staging: vt6655: replace typedef struct tagRDES1
[linux-2.6/btrfs-unstable.git] / fs / f2fs / checkpoint.c
blobc5a38e352a80952dc833c5740eec11f64eadec59
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
30 * We guarantee no failure on the returned page.
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
34 struct address_space *mapping = META_MAPPING(sbi);
35 struct page *page = NULL;
36 repeat:
37 page = grab_cache_page(mapping, index);
38 if (!page) {
39 cond_resched();
40 goto repeat;
42 f2fs_wait_on_page_writeback(page, META);
43 SetPageUptodate(page);
44 return page;
48 * We guarantee no failure on the returned page.
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 struct address_space *mapping = META_MAPPING(sbi);
53 struct page *page;
54 struct f2fs_io_info fio = {
55 .sbi = sbi,
56 .type = META,
57 .rw = READ_SYNC | REQ_META | REQ_PRIO,
58 .blk_addr = index,
59 .encrypted_page = NULL,
61 repeat:
62 page = grab_cache_page(mapping, index);
63 if (!page) {
64 cond_resched();
65 goto repeat;
67 if (PageUptodate(page))
68 goto out;
70 fio.page = page;
72 if (f2fs_submit_page_bio(&fio)) {
73 f2fs_put_page(page, 1);
74 goto repeat;
77 lock_page(page);
78 if (unlikely(page->mapping != mapping)) {
79 f2fs_put_page(page, 1);
80 goto repeat;
84 * if there is any IO error when accessing device, make our filesystem
85 * readonly and make sure do not write checkpoint with non-uptodate
86 * meta page.
88 if (unlikely(!PageUptodate(page)))
89 f2fs_stop_checkpoint(sbi);
90 out:
91 return page;
94 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
96 switch (type) {
97 case META_NAT:
98 break;
99 case META_SIT:
100 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
101 return false;
102 break;
103 case META_SSA:
104 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
105 blkaddr < SM_I(sbi)->ssa_blkaddr))
106 return false;
107 break;
108 case META_CP:
109 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
110 blkaddr < __start_cp_addr(sbi)))
111 return false;
112 break;
113 case META_POR:
114 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
115 blkaddr < MAIN_BLKADDR(sbi)))
116 return false;
117 break;
118 default:
119 BUG();
122 return true;
126 * Readahead CP/NAT/SIT/SSA pages
128 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
130 block_t prev_blk_addr = 0;
131 struct page *page;
132 block_t blkno = start;
133 struct f2fs_io_info fio = {
134 .sbi = sbi,
135 .type = META,
136 .rw = READ_SYNC | REQ_META | REQ_PRIO,
137 .encrypted_page = NULL,
140 for (; nrpages-- > 0; blkno++) {
142 if (!is_valid_blkaddr(sbi, blkno, type))
143 goto out;
145 switch (type) {
146 case META_NAT:
147 if (unlikely(blkno >=
148 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
149 blkno = 0;
150 /* get nat block addr */
151 fio.blk_addr = current_nat_addr(sbi,
152 blkno * NAT_ENTRY_PER_BLOCK);
153 break;
154 case META_SIT:
155 /* get sit block addr */
156 fio.blk_addr = current_sit_addr(sbi,
157 blkno * SIT_ENTRY_PER_BLOCK);
158 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
159 goto out;
160 prev_blk_addr = fio.blk_addr;
161 break;
162 case META_SSA:
163 case META_CP:
164 case META_POR:
165 fio.blk_addr = blkno;
166 break;
167 default:
168 BUG();
171 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
172 if (!page)
173 continue;
174 if (PageUptodate(page)) {
175 f2fs_put_page(page, 1);
176 continue;
179 fio.page = page;
180 f2fs_submit_page_mbio(&fio);
181 f2fs_put_page(page, 0);
183 out:
184 f2fs_submit_merged_bio(sbi, META, READ);
185 return blkno - start;
188 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
190 struct page *page;
191 bool readahead = false;
193 page = find_get_page(META_MAPPING(sbi), index);
194 if (!page || (page && !PageUptodate(page)))
195 readahead = true;
196 f2fs_put_page(page, 0);
198 if (readahead)
199 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
202 static int f2fs_write_meta_page(struct page *page,
203 struct writeback_control *wbc)
205 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
207 trace_f2fs_writepage(page, META);
209 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
210 goto redirty_out;
211 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
212 goto redirty_out;
213 if (unlikely(f2fs_cp_error(sbi)))
214 goto redirty_out;
216 f2fs_wait_on_page_writeback(page, META);
217 write_meta_page(sbi, page);
218 dec_page_count(sbi, F2FS_DIRTY_META);
219 unlock_page(page);
221 if (wbc->for_reclaim)
222 f2fs_submit_merged_bio(sbi, META, WRITE);
223 return 0;
225 redirty_out:
226 redirty_page_for_writepage(wbc, page);
227 return AOP_WRITEPAGE_ACTIVATE;
230 static int f2fs_write_meta_pages(struct address_space *mapping,
231 struct writeback_control *wbc)
233 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
234 long diff, written;
236 trace_f2fs_writepages(mapping->host, wbc, META);
238 /* collect a number of dirty meta pages and write together */
239 if (wbc->for_kupdate ||
240 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
241 goto skip_write;
243 /* if mounting is failed, skip writing node pages */
244 mutex_lock(&sbi->cp_mutex);
245 diff = nr_pages_to_write(sbi, META, wbc);
246 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
247 mutex_unlock(&sbi->cp_mutex);
248 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
249 return 0;
251 skip_write:
252 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
253 return 0;
256 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
257 long nr_to_write)
259 struct address_space *mapping = META_MAPPING(sbi);
260 pgoff_t index = 0, end = LONG_MAX;
261 struct pagevec pvec;
262 long nwritten = 0;
263 struct writeback_control wbc = {
264 .for_reclaim = 0,
267 pagevec_init(&pvec, 0);
269 while (index <= end) {
270 int i, nr_pages;
271 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
272 PAGECACHE_TAG_DIRTY,
273 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
274 if (unlikely(nr_pages == 0))
275 break;
277 for (i = 0; i < nr_pages; i++) {
278 struct page *page = pvec.pages[i];
280 lock_page(page);
282 if (unlikely(page->mapping != mapping)) {
283 continue_unlock:
284 unlock_page(page);
285 continue;
287 if (!PageDirty(page)) {
288 /* someone wrote it for us */
289 goto continue_unlock;
292 if (!clear_page_dirty_for_io(page))
293 goto continue_unlock;
295 if (mapping->a_ops->writepage(page, &wbc)) {
296 unlock_page(page);
297 break;
299 nwritten++;
300 if (unlikely(nwritten >= nr_to_write))
301 break;
303 pagevec_release(&pvec);
304 cond_resched();
307 if (nwritten)
308 f2fs_submit_merged_bio(sbi, type, WRITE);
310 return nwritten;
313 static int f2fs_set_meta_page_dirty(struct page *page)
315 trace_f2fs_set_page_dirty(page, META);
317 SetPageUptodate(page);
318 if (!PageDirty(page)) {
319 __set_page_dirty_nobuffers(page);
320 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
321 SetPagePrivate(page);
322 f2fs_trace_pid(page);
323 return 1;
325 return 0;
328 const struct address_space_operations f2fs_meta_aops = {
329 .writepage = f2fs_write_meta_page,
330 .writepages = f2fs_write_meta_pages,
331 .set_page_dirty = f2fs_set_meta_page_dirty,
332 .invalidatepage = f2fs_invalidate_page,
333 .releasepage = f2fs_release_page,
336 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
338 struct inode_management *im = &sbi->im[type];
339 struct ino_entry *e, *tmp;
341 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
342 retry:
343 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
345 spin_lock(&im->ino_lock);
346 e = radix_tree_lookup(&im->ino_root, ino);
347 if (!e) {
348 e = tmp;
349 if (radix_tree_insert(&im->ino_root, ino, e)) {
350 spin_unlock(&im->ino_lock);
351 radix_tree_preload_end();
352 goto retry;
354 memset(e, 0, sizeof(struct ino_entry));
355 e->ino = ino;
357 list_add_tail(&e->list, &im->ino_list);
358 if (type != ORPHAN_INO)
359 im->ino_num++;
361 spin_unlock(&im->ino_lock);
362 radix_tree_preload_end();
364 if (e != tmp)
365 kmem_cache_free(ino_entry_slab, tmp);
368 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
370 struct inode_management *im = &sbi->im[type];
371 struct ino_entry *e;
373 spin_lock(&im->ino_lock);
374 e = radix_tree_lookup(&im->ino_root, ino);
375 if (e) {
376 list_del(&e->list);
377 radix_tree_delete(&im->ino_root, ino);
378 im->ino_num--;
379 spin_unlock(&im->ino_lock);
380 kmem_cache_free(ino_entry_slab, e);
381 return;
383 spin_unlock(&im->ino_lock);
386 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
388 /* add new dirty ino entry into list */
389 __add_ino_entry(sbi, ino, type);
392 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
394 /* remove dirty ino entry from list */
395 __remove_ino_entry(sbi, ino, type);
398 /* mode should be APPEND_INO or UPDATE_INO */
399 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
401 struct inode_management *im = &sbi->im[mode];
402 struct ino_entry *e;
404 spin_lock(&im->ino_lock);
405 e = radix_tree_lookup(&im->ino_root, ino);
406 spin_unlock(&im->ino_lock);
407 return e ? true : false;
410 void release_dirty_inode(struct f2fs_sb_info *sbi)
412 struct ino_entry *e, *tmp;
413 int i;
415 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
416 struct inode_management *im = &sbi->im[i];
418 spin_lock(&im->ino_lock);
419 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
420 list_del(&e->list);
421 radix_tree_delete(&im->ino_root, e->ino);
422 kmem_cache_free(ino_entry_slab, e);
423 im->ino_num--;
425 spin_unlock(&im->ino_lock);
429 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
431 struct inode_management *im = &sbi->im[ORPHAN_INO];
432 int err = 0;
434 spin_lock(&im->ino_lock);
435 if (unlikely(im->ino_num >= sbi->max_orphans))
436 err = -ENOSPC;
437 else
438 im->ino_num++;
439 spin_unlock(&im->ino_lock);
441 return err;
444 void release_orphan_inode(struct f2fs_sb_info *sbi)
446 struct inode_management *im = &sbi->im[ORPHAN_INO];
448 spin_lock(&im->ino_lock);
449 f2fs_bug_on(sbi, im->ino_num == 0);
450 im->ino_num--;
451 spin_unlock(&im->ino_lock);
454 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
456 /* add new orphan ino entry into list */
457 __add_ino_entry(sbi, ino, ORPHAN_INO);
460 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
462 /* remove orphan entry from orphan list */
463 __remove_ino_entry(sbi, ino, ORPHAN_INO);
466 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
468 struct inode *inode;
470 inode = f2fs_iget(sbi->sb, ino);
471 if (IS_ERR(inode)) {
473 * there should be a bug that we can't find the entry
474 * to orphan inode.
476 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
477 return PTR_ERR(inode);
480 clear_nlink(inode);
482 /* truncate all the data during iput */
483 iput(inode);
484 return 0;
487 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
489 block_t start_blk, orphan_blocks, i, j;
490 int err;
492 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
493 return 0;
495 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
496 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
498 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
500 for (i = 0; i < orphan_blocks; i++) {
501 struct page *page = get_meta_page(sbi, start_blk + i);
502 struct f2fs_orphan_block *orphan_blk;
504 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
505 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
506 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
507 err = recover_orphan_inode(sbi, ino);
508 if (err) {
509 f2fs_put_page(page, 1);
510 return err;
513 f2fs_put_page(page, 1);
515 /* clear Orphan Flag */
516 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
517 return 0;
520 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
522 struct list_head *head;
523 struct f2fs_orphan_block *orphan_blk = NULL;
524 unsigned int nentries = 0;
525 unsigned short index = 1;
526 unsigned short orphan_blocks;
527 struct page *page = NULL;
528 struct ino_entry *orphan = NULL;
529 struct inode_management *im = &sbi->im[ORPHAN_INO];
531 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
534 * we don't need to do spin_lock(&im->ino_lock) here, since all the
535 * orphan inode operations are covered under f2fs_lock_op().
536 * And, spin_lock should be avoided due to page operations below.
538 head = &im->ino_list;
540 /* loop for each orphan inode entry and write them in Jornal block */
541 list_for_each_entry(orphan, head, list) {
542 if (!page) {
543 page = grab_meta_page(sbi, start_blk++);
544 orphan_blk =
545 (struct f2fs_orphan_block *)page_address(page);
546 memset(orphan_blk, 0, sizeof(*orphan_blk));
549 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
551 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
553 * an orphan block is full of 1020 entries,
554 * then we need to flush current orphan blocks
555 * and bring another one in memory
557 orphan_blk->blk_addr = cpu_to_le16(index);
558 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
559 orphan_blk->entry_count = cpu_to_le32(nentries);
560 set_page_dirty(page);
561 f2fs_put_page(page, 1);
562 index++;
563 nentries = 0;
564 page = NULL;
568 if (page) {
569 orphan_blk->blk_addr = cpu_to_le16(index);
570 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
571 orphan_blk->entry_count = cpu_to_le32(nentries);
572 set_page_dirty(page);
573 f2fs_put_page(page, 1);
577 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
578 block_t cp_addr, unsigned long long *version)
580 struct page *cp_page_1, *cp_page_2 = NULL;
581 unsigned long blk_size = sbi->blocksize;
582 struct f2fs_checkpoint *cp_block;
583 unsigned long long cur_version = 0, pre_version = 0;
584 size_t crc_offset;
585 __u32 crc = 0;
587 /* Read the 1st cp block in this CP pack */
588 cp_page_1 = get_meta_page(sbi, cp_addr);
590 /* get the version number */
591 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
592 crc_offset = le32_to_cpu(cp_block->checksum_offset);
593 if (crc_offset >= blk_size)
594 goto invalid_cp1;
596 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
597 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
598 goto invalid_cp1;
600 pre_version = cur_cp_version(cp_block);
602 /* Read the 2nd cp block in this CP pack */
603 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
604 cp_page_2 = get_meta_page(sbi, cp_addr);
606 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
607 crc_offset = le32_to_cpu(cp_block->checksum_offset);
608 if (crc_offset >= blk_size)
609 goto invalid_cp2;
611 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
612 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
613 goto invalid_cp2;
615 cur_version = cur_cp_version(cp_block);
617 if (cur_version == pre_version) {
618 *version = cur_version;
619 f2fs_put_page(cp_page_2, 1);
620 return cp_page_1;
622 invalid_cp2:
623 f2fs_put_page(cp_page_2, 1);
624 invalid_cp1:
625 f2fs_put_page(cp_page_1, 1);
626 return NULL;
629 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
631 struct f2fs_checkpoint *cp_block;
632 struct f2fs_super_block *fsb = sbi->raw_super;
633 struct page *cp1, *cp2, *cur_page;
634 unsigned long blk_size = sbi->blocksize;
635 unsigned long long cp1_version = 0, cp2_version = 0;
636 unsigned long long cp_start_blk_no;
637 unsigned int cp_blks = 1 + __cp_payload(sbi);
638 block_t cp_blk_no;
639 int i;
641 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
642 if (!sbi->ckpt)
643 return -ENOMEM;
645 * Finding out valid cp block involves read both
646 * sets( cp pack1 and cp pack 2)
648 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
649 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
651 /* The second checkpoint pack should start at the next segment */
652 cp_start_blk_no += ((unsigned long long)1) <<
653 le32_to_cpu(fsb->log_blocks_per_seg);
654 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
656 if (cp1 && cp2) {
657 if (ver_after(cp2_version, cp1_version))
658 cur_page = cp2;
659 else
660 cur_page = cp1;
661 } else if (cp1) {
662 cur_page = cp1;
663 } else if (cp2) {
664 cur_page = cp2;
665 } else {
666 goto fail_no_cp;
669 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
670 memcpy(sbi->ckpt, cp_block, blk_size);
672 if (cp_blks <= 1)
673 goto done;
675 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
676 if (cur_page == cp2)
677 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
679 for (i = 1; i < cp_blks; i++) {
680 void *sit_bitmap_ptr;
681 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
683 cur_page = get_meta_page(sbi, cp_blk_no + i);
684 sit_bitmap_ptr = page_address(cur_page);
685 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
686 f2fs_put_page(cur_page, 1);
688 done:
689 f2fs_put_page(cp1, 1);
690 f2fs_put_page(cp2, 1);
691 return 0;
693 fail_no_cp:
694 kfree(sbi->ckpt);
695 return -EINVAL;
698 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
700 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
702 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
703 return -EEXIST;
705 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
706 F2FS_I(inode)->dirty_dir = new;
707 list_add_tail(&new->list, &sbi->dir_inode_list);
708 stat_inc_dirty_dir(sbi);
709 return 0;
712 void update_dirty_page(struct inode *inode, struct page *page)
714 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
715 struct inode_entry *new;
716 int ret = 0;
718 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
719 !S_ISLNK(inode->i_mode))
720 return;
722 if (!S_ISDIR(inode->i_mode)) {
723 inode_inc_dirty_pages(inode);
724 goto out;
727 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
728 new->inode = inode;
729 INIT_LIST_HEAD(&new->list);
731 spin_lock(&sbi->dir_inode_lock);
732 ret = __add_dirty_inode(inode, new);
733 inode_inc_dirty_pages(inode);
734 spin_unlock(&sbi->dir_inode_lock);
736 if (ret)
737 kmem_cache_free(inode_entry_slab, new);
738 out:
739 SetPagePrivate(page);
740 f2fs_trace_pid(page);
743 void add_dirty_dir_inode(struct inode *inode)
745 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
746 struct inode_entry *new =
747 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
748 int ret = 0;
750 new->inode = inode;
751 INIT_LIST_HEAD(&new->list);
753 spin_lock(&sbi->dir_inode_lock);
754 ret = __add_dirty_inode(inode, new);
755 spin_unlock(&sbi->dir_inode_lock);
757 if (ret)
758 kmem_cache_free(inode_entry_slab, new);
761 void remove_dirty_dir_inode(struct inode *inode)
763 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
764 struct inode_entry *entry;
766 if (!S_ISDIR(inode->i_mode))
767 return;
769 spin_lock(&sbi->dir_inode_lock);
770 if (get_dirty_pages(inode) ||
771 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
772 spin_unlock(&sbi->dir_inode_lock);
773 return;
776 entry = F2FS_I(inode)->dirty_dir;
777 list_del(&entry->list);
778 F2FS_I(inode)->dirty_dir = NULL;
779 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
780 stat_dec_dirty_dir(sbi);
781 spin_unlock(&sbi->dir_inode_lock);
782 kmem_cache_free(inode_entry_slab, entry);
784 /* Only from the recovery routine */
785 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
786 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
787 iput(inode);
791 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
793 struct list_head *head;
794 struct inode_entry *entry;
795 struct inode *inode;
796 retry:
797 if (unlikely(f2fs_cp_error(sbi)))
798 return;
800 spin_lock(&sbi->dir_inode_lock);
802 head = &sbi->dir_inode_list;
803 if (list_empty(head)) {
804 spin_unlock(&sbi->dir_inode_lock);
805 return;
807 entry = list_entry(head->next, struct inode_entry, list);
808 inode = igrab(entry->inode);
809 spin_unlock(&sbi->dir_inode_lock);
810 if (inode) {
811 filemap_fdatawrite(inode->i_mapping);
812 iput(inode);
813 } else {
815 * We should submit bio, since it exists several
816 * wribacking dentry pages in the freeing inode.
818 f2fs_submit_merged_bio(sbi, DATA, WRITE);
819 cond_resched();
821 goto retry;
825 * Freeze all the FS-operations for checkpoint.
827 static int block_operations(struct f2fs_sb_info *sbi)
829 struct writeback_control wbc = {
830 .sync_mode = WB_SYNC_ALL,
831 .nr_to_write = LONG_MAX,
832 .for_reclaim = 0,
834 struct blk_plug plug;
835 int err = 0;
837 blk_start_plug(&plug);
839 retry_flush_dents:
840 f2fs_lock_all(sbi);
841 /* write all the dirty dentry pages */
842 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
843 f2fs_unlock_all(sbi);
844 sync_dirty_dir_inodes(sbi);
845 if (unlikely(f2fs_cp_error(sbi))) {
846 err = -EIO;
847 goto out;
849 goto retry_flush_dents;
853 * POR: we should ensure that there are no dirty node pages
854 * until finishing nat/sit flush.
856 retry_flush_nodes:
857 down_write(&sbi->node_write);
859 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
860 up_write(&sbi->node_write);
861 sync_node_pages(sbi, 0, &wbc);
862 if (unlikely(f2fs_cp_error(sbi))) {
863 f2fs_unlock_all(sbi);
864 err = -EIO;
865 goto out;
867 goto retry_flush_nodes;
869 out:
870 blk_finish_plug(&plug);
871 return err;
874 static void unblock_operations(struct f2fs_sb_info *sbi)
876 up_write(&sbi->node_write);
877 f2fs_unlock_all(sbi);
880 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
882 DEFINE_WAIT(wait);
884 for (;;) {
885 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
887 if (!get_pages(sbi, F2FS_WRITEBACK))
888 break;
890 io_schedule();
892 finish_wait(&sbi->cp_wait, &wait);
895 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
897 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
898 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
899 struct f2fs_nm_info *nm_i = NM_I(sbi);
900 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
901 nid_t last_nid = nm_i->next_scan_nid;
902 block_t start_blk;
903 unsigned int data_sum_blocks, orphan_blocks;
904 __u32 crc32 = 0;
905 int i;
906 int cp_payload_blks = __cp_payload(sbi);
907 block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
908 bool invalidate = false;
911 * This avoids to conduct wrong roll-forward operations and uses
912 * metapages, so should be called prior to sync_meta_pages below.
914 if (discard_next_dnode(sbi, discard_blk))
915 invalidate = true;
917 /* Flush all the NAT/SIT pages */
918 while (get_pages(sbi, F2FS_DIRTY_META)) {
919 sync_meta_pages(sbi, META, LONG_MAX);
920 if (unlikely(f2fs_cp_error(sbi)))
921 return;
924 next_free_nid(sbi, &last_nid);
927 * modify checkpoint
928 * version number is already updated
930 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
931 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
932 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
933 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
934 ckpt->cur_node_segno[i] =
935 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
936 ckpt->cur_node_blkoff[i] =
937 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
938 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
939 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
941 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
942 ckpt->cur_data_segno[i] =
943 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
944 ckpt->cur_data_blkoff[i] =
945 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
946 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
947 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
950 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
951 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
952 ckpt->next_free_nid = cpu_to_le32(last_nid);
954 /* 2 cp + n data seg summary + orphan inode blocks */
955 data_sum_blocks = npages_for_summary_flush(sbi, false);
956 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
957 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
958 else
959 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
961 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
962 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
963 orphan_blocks);
965 if (__remain_node_summaries(cpc->reason))
966 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
967 cp_payload_blks + data_sum_blocks +
968 orphan_blocks + NR_CURSEG_NODE_TYPE);
969 else
970 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
971 cp_payload_blks + data_sum_blocks +
972 orphan_blocks);
974 if (cpc->reason == CP_UMOUNT)
975 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
976 else
977 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
979 if (cpc->reason == CP_FASTBOOT)
980 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
981 else
982 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
984 if (orphan_num)
985 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
986 else
987 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
989 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
990 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
992 /* update SIT/NAT bitmap */
993 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
994 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
996 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
997 *((__le32 *)((unsigned char *)ckpt +
998 le32_to_cpu(ckpt->checksum_offset)))
999 = cpu_to_le32(crc32);
1001 start_blk = __start_cp_addr(sbi);
1003 /* write out checkpoint buffer at block 0 */
1004 update_meta_page(sbi, ckpt, start_blk++);
1006 for (i = 1; i < 1 + cp_payload_blks; i++)
1007 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1008 start_blk++);
1010 if (orphan_num) {
1011 write_orphan_inodes(sbi, start_blk);
1012 start_blk += orphan_blocks;
1015 write_data_summaries(sbi, start_blk);
1016 start_blk += data_sum_blocks;
1017 if (__remain_node_summaries(cpc->reason)) {
1018 write_node_summaries(sbi, start_blk);
1019 start_blk += NR_CURSEG_NODE_TYPE;
1022 /* writeout checkpoint block */
1023 update_meta_page(sbi, ckpt, start_blk);
1025 /* wait for previous submitted node/meta pages writeback */
1026 wait_on_all_pages_writeback(sbi);
1028 if (unlikely(f2fs_cp_error(sbi)))
1029 return;
1031 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1032 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1034 /* update user_block_counts */
1035 sbi->last_valid_block_count = sbi->total_valid_block_count;
1036 sbi->alloc_valid_block_count = 0;
1038 /* Here, we only have one bio having CP pack */
1039 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1041 /* wait for previous submitted meta pages writeback */
1042 wait_on_all_pages_writeback(sbi);
1045 * invalidate meta page which is used temporarily for zeroing out
1046 * block at the end of warm node chain.
1048 if (invalidate)
1049 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1050 discard_blk);
1052 release_dirty_inode(sbi);
1054 if (unlikely(f2fs_cp_error(sbi)))
1055 return;
1057 clear_prefree_segments(sbi, cpc);
1058 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1062 * We guarantee that this checkpoint procedure will not fail.
1064 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1066 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1067 unsigned long long ckpt_ver;
1069 mutex_lock(&sbi->cp_mutex);
1071 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1072 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1073 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1074 goto out;
1075 if (unlikely(f2fs_cp_error(sbi)))
1076 goto out;
1077 if (f2fs_readonly(sbi->sb))
1078 goto out;
1080 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1082 if (block_operations(sbi))
1083 goto out;
1085 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1087 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1088 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1089 f2fs_submit_merged_bio(sbi, META, WRITE);
1092 * update checkpoint pack index
1093 * Increase the version number so that
1094 * SIT entries and seg summaries are written at correct place
1096 ckpt_ver = cur_cp_version(ckpt);
1097 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1099 /* write cached NAT/SIT entries to NAT/SIT area */
1100 flush_nat_entries(sbi);
1101 flush_sit_entries(sbi, cpc);
1103 /* unlock all the fs_lock[] in do_checkpoint() */
1104 do_checkpoint(sbi, cpc);
1106 unblock_operations(sbi);
1107 stat_inc_cp_count(sbi->stat_info);
1109 if (cpc->reason == CP_RECOVERY)
1110 f2fs_msg(sbi->sb, KERN_NOTICE,
1111 "checkpoint: version = %llx", ckpt_ver);
1112 out:
1113 mutex_unlock(&sbi->cp_mutex);
1114 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1117 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1119 int i;
1121 for (i = 0; i < MAX_INO_ENTRY; i++) {
1122 struct inode_management *im = &sbi->im[i];
1124 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1125 spin_lock_init(&im->ino_lock);
1126 INIT_LIST_HEAD(&im->ino_list);
1127 im->ino_num = 0;
1130 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1131 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1132 F2FS_ORPHANS_PER_BLOCK;
1135 int __init create_checkpoint_caches(void)
1137 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1138 sizeof(struct ino_entry));
1139 if (!ino_entry_slab)
1140 return -ENOMEM;
1141 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1142 sizeof(struct inode_entry));
1143 if (!inode_entry_slab) {
1144 kmem_cache_destroy(ino_entry_slab);
1145 return -ENOMEM;
1147 return 0;
1150 void destroy_checkpoint_caches(void)
1152 kmem_cache_destroy(ino_entry_slab);
1153 kmem_cache_destroy(inode_entry_slab);