ASoC: TWL4030: Helper to check chip default registers
[linux-2.6/btrfs-unstable.git] / fs / proc / task_mmu.c
blob183f8ff5f400b90d8b128465551d8157004f20d2
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/mempolicy.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <asm/elf.h>
13 #include <asm/uaccess.h>
14 #include <asm/tlbflush.h>
15 #include "internal.h"
17 void task_mem(struct seq_file *m, struct mm_struct *mm)
19 unsigned long data, text, lib, swap;
20 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
23 * Note: to minimize their overhead, mm maintains hiwater_vm and
24 * hiwater_rss only when about to *lower* total_vm or rss. Any
25 * collector of these hiwater stats must therefore get total_vm
26 * and rss too, which will usually be the higher. Barriers? not
27 * worth the effort, such snapshots can always be inconsistent.
29 hiwater_vm = total_vm = mm->total_vm;
30 if (hiwater_vm < mm->hiwater_vm)
31 hiwater_vm = mm->hiwater_vm;
32 hiwater_rss = total_rss = get_mm_rss(mm);
33 if (hiwater_rss < mm->hiwater_rss)
34 hiwater_rss = mm->hiwater_rss;
36 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
37 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
38 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
39 swap = get_mm_counter(mm, MM_SWAPENTS);
40 seq_printf(m,
41 "VmPeak:\t%8lu kB\n"
42 "VmSize:\t%8lu kB\n"
43 "VmLck:\t%8lu kB\n"
44 "VmHWM:\t%8lu kB\n"
45 "VmRSS:\t%8lu kB\n"
46 "VmData:\t%8lu kB\n"
47 "VmStk:\t%8lu kB\n"
48 "VmExe:\t%8lu kB\n"
49 "VmLib:\t%8lu kB\n"
50 "VmPTE:\t%8lu kB\n"
51 "VmSwap:\t%8lu kB\n",
52 hiwater_vm << (PAGE_SHIFT-10),
53 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
54 mm->locked_vm << (PAGE_SHIFT-10),
55 hiwater_rss << (PAGE_SHIFT-10),
56 total_rss << (PAGE_SHIFT-10),
57 data << (PAGE_SHIFT-10),
58 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
59 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
60 swap << (PAGE_SHIFT-10));
63 unsigned long task_vsize(struct mm_struct *mm)
65 return PAGE_SIZE * mm->total_vm;
68 int task_statm(struct mm_struct *mm, int *shared, int *text,
69 int *data, int *resident)
71 *shared = get_mm_counter(mm, MM_FILEPAGES);
72 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
73 >> PAGE_SHIFT;
74 *data = mm->total_vm - mm->shared_vm;
75 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
76 return mm->total_vm;
79 static void pad_len_spaces(struct seq_file *m, int len)
81 len = 25 + sizeof(void*) * 6 - len;
82 if (len < 1)
83 len = 1;
84 seq_printf(m, "%*c", len, ' ');
87 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
89 if (vma && vma != priv->tail_vma) {
90 struct mm_struct *mm = vma->vm_mm;
91 up_read(&mm->mmap_sem);
92 mmput(mm);
96 static void *m_start(struct seq_file *m, loff_t *pos)
98 struct proc_maps_private *priv = m->private;
99 unsigned long last_addr = m->version;
100 struct mm_struct *mm;
101 struct vm_area_struct *vma, *tail_vma = NULL;
102 loff_t l = *pos;
104 /* Clear the per syscall fields in priv */
105 priv->task = NULL;
106 priv->tail_vma = NULL;
109 * We remember last_addr rather than next_addr to hit with
110 * mmap_cache most of the time. We have zero last_addr at
111 * the beginning and also after lseek. We will have -1 last_addr
112 * after the end of the vmas.
115 if (last_addr == -1UL)
116 return NULL;
118 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
119 if (!priv->task)
120 return NULL;
122 mm = mm_for_maps(priv->task);
123 if (!mm)
124 return NULL;
125 down_read(&mm->mmap_sem);
127 tail_vma = get_gate_vma(priv->task);
128 priv->tail_vma = tail_vma;
130 /* Start with last addr hint */
131 vma = find_vma(mm, last_addr);
132 if (last_addr && vma) {
133 vma = vma->vm_next;
134 goto out;
138 * Check the vma index is within the range and do
139 * sequential scan until m_index.
141 vma = NULL;
142 if ((unsigned long)l < mm->map_count) {
143 vma = mm->mmap;
144 while (l-- && vma)
145 vma = vma->vm_next;
146 goto out;
149 if (l != mm->map_count)
150 tail_vma = NULL; /* After gate vma */
152 out:
153 if (vma)
154 return vma;
156 /* End of vmas has been reached */
157 m->version = (tail_vma != NULL)? 0: -1UL;
158 up_read(&mm->mmap_sem);
159 mmput(mm);
160 return tail_vma;
163 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
165 struct proc_maps_private *priv = m->private;
166 struct vm_area_struct *vma = v;
167 struct vm_area_struct *tail_vma = priv->tail_vma;
169 (*pos)++;
170 if (vma && (vma != tail_vma) && vma->vm_next)
171 return vma->vm_next;
172 vma_stop(priv, vma);
173 return (vma != tail_vma)? tail_vma: NULL;
176 static void m_stop(struct seq_file *m, void *v)
178 struct proc_maps_private *priv = m->private;
179 struct vm_area_struct *vma = v;
181 vma_stop(priv, vma);
182 if (priv->task)
183 put_task_struct(priv->task);
186 static int do_maps_open(struct inode *inode, struct file *file,
187 const struct seq_operations *ops)
189 struct proc_maps_private *priv;
190 int ret = -ENOMEM;
191 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
192 if (priv) {
193 priv->pid = proc_pid(inode);
194 ret = seq_open(file, ops);
195 if (!ret) {
196 struct seq_file *m = file->private_data;
197 m->private = priv;
198 } else {
199 kfree(priv);
202 return ret;
205 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
207 struct mm_struct *mm = vma->vm_mm;
208 struct file *file = vma->vm_file;
209 int flags = vma->vm_flags;
210 unsigned long ino = 0;
211 unsigned long long pgoff = 0;
212 dev_t dev = 0;
213 int len;
215 if (file) {
216 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
217 dev = inode->i_sb->s_dev;
218 ino = inode->i_ino;
219 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
222 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
223 vma->vm_start,
224 vma->vm_end,
225 flags & VM_READ ? 'r' : '-',
226 flags & VM_WRITE ? 'w' : '-',
227 flags & VM_EXEC ? 'x' : '-',
228 flags & VM_MAYSHARE ? 's' : 'p',
229 pgoff,
230 MAJOR(dev), MINOR(dev), ino, &len);
233 * Print the dentry name for named mappings, and a
234 * special [heap] marker for the heap:
236 if (file) {
237 pad_len_spaces(m, len);
238 seq_path(m, &file->f_path, "\n");
239 } else {
240 const char *name = arch_vma_name(vma);
241 if (!name) {
242 if (mm) {
243 if (vma->vm_start <= mm->start_brk &&
244 vma->vm_end >= mm->brk) {
245 name = "[heap]";
246 } else if (vma->vm_start <= mm->start_stack &&
247 vma->vm_end >= mm->start_stack) {
248 name = "[stack]";
249 } else {
250 unsigned long stack_start;
251 struct proc_maps_private *pmp;
253 pmp = m->private;
254 stack_start = pmp->task->stack_start;
256 if (vma->vm_start <= stack_start &&
257 vma->vm_end >= stack_start) {
258 pad_len_spaces(m, len);
259 seq_printf(m,
260 "[threadstack:%08lx]",
261 #ifdef CONFIG_STACK_GROWSUP
262 vma->vm_end - stack_start
263 #else
264 stack_start - vma->vm_start
265 #endif
269 } else {
270 name = "[vdso]";
273 if (name) {
274 pad_len_spaces(m, len);
275 seq_puts(m, name);
278 seq_putc(m, '\n');
281 static int show_map(struct seq_file *m, void *v)
283 struct vm_area_struct *vma = v;
284 struct proc_maps_private *priv = m->private;
285 struct task_struct *task = priv->task;
287 show_map_vma(m, vma);
289 if (m->count < m->size) /* vma is copied successfully */
290 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
291 return 0;
294 static const struct seq_operations proc_pid_maps_op = {
295 .start = m_start,
296 .next = m_next,
297 .stop = m_stop,
298 .show = show_map
301 static int maps_open(struct inode *inode, struct file *file)
303 return do_maps_open(inode, file, &proc_pid_maps_op);
306 const struct file_operations proc_maps_operations = {
307 .open = maps_open,
308 .read = seq_read,
309 .llseek = seq_lseek,
310 .release = seq_release_private,
314 * Proportional Set Size(PSS): my share of RSS.
316 * PSS of a process is the count of pages it has in memory, where each
317 * page is divided by the number of processes sharing it. So if a
318 * process has 1000 pages all to itself, and 1000 shared with one other
319 * process, its PSS will be 1500.
321 * To keep (accumulated) division errors low, we adopt a 64bit
322 * fixed-point pss counter to minimize division errors. So (pss >>
323 * PSS_SHIFT) would be the real byte count.
325 * A shift of 12 before division means (assuming 4K page size):
326 * - 1M 3-user-pages add up to 8KB errors;
327 * - supports mapcount up to 2^24, or 16M;
328 * - supports PSS up to 2^52 bytes, or 4PB.
330 #define PSS_SHIFT 12
332 #ifdef CONFIG_PROC_PAGE_MONITOR
333 struct mem_size_stats {
334 struct vm_area_struct *vma;
335 unsigned long resident;
336 unsigned long shared_clean;
337 unsigned long shared_dirty;
338 unsigned long private_clean;
339 unsigned long private_dirty;
340 unsigned long referenced;
341 unsigned long swap;
342 u64 pss;
345 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
346 struct mm_walk *walk)
348 struct mem_size_stats *mss = walk->private;
349 struct vm_area_struct *vma = mss->vma;
350 pte_t *pte, ptent;
351 spinlock_t *ptl;
352 struct page *page;
353 int mapcount;
355 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
356 for (; addr != end; pte++, addr += PAGE_SIZE) {
357 ptent = *pte;
359 if (is_swap_pte(ptent)) {
360 mss->swap += PAGE_SIZE;
361 continue;
364 if (!pte_present(ptent))
365 continue;
367 page = vm_normal_page(vma, addr, ptent);
368 if (!page)
369 continue;
371 mss->resident += PAGE_SIZE;
372 /* Accumulate the size in pages that have been accessed. */
373 if (pte_young(ptent) || PageReferenced(page))
374 mss->referenced += PAGE_SIZE;
375 mapcount = page_mapcount(page);
376 if (mapcount >= 2) {
377 if (pte_dirty(ptent))
378 mss->shared_dirty += PAGE_SIZE;
379 else
380 mss->shared_clean += PAGE_SIZE;
381 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
382 } else {
383 if (pte_dirty(ptent))
384 mss->private_dirty += PAGE_SIZE;
385 else
386 mss->private_clean += PAGE_SIZE;
387 mss->pss += (PAGE_SIZE << PSS_SHIFT);
390 pte_unmap_unlock(pte - 1, ptl);
391 cond_resched();
392 return 0;
395 static int show_smap(struct seq_file *m, void *v)
397 struct proc_maps_private *priv = m->private;
398 struct task_struct *task = priv->task;
399 struct vm_area_struct *vma = v;
400 struct mem_size_stats mss;
401 struct mm_walk smaps_walk = {
402 .pmd_entry = smaps_pte_range,
403 .mm = vma->vm_mm,
404 .private = &mss,
407 memset(&mss, 0, sizeof mss);
408 mss.vma = vma;
409 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
410 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
412 show_map_vma(m, vma);
414 seq_printf(m,
415 "Size: %8lu kB\n"
416 "Rss: %8lu kB\n"
417 "Pss: %8lu kB\n"
418 "Shared_Clean: %8lu kB\n"
419 "Shared_Dirty: %8lu kB\n"
420 "Private_Clean: %8lu kB\n"
421 "Private_Dirty: %8lu kB\n"
422 "Referenced: %8lu kB\n"
423 "Swap: %8lu kB\n"
424 "KernelPageSize: %8lu kB\n"
425 "MMUPageSize: %8lu kB\n",
426 (vma->vm_end - vma->vm_start) >> 10,
427 mss.resident >> 10,
428 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
429 mss.shared_clean >> 10,
430 mss.shared_dirty >> 10,
431 mss.private_clean >> 10,
432 mss.private_dirty >> 10,
433 mss.referenced >> 10,
434 mss.swap >> 10,
435 vma_kernel_pagesize(vma) >> 10,
436 vma_mmu_pagesize(vma) >> 10);
438 if (m->count < m->size) /* vma is copied successfully */
439 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
440 return 0;
443 static const struct seq_operations proc_pid_smaps_op = {
444 .start = m_start,
445 .next = m_next,
446 .stop = m_stop,
447 .show = show_smap
450 static int smaps_open(struct inode *inode, struct file *file)
452 return do_maps_open(inode, file, &proc_pid_smaps_op);
455 const struct file_operations proc_smaps_operations = {
456 .open = smaps_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = seq_release_private,
462 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
463 unsigned long end, struct mm_walk *walk)
465 struct vm_area_struct *vma = walk->private;
466 pte_t *pte, ptent;
467 spinlock_t *ptl;
468 struct page *page;
470 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
471 for (; addr != end; pte++, addr += PAGE_SIZE) {
472 ptent = *pte;
473 if (!pte_present(ptent))
474 continue;
476 page = vm_normal_page(vma, addr, ptent);
477 if (!page)
478 continue;
480 /* Clear accessed and referenced bits. */
481 ptep_test_and_clear_young(vma, addr, pte);
482 ClearPageReferenced(page);
484 pte_unmap_unlock(pte - 1, ptl);
485 cond_resched();
486 return 0;
489 #define CLEAR_REFS_ALL 1
490 #define CLEAR_REFS_ANON 2
491 #define CLEAR_REFS_MAPPED 3
493 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
494 size_t count, loff_t *ppos)
496 struct task_struct *task;
497 char buffer[PROC_NUMBUF];
498 struct mm_struct *mm;
499 struct vm_area_struct *vma;
500 long type;
502 memset(buffer, 0, sizeof(buffer));
503 if (count > sizeof(buffer) - 1)
504 count = sizeof(buffer) - 1;
505 if (copy_from_user(buffer, buf, count))
506 return -EFAULT;
507 if (strict_strtol(strstrip(buffer), 10, &type))
508 return -EINVAL;
509 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
510 return -EINVAL;
511 task = get_proc_task(file->f_path.dentry->d_inode);
512 if (!task)
513 return -ESRCH;
514 mm = get_task_mm(task);
515 if (mm) {
516 struct mm_walk clear_refs_walk = {
517 .pmd_entry = clear_refs_pte_range,
518 .mm = mm,
520 down_read(&mm->mmap_sem);
521 for (vma = mm->mmap; vma; vma = vma->vm_next) {
522 clear_refs_walk.private = vma;
523 if (is_vm_hugetlb_page(vma))
524 continue;
526 * Writing 1 to /proc/pid/clear_refs affects all pages.
528 * Writing 2 to /proc/pid/clear_refs only affects
529 * Anonymous pages.
531 * Writing 3 to /proc/pid/clear_refs only affects file
532 * mapped pages.
534 if (type == CLEAR_REFS_ANON && vma->vm_file)
535 continue;
536 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
537 continue;
538 walk_page_range(vma->vm_start, vma->vm_end,
539 &clear_refs_walk);
541 flush_tlb_mm(mm);
542 up_read(&mm->mmap_sem);
543 mmput(mm);
545 put_task_struct(task);
547 return count;
550 const struct file_operations proc_clear_refs_operations = {
551 .write = clear_refs_write,
554 struct pagemapread {
555 u64 __user *out, *end;
558 #define PM_ENTRY_BYTES sizeof(u64)
559 #define PM_STATUS_BITS 3
560 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
561 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
562 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
563 #define PM_PSHIFT_BITS 6
564 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
565 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
566 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
567 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
568 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
570 #define PM_PRESENT PM_STATUS(4LL)
571 #define PM_SWAP PM_STATUS(2LL)
572 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
573 #define PM_END_OF_BUFFER 1
575 static int add_to_pagemap(unsigned long addr, u64 pfn,
576 struct pagemapread *pm)
578 if (put_user(pfn, pm->out))
579 return -EFAULT;
580 pm->out++;
581 if (pm->out >= pm->end)
582 return PM_END_OF_BUFFER;
583 return 0;
586 static int pagemap_pte_hole(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
589 struct pagemapread *pm = walk->private;
590 unsigned long addr;
591 int err = 0;
592 for (addr = start; addr < end; addr += PAGE_SIZE) {
593 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
594 if (err)
595 break;
597 return err;
600 static u64 swap_pte_to_pagemap_entry(pte_t pte)
602 swp_entry_t e = pte_to_swp_entry(pte);
603 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
606 static u64 pte_to_pagemap_entry(pte_t pte)
608 u64 pme = 0;
609 if (is_swap_pte(pte))
610 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
611 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
612 else if (pte_present(pte))
613 pme = PM_PFRAME(pte_pfn(pte))
614 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
615 return pme;
618 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
619 struct mm_walk *walk)
621 struct vm_area_struct *vma;
622 struct pagemapread *pm = walk->private;
623 pte_t *pte;
624 int err = 0;
626 /* find the first VMA at or above 'addr' */
627 vma = find_vma(walk->mm, addr);
628 for (; addr != end; addr += PAGE_SIZE) {
629 u64 pfn = PM_NOT_PRESENT;
631 /* check to see if we've left 'vma' behind
632 * and need a new, higher one */
633 if (vma && (addr >= vma->vm_end))
634 vma = find_vma(walk->mm, addr);
636 /* check that 'vma' actually covers this address,
637 * and that it isn't a huge page vma */
638 if (vma && (vma->vm_start <= addr) &&
639 !is_vm_hugetlb_page(vma)) {
640 pte = pte_offset_map(pmd, addr);
641 pfn = pte_to_pagemap_entry(*pte);
642 /* unmap before userspace copy */
643 pte_unmap(pte);
645 err = add_to_pagemap(addr, pfn, pm);
646 if (err)
647 return err;
650 cond_resched();
652 return err;
655 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
657 u64 pme = 0;
658 if (pte_present(pte))
659 pme = PM_PFRAME(pte_pfn(pte) + offset)
660 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
661 return pme;
664 static int pagemap_hugetlb_range(pte_t *pte, unsigned long addr,
665 unsigned long end, struct mm_walk *walk)
667 struct vm_area_struct *vma;
668 struct pagemapread *pm = walk->private;
669 struct hstate *hs = NULL;
670 int err = 0;
672 vma = find_vma(walk->mm, addr);
673 if (vma)
674 hs = hstate_vma(vma);
675 for (; addr != end; addr += PAGE_SIZE) {
676 u64 pfn = PM_NOT_PRESENT;
678 if (vma && (addr >= vma->vm_end)) {
679 vma = find_vma(walk->mm, addr);
680 if (vma)
681 hs = hstate_vma(vma);
684 if (vma && (vma->vm_start <= addr) && is_vm_hugetlb_page(vma)) {
685 /* calculate pfn of the "raw" page in the hugepage. */
686 int offset = (addr & ~huge_page_mask(hs)) >> PAGE_SHIFT;
687 pfn = huge_pte_to_pagemap_entry(*pte, offset);
689 err = add_to_pagemap(addr, pfn, pm);
690 if (err)
691 return err;
694 cond_resched();
696 return err;
700 * /proc/pid/pagemap - an array mapping virtual pages to pfns
702 * For each page in the address space, this file contains one 64-bit entry
703 * consisting of the following:
705 * Bits 0-55 page frame number (PFN) if present
706 * Bits 0-4 swap type if swapped
707 * Bits 5-55 swap offset if swapped
708 * Bits 55-60 page shift (page size = 1<<page shift)
709 * Bit 61 reserved for future use
710 * Bit 62 page swapped
711 * Bit 63 page present
713 * If the page is not present but in swap, then the PFN contains an
714 * encoding of the swap file number and the page's offset into the
715 * swap. Unmapped pages return a null PFN. This allows determining
716 * precisely which pages are mapped (or in swap) and comparing mapped
717 * pages between processes.
719 * Efficient users of this interface will use /proc/pid/maps to
720 * determine which areas of memory are actually mapped and llseek to
721 * skip over unmapped regions.
723 static ssize_t pagemap_read(struct file *file, char __user *buf,
724 size_t count, loff_t *ppos)
726 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
727 struct page **pages, *page;
728 unsigned long uaddr, uend;
729 struct mm_struct *mm;
730 struct pagemapread pm;
731 int pagecount;
732 int ret = -ESRCH;
733 struct mm_walk pagemap_walk = {};
734 unsigned long src;
735 unsigned long svpfn;
736 unsigned long start_vaddr;
737 unsigned long end_vaddr;
739 if (!task)
740 goto out;
742 ret = -EACCES;
743 if (!ptrace_may_access(task, PTRACE_MODE_READ))
744 goto out_task;
746 ret = -EINVAL;
747 /* file position must be aligned */
748 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
749 goto out_task;
751 ret = 0;
753 if (!count)
754 goto out_task;
756 mm = get_task_mm(task);
757 if (!mm)
758 goto out_task;
761 uaddr = (unsigned long)buf & PAGE_MASK;
762 uend = (unsigned long)(buf + count);
763 pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE;
764 ret = 0;
765 if (pagecount == 0)
766 goto out_mm;
767 pages = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL);
768 ret = -ENOMEM;
769 if (!pages)
770 goto out_mm;
772 down_read(&current->mm->mmap_sem);
773 ret = get_user_pages(current, current->mm, uaddr, pagecount,
774 1, 0, pages, NULL);
775 up_read(&current->mm->mmap_sem);
777 if (ret < 0)
778 goto out_free;
780 if (ret != pagecount) {
781 pagecount = ret;
782 ret = -EFAULT;
783 goto out_pages;
786 pm.out = (u64 __user *)buf;
787 pm.end = (u64 __user *)(buf + count);
789 pagemap_walk.pmd_entry = pagemap_pte_range;
790 pagemap_walk.pte_hole = pagemap_pte_hole;
791 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
792 pagemap_walk.mm = mm;
793 pagemap_walk.private = &pm;
795 src = *ppos;
796 svpfn = src / PM_ENTRY_BYTES;
797 start_vaddr = svpfn << PAGE_SHIFT;
798 end_vaddr = TASK_SIZE_OF(task);
800 /* watch out for wraparound */
801 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
802 start_vaddr = end_vaddr;
805 * The odds are that this will stop walking way
806 * before end_vaddr, because the length of the
807 * user buffer is tracked in "pm", and the walk
808 * will stop when we hit the end of the buffer.
810 ret = walk_page_range(start_vaddr, end_vaddr, &pagemap_walk);
811 if (ret == PM_END_OF_BUFFER)
812 ret = 0;
813 /* don't need mmap_sem for these, but this looks cleaner */
814 *ppos += (char __user *)pm.out - buf;
815 if (!ret)
816 ret = (char __user *)pm.out - buf;
818 out_pages:
819 for (; pagecount; pagecount--) {
820 page = pages[pagecount-1];
821 if (!PageReserved(page))
822 SetPageDirty(page);
823 page_cache_release(page);
825 out_free:
826 kfree(pages);
827 out_mm:
828 mmput(mm);
829 out_task:
830 put_task_struct(task);
831 out:
832 return ret;
835 const struct file_operations proc_pagemap_operations = {
836 .llseek = mem_lseek, /* borrow this */
837 .read = pagemap_read,
839 #endif /* CONFIG_PROC_PAGE_MONITOR */
841 #ifdef CONFIG_NUMA
842 extern int show_numa_map(struct seq_file *m, void *v);
844 static const struct seq_operations proc_pid_numa_maps_op = {
845 .start = m_start,
846 .next = m_next,
847 .stop = m_stop,
848 .show = show_numa_map,
851 static int numa_maps_open(struct inode *inode, struct file *file)
853 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
856 const struct file_operations proc_numa_maps_operations = {
857 .open = numa_maps_open,
858 .read = seq_read,
859 .llseek = seq_lseek,
860 .release = seq_release_private,
862 #endif