KVM: PPC: Book3S HV: Allow DTL to be set to address 0, length 0
[linux-2.6/btrfs-unstable.git] / arch / powerpc / kvm / book3s_hv.c
blob812764c96229cdb95f04374cda1638599dbbc97b
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL (~(u64)0)
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
70 * We use the vcpu_load/put functions to measure stolen time.
71 * Stolen time is counted as time when either the vcpu is able to
72 * run as part of a virtual core, but the task running the vcore
73 * is preempted or sleeping, or when the vcpu needs something done
74 * in the kernel by the task running the vcpu, but that task is
75 * preempted or sleeping. Those two things have to be counted
76 * separately, since one of the vcpu tasks will take on the job
77 * of running the core, and the other vcpu tasks in the vcore will
78 * sleep waiting for it to do that, but that sleep shouldn't count
79 * as stolen time.
81 * Hence we accumulate stolen time when the vcpu can run as part of
82 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
83 * needs its task to do other things in the kernel (for example,
84 * service a page fault) in busy_stolen. We don't accumulate
85 * stolen time for a vcore when it is inactive, or for a vcpu
86 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
87 * a misnomer; it means that the vcpu task is not executing in
88 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
89 * the kernel. We don't have any way of dividing up that time
90 * between time that the vcpu is genuinely stopped, time that
91 * the task is actively working on behalf of the vcpu, and time
92 * that the task is preempted, so we don't count any of it as
93 * stolen.
95 * Updates to busy_stolen are protected by arch.tbacct_lock;
96 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
97 * of the vcpu that has taken responsibility for running the vcore
98 * (i.e. vc->runner). The stolen times are measured in units of
99 * timebase ticks. (Note that the != TB_NIL checks below are
100 * purely defensive; they should never fail.)
103 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
105 struct kvmppc_vcore *vc = vcpu->arch.vcore;
107 spin_lock(&vcpu->arch.tbacct_lock);
108 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
109 vc->preempt_tb != TB_NIL) {
110 vc->stolen_tb += mftb() - vc->preempt_tb;
111 vc->preempt_tb = TB_NIL;
113 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
114 vcpu->arch.busy_preempt != TB_NIL) {
115 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
116 vcpu->arch.busy_preempt = TB_NIL;
118 spin_unlock(&vcpu->arch.tbacct_lock);
121 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
123 struct kvmppc_vcore *vc = vcpu->arch.vcore;
125 spin_lock(&vcpu->arch.tbacct_lock);
126 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
127 vc->preempt_tb = mftb();
128 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
129 vcpu->arch.busy_preempt = mftb();
130 spin_unlock(&vcpu->arch.tbacct_lock);
133 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
135 vcpu->arch.shregs.msr = msr;
136 kvmppc_end_cede(vcpu);
139 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
141 vcpu->arch.pvr = pvr;
144 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
146 int r;
148 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
149 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
150 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
151 for (r = 0; r < 16; ++r)
152 pr_err("r%2d = %.16lx r%d = %.16lx\n",
153 r, kvmppc_get_gpr(vcpu, r),
154 r+16, kvmppc_get_gpr(vcpu, r+16));
155 pr_err("ctr = %.16lx lr = %.16lx\n",
156 vcpu->arch.ctr, vcpu->arch.lr);
157 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
158 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
159 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
160 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
161 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
162 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
163 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
164 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
165 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
166 pr_err("fault dar = %.16lx dsisr = %.8x\n",
167 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
168 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
169 for (r = 0; r < vcpu->arch.slb_max; ++r)
170 pr_err(" ESID = %.16llx VSID = %.16llx\n",
171 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
172 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
173 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
174 vcpu->arch.last_inst);
177 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
179 int r;
180 struct kvm_vcpu *v, *ret = NULL;
182 mutex_lock(&kvm->lock);
183 kvm_for_each_vcpu(r, v, kvm) {
184 if (v->vcpu_id == id) {
185 ret = v;
186 break;
189 mutex_unlock(&kvm->lock);
190 return ret;
193 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
195 vpa->shared_proc = 1;
196 vpa->yield_count = 1;
199 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
200 unsigned long addr, unsigned long len)
202 /* check address is cacheline aligned */
203 if (addr & (L1_CACHE_BYTES - 1))
204 return -EINVAL;
205 spin_lock(&vcpu->arch.vpa_update_lock);
206 if (v->next_gpa != addr || v->len != len) {
207 v->next_gpa = addr;
208 v->len = addr ? len : 0;
209 v->update_pending = 1;
211 spin_unlock(&vcpu->arch.vpa_update_lock);
212 return 0;
215 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
216 struct reg_vpa {
217 u32 dummy;
218 union {
219 u16 hword;
220 u32 word;
221 } length;
224 static int vpa_is_registered(struct kvmppc_vpa *vpap)
226 if (vpap->update_pending)
227 return vpap->next_gpa != 0;
228 return vpap->pinned_addr != NULL;
231 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
232 unsigned long flags,
233 unsigned long vcpuid, unsigned long vpa)
235 struct kvm *kvm = vcpu->kvm;
236 unsigned long len, nb;
237 void *va;
238 struct kvm_vcpu *tvcpu;
239 int err;
240 int subfunc;
241 struct kvmppc_vpa *vpap;
243 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
244 if (!tvcpu)
245 return H_PARAMETER;
247 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
248 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
249 subfunc == H_VPA_REG_SLB) {
250 /* Registering new area - address must be cache-line aligned */
251 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
252 return H_PARAMETER;
254 /* convert logical addr to kernel addr and read length */
255 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
256 if (va == NULL)
257 return H_PARAMETER;
258 if (subfunc == H_VPA_REG_VPA)
259 len = ((struct reg_vpa *)va)->length.hword;
260 else
261 len = ((struct reg_vpa *)va)->length.word;
262 kvmppc_unpin_guest_page(kvm, va);
264 /* Check length */
265 if (len > nb || len < sizeof(struct reg_vpa))
266 return H_PARAMETER;
267 } else {
268 vpa = 0;
269 len = 0;
272 err = H_PARAMETER;
273 vpap = NULL;
274 spin_lock(&tvcpu->arch.vpa_update_lock);
276 switch (subfunc) {
277 case H_VPA_REG_VPA: /* register VPA */
278 if (len < sizeof(struct lppaca))
279 break;
280 vpap = &tvcpu->arch.vpa;
281 err = 0;
282 break;
284 case H_VPA_REG_DTL: /* register DTL */
285 if (len < sizeof(struct dtl_entry))
286 break;
287 len -= len % sizeof(struct dtl_entry);
289 /* Check that they have previously registered a VPA */
290 err = H_RESOURCE;
291 if (!vpa_is_registered(&tvcpu->arch.vpa))
292 break;
294 vpap = &tvcpu->arch.dtl;
295 err = 0;
296 break;
298 case H_VPA_REG_SLB: /* register SLB shadow buffer */
299 /* Check that they have previously registered a VPA */
300 err = H_RESOURCE;
301 if (!vpa_is_registered(&tvcpu->arch.vpa))
302 break;
304 vpap = &tvcpu->arch.slb_shadow;
305 err = 0;
306 break;
308 case H_VPA_DEREG_VPA: /* deregister VPA */
309 /* Check they don't still have a DTL or SLB buf registered */
310 err = H_RESOURCE;
311 if (vpa_is_registered(&tvcpu->arch.dtl) ||
312 vpa_is_registered(&tvcpu->arch.slb_shadow))
313 break;
315 vpap = &tvcpu->arch.vpa;
316 err = 0;
317 break;
319 case H_VPA_DEREG_DTL: /* deregister DTL */
320 vpap = &tvcpu->arch.dtl;
321 err = 0;
322 break;
324 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
325 vpap = &tvcpu->arch.slb_shadow;
326 err = 0;
327 break;
330 if (vpap) {
331 vpap->next_gpa = vpa;
332 vpap->len = len;
333 vpap->update_pending = 1;
336 spin_unlock(&tvcpu->arch.vpa_update_lock);
338 return err;
341 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
343 struct kvm *kvm = vcpu->kvm;
344 void *va;
345 unsigned long nb;
346 unsigned long gpa;
349 * We need to pin the page pointed to by vpap->next_gpa,
350 * but we can't call kvmppc_pin_guest_page under the lock
351 * as it does get_user_pages() and down_read(). So we
352 * have to drop the lock, pin the page, then get the lock
353 * again and check that a new area didn't get registered
354 * in the meantime.
356 for (;;) {
357 gpa = vpap->next_gpa;
358 spin_unlock(&vcpu->arch.vpa_update_lock);
359 va = NULL;
360 nb = 0;
361 if (gpa)
362 va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
363 spin_lock(&vcpu->arch.vpa_update_lock);
364 if (gpa == vpap->next_gpa)
365 break;
366 /* sigh... unpin that one and try again */
367 if (va)
368 kvmppc_unpin_guest_page(kvm, va);
371 vpap->update_pending = 0;
372 if (va && nb < vpap->len) {
374 * If it's now too short, it must be that userspace
375 * has changed the mappings underlying guest memory,
376 * so unregister the region.
378 kvmppc_unpin_guest_page(kvm, va);
379 va = NULL;
381 if (vpap->pinned_addr)
382 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
383 vpap->pinned_addr = va;
384 if (va)
385 vpap->pinned_end = va + vpap->len;
388 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
390 if (!(vcpu->arch.vpa.update_pending ||
391 vcpu->arch.slb_shadow.update_pending ||
392 vcpu->arch.dtl.update_pending))
393 return;
395 spin_lock(&vcpu->arch.vpa_update_lock);
396 if (vcpu->arch.vpa.update_pending) {
397 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
398 if (vcpu->arch.vpa.pinned_addr)
399 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
401 if (vcpu->arch.dtl.update_pending) {
402 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
403 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
404 vcpu->arch.dtl_index = 0;
406 if (vcpu->arch.slb_shadow.update_pending)
407 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
408 spin_unlock(&vcpu->arch.vpa_update_lock);
412 * Return the accumulated stolen time for the vcore up until `now'.
413 * The caller should hold the vcore lock.
415 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
417 u64 p;
420 * If we are the task running the vcore, then since we hold
421 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
422 * can't be updated, so we don't need the tbacct_lock.
423 * If the vcore is inactive, it can't become active (since we
424 * hold the vcore lock), so the vcpu load/put functions won't
425 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
427 if (vc->vcore_state != VCORE_INACTIVE &&
428 vc->runner->arch.run_task != current) {
429 spin_lock(&vc->runner->arch.tbacct_lock);
430 p = vc->stolen_tb;
431 if (vc->preempt_tb != TB_NIL)
432 p += now - vc->preempt_tb;
433 spin_unlock(&vc->runner->arch.tbacct_lock);
434 } else {
435 p = vc->stolen_tb;
437 return p;
440 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
441 struct kvmppc_vcore *vc)
443 struct dtl_entry *dt;
444 struct lppaca *vpa;
445 unsigned long stolen;
446 unsigned long core_stolen;
447 u64 now;
449 dt = vcpu->arch.dtl_ptr;
450 vpa = vcpu->arch.vpa.pinned_addr;
451 now = mftb();
452 core_stolen = vcore_stolen_time(vc, now);
453 stolen = core_stolen - vcpu->arch.stolen_logged;
454 vcpu->arch.stolen_logged = core_stolen;
455 spin_lock(&vcpu->arch.tbacct_lock);
456 stolen += vcpu->arch.busy_stolen;
457 vcpu->arch.busy_stolen = 0;
458 spin_unlock(&vcpu->arch.tbacct_lock);
459 if (!dt || !vpa)
460 return;
461 memset(dt, 0, sizeof(struct dtl_entry));
462 dt->dispatch_reason = 7;
463 dt->processor_id = vc->pcpu + vcpu->arch.ptid;
464 dt->timebase = now;
465 dt->enqueue_to_dispatch_time = stolen;
466 dt->srr0 = kvmppc_get_pc(vcpu);
467 dt->srr1 = vcpu->arch.shregs.msr;
468 ++dt;
469 if (dt == vcpu->arch.dtl.pinned_end)
470 dt = vcpu->arch.dtl.pinned_addr;
471 vcpu->arch.dtl_ptr = dt;
472 /* order writing *dt vs. writing vpa->dtl_idx */
473 smp_wmb();
474 vpa->dtl_idx = ++vcpu->arch.dtl_index;
477 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
479 unsigned long req = kvmppc_get_gpr(vcpu, 3);
480 unsigned long target, ret = H_SUCCESS;
481 struct kvm_vcpu *tvcpu;
482 int idx;
484 switch (req) {
485 case H_ENTER:
486 idx = srcu_read_lock(&vcpu->kvm->srcu);
487 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
488 kvmppc_get_gpr(vcpu, 5),
489 kvmppc_get_gpr(vcpu, 6),
490 kvmppc_get_gpr(vcpu, 7));
491 srcu_read_unlock(&vcpu->kvm->srcu, idx);
492 break;
493 case H_CEDE:
494 break;
495 case H_PROD:
496 target = kvmppc_get_gpr(vcpu, 4);
497 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
498 if (!tvcpu) {
499 ret = H_PARAMETER;
500 break;
502 tvcpu->arch.prodded = 1;
503 smp_mb();
504 if (vcpu->arch.ceded) {
505 if (waitqueue_active(&vcpu->wq)) {
506 wake_up_interruptible(&vcpu->wq);
507 vcpu->stat.halt_wakeup++;
510 break;
511 case H_CONFER:
512 break;
513 case H_REGISTER_VPA:
514 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
515 kvmppc_get_gpr(vcpu, 5),
516 kvmppc_get_gpr(vcpu, 6));
517 break;
518 default:
519 return RESUME_HOST;
521 kvmppc_set_gpr(vcpu, 3, ret);
522 vcpu->arch.hcall_needed = 0;
523 return RESUME_GUEST;
526 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
527 struct task_struct *tsk)
529 int r = RESUME_HOST;
531 vcpu->stat.sum_exits++;
533 run->exit_reason = KVM_EXIT_UNKNOWN;
534 run->ready_for_interrupt_injection = 1;
535 switch (vcpu->arch.trap) {
536 /* We're good on these - the host merely wanted to get our attention */
537 case BOOK3S_INTERRUPT_HV_DECREMENTER:
538 vcpu->stat.dec_exits++;
539 r = RESUME_GUEST;
540 break;
541 case BOOK3S_INTERRUPT_EXTERNAL:
542 vcpu->stat.ext_intr_exits++;
543 r = RESUME_GUEST;
544 break;
545 case BOOK3S_INTERRUPT_PERFMON:
546 r = RESUME_GUEST;
547 break;
548 case BOOK3S_INTERRUPT_PROGRAM:
550 ulong flags;
552 * Normally program interrupts are delivered directly
553 * to the guest by the hardware, but we can get here
554 * as a result of a hypervisor emulation interrupt
555 * (e40) getting turned into a 700 by BML RTAS.
557 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
558 kvmppc_core_queue_program(vcpu, flags);
559 r = RESUME_GUEST;
560 break;
562 case BOOK3S_INTERRUPT_SYSCALL:
564 /* hcall - punt to userspace */
565 int i;
567 if (vcpu->arch.shregs.msr & MSR_PR) {
568 /* sc 1 from userspace - reflect to guest syscall */
569 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
570 r = RESUME_GUEST;
571 break;
573 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
574 for (i = 0; i < 9; ++i)
575 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
576 run->exit_reason = KVM_EXIT_PAPR_HCALL;
577 vcpu->arch.hcall_needed = 1;
578 r = RESUME_HOST;
579 break;
582 * We get these next two if the guest accesses a page which it thinks
583 * it has mapped but which is not actually present, either because
584 * it is for an emulated I/O device or because the corresonding
585 * host page has been paged out. Any other HDSI/HISI interrupts
586 * have been handled already.
588 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
589 r = RESUME_PAGE_FAULT;
590 break;
591 case BOOK3S_INTERRUPT_H_INST_STORAGE:
592 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
593 vcpu->arch.fault_dsisr = 0;
594 r = RESUME_PAGE_FAULT;
595 break;
597 * This occurs if the guest executes an illegal instruction.
598 * We just generate a program interrupt to the guest, since
599 * we don't emulate any guest instructions at this stage.
601 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
602 kvmppc_core_queue_program(vcpu, 0x80000);
603 r = RESUME_GUEST;
604 break;
605 default:
606 kvmppc_dump_regs(vcpu);
607 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
608 vcpu->arch.trap, kvmppc_get_pc(vcpu),
609 vcpu->arch.shregs.msr);
610 r = RESUME_HOST;
611 BUG();
612 break;
615 return r;
618 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
619 struct kvm_sregs *sregs)
621 int i;
623 sregs->pvr = vcpu->arch.pvr;
625 memset(sregs, 0, sizeof(struct kvm_sregs));
626 for (i = 0; i < vcpu->arch.slb_max; i++) {
627 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
628 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
631 return 0;
634 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
635 struct kvm_sregs *sregs)
637 int i, j;
639 kvmppc_set_pvr(vcpu, sregs->pvr);
641 j = 0;
642 for (i = 0; i < vcpu->arch.slb_nr; i++) {
643 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
644 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
645 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
646 ++j;
649 vcpu->arch.slb_max = j;
651 return 0;
654 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
656 int r = 0;
657 long int i;
659 switch (id) {
660 case KVM_REG_PPC_HIOR:
661 *val = get_reg_val(id, 0);
662 break;
663 case KVM_REG_PPC_DABR:
664 *val = get_reg_val(id, vcpu->arch.dabr);
665 break;
666 case KVM_REG_PPC_DSCR:
667 *val = get_reg_val(id, vcpu->arch.dscr);
668 break;
669 case KVM_REG_PPC_PURR:
670 *val = get_reg_val(id, vcpu->arch.purr);
671 break;
672 case KVM_REG_PPC_SPURR:
673 *val = get_reg_val(id, vcpu->arch.spurr);
674 break;
675 case KVM_REG_PPC_AMR:
676 *val = get_reg_val(id, vcpu->arch.amr);
677 break;
678 case KVM_REG_PPC_UAMOR:
679 *val = get_reg_val(id, vcpu->arch.uamor);
680 break;
681 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
682 i = id - KVM_REG_PPC_MMCR0;
683 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
684 break;
685 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
686 i = id - KVM_REG_PPC_PMC1;
687 *val = get_reg_val(id, vcpu->arch.pmc[i]);
688 break;
689 #ifdef CONFIG_VSX
690 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
691 if (cpu_has_feature(CPU_FTR_VSX)) {
692 /* VSX => FP reg i is stored in arch.vsr[2*i] */
693 long int i = id - KVM_REG_PPC_FPR0;
694 *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
695 } else {
696 /* let generic code handle it */
697 r = -EINVAL;
699 break;
700 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
701 if (cpu_has_feature(CPU_FTR_VSX)) {
702 long int i = id - KVM_REG_PPC_VSR0;
703 val->vsxval[0] = vcpu->arch.vsr[2 * i];
704 val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
705 } else {
706 r = -ENXIO;
708 break;
709 #endif /* CONFIG_VSX */
710 case KVM_REG_PPC_VPA_ADDR:
711 spin_lock(&vcpu->arch.vpa_update_lock);
712 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
713 spin_unlock(&vcpu->arch.vpa_update_lock);
714 break;
715 case KVM_REG_PPC_VPA_SLB:
716 spin_lock(&vcpu->arch.vpa_update_lock);
717 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
718 val->vpaval.length = vcpu->arch.slb_shadow.len;
719 spin_unlock(&vcpu->arch.vpa_update_lock);
720 break;
721 case KVM_REG_PPC_VPA_DTL:
722 spin_lock(&vcpu->arch.vpa_update_lock);
723 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
724 val->vpaval.length = vcpu->arch.dtl.len;
725 spin_unlock(&vcpu->arch.vpa_update_lock);
726 break;
727 default:
728 r = -EINVAL;
729 break;
732 return r;
735 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
737 int r = 0;
738 long int i;
739 unsigned long addr, len;
741 switch (id) {
742 case KVM_REG_PPC_HIOR:
743 /* Only allow this to be set to zero */
744 if (set_reg_val(id, *val))
745 r = -EINVAL;
746 break;
747 case KVM_REG_PPC_DABR:
748 vcpu->arch.dabr = set_reg_val(id, *val);
749 break;
750 case KVM_REG_PPC_DSCR:
751 vcpu->arch.dscr = set_reg_val(id, *val);
752 break;
753 case KVM_REG_PPC_PURR:
754 vcpu->arch.purr = set_reg_val(id, *val);
755 break;
756 case KVM_REG_PPC_SPURR:
757 vcpu->arch.spurr = set_reg_val(id, *val);
758 break;
759 case KVM_REG_PPC_AMR:
760 vcpu->arch.amr = set_reg_val(id, *val);
761 break;
762 case KVM_REG_PPC_UAMOR:
763 vcpu->arch.uamor = set_reg_val(id, *val);
764 break;
765 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
766 i = id - KVM_REG_PPC_MMCR0;
767 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
768 break;
769 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
770 i = id - KVM_REG_PPC_PMC1;
771 vcpu->arch.pmc[i] = set_reg_val(id, *val);
772 break;
773 #ifdef CONFIG_VSX
774 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
775 if (cpu_has_feature(CPU_FTR_VSX)) {
776 /* VSX => FP reg i is stored in arch.vsr[2*i] */
777 long int i = id - KVM_REG_PPC_FPR0;
778 vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
779 } else {
780 /* let generic code handle it */
781 r = -EINVAL;
783 break;
784 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
785 if (cpu_has_feature(CPU_FTR_VSX)) {
786 long int i = id - KVM_REG_PPC_VSR0;
787 vcpu->arch.vsr[2 * i] = val->vsxval[0];
788 vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
789 } else {
790 r = -ENXIO;
792 break;
793 #endif /* CONFIG_VSX */
794 case KVM_REG_PPC_VPA_ADDR:
795 addr = set_reg_val(id, *val);
796 r = -EINVAL;
797 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
798 vcpu->arch.dtl.next_gpa))
799 break;
800 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
801 break;
802 case KVM_REG_PPC_VPA_SLB:
803 addr = val->vpaval.addr;
804 len = val->vpaval.length;
805 r = -EINVAL;
806 if (addr && !vcpu->arch.vpa.next_gpa)
807 break;
808 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
809 break;
810 case KVM_REG_PPC_VPA_DTL:
811 addr = val->vpaval.addr;
812 len = val->vpaval.length;
813 r = -EINVAL;
814 if (addr && (len < sizeof(struct dtl_entry) ||
815 !vcpu->arch.vpa.next_gpa))
816 break;
817 len -= len % sizeof(struct dtl_entry);
818 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
819 break;
820 default:
821 r = -EINVAL;
822 break;
825 return r;
828 int kvmppc_core_check_processor_compat(void)
830 if (cpu_has_feature(CPU_FTR_HVMODE))
831 return 0;
832 return -EIO;
835 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
837 struct kvm_vcpu *vcpu;
838 int err = -EINVAL;
839 int core;
840 struct kvmppc_vcore *vcore;
842 core = id / threads_per_core;
843 if (core >= KVM_MAX_VCORES)
844 goto out;
846 err = -ENOMEM;
847 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
848 if (!vcpu)
849 goto out;
851 err = kvm_vcpu_init(vcpu, kvm, id);
852 if (err)
853 goto free_vcpu;
855 vcpu->arch.shared = &vcpu->arch.shregs;
856 vcpu->arch.last_cpu = -1;
857 vcpu->arch.mmcr[0] = MMCR0_FC;
858 vcpu->arch.ctrl = CTRL_RUNLATCH;
859 /* default to host PVR, since we can't spoof it */
860 vcpu->arch.pvr = mfspr(SPRN_PVR);
861 kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
862 spin_lock_init(&vcpu->arch.vpa_update_lock);
863 spin_lock_init(&vcpu->arch.tbacct_lock);
864 vcpu->arch.busy_preempt = TB_NIL;
866 kvmppc_mmu_book3s_hv_init(vcpu);
868 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
870 init_waitqueue_head(&vcpu->arch.cpu_run);
872 mutex_lock(&kvm->lock);
873 vcore = kvm->arch.vcores[core];
874 if (!vcore) {
875 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
876 if (vcore) {
877 INIT_LIST_HEAD(&vcore->runnable_threads);
878 spin_lock_init(&vcore->lock);
879 init_waitqueue_head(&vcore->wq);
880 vcore->preempt_tb = TB_NIL;
882 kvm->arch.vcores[core] = vcore;
884 mutex_unlock(&kvm->lock);
886 if (!vcore)
887 goto free_vcpu;
889 spin_lock(&vcore->lock);
890 ++vcore->num_threads;
891 spin_unlock(&vcore->lock);
892 vcpu->arch.vcore = vcore;
894 vcpu->arch.cpu_type = KVM_CPU_3S_64;
895 kvmppc_sanity_check(vcpu);
897 return vcpu;
899 free_vcpu:
900 kmem_cache_free(kvm_vcpu_cache, vcpu);
901 out:
902 return ERR_PTR(err);
905 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
907 spin_lock(&vcpu->arch.vpa_update_lock);
908 if (vcpu->arch.dtl.pinned_addr)
909 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
910 if (vcpu->arch.slb_shadow.pinned_addr)
911 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
912 if (vcpu->arch.vpa.pinned_addr)
913 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
914 spin_unlock(&vcpu->arch.vpa_update_lock);
915 kvm_vcpu_uninit(vcpu);
916 kmem_cache_free(kvm_vcpu_cache, vcpu);
919 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
921 unsigned long dec_nsec, now;
923 now = get_tb();
924 if (now > vcpu->arch.dec_expires) {
925 /* decrementer has already gone negative */
926 kvmppc_core_queue_dec(vcpu);
927 kvmppc_core_prepare_to_enter(vcpu);
928 return;
930 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
931 / tb_ticks_per_sec;
932 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
933 HRTIMER_MODE_REL);
934 vcpu->arch.timer_running = 1;
937 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
939 vcpu->arch.ceded = 0;
940 if (vcpu->arch.timer_running) {
941 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
942 vcpu->arch.timer_running = 0;
946 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
947 extern void xics_wake_cpu(int cpu);
949 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
950 struct kvm_vcpu *vcpu)
952 u64 now;
954 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
955 return;
956 spin_lock(&vcpu->arch.tbacct_lock);
957 now = mftb();
958 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
959 vcpu->arch.stolen_logged;
960 vcpu->arch.busy_preempt = now;
961 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
962 spin_unlock(&vcpu->arch.tbacct_lock);
963 --vc->n_runnable;
964 list_del(&vcpu->arch.run_list);
967 static int kvmppc_grab_hwthread(int cpu)
969 struct paca_struct *tpaca;
970 long timeout = 1000;
972 tpaca = &paca[cpu];
974 /* Ensure the thread won't go into the kernel if it wakes */
975 tpaca->kvm_hstate.hwthread_req = 1;
976 tpaca->kvm_hstate.kvm_vcpu = NULL;
979 * If the thread is already executing in the kernel (e.g. handling
980 * a stray interrupt), wait for it to get back to nap mode.
981 * The smp_mb() is to ensure that our setting of hwthread_req
982 * is visible before we look at hwthread_state, so if this
983 * races with the code at system_reset_pSeries and the thread
984 * misses our setting of hwthread_req, we are sure to see its
985 * setting of hwthread_state, and vice versa.
987 smp_mb();
988 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
989 if (--timeout <= 0) {
990 pr_err("KVM: couldn't grab cpu %d\n", cpu);
991 return -EBUSY;
993 udelay(1);
995 return 0;
998 static void kvmppc_release_hwthread(int cpu)
1000 struct paca_struct *tpaca;
1002 tpaca = &paca[cpu];
1003 tpaca->kvm_hstate.hwthread_req = 0;
1004 tpaca->kvm_hstate.kvm_vcpu = NULL;
1007 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1009 int cpu;
1010 struct paca_struct *tpaca;
1011 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1013 if (vcpu->arch.timer_running) {
1014 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1015 vcpu->arch.timer_running = 0;
1017 cpu = vc->pcpu + vcpu->arch.ptid;
1018 tpaca = &paca[cpu];
1019 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1020 tpaca->kvm_hstate.kvm_vcore = vc;
1021 tpaca->kvm_hstate.napping = 0;
1022 vcpu->cpu = vc->pcpu;
1023 smp_wmb();
1024 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1025 if (vcpu->arch.ptid) {
1026 xics_wake_cpu(cpu);
1027 ++vc->n_woken;
1029 #endif
1032 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1034 int i;
1036 HMT_low();
1037 i = 0;
1038 while (vc->nap_count < vc->n_woken) {
1039 if (++i >= 1000000) {
1040 pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1041 vc->nap_count, vc->n_woken);
1042 break;
1044 cpu_relax();
1046 HMT_medium();
1050 * Check that we are on thread 0 and that any other threads in
1051 * this core are off-line. Then grab the threads so they can't
1052 * enter the kernel.
1054 static int on_primary_thread(void)
1056 int cpu = smp_processor_id();
1057 int thr = cpu_thread_in_core(cpu);
1059 if (thr)
1060 return 0;
1061 while (++thr < threads_per_core)
1062 if (cpu_online(cpu + thr))
1063 return 0;
1065 /* Grab all hw threads so they can't go into the kernel */
1066 for (thr = 1; thr < threads_per_core; ++thr) {
1067 if (kvmppc_grab_hwthread(cpu + thr)) {
1068 /* Couldn't grab one; let the others go */
1069 do {
1070 kvmppc_release_hwthread(cpu + thr);
1071 } while (--thr > 0);
1072 return 0;
1075 return 1;
1079 * Run a set of guest threads on a physical core.
1080 * Called with vc->lock held.
1082 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1084 struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1085 long ret;
1086 u64 now;
1087 int ptid, i, need_vpa_update;
1088 int srcu_idx;
1089 struct kvm_vcpu *vcpus_to_update[threads_per_core];
1091 /* don't start if any threads have a signal pending */
1092 need_vpa_update = 0;
1093 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1094 if (signal_pending(vcpu->arch.run_task))
1095 return;
1096 if (vcpu->arch.vpa.update_pending ||
1097 vcpu->arch.slb_shadow.update_pending ||
1098 vcpu->arch.dtl.update_pending)
1099 vcpus_to_update[need_vpa_update++] = vcpu;
1103 * Initialize *vc, in particular vc->vcore_state, so we can
1104 * drop the vcore lock if necessary.
1106 vc->n_woken = 0;
1107 vc->nap_count = 0;
1108 vc->entry_exit_count = 0;
1109 vc->vcore_state = VCORE_STARTING;
1110 vc->in_guest = 0;
1111 vc->napping_threads = 0;
1114 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1115 * which can't be called with any spinlocks held.
1117 if (need_vpa_update) {
1118 spin_unlock(&vc->lock);
1119 for (i = 0; i < need_vpa_update; ++i)
1120 kvmppc_update_vpas(vcpus_to_update[i]);
1121 spin_lock(&vc->lock);
1125 * Assign physical thread IDs, first to non-ceded vcpus
1126 * and then to ceded ones.
1128 ptid = 0;
1129 vcpu0 = NULL;
1130 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1131 if (!vcpu->arch.ceded) {
1132 if (!ptid)
1133 vcpu0 = vcpu;
1134 vcpu->arch.ptid = ptid++;
1137 if (!vcpu0)
1138 goto out; /* nothing to run; should never happen */
1139 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1140 if (vcpu->arch.ceded)
1141 vcpu->arch.ptid = ptid++;
1144 * Make sure we are running on thread 0, and that
1145 * secondary threads are offline.
1147 if (threads_per_core > 1 && !on_primary_thread()) {
1148 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1149 vcpu->arch.ret = -EBUSY;
1150 goto out;
1153 vc->pcpu = smp_processor_id();
1154 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1155 kvmppc_start_thread(vcpu);
1156 kvmppc_create_dtl_entry(vcpu, vc);
1159 vc->vcore_state = VCORE_RUNNING;
1160 preempt_disable();
1161 spin_unlock(&vc->lock);
1163 kvm_guest_enter();
1165 srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1167 __kvmppc_vcore_entry(NULL, vcpu0);
1169 spin_lock(&vc->lock);
1170 /* disable sending of IPIs on virtual external irqs */
1171 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1172 vcpu->cpu = -1;
1173 /* wait for secondary threads to finish writing their state to memory */
1174 if (vc->nap_count < vc->n_woken)
1175 kvmppc_wait_for_nap(vc);
1176 for (i = 0; i < threads_per_core; ++i)
1177 kvmppc_release_hwthread(vc->pcpu + i);
1178 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1179 vc->vcore_state = VCORE_EXITING;
1180 spin_unlock(&vc->lock);
1182 srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1184 /* make sure updates to secondary vcpu structs are visible now */
1185 smp_mb();
1186 kvm_guest_exit();
1188 preempt_enable();
1189 kvm_resched(vcpu);
1191 spin_lock(&vc->lock);
1192 now = get_tb();
1193 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1194 /* cancel pending dec exception if dec is positive */
1195 if (now < vcpu->arch.dec_expires &&
1196 kvmppc_core_pending_dec(vcpu))
1197 kvmppc_core_dequeue_dec(vcpu);
1199 ret = RESUME_GUEST;
1200 if (vcpu->arch.trap)
1201 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1202 vcpu->arch.run_task);
1204 vcpu->arch.ret = ret;
1205 vcpu->arch.trap = 0;
1207 if (vcpu->arch.ceded) {
1208 if (ret != RESUME_GUEST)
1209 kvmppc_end_cede(vcpu);
1210 else
1211 kvmppc_set_timer(vcpu);
1215 out:
1216 vc->vcore_state = VCORE_INACTIVE;
1217 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1218 arch.run_list) {
1219 if (vcpu->arch.ret != RESUME_GUEST) {
1220 kvmppc_remove_runnable(vc, vcpu);
1221 wake_up(&vcpu->arch.cpu_run);
1227 * Wait for some other vcpu thread to execute us, and
1228 * wake us up when we need to handle something in the host.
1230 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1232 DEFINE_WAIT(wait);
1234 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1235 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1236 schedule();
1237 finish_wait(&vcpu->arch.cpu_run, &wait);
1241 * All the vcpus in this vcore are idle, so wait for a decrementer
1242 * or external interrupt to one of the vcpus. vc->lock is held.
1244 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1246 DEFINE_WAIT(wait);
1248 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1249 vc->vcore_state = VCORE_SLEEPING;
1250 spin_unlock(&vc->lock);
1251 schedule();
1252 finish_wait(&vc->wq, &wait);
1253 spin_lock(&vc->lock);
1254 vc->vcore_state = VCORE_INACTIVE;
1257 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1259 int n_ceded;
1260 struct kvmppc_vcore *vc;
1261 struct kvm_vcpu *v, *vn;
1263 kvm_run->exit_reason = 0;
1264 vcpu->arch.ret = RESUME_GUEST;
1265 vcpu->arch.trap = 0;
1266 kvmppc_update_vpas(vcpu);
1269 * Synchronize with other threads in this virtual core
1271 vc = vcpu->arch.vcore;
1272 spin_lock(&vc->lock);
1273 vcpu->arch.ceded = 0;
1274 vcpu->arch.run_task = current;
1275 vcpu->arch.kvm_run = kvm_run;
1276 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1277 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1278 vcpu->arch.busy_preempt = TB_NIL;
1279 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1280 ++vc->n_runnable;
1283 * This happens the first time this is called for a vcpu.
1284 * If the vcore is already running, we may be able to start
1285 * this thread straight away and have it join in.
1287 if (!signal_pending(current)) {
1288 if (vc->vcore_state == VCORE_RUNNING &&
1289 VCORE_EXIT_COUNT(vc) == 0) {
1290 vcpu->arch.ptid = vc->n_runnable - 1;
1291 kvmppc_create_dtl_entry(vcpu, vc);
1292 kvmppc_start_thread(vcpu);
1293 } else if (vc->vcore_state == VCORE_SLEEPING) {
1294 wake_up(&vc->wq);
1299 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1300 !signal_pending(current)) {
1301 if (vc->vcore_state != VCORE_INACTIVE) {
1302 spin_unlock(&vc->lock);
1303 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1304 spin_lock(&vc->lock);
1305 continue;
1307 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1308 arch.run_list) {
1309 kvmppc_core_prepare_to_enter(v);
1310 if (signal_pending(v->arch.run_task)) {
1311 kvmppc_remove_runnable(vc, v);
1312 v->stat.signal_exits++;
1313 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1314 v->arch.ret = -EINTR;
1315 wake_up(&v->arch.cpu_run);
1318 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1319 break;
1320 vc->runner = vcpu;
1321 n_ceded = 0;
1322 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1323 if (!v->arch.pending_exceptions)
1324 n_ceded += v->arch.ceded;
1325 if (n_ceded == vc->n_runnable)
1326 kvmppc_vcore_blocked(vc);
1327 else
1328 kvmppc_run_core(vc);
1329 vc->runner = NULL;
1332 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1333 (vc->vcore_state == VCORE_RUNNING ||
1334 vc->vcore_state == VCORE_EXITING)) {
1335 spin_unlock(&vc->lock);
1336 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1337 spin_lock(&vc->lock);
1340 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1341 kvmppc_remove_runnable(vc, vcpu);
1342 vcpu->stat.signal_exits++;
1343 kvm_run->exit_reason = KVM_EXIT_INTR;
1344 vcpu->arch.ret = -EINTR;
1347 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1348 /* Wake up some vcpu to run the core */
1349 v = list_first_entry(&vc->runnable_threads,
1350 struct kvm_vcpu, arch.run_list);
1351 wake_up(&v->arch.cpu_run);
1354 spin_unlock(&vc->lock);
1355 return vcpu->arch.ret;
1358 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1360 int r;
1361 int srcu_idx;
1363 if (!vcpu->arch.sane) {
1364 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1365 return -EINVAL;
1368 kvmppc_core_prepare_to_enter(vcpu);
1370 /* No need to go into the guest when all we'll do is come back out */
1371 if (signal_pending(current)) {
1372 run->exit_reason = KVM_EXIT_INTR;
1373 return -EINTR;
1376 atomic_inc(&vcpu->kvm->arch.vcpus_running);
1377 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1378 smp_mb();
1380 /* On the first time here, set up HTAB and VRMA or RMA */
1381 if (!vcpu->kvm->arch.rma_setup_done) {
1382 r = kvmppc_hv_setup_htab_rma(vcpu);
1383 if (r)
1384 goto out;
1387 flush_fp_to_thread(current);
1388 flush_altivec_to_thread(current);
1389 flush_vsx_to_thread(current);
1390 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1391 vcpu->arch.pgdir = current->mm->pgd;
1392 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1394 do {
1395 r = kvmppc_run_vcpu(run, vcpu);
1397 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1398 !(vcpu->arch.shregs.msr & MSR_PR)) {
1399 r = kvmppc_pseries_do_hcall(vcpu);
1400 kvmppc_core_prepare_to_enter(vcpu);
1401 } else if (r == RESUME_PAGE_FAULT) {
1402 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1403 r = kvmppc_book3s_hv_page_fault(run, vcpu,
1404 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1405 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1407 } while (r == RESUME_GUEST);
1409 out:
1410 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1411 atomic_dec(&vcpu->kvm->arch.vcpus_running);
1412 return r;
1416 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1417 Assumes POWER7 or PPC970. */
1418 static inline int lpcr_rmls(unsigned long rma_size)
1420 switch (rma_size) {
1421 case 32ul << 20: /* 32 MB */
1422 if (cpu_has_feature(CPU_FTR_ARCH_206))
1423 return 8; /* only supported on POWER7 */
1424 return -1;
1425 case 64ul << 20: /* 64 MB */
1426 return 3;
1427 case 128ul << 20: /* 128 MB */
1428 return 7;
1429 case 256ul << 20: /* 256 MB */
1430 return 4;
1431 case 1ul << 30: /* 1 GB */
1432 return 2;
1433 case 16ul << 30: /* 16 GB */
1434 return 1;
1435 case 256ul << 30: /* 256 GB */
1436 return 0;
1437 default:
1438 return -1;
1442 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1444 struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1445 struct page *page;
1447 if (vmf->pgoff >= ri->npages)
1448 return VM_FAULT_SIGBUS;
1450 page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1451 get_page(page);
1452 vmf->page = page;
1453 return 0;
1456 static const struct vm_operations_struct kvm_rma_vm_ops = {
1457 .fault = kvm_rma_fault,
1460 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1462 vma->vm_flags |= VM_RESERVED;
1463 vma->vm_ops = &kvm_rma_vm_ops;
1464 return 0;
1467 static int kvm_rma_release(struct inode *inode, struct file *filp)
1469 struct kvmppc_linear_info *ri = filp->private_data;
1471 kvm_release_rma(ri);
1472 return 0;
1475 static struct file_operations kvm_rma_fops = {
1476 .mmap = kvm_rma_mmap,
1477 .release = kvm_rma_release,
1480 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1482 struct kvmppc_linear_info *ri;
1483 long fd;
1485 ri = kvm_alloc_rma();
1486 if (!ri)
1487 return -ENOMEM;
1489 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1490 if (fd < 0)
1491 kvm_release_rma(ri);
1493 ret->rma_size = ri->npages << PAGE_SHIFT;
1494 return fd;
1497 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1498 int linux_psize)
1500 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1502 if (!def->shift)
1503 return;
1504 (*sps)->page_shift = def->shift;
1505 (*sps)->slb_enc = def->sllp;
1506 (*sps)->enc[0].page_shift = def->shift;
1507 (*sps)->enc[0].pte_enc = def->penc;
1508 (*sps)++;
1511 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1513 struct kvm_ppc_one_seg_page_size *sps;
1515 info->flags = KVM_PPC_PAGE_SIZES_REAL;
1516 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1517 info->flags |= KVM_PPC_1T_SEGMENTS;
1518 info->slb_size = mmu_slb_size;
1520 /* We only support these sizes for now, and no muti-size segments */
1521 sps = &info->sps[0];
1522 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1523 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1524 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1526 return 0;
1530 * Get (and clear) the dirty memory log for a memory slot.
1532 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1534 struct kvm_memory_slot *memslot;
1535 int r;
1536 unsigned long n;
1538 mutex_lock(&kvm->slots_lock);
1540 r = -EINVAL;
1541 if (log->slot >= KVM_MEMORY_SLOTS)
1542 goto out;
1544 memslot = id_to_memslot(kvm->memslots, log->slot);
1545 r = -ENOENT;
1546 if (!memslot->dirty_bitmap)
1547 goto out;
1549 n = kvm_dirty_bitmap_bytes(memslot);
1550 memset(memslot->dirty_bitmap, 0, n);
1552 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1553 if (r)
1554 goto out;
1556 r = -EFAULT;
1557 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1558 goto out;
1560 r = 0;
1561 out:
1562 mutex_unlock(&kvm->slots_lock);
1563 return r;
1566 static unsigned long slb_pgsize_encoding(unsigned long psize)
1568 unsigned long senc = 0;
1570 if (psize > 0x1000) {
1571 senc = SLB_VSID_L;
1572 if (psize == 0x10000)
1573 senc |= SLB_VSID_LP_01;
1575 return senc;
1578 static void unpin_slot(struct kvm_memory_slot *memslot)
1580 unsigned long *physp;
1581 unsigned long j, npages, pfn;
1582 struct page *page;
1584 physp = memslot->arch.slot_phys;
1585 npages = memslot->npages;
1586 if (!physp)
1587 return;
1588 for (j = 0; j < npages; j++) {
1589 if (!(physp[j] & KVMPPC_GOT_PAGE))
1590 continue;
1591 pfn = physp[j] >> PAGE_SHIFT;
1592 page = pfn_to_page(pfn);
1593 SetPageDirty(page);
1594 put_page(page);
1598 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1599 struct kvm_memory_slot *dont)
1601 if (!dont || free->arch.rmap != dont->arch.rmap) {
1602 vfree(free->arch.rmap);
1603 free->arch.rmap = NULL;
1605 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1606 unpin_slot(free);
1607 vfree(free->arch.slot_phys);
1608 free->arch.slot_phys = NULL;
1612 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1613 unsigned long npages)
1615 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1616 if (!slot->arch.rmap)
1617 return -ENOMEM;
1618 slot->arch.slot_phys = NULL;
1620 return 0;
1623 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1624 struct kvm_memory_slot *memslot,
1625 struct kvm_userspace_memory_region *mem)
1627 unsigned long *phys;
1629 /* Allocate a slot_phys array if needed */
1630 phys = memslot->arch.slot_phys;
1631 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1632 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1633 if (!phys)
1634 return -ENOMEM;
1635 memslot->arch.slot_phys = phys;
1638 return 0;
1641 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1642 struct kvm_userspace_memory_region *mem,
1643 struct kvm_memory_slot old)
1645 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1646 struct kvm_memory_slot *memslot;
1648 if (npages && old.npages) {
1650 * If modifying a memslot, reset all the rmap dirty bits.
1651 * If this is a new memslot, we don't need to do anything
1652 * since the rmap array starts out as all zeroes,
1653 * i.e. no pages are dirty.
1655 memslot = id_to_memslot(kvm->memslots, mem->slot);
1656 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1660 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1662 int err = 0;
1663 struct kvm *kvm = vcpu->kvm;
1664 struct kvmppc_linear_info *ri = NULL;
1665 unsigned long hva;
1666 struct kvm_memory_slot *memslot;
1667 struct vm_area_struct *vma;
1668 unsigned long lpcr, senc;
1669 unsigned long psize, porder;
1670 unsigned long rma_size;
1671 unsigned long rmls;
1672 unsigned long *physp;
1673 unsigned long i, npages;
1674 int srcu_idx;
1676 mutex_lock(&kvm->lock);
1677 if (kvm->arch.rma_setup_done)
1678 goto out; /* another vcpu beat us to it */
1680 /* Allocate hashed page table (if not done already) and reset it */
1681 if (!kvm->arch.hpt_virt) {
1682 err = kvmppc_alloc_hpt(kvm, NULL);
1683 if (err) {
1684 pr_err("KVM: Couldn't alloc HPT\n");
1685 goto out;
1689 /* Look up the memslot for guest physical address 0 */
1690 srcu_idx = srcu_read_lock(&kvm->srcu);
1691 memslot = gfn_to_memslot(kvm, 0);
1693 /* We must have some memory at 0 by now */
1694 err = -EINVAL;
1695 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1696 goto out_srcu;
1698 /* Look up the VMA for the start of this memory slot */
1699 hva = memslot->userspace_addr;
1700 down_read(&current->mm->mmap_sem);
1701 vma = find_vma(current->mm, hva);
1702 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1703 goto up_out;
1705 psize = vma_kernel_pagesize(vma);
1706 porder = __ilog2(psize);
1708 /* Is this one of our preallocated RMAs? */
1709 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1710 hva == vma->vm_start)
1711 ri = vma->vm_file->private_data;
1713 up_read(&current->mm->mmap_sem);
1715 if (!ri) {
1716 /* On POWER7, use VRMA; on PPC970, give up */
1717 err = -EPERM;
1718 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1719 pr_err("KVM: CPU requires an RMO\n");
1720 goto out_srcu;
1723 /* We can handle 4k, 64k or 16M pages in the VRMA */
1724 err = -EINVAL;
1725 if (!(psize == 0x1000 || psize == 0x10000 ||
1726 psize == 0x1000000))
1727 goto out_srcu;
1729 /* Update VRMASD field in the LPCR */
1730 senc = slb_pgsize_encoding(psize);
1731 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1732 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1733 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1734 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1735 kvm->arch.lpcr = lpcr;
1737 /* Create HPTEs in the hash page table for the VRMA */
1738 kvmppc_map_vrma(vcpu, memslot, porder);
1740 } else {
1741 /* Set up to use an RMO region */
1742 rma_size = ri->npages;
1743 if (rma_size > memslot->npages)
1744 rma_size = memslot->npages;
1745 rma_size <<= PAGE_SHIFT;
1746 rmls = lpcr_rmls(rma_size);
1747 err = -EINVAL;
1748 if (rmls < 0) {
1749 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1750 goto out_srcu;
1752 atomic_inc(&ri->use_count);
1753 kvm->arch.rma = ri;
1755 /* Update LPCR and RMOR */
1756 lpcr = kvm->arch.lpcr;
1757 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1758 /* PPC970; insert RMLS value (split field) in HID4 */
1759 lpcr &= ~((1ul << HID4_RMLS0_SH) |
1760 (3ul << HID4_RMLS2_SH));
1761 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1762 ((rmls & 3) << HID4_RMLS2_SH);
1763 /* RMOR is also in HID4 */
1764 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1765 << HID4_RMOR_SH;
1766 } else {
1767 /* POWER7 */
1768 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1769 lpcr |= rmls << LPCR_RMLS_SH;
1770 kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1772 kvm->arch.lpcr = lpcr;
1773 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1774 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1776 /* Initialize phys addrs of pages in RMO */
1777 npages = ri->npages;
1778 porder = __ilog2(npages);
1779 physp = memslot->arch.slot_phys;
1780 if (physp) {
1781 if (npages > memslot->npages)
1782 npages = memslot->npages;
1783 spin_lock(&kvm->arch.slot_phys_lock);
1784 for (i = 0; i < npages; ++i)
1785 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1786 porder;
1787 spin_unlock(&kvm->arch.slot_phys_lock);
1791 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1792 smp_wmb();
1793 kvm->arch.rma_setup_done = 1;
1794 err = 0;
1795 out_srcu:
1796 srcu_read_unlock(&kvm->srcu, srcu_idx);
1797 out:
1798 mutex_unlock(&kvm->lock);
1799 return err;
1801 up_out:
1802 up_read(&current->mm->mmap_sem);
1803 goto out;
1806 int kvmppc_core_init_vm(struct kvm *kvm)
1808 unsigned long lpcr, lpid;
1810 /* Allocate the guest's logical partition ID */
1812 lpid = kvmppc_alloc_lpid();
1813 if (lpid < 0)
1814 return -ENOMEM;
1815 kvm->arch.lpid = lpid;
1817 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1819 kvm->arch.rma = NULL;
1821 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1823 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1824 /* PPC970; HID4 is effectively the LPCR */
1825 kvm->arch.host_lpid = 0;
1826 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1827 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1828 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1829 ((lpid & 0xf) << HID4_LPID5_SH);
1830 } else {
1831 /* POWER7; init LPCR for virtual RMA mode */
1832 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1833 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1834 lpcr &= LPCR_PECE | LPCR_LPES;
1835 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1836 LPCR_VPM0 | LPCR_VPM1;
1837 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1838 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1840 kvm->arch.lpcr = lpcr;
1842 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1843 spin_lock_init(&kvm->arch.slot_phys_lock);
1846 * Don't allow secondary CPU threads to come online
1847 * while any KVM VMs exist.
1849 inhibit_secondary_onlining();
1851 return 0;
1854 void kvmppc_core_destroy_vm(struct kvm *kvm)
1856 uninhibit_secondary_onlining();
1858 if (kvm->arch.rma) {
1859 kvm_release_rma(kvm->arch.rma);
1860 kvm->arch.rma = NULL;
1863 kvmppc_free_hpt(kvm);
1864 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1867 /* These are stubs for now */
1868 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1872 /* We don't need to emulate any privileged instructions or dcbz */
1873 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1874 unsigned int inst, int *advance)
1876 return EMULATE_FAIL;
1879 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1881 return EMULATE_FAIL;
1884 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1886 return EMULATE_FAIL;
1889 static int kvmppc_book3s_hv_init(void)
1891 int r;
1893 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1895 if (r)
1896 return r;
1898 r = kvmppc_mmu_hv_init();
1900 return r;
1903 static void kvmppc_book3s_hv_exit(void)
1905 kvm_exit();
1908 module_init(kvmppc_book3s_hv_init);
1909 module_exit(kvmppc_book3s_hv_exit);