ARM: EXYNOS: fix exynos_boot_secondary() return value on timeout
[linux-2.6/btrfs-unstable.git] / arch / s390 / net / bpf_jit_comp.c
blob7690dc8e1ab5bb619bb19ec1be1b12853e1b0589
1 /*
2 * BPF Jit compiler for s390.
4 * Minimum build requirements:
6 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
7 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
8 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
9 * - PACK_STACK
10 * - 64BIT
12 * Copyright IBM Corp. 2012,2015
14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <asm/cacheflush.h>
25 #include <asm/dis.h>
26 #include "bpf_jit.h"
28 int bpf_jit_enable __read_mostly;
30 struct bpf_jit {
31 u32 seen; /* Flags to remember seen eBPF instructions */
32 u32 seen_reg[16]; /* Array to remember which registers are used */
33 u32 *addrs; /* Array with relative instruction addresses */
34 u8 *prg_buf; /* Start of program */
35 int size; /* Size of program and literal pool */
36 int size_prg; /* Size of program */
37 int prg; /* Current position in program */
38 int lit_start; /* Start of literal pool */
39 int lit; /* Current position in literal pool */
40 int base_ip; /* Base address for literal pool */
41 int ret0_ip; /* Address of return 0 */
42 int exit_ip; /* Address of exit */
45 #define BPF_SIZE_MAX 4096 /* Max size for program */
47 #define SEEN_SKB 1 /* skb access */
48 #define SEEN_MEM 2 /* use mem[] for temporary storage */
49 #define SEEN_RET0 4 /* ret0_ip points to a valid return 0 */
50 #define SEEN_LITERAL 8 /* code uses literals */
51 #define SEEN_FUNC 16 /* calls C functions */
52 #define SEEN_STACK (SEEN_FUNC | SEEN_MEM | SEEN_SKB)
55 * s390 registers
57 #define REG_W0 (__MAX_BPF_REG+0) /* Work register 1 (even) */
58 #define REG_W1 (__MAX_BPF_REG+1) /* Work register 2 (odd) */
59 #define REG_SKB_DATA (__MAX_BPF_REG+2) /* SKB data register */
60 #define REG_L (__MAX_BPF_REG+3) /* Literal pool register */
61 #define REG_15 (__MAX_BPF_REG+4) /* Register 15 */
62 #define REG_0 REG_W0 /* Register 0 */
63 #define REG_2 BPF_REG_1 /* Register 2 */
64 #define REG_14 BPF_REG_0 /* Register 14 */
67 * Mapping of BPF registers to s390 registers
69 static const int reg2hex[] = {
70 /* Return code */
71 [BPF_REG_0] = 14,
72 /* Function parameters */
73 [BPF_REG_1] = 2,
74 [BPF_REG_2] = 3,
75 [BPF_REG_3] = 4,
76 [BPF_REG_4] = 5,
77 [BPF_REG_5] = 6,
78 /* Call saved registers */
79 [BPF_REG_6] = 7,
80 [BPF_REG_7] = 8,
81 [BPF_REG_8] = 9,
82 [BPF_REG_9] = 10,
83 /* BPF stack pointer */
84 [BPF_REG_FP] = 13,
85 /* SKB data pointer */
86 [REG_SKB_DATA] = 12,
87 /* Work registers for s390x backend */
88 [REG_W0] = 0,
89 [REG_W1] = 1,
90 [REG_L] = 11,
91 [REG_15] = 15,
94 static inline u32 reg(u32 dst_reg, u32 src_reg)
96 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
99 static inline u32 reg_high(u32 reg)
101 return reg2hex[reg] << 4;
104 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
106 u32 r1 = reg2hex[b1];
108 if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
109 jit->seen_reg[r1] = 1;
112 #define REG_SET_SEEN(b1) \
113 ({ \
114 reg_set_seen(jit, b1); \
117 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
120 * EMIT macros for code generation
123 #define _EMIT2(op) \
124 ({ \
125 if (jit->prg_buf) \
126 *(u16 *) (jit->prg_buf + jit->prg) = op; \
127 jit->prg += 2; \
130 #define EMIT2(op, b1, b2) \
131 ({ \
132 _EMIT2(op | reg(b1, b2)); \
133 REG_SET_SEEN(b1); \
134 REG_SET_SEEN(b2); \
137 #define _EMIT4(op) \
138 ({ \
139 if (jit->prg_buf) \
140 *(u32 *) (jit->prg_buf + jit->prg) = op; \
141 jit->prg += 4; \
144 #define EMIT4(op, b1, b2) \
145 ({ \
146 _EMIT4(op | reg(b1, b2)); \
147 REG_SET_SEEN(b1); \
148 REG_SET_SEEN(b2); \
151 #define EMIT4_RRF(op, b1, b2, b3) \
152 ({ \
153 _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
154 REG_SET_SEEN(b1); \
155 REG_SET_SEEN(b2); \
156 REG_SET_SEEN(b3); \
159 #define _EMIT4_DISP(op, disp) \
160 ({ \
161 unsigned int __disp = (disp) & 0xfff; \
162 _EMIT4(op | __disp); \
165 #define EMIT4_DISP(op, b1, b2, disp) \
166 ({ \
167 _EMIT4_DISP(op | reg_high(b1) << 16 | \
168 reg_high(b2) << 8, disp); \
169 REG_SET_SEEN(b1); \
170 REG_SET_SEEN(b2); \
173 #define EMIT4_IMM(op, b1, imm) \
174 ({ \
175 unsigned int __imm = (imm) & 0xffff; \
176 _EMIT4(op | reg_high(b1) << 16 | __imm); \
177 REG_SET_SEEN(b1); \
180 #define EMIT4_PCREL(op, pcrel) \
181 ({ \
182 long __pcrel = ((pcrel) >> 1) & 0xffff; \
183 _EMIT4(op | __pcrel); \
186 #define _EMIT6(op1, op2) \
187 ({ \
188 if (jit->prg_buf) { \
189 *(u32 *) (jit->prg_buf + jit->prg) = op1; \
190 *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
192 jit->prg += 6; \
195 #define _EMIT6_DISP(op1, op2, disp) \
196 ({ \
197 unsigned int __disp = (disp) & 0xfff; \
198 _EMIT6(op1 | __disp, op2); \
201 #define EMIT6_DISP(op1, op2, b1, b2, b3, disp) \
202 ({ \
203 _EMIT6_DISP(op1 | reg(b1, b2) << 16 | \
204 reg_high(b3) << 8, op2, disp); \
205 REG_SET_SEEN(b1); \
206 REG_SET_SEEN(b2); \
207 REG_SET_SEEN(b3); \
210 #define _EMIT6_DISP_LH(op1, op2, disp) \
211 ({ \
212 unsigned int __disp_h = ((u32)disp) & 0xff000; \
213 unsigned int __disp_l = ((u32)disp) & 0x00fff; \
214 _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
217 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
218 ({ \
219 _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
220 reg_high(b3) << 8, op2, disp); \
221 REG_SET_SEEN(b1); \
222 REG_SET_SEEN(b2); \
223 REG_SET_SEEN(b3); \
226 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
227 ({ \
228 /* Branch instruction needs 6 bytes */ \
229 int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
230 _EMIT6(op1 | reg(b1, b2) << 16 | rel, op2 | mask); \
231 REG_SET_SEEN(b1); \
232 REG_SET_SEEN(b2); \
235 #define _EMIT6_IMM(op, imm) \
236 ({ \
237 unsigned int __imm = (imm); \
238 _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
241 #define EMIT6_IMM(op, b1, imm) \
242 ({ \
243 _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
244 REG_SET_SEEN(b1); \
247 #define EMIT_CONST_U32(val) \
248 ({ \
249 unsigned int ret; \
250 ret = jit->lit - jit->base_ip; \
251 jit->seen |= SEEN_LITERAL; \
252 if (jit->prg_buf) \
253 *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
254 jit->lit += 4; \
255 ret; \
258 #define EMIT_CONST_U64(val) \
259 ({ \
260 unsigned int ret; \
261 ret = jit->lit - jit->base_ip; \
262 jit->seen |= SEEN_LITERAL; \
263 if (jit->prg_buf) \
264 *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
265 jit->lit += 8; \
266 ret; \
269 #define EMIT_ZERO(b1) \
270 ({ \
271 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
272 EMIT4(0xb9160000, b1, b1); \
273 REG_SET_SEEN(b1); \
277 * Fill whole space with illegal instructions
279 static void jit_fill_hole(void *area, unsigned int size)
281 memset(area, 0, size);
285 * Save registers from "rs" (register start) to "re" (register end) on stack
287 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
289 u32 off = 72 + (rs - 6) * 8;
291 if (rs == re)
292 /* stg %rs,off(%r15) */
293 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
294 else
295 /* stmg %rs,%re,off(%r15) */
296 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
300 * Restore registers from "rs" (register start) to "re" (register end) on stack
302 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
304 u32 off = 72 + (rs - 6) * 8;
306 if (jit->seen & SEEN_STACK)
307 off += STK_OFF;
309 if (rs == re)
310 /* lg %rs,off(%r15) */
311 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
312 else
313 /* lmg %rs,%re,off(%r15) */
314 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
318 * Return first seen register (from start)
320 static int get_start(struct bpf_jit *jit, int start)
322 int i;
324 for (i = start; i <= 15; i++) {
325 if (jit->seen_reg[i])
326 return i;
328 return 0;
332 * Return last seen register (from start) (gap >= 2)
334 static int get_end(struct bpf_jit *jit, int start)
336 int i;
338 for (i = start; i < 15; i++) {
339 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
340 return i - 1;
342 return jit->seen_reg[15] ? 15 : 14;
345 #define REGS_SAVE 1
346 #define REGS_RESTORE 0
348 * Save and restore clobbered registers (6-15) on stack.
349 * We save/restore registers in chunks with gap >= 2 registers.
351 static void save_restore_regs(struct bpf_jit *jit, int op)
354 int re = 6, rs;
356 do {
357 rs = get_start(jit, re);
358 if (!rs)
359 break;
360 re = get_end(jit, rs + 1);
361 if (op == REGS_SAVE)
362 save_regs(jit, rs, re);
363 else
364 restore_regs(jit, rs, re);
365 re++;
366 } while (re <= 15);
370 * Emit function prologue
372 * Save registers and create stack frame if necessary.
373 * See stack frame layout desription in "bpf_jit.h"!
375 static void bpf_jit_prologue(struct bpf_jit *jit)
377 /* Save registers */
378 save_restore_regs(jit, REGS_SAVE);
379 /* Setup literal pool */
380 if (jit->seen & SEEN_LITERAL) {
381 /* basr %r13,0 */
382 EMIT2(0x0d00, REG_L, REG_0);
383 jit->base_ip = jit->prg;
385 /* Setup stack and backchain */
386 if (jit->seen & SEEN_STACK) {
387 /* lgr %bfp,%r15 (BPF frame pointer) */
388 EMIT4(0xb9040000, BPF_REG_FP, REG_15);
389 /* aghi %r15,-STK_OFF */
390 EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
391 if (jit->seen & SEEN_FUNC)
392 /* stg %bfp,152(%r15) (backchain) */
393 EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_FP, REG_0,
394 REG_15, 152);
397 * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
398 * we store the SKB header length on the stack and the SKB data
399 * pointer in REG_SKB_DATA.
401 if (jit->seen & SEEN_SKB) {
402 /* Header length: llgf %w1,<len>(%b1) */
403 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
404 offsetof(struct sk_buff, len));
405 /* s %w1,<data_len>(%b1) */
406 EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
407 offsetof(struct sk_buff, data_len));
408 /* stg %w1,ST_OFF_HLEN(%r0,%r15) */
409 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15,
410 STK_OFF_HLEN);
411 /* lg %skb_data,data_off(%b1) */
412 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
413 BPF_REG_1, offsetof(struct sk_buff, data));
415 /* BPF compatibility: clear A (%b7) and X (%b8) registers */
416 if (REG_SEEN(BPF_REG_7))
417 /* lghi %b7,0 */
418 EMIT4_IMM(0xa7090000, BPF_REG_7, 0);
419 if (REG_SEEN(BPF_REG_8))
420 /* lghi %b8,0 */
421 EMIT4_IMM(0xa7090000, BPF_REG_8, 0);
425 * Function epilogue
427 static void bpf_jit_epilogue(struct bpf_jit *jit)
429 /* Return 0 */
430 if (jit->seen & SEEN_RET0) {
431 jit->ret0_ip = jit->prg;
432 /* lghi %b0,0 */
433 EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
435 jit->exit_ip = jit->prg;
436 /* Load exit code: lgr %r2,%b0 */
437 EMIT4(0xb9040000, REG_2, BPF_REG_0);
438 /* Restore registers */
439 save_restore_regs(jit, REGS_RESTORE);
440 /* br %r14 */
441 _EMIT2(0x07fe);
445 * Compile one eBPF instruction into s390x code
447 static int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
449 struct bpf_insn *insn = &fp->insnsi[i];
450 int jmp_off, last, insn_count = 1;
451 unsigned int func_addr, mask;
452 u32 dst_reg = insn->dst_reg;
453 u32 src_reg = insn->src_reg;
454 u32 *addrs = jit->addrs;
455 s32 imm = insn->imm;
456 s16 off = insn->off;
458 switch (insn->code) {
460 * BPF_MOV
462 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
463 /* llgfr %dst,%src */
464 EMIT4(0xb9160000, dst_reg, src_reg);
465 break;
466 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
467 /* lgr %dst,%src */
468 EMIT4(0xb9040000, dst_reg, src_reg);
469 break;
470 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
471 /* llilf %dst,imm */
472 EMIT6_IMM(0xc00f0000, dst_reg, imm);
473 break;
474 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
475 /* lgfi %dst,imm */
476 EMIT6_IMM(0xc0010000, dst_reg, imm);
477 break;
479 * BPF_LD 64
481 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
483 /* 16 byte instruction that uses two 'struct bpf_insn' */
484 u64 imm64;
486 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
487 /* lg %dst,<d(imm)>(%l) */
488 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
489 EMIT_CONST_U64(imm64));
490 insn_count = 2;
491 break;
494 * BPF_ADD
496 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
497 /* ar %dst,%src */
498 EMIT2(0x1a00, dst_reg, src_reg);
499 EMIT_ZERO(dst_reg);
500 break;
501 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
502 /* agr %dst,%src */
503 EMIT4(0xb9080000, dst_reg, src_reg);
504 break;
505 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
506 if (!imm)
507 break;
508 /* alfi %dst,imm */
509 EMIT6_IMM(0xc20b0000, dst_reg, imm);
510 EMIT_ZERO(dst_reg);
511 break;
512 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
513 if (!imm)
514 break;
515 /* agfi %dst,imm */
516 EMIT6_IMM(0xc2080000, dst_reg, imm);
517 break;
519 * BPF_SUB
521 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
522 /* sr %dst,%src */
523 EMIT2(0x1b00, dst_reg, src_reg);
524 EMIT_ZERO(dst_reg);
525 break;
526 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
527 /* sgr %dst,%src */
528 EMIT4(0xb9090000, dst_reg, src_reg);
529 break;
530 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
531 if (!imm)
532 break;
533 /* alfi %dst,-imm */
534 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
535 EMIT_ZERO(dst_reg);
536 break;
537 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
538 if (!imm)
539 break;
540 /* agfi %dst,-imm */
541 EMIT6_IMM(0xc2080000, dst_reg, -imm);
542 break;
544 * BPF_MUL
546 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
547 /* msr %dst,%src */
548 EMIT4(0xb2520000, dst_reg, src_reg);
549 EMIT_ZERO(dst_reg);
550 break;
551 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
552 /* msgr %dst,%src */
553 EMIT4(0xb90c0000, dst_reg, src_reg);
554 break;
555 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
556 if (imm == 1)
557 break;
558 /* msfi %r5,imm */
559 EMIT6_IMM(0xc2010000, dst_reg, imm);
560 EMIT_ZERO(dst_reg);
561 break;
562 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
563 if (imm == 1)
564 break;
565 /* msgfi %dst,imm */
566 EMIT6_IMM(0xc2000000, dst_reg, imm);
567 break;
569 * BPF_DIV / BPF_MOD
571 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
572 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
574 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
576 jit->seen |= SEEN_RET0;
577 /* ltr %src,%src (if src == 0 goto fail) */
578 EMIT2(0x1200, src_reg, src_reg);
579 /* jz <ret0> */
580 EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
581 /* lhi %w0,0 */
582 EMIT4_IMM(0xa7080000, REG_W0, 0);
583 /* lr %w1,%dst */
584 EMIT2(0x1800, REG_W1, dst_reg);
585 /* dlr %w0,%src */
586 EMIT4(0xb9970000, REG_W0, src_reg);
587 /* llgfr %dst,%rc */
588 EMIT4(0xb9160000, dst_reg, rc_reg);
589 break;
591 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / (u32) src */
592 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % (u32) src */
594 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
596 jit->seen |= SEEN_RET0;
597 /* ltgr %src,%src (if src == 0 goto fail) */
598 EMIT4(0xb9020000, src_reg, src_reg);
599 /* jz <ret0> */
600 EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
601 /* lghi %w0,0 */
602 EMIT4_IMM(0xa7090000, REG_W0, 0);
603 /* lgr %w1,%dst */
604 EMIT4(0xb9040000, REG_W1, dst_reg);
605 /* llgfr %dst,%src (u32 cast) */
606 EMIT4(0xb9160000, dst_reg, src_reg);
607 /* dlgr %w0,%dst */
608 EMIT4(0xb9870000, REG_W0, dst_reg);
609 /* lgr %dst,%rc */
610 EMIT4(0xb9040000, dst_reg, rc_reg);
611 break;
613 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
614 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
616 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
618 if (imm == 1) {
619 if (BPF_OP(insn->code) == BPF_MOD)
620 /* lhgi %dst,0 */
621 EMIT4_IMM(0xa7090000, dst_reg, 0);
622 break;
624 /* lhi %w0,0 */
625 EMIT4_IMM(0xa7080000, REG_W0, 0);
626 /* lr %w1,%dst */
627 EMIT2(0x1800, REG_W1, dst_reg);
628 /* dl %w0,<d(imm)>(%l) */
629 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
630 EMIT_CONST_U32(imm));
631 /* llgfr %dst,%rc */
632 EMIT4(0xb9160000, dst_reg, rc_reg);
633 break;
635 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / (u32) imm */
636 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % (u32) imm */
638 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
640 if (imm == 1) {
641 if (BPF_OP(insn->code) == BPF_MOD)
642 /* lhgi %dst,0 */
643 EMIT4_IMM(0xa7090000, dst_reg, 0);
644 break;
646 /* lghi %w0,0 */
647 EMIT4_IMM(0xa7090000, REG_W0, 0);
648 /* lgr %w1,%dst */
649 EMIT4(0xb9040000, REG_W1, dst_reg);
650 /* dlg %w0,<d(imm)>(%l) */
651 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
652 EMIT_CONST_U64((u32) imm));
653 /* lgr %dst,%rc */
654 EMIT4(0xb9040000, dst_reg, rc_reg);
655 break;
658 * BPF_AND
660 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
661 /* nr %dst,%src */
662 EMIT2(0x1400, dst_reg, src_reg);
663 EMIT_ZERO(dst_reg);
664 break;
665 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
666 /* ngr %dst,%src */
667 EMIT4(0xb9800000, dst_reg, src_reg);
668 break;
669 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
670 /* nilf %dst,imm */
671 EMIT6_IMM(0xc00b0000, dst_reg, imm);
672 EMIT_ZERO(dst_reg);
673 break;
674 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
675 /* ng %dst,<d(imm)>(%l) */
676 EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
677 EMIT_CONST_U64(imm));
678 break;
680 * BPF_OR
682 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
683 /* or %dst,%src */
684 EMIT2(0x1600, dst_reg, src_reg);
685 EMIT_ZERO(dst_reg);
686 break;
687 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
688 /* ogr %dst,%src */
689 EMIT4(0xb9810000, dst_reg, src_reg);
690 break;
691 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
692 /* oilf %dst,imm */
693 EMIT6_IMM(0xc00d0000, dst_reg, imm);
694 EMIT_ZERO(dst_reg);
695 break;
696 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
697 /* og %dst,<d(imm)>(%l) */
698 EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
699 EMIT_CONST_U64(imm));
700 break;
702 * BPF_XOR
704 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
705 /* xr %dst,%src */
706 EMIT2(0x1700, dst_reg, src_reg);
707 EMIT_ZERO(dst_reg);
708 break;
709 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
710 /* xgr %dst,%src */
711 EMIT4(0xb9820000, dst_reg, src_reg);
712 break;
713 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
714 if (!imm)
715 break;
716 /* xilf %dst,imm */
717 EMIT6_IMM(0xc0070000, dst_reg, imm);
718 EMIT_ZERO(dst_reg);
719 break;
720 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
721 /* xg %dst,<d(imm)>(%l) */
722 EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
723 EMIT_CONST_U64(imm));
724 break;
726 * BPF_LSH
728 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
729 /* sll %dst,0(%src) */
730 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
731 EMIT_ZERO(dst_reg);
732 break;
733 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
734 /* sllg %dst,%dst,0(%src) */
735 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
736 break;
737 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
738 if (imm == 0)
739 break;
740 /* sll %dst,imm(%r0) */
741 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
742 EMIT_ZERO(dst_reg);
743 break;
744 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
745 if (imm == 0)
746 break;
747 /* sllg %dst,%dst,imm(%r0) */
748 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
749 break;
751 * BPF_RSH
753 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
754 /* srl %dst,0(%src) */
755 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
756 EMIT_ZERO(dst_reg);
757 break;
758 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
759 /* srlg %dst,%dst,0(%src) */
760 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
761 break;
762 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
763 if (imm == 0)
764 break;
765 /* srl %dst,imm(%r0) */
766 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
767 EMIT_ZERO(dst_reg);
768 break;
769 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
770 if (imm == 0)
771 break;
772 /* srlg %dst,%dst,imm(%r0) */
773 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
774 break;
776 * BPF_ARSH
778 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
779 /* srag %dst,%dst,0(%src) */
780 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
781 break;
782 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
783 if (imm == 0)
784 break;
785 /* srag %dst,%dst,imm(%r0) */
786 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
787 break;
789 * BPF_NEG
791 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
792 /* lcr %dst,%dst */
793 EMIT2(0x1300, dst_reg, dst_reg);
794 EMIT_ZERO(dst_reg);
795 break;
796 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
797 /* lcgr %dst,%dst */
798 EMIT4(0xb9130000, dst_reg, dst_reg);
799 break;
801 * BPF_FROM_BE/LE
803 case BPF_ALU | BPF_END | BPF_FROM_BE:
804 /* s390 is big endian, therefore only clear high order bytes */
805 switch (imm) {
806 case 16: /* dst = (u16) cpu_to_be16(dst) */
807 /* llghr %dst,%dst */
808 EMIT4(0xb9850000, dst_reg, dst_reg);
809 break;
810 case 32: /* dst = (u32) cpu_to_be32(dst) */
811 /* llgfr %dst,%dst */
812 EMIT4(0xb9160000, dst_reg, dst_reg);
813 break;
814 case 64: /* dst = (u64) cpu_to_be64(dst) */
815 break;
817 break;
818 case BPF_ALU | BPF_END | BPF_FROM_LE:
819 switch (imm) {
820 case 16: /* dst = (u16) cpu_to_le16(dst) */
821 /* lrvr %dst,%dst */
822 EMIT4(0xb91f0000, dst_reg, dst_reg);
823 /* srl %dst,16(%r0) */
824 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
825 /* llghr %dst,%dst */
826 EMIT4(0xb9850000, dst_reg, dst_reg);
827 break;
828 case 32: /* dst = (u32) cpu_to_le32(dst) */
829 /* lrvr %dst,%dst */
830 EMIT4(0xb91f0000, dst_reg, dst_reg);
831 /* llgfr %dst,%dst */
832 EMIT4(0xb9160000, dst_reg, dst_reg);
833 break;
834 case 64: /* dst = (u64) cpu_to_le64(dst) */
835 /* lrvgr %dst,%dst */
836 EMIT4(0xb90f0000, dst_reg, dst_reg);
837 break;
839 break;
841 * BPF_ST(X)
843 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
844 /* stcy %src,off(%dst) */
845 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
846 jit->seen |= SEEN_MEM;
847 break;
848 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
849 /* sthy %src,off(%dst) */
850 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
851 jit->seen |= SEEN_MEM;
852 break;
853 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
854 /* sty %src,off(%dst) */
855 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
856 jit->seen |= SEEN_MEM;
857 break;
858 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
859 /* stg %src,off(%dst) */
860 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
861 jit->seen |= SEEN_MEM;
862 break;
863 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
864 /* lhi %w0,imm */
865 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
866 /* stcy %w0,off(dst) */
867 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
868 jit->seen |= SEEN_MEM;
869 break;
870 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
871 /* lhi %w0,imm */
872 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
873 /* sthy %w0,off(dst) */
874 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
875 jit->seen |= SEEN_MEM;
876 break;
877 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
878 /* llilf %w0,imm */
879 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
880 /* sty %w0,off(%dst) */
881 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
882 jit->seen |= SEEN_MEM;
883 break;
884 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
885 /* lgfi %w0,imm */
886 EMIT6_IMM(0xc0010000, REG_W0, imm);
887 /* stg %w0,off(%dst) */
888 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
889 jit->seen |= SEEN_MEM;
890 break;
892 * BPF_STX XADD (atomic_add)
894 case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
895 /* laal %w0,%src,off(%dst) */
896 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
897 dst_reg, off);
898 jit->seen |= SEEN_MEM;
899 break;
900 case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
901 /* laalg %w0,%src,off(%dst) */
902 EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
903 dst_reg, off);
904 jit->seen |= SEEN_MEM;
905 break;
907 * BPF_LDX
909 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
910 /* llgc %dst,0(off,%src) */
911 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
912 jit->seen |= SEEN_MEM;
913 break;
914 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
915 /* llgh %dst,0(off,%src) */
916 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
917 jit->seen |= SEEN_MEM;
918 break;
919 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
920 /* llgf %dst,off(%src) */
921 jit->seen |= SEEN_MEM;
922 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
923 break;
924 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
925 /* lg %dst,0(off,%src) */
926 jit->seen |= SEEN_MEM;
927 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
928 break;
930 * BPF_JMP / CALL
932 case BPF_JMP | BPF_CALL:
935 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
937 const u64 func = (u64)__bpf_call_base + imm;
939 REG_SET_SEEN(BPF_REG_5);
940 jit->seen |= SEEN_FUNC;
941 /* lg %w1,<d(imm)>(%l) */
942 EMIT6_DISP(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
943 EMIT_CONST_U64(func));
944 /* basr %r14,%w1 */
945 EMIT2(0x0d00, REG_14, REG_W1);
946 /* lgr %b0,%r2: load return value into %b0 */
947 EMIT4(0xb9040000, BPF_REG_0, REG_2);
948 break;
950 case BPF_JMP | BPF_EXIT: /* return b0 */
951 last = (i == fp->len - 1) ? 1 : 0;
952 if (last && !(jit->seen & SEEN_RET0))
953 break;
954 /* j <exit> */
955 EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
956 break;
958 * Branch relative (number of skipped instructions) to offset on
959 * condition.
961 * Condition code to mask mapping:
963 * CC | Description | Mask
964 * ------------------------------
965 * 0 | Operands equal | 8
966 * 1 | First operand low | 4
967 * 2 | First operand high | 2
968 * 3 | Unused | 1
970 * For s390x relative branches: ip = ip + off_bytes
971 * For BPF relative branches: insn = insn + off_insns + 1
973 * For example for s390x with offset 0 we jump to the branch
974 * instruction itself (loop) and for BPF with offset 0 we
975 * branch to the instruction behind the branch.
977 case BPF_JMP | BPF_JA: /* if (true) */
978 mask = 0xf000; /* j */
979 goto branch_oc;
980 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
981 mask = 0x2000; /* jh */
982 goto branch_ks;
983 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
984 mask = 0xa000; /* jhe */
985 goto branch_ks;
986 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
987 mask = 0x2000; /* jh */
988 goto branch_ku;
989 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
990 mask = 0xa000; /* jhe */
991 goto branch_ku;
992 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
993 mask = 0x7000; /* jne */
994 goto branch_ku;
995 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
996 mask = 0x8000; /* je */
997 goto branch_ku;
998 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
999 mask = 0x7000; /* jnz */
1000 /* lgfi %w1,imm (load sign extend imm) */
1001 EMIT6_IMM(0xc0010000, REG_W1, imm);
1002 /* ngr %w1,%dst */
1003 EMIT4(0xb9800000, REG_W1, dst_reg);
1004 goto branch_oc;
1006 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1007 mask = 0x2000; /* jh */
1008 goto branch_xs;
1009 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1010 mask = 0xa000; /* jhe */
1011 goto branch_xs;
1012 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1013 mask = 0x2000; /* jh */
1014 goto branch_xu;
1015 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1016 mask = 0xa000; /* jhe */
1017 goto branch_xu;
1018 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1019 mask = 0x7000; /* jne */
1020 goto branch_xu;
1021 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1022 mask = 0x8000; /* je */
1023 goto branch_xu;
1024 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1025 mask = 0x7000; /* jnz */
1026 /* ngrk %w1,%dst,%src */
1027 EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1028 goto branch_oc;
1029 branch_ks:
1030 /* lgfi %w1,imm (load sign extend imm) */
1031 EMIT6_IMM(0xc0010000, REG_W1, imm);
1032 /* cgrj %dst,%w1,mask,off */
1033 EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1034 break;
1035 branch_ku:
1036 /* lgfi %w1,imm (load sign extend imm) */
1037 EMIT6_IMM(0xc0010000, REG_W1, imm);
1038 /* clgrj %dst,%w1,mask,off */
1039 EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1040 break;
1041 branch_xs:
1042 /* cgrj %dst,%src,mask,off */
1043 EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1044 break;
1045 branch_xu:
1046 /* clgrj %dst,%src,mask,off */
1047 EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1048 break;
1049 branch_oc:
1050 /* brc mask,jmp_off (branch instruction needs 4 bytes) */
1051 jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1052 EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1053 break;
1055 * BPF_LD
1057 case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1058 case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1059 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1060 func_addr = __pa(sk_load_byte_pos);
1061 else
1062 func_addr = __pa(sk_load_byte);
1063 goto call_fn;
1064 case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1065 case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1066 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1067 func_addr = __pa(sk_load_half_pos);
1068 else
1069 func_addr = __pa(sk_load_half);
1070 goto call_fn;
1071 case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1072 case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1073 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1074 func_addr = __pa(sk_load_word_pos);
1075 else
1076 func_addr = __pa(sk_load_word);
1077 goto call_fn;
1078 call_fn:
1079 jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1080 REG_SET_SEEN(REG_14); /* Return address of possible func call */
1083 * Implicit input:
1084 * BPF_REG_6 (R7) : skb pointer
1085 * REG_SKB_DATA (R12): skb data pointer
1087 * Calculated input:
1088 * BPF_REG_2 (R3) : offset of byte(s) to fetch in skb
1089 * BPF_REG_5 (R6) : return address
1091 * Output:
1092 * BPF_REG_0 (R14): data read from skb
1094 * Scratch registers (BPF_REG_1-5)
1097 /* Call function: llilf %w1,func_addr */
1098 EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
1100 /* Offset: lgfi %b2,imm */
1101 EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1102 if (BPF_MODE(insn->code) == BPF_IND)
1103 /* agfr %b2,%src (%src is s32 here) */
1104 EMIT4(0xb9180000, BPF_REG_2, src_reg);
1106 /* basr %b5,%w1 (%b5 is call saved) */
1107 EMIT2(0x0d00, BPF_REG_5, REG_W1);
1110 * Note: For fast access we jump directly after the
1111 * jnz instruction from bpf_jit.S
1113 /* jnz <ret0> */
1114 EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1115 break;
1116 default: /* too complex, give up */
1117 pr_err("Unknown opcode %02x\n", insn->code);
1118 return -1;
1120 return insn_count;
1124 * Compile eBPF program into s390x code
1126 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1128 int i, insn_count;
1130 jit->lit = jit->lit_start;
1131 jit->prg = 0;
1133 bpf_jit_prologue(jit);
1134 for (i = 0; i < fp->len; i += insn_count) {
1135 insn_count = bpf_jit_insn(jit, fp, i);
1136 if (insn_count < 0)
1137 return -1;
1138 jit->addrs[i + 1] = jit->prg; /* Next instruction address */
1140 bpf_jit_epilogue(jit);
1142 jit->lit_start = jit->prg;
1143 jit->size = jit->lit;
1144 jit->size_prg = jit->prg;
1145 return 0;
1149 * Classic BPF function stub. BPF programs will be converted into
1150 * eBPF and then bpf_int_jit_compile() will be called.
1152 void bpf_jit_compile(struct bpf_prog *fp)
1157 * Compile eBPF program "fp"
1159 void bpf_int_jit_compile(struct bpf_prog *fp)
1161 struct bpf_binary_header *header;
1162 struct bpf_jit jit;
1163 int pass;
1165 if (!bpf_jit_enable)
1166 return;
1167 memset(&jit, 0, sizeof(jit));
1168 jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1169 if (jit.addrs == NULL)
1170 return;
1172 * Three initial passes:
1173 * - 1/2: Determine clobbered registers
1174 * - 3: Calculate program size and addrs arrray
1176 for (pass = 1; pass <= 3; pass++) {
1177 if (bpf_jit_prog(&jit, fp))
1178 goto free_addrs;
1181 * Final pass: Allocate and generate program
1183 if (jit.size >= BPF_SIZE_MAX)
1184 goto free_addrs;
1185 header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1186 if (!header)
1187 goto free_addrs;
1188 if (bpf_jit_prog(&jit, fp))
1189 goto free_addrs;
1190 if (bpf_jit_enable > 1) {
1191 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1192 if (jit.prg_buf)
1193 print_fn_code(jit.prg_buf, jit.size_prg);
1195 if (jit.prg_buf) {
1196 set_memory_ro((unsigned long)header, header->pages);
1197 fp->bpf_func = (void *) jit.prg_buf;
1198 fp->jited = true;
1200 free_addrs:
1201 kfree(jit.addrs);
1205 * Free eBPF program
1207 void bpf_jit_free(struct bpf_prog *fp)
1209 unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1210 struct bpf_binary_header *header = (void *)addr;
1212 if (!fp->jited)
1213 goto free_filter;
1215 set_memory_rw(addr, header->pages);
1216 bpf_jit_binary_free(header);
1218 free_filter:
1219 bpf_prog_unlock_free(fp);