMBOL(__stack_chk_guard);
66 #endif
69 * Function pointers to optional machine specific functions
71 void (*pm_power_off)(void);
72 EXPORT_SYMBOL_GPL(pm_power_off);
74 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
77 * This is our default idle handler.
79 void arch_cpu_idle(void)
82 * This should do all the clock switching and wait for interrupt
83 * tricks
85 trace_cpu_idle_rcuidle(1, smp_processor_id());
86 cpu_do_idle();
87 local_irq_enable();
88 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
91 #ifdef CONFIG_HOTPLUG_CPU
92 void arch_cpu_idle_dead(void)
94 cpu_die();
96 #endif
99 * Called by kexec, immediately prior to machine_kexec().
101 * This must completely disable all secondary CPUs; simply causing those CPUs
102 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
103 * kexec'd kernel to use any and all RAM as it sees fit, without having to
104 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
105 * functionality embodied in disable_nonboot_cpus() to achieve this.
107 void machine_shutdown(void)
109 disable_nonboot_cpus();
113 * Halting simply requires that the secondary CPUs stop performing any
114 * activity (executing tasks, handling interrupts). smp_send_stop()
115 * achieves this.
117 void machine_halt(void)
119 local_irq_disable();
120 smp_send_stop();
121 while (1);
125 * Power-off simply requires that the secondary CPUs stop performing any
126 * activity (executing tasks, handling interrupts). smp_send_stop()
127 * achieves this. When the system power is turned off, it will take all CPUs
128 * with it.
130 void machine_power_off(void)
132 local_irq_disable();
133 smp_send_stop();
134 if (pm_power_off)
135 pm_power_off();
139 * Restart requires that the secondary CPUs stop performing any activity
140 * while the primary CPU resets the system. Systems with multiple CPUs must
141 * provide a HW restart implementation, to ensure that all CPUs reset at once.
142 * This is required so that any code running after reset on the primary CPU
143 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
144 * executing pre-reset code, and using RAM that the primary CPU's code wishes
145 * to use. Implementing such co-ordination would be essentially impossible.
147 void machine_restart(char *cmd)
149 /* Disable interrupts first */
150 local_irq_disable();
151 smp_send_stop();
154 * UpdateCapsule() depends on the system being reset via
155 * ResetSystem().
157 if (efi_enabled(EFI_RUNTIME_SERVICES))
158 efi_reboot(reboot_mode, NULL);
160 /* Now call the architecture specific reboot code. */
161 if (arm_pm_restart)
162 arm_pm_restart(reboot_mode, cmd);
163 else
164 do_kernel_restart(cmd);
167 * Whoops - the architecture was unable to reboot.
169 printk("Reboot failed -- System halted\n");
170 while (1);
173 static void print_pstate(struct pt_regs *regs)
175 u64 pstate = regs->pstate;
177 if (compat_user_mode(regs)) {
178 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
179 pstate,
180 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
181 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
182 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
183 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
184 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
185 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
186 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
187 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
188 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
189 pstate & PSR_AA32_F_BIT ? 'F' : 'f');
190 } else {
191 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
192 pstate,
193 pstate & PSR_N_BIT ? 'N' : 'n',
194 pstate & PSR_Z_BIT ? 'Z' : 'z',
195 pstate & PSR_C_BIT ? 'C' : 'c',
196 pstate & PSR_V_BIT ? 'V' : 'v',
197 pstate & PSR_D_BIT ? 'D' : 'd',
198 pstate & PSR_A_BIT ? 'A' : 'a',
199 pstate & PSR_I_BIT ? 'I' : 'i',
200 pstate & PSR_F_BIT ? 'F' : 'f',
201 pstate & PSR_PAN_BIT ? '+' : '-',
202 pstate & PSR_UAO_BIT ? '+' : '-');
206 void __show_regs(struct pt_regs *regs)
208 int i, top_reg;
209 u64 lr, sp;
211 if (compat_user_mode(regs)) {
212 lr = regs->compat_lr;
213 sp = regs->compat_sp;
214 top_reg = 12;
215 } else {
216 lr = regs->regs[30];
217 sp = regs->sp;
218 top_reg = 29;
221 show_regs_print_info(KERN_DEFAULT);
222 print_pstate(regs);
224 if (!user_mode(regs)) {
225 printk("pc : %pS\n", (void *)regs->pc);
226 printk("lr : %pS\n", (void *)lr);
227 } else {
228 printk("pc : %016llx\n", regs->pc);
229 printk("lr : %016llx\n", lr);
232 printk("sp : %016llx\n", sp);
234 i = top_reg;
236 while (i >= 0) {
237 printk("x%-2d: %016llx ", i, regs->regs[i]);
238 i--;
240 if (i % 2 == 0) {
241 pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
242 i--;
245 pr_cont("\n");
249 void show_regs(struct pt_regs * regs)
251 __show_regs(regs);
252 dump_backtrace(regs, NULL);
255 static void tls_thread_flush(void)
257 write_sysreg(0, tpidr_el0);
259 if (is_compat_task()) {
260 current->thread.uw.tp_value = 0;
263 * We need to ensure ordering between the shadow state and the
264 * hardware state, so that we don't corrupt the hardware state
265 * with a stale shadow state during context switch.
267 barrier();
268 write_sysreg(0, tpidrro_el0);
272 void flush_thread(void)
274 fpsimd_flush_thread();
275 tls_thread_flush();
276 flush_ptrace_hw_breakpoint(current);
279 void release_thread(struct task_struct *dead_task)
283 void arch_release_task_struct(struct task_struct *tsk)
285 fpsimd_release_task(tsk);
289 * src and dst may temporarily have aliased sve_state after task_struct
290 * is copied. We cannot fix this properly here, because src may have
291 * live SVE state and dst's thread_info may not exist yet, so tweaking
292 * either src's or dst's TIF_SVE is not safe.
294 * The unaliasing is done in copy_thread() instead. This works because
295 * dst is not schedulable or traceable until both of these functions
296 * have been called.
298 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
300 if (current->mm)
301 fpsimd_preserve_current_state();
302 *dst = *src;
304 return 0;
307 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
309 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
310 unsigned long stk_sz, struct task_struct *p)
312 struct pt_regs *childregs = task_pt_regs(p);
314 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
317 * Unalias p->thread.sve_state (if any) from the parent task
318 * and disable discard SVE state for p:
320 clear_tsk_thread_flag(p, TIF_SVE);
321 p->thread.sve_state = NULL;
324 * In case p was allocated the same task_struct pointer as some
325 * other recently-exited task, make sure p is disassociated from
326 * any cpu that may have run that now-exited task recently.
327 * Otherwise we could erroneously skip reloading the FPSIMD
328 * registers for p.
330 fpsimd_flush_task_state(p);
332 if (likely(!(p->flags & PF_KTHREAD))) {
333 *childregs = *current_pt_regs();
334 childregs->regs[0] = 0;
337 * Read the current TLS pointer from tpidr_el0 as it may be
338 * out-of-sync with the saved value.
340 *task_user_tls(p) = read_sysreg(tpidr_el0);
342 if (stack_start) {
343 if (is_compat_thread(task_thread_info(p)))
344 childregs->compat_sp = stack_start;
345 else
346 childregs->sp = stack_start;
350 * If a TLS pointer was passed to clone (4th argument), use it
351 * for the new thread.
353 if (clone_flags & CLONE_SETTLS)
354 p->thread.uw.tp_value = childregs->regs[3];
355 } else {
356 memset(childregs, 0, sizeof(struct pt_regs));
357 childregs->pstate = PSR_MODE_EL1h;
358 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
359 cpus_have_const_cap(ARM64_HAS_UAO))
360 childregs->pstate |= PSR_UAO_BIT;
361 p->thread.cpu_context.x19 = stack_start;
362 p->thread.cpu_context.x20 = stk_sz;
364 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
365 p->thread.cpu_context.sp = (unsigned long)childregs;
367 ptrace_hw_copy_thread(p);
369 return 0;
372 void tls_preserve_current_state(void)
374 *task_user_tls(current) = read_sysreg(tpidr_el0);
377 static void tls_thread_switch(struct task_struct *next)
379 tls_preserve_current_state();
381 if (is_compat_thread(task_thread_info(next)))
382 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
383 else if (!arm64_kernel_unmapped_at_el0())
384 write_sysreg(0, tpidrro_el0);
386 write_sysreg(*task_user_tls(next), tpidr_el0);
389 /* Restore the UAO state depending on next's addr_limit */
390 void uao_thread_switch(struct task_struct *next)
392 if (IS_ENABLED(CONFIG_ARM64_UAO)) {
393 if (task_thread_info(next)->addr_limit == KERNEL_DS)
394 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
395 else
396 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
401 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
402 * shadow copy so that we can restore this upon entry from userspace.
404 * This is *only* for exception entry from EL0, and is not valid until we
405 * __switch_to() a user task.
407 DEFINE_PER_CPU(struct task_struct *, __entry_task);
409 static void entry_task_switch(struct task_struct *next)
411 __this_cpu_write(__entry_task, next);
415 * Thread switching.
417 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
418 struct task_struct *next)
420 struct task_struct *last;
422 fpsimd_thread_switch(next);
423 tls_thread_switch(next);
424 hw_breakpoint_thread_switch(next);
425 contextidr_thread_switch(next);
426 entry_task_switch(next);
427 uao_thread_switch(next);
430 * Complete any pending TLB or cache maintenance on this CPU in case
431 * the thread migrates to a different CPU.
432 * This full barrier is also required by the membarrier system
433 * call.
435 dsb(ish);
437 /* the actual thread switch */
438 last = cpu_switch_to(prev, next);
440 return last;
443 unsigned long get_wchan(struct task_struct *p)
445 struct stackframe frame;
446 unsigned long stack_page, ret = 0;
447 int count = 0;
448 if (!p || p == current || p->state == TASK_RUNNING)
449 return 0;
451 stack_page = (unsigned long)try_get_task_stack(p);
452 if (!stack_page)
453 return 0;
455 frame.fp = thread_saved_fp(p);
456 frame.pc = thread_saved_pc(p);
457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
458 frame.graph = p->curr_ret_stack;
459 #endif
460 do {
461 if (unwind_frame(p, &frame))
462 goto out;
463 if (!in_sched_functions(frame.pc)) {
464 ret = frame.pc;
465 goto out;
467 } while (count ++ < 16);
469 out:
470 put_task_stack(p);
471 return ret;
474 unsigned long arch_align_stack(unsigned long sp)
476 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
477 sp -= get_random_int() & ~PAGE_MASK;
478 return sp & ~0xf;
481 unsigned long arch_randomize_brk(struct mm_struct *mm)
483 if (is_compat_task())
484 return randomize_page(mm->brk, SZ_32M);
485 else
486 return randomize_page(mm->brk, SZ_1G);
490 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
492 void arch_setup_new_exec(void)
494 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
497 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
498 void __used stackleak_check_alloca(unsigned long size)
500 unsigned long stack_left;
501 unsigned long current_sp = current_stack_pointer;
502 struct stack_info info;
504 BUG_ON(!on_accessible_stack(current, current_sp, &info));
506 stack_left = current_sp - info.low;
509 * There's a good chance we're almost out of stack space if this
510 * is true. Using panic() over BUG() is more likely to give
511 * reliable debugging output.
513 if (size >= stack_left)
514 panic("alloca() over the kernel stack boundary\n");
516 EXPORT_SYMBOL(stackleak_check_alloca);
517 #endif