ARM: bcm2835: remove custom .init_time hook
[linux-2.6/btrfs-unstable.git] / mm / memcontrol.c
blobd5ff3ce13029b2c99b4ed402898ae0c76a143fde
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/slab.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/spinlock.h>
46 #include <linux/eventfd.h>
47 #include <linux/sort.h>
48 #include <linux/fs.h>
49 #include <linux/seq_file.h>
50 #include <linux/vmalloc.h>
51 #include <linux/vmpressure.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
56 #include "internal.h"
57 #include <net/sock.h>
58 #include <net/ip.h>
59 #include <net/tcp_memcontrol.h>
61 #include <asm/uaccess.h>
63 #include <trace/events/vmscan.h>
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
68 #define MEM_CGROUP_RECLAIM_RETRIES 5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
78 #else
79 static int really_do_swap_account __initdata = 0;
80 #endif
82 #else
83 #define do_swap_account 0
84 #endif
87 static const char * const mem_cgroup_stat_names[] = {
88 "cache",
89 "rss",
90 "rss_huge",
91 "mapped_file",
92 "writeback",
93 "swap",
96 enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
101 MEM_CGROUP_EVENTS_NSTATS,
104 static const char * const mem_cgroup_events_names[] = {
105 "pgpgin",
106 "pgpgout",
107 "pgfault",
108 "pgmajfault",
111 static const char * const mem_cgroup_lru_names[] = {
112 "inactive_anon",
113 "active_anon",
114 "inactive_file",
115 "active_file",
116 "unevictable",
120 * Per memcg event counter is incremented at every pagein/pageout. With THP,
121 * it will be incremated by the number of pages. This counter is used for
122 * for trigger some periodic events. This is straightforward and better
123 * than using jiffies etc. to handle periodic memcg event.
125 enum mem_cgroup_events_target {
126 MEM_CGROUP_TARGET_THRESH,
127 MEM_CGROUP_TARGET_SOFTLIMIT,
128 MEM_CGROUP_TARGET_NUMAINFO,
129 MEM_CGROUP_NTARGETS,
131 #define THRESHOLDS_EVENTS_TARGET 128
132 #define SOFTLIMIT_EVENTS_TARGET 1024
133 #define NUMAINFO_EVENTS_TARGET 1024
135 struct mem_cgroup_stat_cpu {
136 long count[MEM_CGROUP_STAT_NSTATS];
137 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138 unsigned long nr_page_events;
139 unsigned long targets[MEM_CGROUP_NTARGETS];
142 struct mem_cgroup_reclaim_iter {
144 * last scanned hierarchy member. Valid only if last_dead_count
145 * matches memcg->dead_count of the hierarchy root group.
147 struct mem_cgroup *last_visited;
148 unsigned long last_dead_count;
150 /* scan generation, increased every round-trip */
151 unsigned int generation;
155 * per-zone information in memory controller.
157 struct mem_cgroup_per_zone {
158 struct lruvec lruvec;
159 unsigned long lru_size[NR_LRU_LISTS];
161 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
163 struct mem_cgroup *memcg; /* Back pointer, we cannot */
164 /* use container_of */
167 struct mem_cgroup_per_node {
168 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171 struct mem_cgroup_threshold {
172 struct eventfd_ctx *eventfd;
173 u64 threshold;
176 /* For threshold */
177 struct mem_cgroup_threshold_ary {
178 /* An array index points to threshold just below or equal to usage. */
179 int current_threshold;
180 /* Size of entries[] */
181 unsigned int size;
182 /* Array of thresholds */
183 struct mem_cgroup_threshold entries[0];
186 struct mem_cgroup_thresholds {
187 /* Primary thresholds array */
188 struct mem_cgroup_threshold_ary *primary;
190 * Spare threshold array.
191 * This is needed to make mem_cgroup_unregister_event() "never fail".
192 * It must be able to store at least primary->size - 1 entries.
194 struct mem_cgroup_threshold_ary *spare;
197 /* for OOM */
198 struct mem_cgroup_eventfd_list {
199 struct list_head list;
200 struct eventfd_ctx *eventfd;
203 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
204 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
207 * The memory controller data structure. The memory controller controls both
208 * page cache and RSS per cgroup. We would eventually like to provide
209 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
210 * to help the administrator determine what knobs to tune.
212 * TODO: Add a water mark for the memory controller. Reclaim will begin when
213 * we hit the water mark. May be even add a low water mark, such that
214 * no reclaim occurs from a cgroup at it's low water mark, this is
215 * a feature that will be implemented much later in the future.
217 struct mem_cgroup {
218 struct cgroup_subsys_state css;
220 * the counter to account for memory usage
222 struct res_counter res;
224 /* vmpressure notifications */
225 struct vmpressure vmpressure;
228 * the counter to account for mem+swap usage.
230 struct res_counter memsw;
233 * the counter to account for kernel memory usage.
235 struct res_counter kmem;
237 * Should the accounting and control be hierarchical, per subtree?
239 bool use_hierarchy;
240 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
242 bool oom_lock;
243 atomic_t under_oom;
244 atomic_t oom_wakeups;
246 int swappiness;
247 /* OOM-Killer disable */
248 int oom_kill_disable;
250 /* set when res.limit == memsw.limit */
251 bool memsw_is_minimum;
253 /* protect arrays of thresholds */
254 struct mutex thresholds_lock;
256 /* thresholds for memory usage. RCU-protected */
257 struct mem_cgroup_thresholds thresholds;
259 /* thresholds for mem+swap usage. RCU-protected */
260 struct mem_cgroup_thresholds memsw_thresholds;
262 /* For oom notifier event fd */
263 struct list_head oom_notify;
266 * Should we move charges of a task when a task is moved into this
267 * mem_cgroup ? And what type of charges should we move ?
269 unsigned long move_charge_at_immigrate;
271 * set > 0 if pages under this cgroup are moving to other cgroup.
273 atomic_t moving_account;
274 /* taken only while moving_account > 0 */
275 spinlock_t move_lock;
277 * percpu counter.
279 struct mem_cgroup_stat_cpu __percpu *stat;
281 * used when a cpu is offlined or other synchronizations
282 * See mem_cgroup_read_stat().
284 struct mem_cgroup_stat_cpu nocpu_base;
285 spinlock_t pcp_counter_lock;
287 atomic_t dead_count;
288 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
289 struct tcp_memcontrol tcp_mem;
290 #endif
291 #if defined(CONFIG_MEMCG_KMEM)
292 /* analogous to slab_common's slab_caches list. per-memcg */
293 struct list_head memcg_slab_caches;
294 /* Not a spinlock, we can take a lot of time walking the list */
295 struct mutex slab_caches_mutex;
296 /* Index in the kmem_cache->memcg_params->memcg_caches array */
297 int kmemcg_id;
298 #endif
300 int last_scanned_node;
301 #if MAX_NUMNODES > 1
302 nodemask_t scan_nodes;
303 atomic_t numainfo_events;
304 atomic_t numainfo_updating;
305 #endif
307 * Protects soft_contributed transitions.
308 * See mem_cgroup_update_soft_limit
310 spinlock_t soft_lock;
313 * If true then this group has increased parents' children_in_excess
314 * when it got over the soft limit.
315 * When a group falls bellow the soft limit, parents' children_in_excess
316 * is decreased and soft_contributed changed to false.
318 bool soft_contributed;
320 /* Number of children that are in soft limit excess */
321 atomic_t children_in_excess;
323 struct mem_cgroup_per_node *nodeinfo[0];
324 /* WARNING: nodeinfo must be the last member here */
327 static size_t memcg_size(void)
329 return sizeof(struct mem_cgroup) +
330 nr_node_ids * sizeof(struct mem_cgroup_per_node);
333 /* internal only representation about the status of kmem accounting. */
334 enum {
335 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
336 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
337 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
340 /* We account when limit is on, but only after call sites are patched */
341 #define KMEM_ACCOUNTED_MASK \
342 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
344 #ifdef CONFIG_MEMCG_KMEM
345 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
347 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
350 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
352 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
355 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
357 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
360 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
362 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
365 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
368 * Our caller must use css_get() first, because memcg_uncharge_kmem()
369 * will call css_put() if it sees the memcg is dead.
371 smp_wmb();
372 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
373 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
376 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
378 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
379 &memcg->kmem_account_flags);
381 #endif
383 /* Stuffs for move charges at task migration. */
385 * Types of charges to be moved. "move_charge_at_immitgrate" and
386 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
388 enum move_type {
389 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
390 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
391 NR_MOVE_TYPE,
394 /* "mc" and its members are protected by cgroup_mutex */
395 static struct move_charge_struct {
396 spinlock_t lock; /* for from, to */
397 struct mem_cgroup *from;
398 struct mem_cgroup *to;
399 unsigned long immigrate_flags;
400 unsigned long precharge;
401 unsigned long moved_charge;
402 unsigned long moved_swap;
403 struct task_struct *moving_task; /* a task moving charges */
404 wait_queue_head_t waitq; /* a waitq for other context */
405 } mc = {
406 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
407 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
410 static bool move_anon(void)
412 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
415 static bool move_file(void)
417 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
421 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
422 * limit reclaim to prevent infinite loops, if they ever occur.
424 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
426 enum charge_type {
427 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
428 MEM_CGROUP_CHARGE_TYPE_ANON,
429 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
430 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
431 NR_CHARGE_TYPE,
434 /* for encoding cft->private value on file */
435 enum res_type {
436 _MEM,
437 _MEMSWAP,
438 _OOM_TYPE,
439 _KMEM,
442 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
443 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
444 #define MEMFILE_ATTR(val) ((val) & 0xffff)
445 /* Used for OOM nofiier */
446 #define OOM_CONTROL (0)
449 * Reclaim flags for mem_cgroup_hierarchical_reclaim
451 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
452 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
453 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
454 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
457 * The memcg_create_mutex will be held whenever a new cgroup is created.
458 * As a consequence, any change that needs to protect against new child cgroups
459 * appearing has to hold it as well.
461 static DEFINE_MUTEX(memcg_create_mutex);
463 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
465 return s ? container_of(s, struct mem_cgroup, css) : NULL;
468 /* Some nice accessors for the vmpressure. */
469 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
471 if (!memcg)
472 memcg = root_mem_cgroup;
473 return &memcg->vmpressure;
476 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
478 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
481 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
483 return &mem_cgroup_from_css(css)->vmpressure;
486 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
488 return (memcg == root_mem_cgroup);
491 /* Writing them here to avoid exposing memcg's inner layout */
492 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
494 void sock_update_memcg(struct sock *sk)
496 if (mem_cgroup_sockets_enabled) {
497 struct mem_cgroup *memcg;
498 struct cg_proto *cg_proto;
500 BUG_ON(!sk->sk_prot->proto_cgroup);
502 /* Socket cloning can throw us here with sk_cgrp already
503 * filled. It won't however, necessarily happen from
504 * process context. So the test for root memcg given
505 * the current task's memcg won't help us in this case.
507 * Respecting the original socket's memcg is a better
508 * decision in this case.
510 if (sk->sk_cgrp) {
511 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
512 css_get(&sk->sk_cgrp->memcg->css);
513 return;
516 rcu_read_lock();
517 memcg = mem_cgroup_from_task(current);
518 cg_proto = sk->sk_prot->proto_cgroup(memcg);
519 if (!mem_cgroup_is_root(memcg) &&
520 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
521 sk->sk_cgrp = cg_proto;
523 rcu_read_unlock();
526 EXPORT_SYMBOL(sock_update_memcg);
528 void sock_release_memcg(struct sock *sk)
530 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
531 struct mem_cgroup *memcg;
532 WARN_ON(!sk->sk_cgrp->memcg);
533 memcg = sk->sk_cgrp->memcg;
534 css_put(&sk->sk_cgrp->memcg->css);
538 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
540 if (!memcg || mem_cgroup_is_root(memcg))
541 return NULL;
543 return &memcg->tcp_mem.cg_proto;
545 EXPORT_SYMBOL(tcp_proto_cgroup);
547 static void disarm_sock_keys(struct mem_cgroup *memcg)
549 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
550 return;
551 static_key_slow_dec(&memcg_socket_limit_enabled);
553 #else
554 static void disarm_sock_keys(struct mem_cgroup *memcg)
557 #endif
559 #ifdef CONFIG_MEMCG_KMEM
561 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
562 * There are two main reasons for not using the css_id for this:
563 * 1) this works better in sparse environments, where we have a lot of memcgs,
564 * but only a few kmem-limited. Or also, if we have, for instance, 200
565 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
566 * 200 entry array for that.
568 * 2) In order not to violate the cgroup API, we would like to do all memory
569 * allocation in ->create(). At that point, we haven't yet allocated the
570 * css_id. Having a separate index prevents us from messing with the cgroup
571 * core for this
573 * The current size of the caches array is stored in
574 * memcg_limited_groups_array_size. It will double each time we have to
575 * increase it.
577 static DEFINE_IDA(kmem_limited_groups);
578 int memcg_limited_groups_array_size;
581 * MIN_SIZE is different than 1, because we would like to avoid going through
582 * the alloc/free process all the time. In a small machine, 4 kmem-limited
583 * cgroups is a reasonable guess. In the future, it could be a parameter or
584 * tunable, but that is strictly not necessary.
586 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
587 * this constant directly from cgroup, but it is understandable that this is
588 * better kept as an internal representation in cgroup.c. In any case, the
589 * css_id space is not getting any smaller, and we don't have to necessarily
590 * increase ours as well if it increases.
592 #define MEMCG_CACHES_MIN_SIZE 4
593 #define MEMCG_CACHES_MAX_SIZE 65535
596 * A lot of the calls to the cache allocation functions are expected to be
597 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
598 * conditional to this static branch, we'll have to allow modules that does
599 * kmem_cache_alloc and the such to see this symbol as well
601 struct static_key memcg_kmem_enabled_key;
602 EXPORT_SYMBOL(memcg_kmem_enabled_key);
604 static void disarm_kmem_keys(struct mem_cgroup *memcg)
606 if (memcg_kmem_is_active(memcg)) {
607 static_key_slow_dec(&memcg_kmem_enabled_key);
608 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
611 * This check can't live in kmem destruction function,
612 * since the charges will outlive the cgroup
614 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
616 #else
617 static void disarm_kmem_keys(struct mem_cgroup *memcg)
620 #endif /* CONFIG_MEMCG_KMEM */
622 static void disarm_static_keys(struct mem_cgroup *memcg)
624 disarm_sock_keys(memcg);
625 disarm_kmem_keys(memcg);
628 static void drain_all_stock_async(struct mem_cgroup *memcg);
630 static struct mem_cgroup_per_zone *
631 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
633 VM_BUG_ON((unsigned)nid >= nr_node_ids);
634 return &memcg->nodeinfo[nid]->zoneinfo[zid];
637 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
639 return &memcg->css;
642 static struct mem_cgroup_per_zone *
643 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
645 int nid = page_to_nid(page);
646 int zid = page_zonenum(page);
648 return mem_cgroup_zoneinfo(memcg, nid, zid);
652 * Implementation Note: reading percpu statistics for memcg.
654 * Both of vmstat[] and percpu_counter has threshold and do periodic
655 * synchronization to implement "quick" read. There are trade-off between
656 * reading cost and precision of value. Then, we may have a chance to implement
657 * a periodic synchronizion of counter in memcg's counter.
659 * But this _read() function is used for user interface now. The user accounts
660 * memory usage by memory cgroup and he _always_ requires exact value because
661 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
662 * have to visit all online cpus and make sum. So, for now, unnecessary
663 * synchronization is not implemented. (just implemented for cpu hotplug)
665 * If there are kernel internal actions which can make use of some not-exact
666 * value, and reading all cpu value can be performance bottleneck in some
667 * common workload, threashold and synchonization as vmstat[] should be
668 * implemented.
670 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
671 enum mem_cgroup_stat_index idx)
673 long val = 0;
674 int cpu;
676 get_online_cpus();
677 for_each_online_cpu(cpu)
678 val += per_cpu(memcg->stat->count[idx], cpu);
679 #ifdef CONFIG_HOTPLUG_CPU
680 spin_lock(&memcg->pcp_counter_lock);
681 val += memcg->nocpu_base.count[idx];
682 spin_unlock(&memcg->pcp_counter_lock);
683 #endif
684 put_online_cpus();
685 return val;
688 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
689 bool charge)
691 int val = (charge) ? 1 : -1;
692 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
695 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
696 enum mem_cgroup_events_index idx)
698 unsigned long val = 0;
699 int cpu;
701 for_each_online_cpu(cpu)
702 val += per_cpu(memcg->stat->events[idx], cpu);
703 #ifdef CONFIG_HOTPLUG_CPU
704 spin_lock(&memcg->pcp_counter_lock);
705 val += memcg->nocpu_base.events[idx];
706 spin_unlock(&memcg->pcp_counter_lock);
707 #endif
708 return val;
711 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
712 struct page *page,
713 bool anon, int nr_pages)
715 preempt_disable();
718 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
719 * counted as CACHE even if it's on ANON LRU.
721 if (anon)
722 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
723 nr_pages);
724 else
725 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
726 nr_pages);
728 if (PageTransHuge(page))
729 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
730 nr_pages);
732 /* pagein of a big page is an event. So, ignore page size */
733 if (nr_pages > 0)
734 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
735 else {
736 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
737 nr_pages = -nr_pages; /* for event */
740 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
742 preempt_enable();
745 unsigned long
746 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
748 struct mem_cgroup_per_zone *mz;
750 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
751 return mz->lru_size[lru];
754 static unsigned long
755 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
756 unsigned int lru_mask)
758 struct mem_cgroup_per_zone *mz;
759 enum lru_list lru;
760 unsigned long ret = 0;
762 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
764 for_each_lru(lru) {
765 if (BIT(lru) & lru_mask)
766 ret += mz->lru_size[lru];
768 return ret;
771 static unsigned long
772 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
773 int nid, unsigned int lru_mask)
775 u64 total = 0;
776 int zid;
778 for (zid = 0; zid < MAX_NR_ZONES; zid++)
779 total += mem_cgroup_zone_nr_lru_pages(memcg,
780 nid, zid, lru_mask);
782 return total;
785 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
786 unsigned int lru_mask)
788 int nid;
789 u64 total = 0;
791 for_each_node_state(nid, N_MEMORY)
792 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
793 return total;
796 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
797 enum mem_cgroup_events_target target)
799 unsigned long val, next;
801 val = __this_cpu_read(memcg->stat->nr_page_events);
802 next = __this_cpu_read(memcg->stat->targets[target]);
803 /* from time_after() in jiffies.h */
804 if ((long)next - (long)val < 0) {
805 switch (target) {
806 case MEM_CGROUP_TARGET_THRESH:
807 next = val + THRESHOLDS_EVENTS_TARGET;
808 break;
809 case MEM_CGROUP_TARGET_SOFTLIMIT:
810 next = val + SOFTLIMIT_EVENTS_TARGET;
811 break;
812 case MEM_CGROUP_TARGET_NUMAINFO:
813 next = val + NUMAINFO_EVENTS_TARGET;
814 break;
815 default:
816 break;
818 __this_cpu_write(memcg->stat->targets[target], next);
819 return true;
821 return false;
825 * Called from rate-limited memcg_check_events when enough
826 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
827 * that all the parents up the hierarchy will be notified that this group
828 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
829 * makes the transition a single action whenever the state flips from one to
830 * the other.
832 static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
834 unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
835 struct mem_cgroup *parent = memcg;
836 int delta = 0;
838 spin_lock(&memcg->soft_lock);
839 if (excess) {
840 if (!memcg->soft_contributed) {
841 delta = 1;
842 memcg->soft_contributed = true;
844 } else {
845 if (memcg->soft_contributed) {
846 delta = -1;
847 memcg->soft_contributed = false;
852 * Necessary to update all ancestors when hierarchy is used
853 * because their event counter is not touched.
854 * We track children even outside the hierarchy for the root
855 * cgroup because tree walk starting at root should visit
856 * all cgroups and we want to prevent from pointless tree
857 * walk if no children is below the limit.
859 while (delta && (parent = parent_mem_cgroup(parent)))
860 atomic_add(delta, &parent->children_in_excess);
861 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
862 atomic_add(delta, &root_mem_cgroup->children_in_excess);
863 spin_unlock(&memcg->soft_lock);
867 * Check events in order.
870 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
872 preempt_disable();
873 /* threshold event is triggered in finer grain than soft limit */
874 if (unlikely(mem_cgroup_event_ratelimit(memcg,
875 MEM_CGROUP_TARGET_THRESH))) {
876 bool do_softlimit;
877 bool do_numainfo __maybe_unused;
879 do_softlimit = mem_cgroup_event_ratelimit(memcg,
880 MEM_CGROUP_TARGET_SOFTLIMIT);
881 #if MAX_NUMNODES > 1
882 do_numainfo = mem_cgroup_event_ratelimit(memcg,
883 MEM_CGROUP_TARGET_NUMAINFO);
884 #endif
885 preempt_enable();
887 mem_cgroup_threshold(memcg);
888 if (unlikely(do_softlimit))
889 mem_cgroup_update_soft_limit(memcg);
890 #if MAX_NUMNODES > 1
891 if (unlikely(do_numainfo))
892 atomic_inc(&memcg->numainfo_events);
893 #endif
894 } else
895 preempt_enable();
898 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
901 * mm_update_next_owner() may clear mm->owner to NULL
902 * if it races with swapoff, page migration, etc.
903 * So this can be called with p == NULL.
905 if (unlikely(!p))
906 return NULL;
908 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
911 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
913 struct mem_cgroup *memcg = NULL;
915 if (!mm)
916 return NULL;
918 * Because we have no locks, mm->owner's may be being moved to other
919 * cgroup. We use css_tryget() here even if this looks
920 * pessimistic (rather than adding locks here).
922 rcu_read_lock();
923 do {
924 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
925 if (unlikely(!memcg))
926 break;
927 } while (!css_tryget(&memcg->css));
928 rcu_read_unlock();
929 return memcg;
932 static enum mem_cgroup_filter_t
933 mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
934 mem_cgroup_iter_filter cond)
936 if (!cond)
937 return VISIT;
938 return cond(memcg, root);
942 * Returns a next (in a pre-order walk) alive memcg (with elevated css
943 * ref. count) or NULL if the whole root's subtree has been visited.
945 * helper function to be used by mem_cgroup_iter
947 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
948 struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
950 struct cgroup_subsys_state *prev_css, *next_css;
952 prev_css = last_visited ? &last_visited->css : NULL;
953 skip_node:
954 next_css = css_next_descendant_pre(prev_css, &root->css);
957 * Even if we found a group we have to make sure it is
958 * alive. css && !memcg means that the groups should be
959 * skipped and we should continue the tree walk.
960 * last_visited css is safe to use because it is
961 * protected by css_get and the tree walk is rcu safe.
963 if (next_css) {
964 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
966 switch (mem_cgroup_filter(mem, root, cond)) {
967 case SKIP:
968 prev_css = next_css;
969 goto skip_node;
970 case SKIP_TREE:
971 if (mem == root)
972 return NULL;
974 * css_rightmost_descendant is not an optimal way to
975 * skip through a subtree (especially for imbalanced
976 * trees leaning to right) but that's what we have right
977 * now. More effective solution would be traversing
978 * right-up for first non-NULL without calling
979 * css_next_descendant_pre afterwards.
981 prev_css = css_rightmost_descendant(next_css);
982 goto skip_node;
983 case VISIT:
984 if (css_tryget(&mem->css))
985 return mem;
986 else {
987 prev_css = next_css;
988 goto skip_node;
990 break;
994 return NULL;
997 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1000 * When a group in the hierarchy below root is destroyed, the
1001 * hierarchy iterator can no longer be trusted since it might
1002 * have pointed to the destroyed group. Invalidate it.
1004 atomic_inc(&root->dead_count);
1007 static struct mem_cgroup *
1008 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1009 struct mem_cgroup *root,
1010 int *sequence)
1012 struct mem_cgroup *position = NULL;
1014 * A cgroup destruction happens in two stages: offlining and
1015 * release. They are separated by a RCU grace period.
1017 * If the iterator is valid, we may still race with an
1018 * offlining. The RCU lock ensures the object won't be
1019 * released, tryget will fail if we lost the race.
1021 *sequence = atomic_read(&root->dead_count);
1022 if (iter->last_dead_count == *sequence) {
1023 smp_rmb();
1024 position = iter->last_visited;
1025 if (position && !css_tryget(&position->css))
1026 position = NULL;
1028 return position;
1031 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1032 struct mem_cgroup *last_visited,
1033 struct mem_cgroup *new_position,
1034 int sequence)
1036 if (last_visited)
1037 css_put(&last_visited->css);
1039 * We store the sequence count from the time @last_visited was
1040 * loaded successfully instead of rereading it here so that we
1041 * don't lose destruction events in between. We could have
1042 * raced with the destruction of @new_position after all.
1044 iter->last_visited = new_position;
1045 smp_wmb();
1046 iter->last_dead_count = sequence;
1050 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1051 * @root: hierarchy root
1052 * @prev: previously returned memcg, NULL on first invocation
1053 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1054 * @cond: filter for visited nodes, NULL for no filter
1056 * Returns references to children of the hierarchy below @root, or
1057 * @root itself, or %NULL after a full round-trip.
1059 * Caller must pass the return value in @prev on subsequent
1060 * invocations for reference counting, or use mem_cgroup_iter_break()
1061 * to cancel a hierarchy walk before the round-trip is complete.
1063 * Reclaimers can specify a zone and a priority level in @reclaim to
1064 * divide up the memcgs in the hierarchy among all concurrent
1065 * reclaimers operating on the same zone and priority.
1067 struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1068 struct mem_cgroup *prev,
1069 struct mem_cgroup_reclaim_cookie *reclaim,
1070 mem_cgroup_iter_filter cond)
1072 struct mem_cgroup *memcg = NULL;
1073 struct mem_cgroup *last_visited = NULL;
1075 if (mem_cgroup_disabled()) {
1076 /* first call must return non-NULL, second return NULL */
1077 return (struct mem_cgroup *)(unsigned long)!prev;
1080 if (!root)
1081 root = root_mem_cgroup;
1083 if (prev && !reclaim)
1084 last_visited = prev;
1086 if (!root->use_hierarchy && root != root_mem_cgroup) {
1087 if (prev)
1088 goto out_css_put;
1089 if (mem_cgroup_filter(root, root, cond) == VISIT)
1090 return root;
1091 return NULL;
1094 rcu_read_lock();
1095 while (!memcg) {
1096 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1097 int uninitialized_var(seq);
1099 if (reclaim) {
1100 int nid = zone_to_nid(reclaim->zone);
1101 int zid = zone_idx(reclaim->zone);
1102 struct mem_cgroup_per_zone *mz;
1104 mz = mem_cgroup_zoneinfo(root, nid, zid);
1105 iter = &mz->reclaim_iter[reclaim->priority];
1106 if (prev && reclaim->generation != iter->generation) {
1107 iter->last_visited = NULL;
1108 goto out_unlock;
1111 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1114 memcg = __mem_cgroup_iter_next(root, last_visited, cond);
1116 if (reclaim) {
1117 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1119 if (!memcg)
1120 iter->generation++;
1121 else if (!prev && memcg)
1122 reclaim->generation = iter->generation;
1126 * We have finished the whole tree walk or no group has been
1127 * visited because filter told us to skip the root node.
1129 if (!memcg && (prev || (cond && !last_visited)))
1130 goto out_unlock;
1132 out_unlock:
1133 rcu_read_unlock();
1134 out_css_put:
1135 if (prev && prev != root)
1136 css_put(&prev->css);
1138 return memcg;
1142 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1143 * @root: hierarchy root
1144 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1146 void mem_cgroup_iter_break(struct mem_cgroup *root,
1147 struct mem_cgroup *prev)
1149 if (!root)
1150 root = root_mem_cgroup;
1151 if (prev && prev != root)
1152 css_put(&prev->css);
1156 * Iteration constructs for visiting all cgroups (under a tree). If
1157 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1158 * be used for reference counting.
1160 #define for_each_mem_cgroup_tree(iter, root) \
1161 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1162 iter != NULL; \
1163 iter = mem_cgroup_iter(root, iter, NULL))
1165 #define for_each_mem_cgroup(iter) \
1166 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1167 iter != NULL; \
1168 iter = mem_cgroup_iter(NULL, iter, NULL))
1170 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1172 struct mem_cgroup *memcg;
1174 rcu_read_lock();
1175 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1176 if (unlikely(!memcg))
1177 goto out;
1179 switch (idx) {
1180 case PGFAULT:
1181 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1182 break;
1183 case PGMAJFAULT:
1184 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1185 break;
1186 default:
1187 BUG();
1189 out:
1190 rcu_read_unlock();
1192 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1195 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1196 * @zone: zone of the wanted lruvec
1197 * @memcg: memcg of the wanted lruvec
1199 * Returns the lru list vector holding pages for the given @zone and
1200 * @mem. This can be the global zone lruvec, if the memory controller
1201 * is disabled.
1203 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1204 struct mem_cgroup *memcg)
1206 struct mem_cgroup_per_zone *mz;
1207 struct lruvec *lruvec;
1209 if (mem_cgroup_disabled()) {
1210 lruvec = &zone->lruvec;
1211 goto out;
1214 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1215 lruvec = &mz->lruvec;
1216 out:
1218 * Since a node can be onlined after the mem_cgroup was created,
1219 * we have to be prepared to initialize lruvec->zone here;
1220 * and if offlined then reonlined, we need to reinitialize it.
1222 if (unlikely(lruvec->zone != zone))
1223 lruvec->zone = zone;
1224 return lruvec;
1228 * Following LRU functions are allowed to be used without PCG_LOCK.
1229 * Operations are called by routine of global LRU independently from memcg.
1230 * What we have to take care of here is validness of pc->mem_cgroup.
1232 * Changes to pc->mem_cgroup happens when
1233 * 1. charge
1234 * 2. moving account
1235 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1236 * It is added to LRU before charge.
1237 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1238 * When moving account, the page is not on LRU. It's isolated.
1242 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1243 * @page: the page
1244 * @zone: zone of the page
1246 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1248 struct mem_cgroup_per_zone *mz;
1249 struct mem_cgroup *memcg;
1250 struct page_cgroup *pc;
1251 struct lruvec *lruvec;
1253 if (mem_cgroup_disabled()) {
1254 lruvec = &zone->lruvec;
1255 goto out;
1258 pc = lookup_page_cgroup(page);
1259 memcg = pc->mem_cgroup;
1262 * Surreptitiously switch any uncharged offlist page to root:
1263 * an uncharged page off lru does nothing to secure
1264 * its former mem_cgroup from sudden removal.
1266 * Our caller holds lru_lock, and PageCgroupUsed is updated
1267 * under page_cgroup lock: between them, they make all uses
1268 * of pc->mem_cgroup safe.
1270 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1271 pc->mem_cgroup = memcg = root_mem_cgroup;
1273 mz = page_cgroup_zoneinfo(memcg, page);
1274 lruvec = &mz->lruvec;
1275 out:
1277 * Since a node can be onlined after the mem_cgroup was created,
1278 * we have to be prepared to initialize lruvec->zone here;
1279 * and if offlined then reonlined, we need to reinitialize it.
1281 if (unlikely(lruvec->zone != zone))
1282 lruvec->zone = zone;
1283 return lruvec;
1287 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1288 * @lruvec: mem_cgroup per zone lru vector
1289 * @lru: index of lru list the page is sitting on
1290 * @nr_pages: positive when adding or negative when removing
1292 * This function must be called when a page is added to or removed from an
1293 * lru list.
1295 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1296 int nr_pages)
1298 struct mem_cgroup_per_zone *mz;
1299 unsigned long *lru_size;
1301 if (mem_cgroup_disabled())
1302 return;
1304 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1305 lru_size = mz->lru_size + lru;
1306 *lru_size += nr_pages;
1307 VM_BUG_ON((long)(*lru_size) < 0);
1311 * Checks whether given mem is same or in the root_mem_cgroup's
1312 * hierarchy subtree
1314 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1315 struct mem_cgroup *memcg)
1317 if (root_memcg == memcg)
1318 return true;
1319 if (!root_memcg->use_hierarchy || !memcg)
1320 return false;
1321 return css_is_ancestor(&memcg->css, &root_memcg->css);
1324 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1325 struct mem_cgroup *memcg)
1327 bool ret;
1329 rcu_read_lock();
1330 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1331 rcu_read_unlock();
1332 return ret;
1335 bool task_in_mem_cgroup(struct task_struct *task,
1336 const struct mem_cgroup *memcg)
1338 struct mem_cgroup *curr = NULL;
1339 struct task_struct *p;
1340 bool ret;
1342 p = find_lock_task_mm(task);
1343 if (p) {
1344 curr = try_get_mem_cgroup_from_mm(p->mm);
1345 task_unlock(p);
1346 } else {
1348 * All threads may have already detached their mm's, but the oom
1349 * killer still needs to detect if they have already been oom
1350 * killed to prevent needlessly killing additional tasks.
1352 rcu_read_lock();
1353 curr = mem_cgroup_from_task(task);
1354 if (curr)
1355 css_get(&curr->css);
1356 rcu_read_unlock();
1358 if (!curr)
1359 return false;
1361 * We should check use_hierarchy of "memcg" not "curr". Because checking
1362 * use_hierarchy of "curr" here make this function true if hierarchy is
1363 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1364 * hierarchy(even if use_hierarchy is disabled in "memcg").
1366 ret = mem_cgroup_same_or_subtree(memcg, curr);
1367 css_put(&curr->css);
1368 return ret;
1371 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1373 unsigned long inactive_ratio;
1374 unsigned long inactive;
1375 unsigned long active;
1376 unsigned long gb;
1378 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1379 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1381 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1382 if (gb)
1383 inactive_ratio = int_sqrt(10 * gb);
1384 else
1385 inactive_ratio = 1;
1387 return inactive * inactive_ratio < active;
1390 #define mem_cgroup_from_res_counter(counter, member) \
1391 container_of(counter, struct mem_cgroup, member)
1394 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1395 * @memcg: the memory cgroup
1397 * Returns the maximum amount of memory @mem can be charged with, in
1398 * pages.
1400 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1402 unsigned long long margin;
1404 margin = res_counter_margin(&memcg->res);
1405 if (do_swap_account)
1406 margin = min(margin, res_counter_margin(&memcg->memsw));
1407 return margin >> PAGE_SHIFT;
1410 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1412 /* root ? */
1413 if (!css_parent(&memcg->css))
1414 return vm_swappiness;
1416 return memcg->swappiness;
1420 * memcg->moving_account is used for checking possibility that some thread is
1421 * calling move_account(). When a thread on CPU-A starts moving pages under
1422 * a memcg, other threads should check memcg->moving_account under
1423 * rcu_read_lock(), like this:
1425 * CPU-A CPU-B
1426 * rcu_read_lock()
1427 * memcg->moving_account+1 if (memcg->mocing_account)
1428 * take heavy locks.
1429 * synchronize_rcu() update something.
1430 * rcu_read_unlock()
1431 * start move here.
1434 /* for quick checking without looking up memcg */
1435 atomic_t memcg_moving __read_mostly;
1437 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1439 atomic_inc(&memcg_moving);
1440 atomic_inc(&memcg->moving_account);
1441 synchronize_rcu();
1444 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1447 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1448 * We check NULL in callee rather than caller.
1450 if (memcg) {
1451 atomic_dec(&memcg_moving);
1452 atomic_dec(&memcg->moving_account);
1457 * 2 routines for checking "mem" is under move_account() or not.
1459 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1460 * is used for avoiding races in accounting. If true,
1461 * pc->mem_cgroup may be overwritten.
1463 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1464 * under hierarchy of moving cgroups. This is for
1465 * waiting at hith-memory prressure caused by "move".
1468 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1470 VM_BUG_ON(!rcu_read_lock_held());
1471 return atomic_read(&memcg->moving_account) > 0;
1474 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1476 struct mem_cgroup *from;
1477 struct mem_cgroup *to;
1478 bool ret = false;
1480 * Unlike task_move routines, we access mc.to, mc.from not under
1481 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1483 spin_lock(&mc.lock);
1484 from = mc.from;
1485 to = mc.to;
1486 if (!from)
1487 goto unlock;
1489 ret = mem_cgroup_same_or_subtree(memcg, from)
1490 || mem_cgroup_same_or_subtree(memcg, to);
1491 unlock:
1492 spin_unlock(&mc.lock);
1493 return ret;
1496 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1498 if (mc.moving_task && current != mc.moving_task) {
1499 if (mem_cgroup_under_move(memcg)) {
1500 DEFINE_WAIT(wait);
1501 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1502 /* moving charge context might have finished. */
1503 if (mc.moving_task)
1504 schedule();
1505 finish_wait(&mc.waitq, &wait);
1506 return true;
1509 return false;
1513 * Take this lock when
1514 * - a code tries to modify page's memcg while it's USED.
1515 * - a code tries to modify page state accounting in a memcg.
1516 * see mem_cgroup_stolen(), too.
1518 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1519 unsigned long *flags)
1521 spin_lock_irqsave(&memcg->move_lock, *flags);
1524 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1525 unsigned long *flags)
1527 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1530 #define K(x) ((x) << (PAGE_SHIFT-10))
1532 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1533 * @memcg: The memory cgroup that went over limit
1534 * @p: Task that is going to be killed
1536 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1537 * enabled
1539 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1541 struct cgroup *task_cgrp;
1542 struct cgroup *mem_cgrp;
1544 * Need a buffer in BSS, can't rely on allocations. The code relies
1545 * on the assumption that OOM is serialized for memory controller.
1546 * If this assumption is broken, revisit this code.
1548 static char memcg_name[PATH_MAX];
1549 int ret;
1550 struct mem_cgroup *iter;
1551 unsigned int i;
1553 if (!p)
1554 return;
1556 rcu_read_lock();
1558 mem_cgrp = memcg->css.cgroup;
1559 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1561 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1562 if (ret < 0) {
1564 * Unfortunately, we are unable to convert to a useful name
1565 * But we'll still print out the usage information
1567 rcu_read_unlock();
1568 goto done;
1570 rcu_read_unlock();
1572 pr_info("Task in %s killed", memcg_name);
1574 rcu_read_lock();
1575 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1576 if (ret < 0) {
1577 rcu_read_unlock();
1578 goto done;
1580 rcu_read_unlock();
1583 * Continues from above, so we don't need an KERN_ level
1585 pr_cont(" as a result of limit of %s\n", memcg_name);
1586 done:
1588 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1589 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1590 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1591 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1592 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1593 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1594 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1595 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1596 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1597 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1598 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1599 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1601 for_each_mem_cgroup_tree(iter, memcg) {
1602 pr_info("Memory cgroup stats");
1604 rcu_read_lock();
1605 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1606 if (!ret)
1607 pr_cont(" for %s", memcg_name);
1608 rcu_read_unlock();
1609 pr_cont(":");
1611 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1612 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1613 continue;
1614 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1615 K(mem_cgroup_read_stat(iter, i)));
1618 for (i = 0; i < NR_LRU_LISTS; i++)
1619 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1620 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1622 pr_cont("\n");
1627 * This function returns the number of memcg under hierarchy tree. Returns
1628 * 1(self count) if no children.
1630 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1632 int num = 0;
1633 struct mem_cgroup *iter;
1635 for_each_mem_cgroup_tree(iter, memcg)
1636 num++;
1637 return num;
1641 * Return the memory (and swap, if configured) limit for a memcg.
1643 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1645 u64 limit;
1647 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1650 * Do not consider swap space if we cannot swap due to swappiness
1652 if (mem_cgroup_swappiness(memcg)) {
1653 u64 memsw;
1655 limit += total_swap_pages << PAGE_SHIFT;
1656 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1659 * If memsw is finite and limits the amount of swap space
1660 * available to this memcg, return that limit.
1662 limit = min(limit, memsw);
1665 return limit;
1668 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1669 int order)
1671 struct mem_cgroup *iter;
1672 unsigned long chosen_points = 0;
1673 unsigned long totalpages;
1674 unsigned int points = 0;
1675 struct task_struct *chosen = NULL;
1678 * If current has a pending SIGKILL or is exiting, then automatically
1679 * select it. The goal is to allow it to allocate so that it may
1680 * quickly exit and free its memory.
1682 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1683 set_thread_flag(TIF_MEMDIE);
1684 return;
1687 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1688 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1689 for_each_mem_cgroup_tree(iter, memcg) {
1690 struct css_task_iter it;
1691 struct task_struct *task;
1693 css_task_iter_start(&iter->css, &it);
1694 while ((task = css_task_iter_next(&it))) {
1695 switch (oom_scan_process_thread(task, totalpages, NULL,
1696 false)) {
1697 case OOM_SCAN_SELECT:
1698 if (chosen)
1699 put_task_struct(chosen);
1700 chosen = task;
1701 chosen_points = ULONG_MAX;
1702 get_task_struct(chosen);
1703 /* fall through */
1704 case OOM_SCAN_CONTINUE:
1705 continue;
1706 case OOM_SCAN_ABORT:
1707 css_task_iter_end(&it);
1708 mem_cgroup_iter_break(memcg, iter);
1709 if (chosen)
1710 put_task_struct(chosen);
1711 return;
1712 case OOM_SCAN_OK:
1713 break;
1715 points = oom_badness(task, memcg, NULL, totalpages);
1716 if (points > chosen_points) {
1717 if (chosen)
1718 put_task_struct(chosen);
1719 chosen = task;
1720 chosen_points = points;
1721 get_task_struct(chosen);
1724 css_task_iter_end(&it);
1727 if (!chosen)
1728 return;
1729 points = chosen_points * 1000 / totalpages;
1730 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1731 NULL, "Memory cgroup out of memory");
1734 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1735 gfp_t gfp_mask,
1736 unsigned long flags)
1738 unsigned long total = 0;
1739 bool noswap = false;
1740 int loop;
1742 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1743 noswap = true;
1744 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1745 noswap = true;
1747 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1748 if (loop)
1749 drain_all_stock_async(memcg);
1750 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1752 * Allow limit shrinkers, which are triggered directly
1753 * by userspace, to catch signals and stop reclaim
1754 * after minimal progress, regardless of the margin.
1756 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1757 break;
1758 if (mem_cgroup_margin(memcg))
1759 break;
1761 * If nothing was reclaimed after two attempts, there
1762 * may be no reclaimable pages in this hierarchy.
1764 if (loop && !total)
1765 break;
1767 return total;
1770 #if MAX_NUMNODES > 1
1772 * test_mem_cgroup_node_reclaimable
1773 * @memcg: the target memcg
1774 * @nid: the node ID to be checked.
1775 * @noswap : specify true here if the user wants flle only information.
1777 * This function returns whether the specified memcg contains any
1778 * reclaimable pages on a node. Returns true if there are any reclaimable
1779 * pages in the node.
1781 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1782 int nid, bool noswap)
1784 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1785 return true;
1786 if (noswap || !total_swap_pages)
1787 return false;
1788 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1789 return true;
1790 return false;
1795 * Always updating the nodemask is not very good - even if we have an empty
1796 * list or the wrong list here, we can start from some node and traverse all
1797 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1800 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1802 int nid;
1804 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1805 * pagein/pageout changes since the last update.
1807 if (!atomic_read(&memcg->numainfo_events))
1808 return;
1809 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1810 return;
1812 /* make a nodemask where this memcg uses memory from */
1813 memcg->scan_nodes = node_states[N_MEMORY];
1815 for_each_node_mask(nid, node_states[N_MEMORY]) {
1817 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1818 node_clear(nid, memcg->scan_nodes);
1821 atomic_set(&memcg->numainfo_events, 0);
1822 atomic_set(&memcg->numainfo_updating, 0);
1826 * Selecting a node where we start reclaim from. Because what we need is just
1827 * reducing usage counter, start from anywhere is O,K. Considering
1828 * memory reclaim from current node, there are pros. and cons.
1830 * Freeing memory from current node means freeing memory from a node which
1831 * we'll use or we've used. So, it may make LRU bad. And if several threads
1832 * hit limits, it will see a contention on a node. But freeing from remote
1833 * node means more costs for memory reclaim because of memory latency.
1835 * Now, we use round-robin. Better algorithm is welcomed.
1837 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1839 int node;
1841 mem_cgroup_may_update_nodemask(memcg);
1842 node = memcg->last_scanned_node;
1844 node = next_node(node, memcg->scan_nodes);
1845 if (node == MAX_NUMNODES)
1846 node = first_node(memcg->scan_nodes);
1848 * We call this when we hit limit, not when pages are added to LRU.
1849 * No LRU may hold pages because all pages are UNEVICTABLE or
1850 * memcg is too small and all pages are not on LRU. In that case,
1851 * we use curret node.
1853 if (unlikely(node == MAX_NUMNODES))
1854 node = numa_node_id();
1856 memcg->last_scanned_node = node;
1857 return node;
1860 #else
1861 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1863 return 0;
1866 #endif
1869 * A group is eligible for the soft limit reclaim under the given root
1870 * hierarchy if
1871 * a) it is over its soft limit
1872 * b) any parent up the hierarchy is over its soft limit
1874 * If the given group doesn't have any children over the limit then it
1875 * doesn't make any sense to iterate its subtree.
1877 enum mem_cgroup_filter_t
1878 mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1879 struct mem_cgroup *root)
1881 struct mem_cgroup *parent;
1883 if (!memcg)
1884 memcg = root_mem_cgroup;
1885 parent = memcg;
1887 if (res_counter_soft_limit_excess(&memcg->res))
1888 return VISIT;
1891 * If any parent up to the root in the hierarchy is over its soft limit
1892 * then we have to obey and reclaim from this group as well.
1894 while ((parent = parent_mem_cgroup(parent))) {
1895 if (res_counter_soft_limit_excess(&parent->res))
1896 return VISIT;
1897 if (parent == root)
1898 break;
1901 if (!atomic_read(&memcg->children_in_excess))
1902 return SKIP_TREE;
1903 return SKIP;
1906 static DEFINE_SPINLOCK(memcg_oom_lock);
1909 * Check OOM-Killer is already running under our hierarchy.
1910 * If someone is running, return false.
1912 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1914 struct mem_cgroup *iter, *failed = NULL;
1916 spin_lock(&memcg_oom_lock);
1918 for_each_mem_cgroup_tree(iter, memcg) {
1919 if (iter->oom_lock) {
1921 * this subtree of our hierarchy is already locked
1922 * so we cannot give a lock.
1924 failed = iter;
1925 mem_cgroup_iter_break(memcg, iter);
1926 break;
1927 } else
1928 iter->oom_lock = true;
1931 if (failed) {
1933 * OK, we failed to lock the whole subtree so we have
1934 * to clean up what we set up to the failing subtree
1936 for_each_mem_cgroup_tree(iter, memcg) {
1937 if (iter == failed) {
1938 mem_cgroup_iter_break(memcg, iter);
1939 break;
1941 iter->oom_lock = false;
1945 spin_unlock(&memcg_oom_lock);
1947 return !failed;
1950 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1952 struct mem_cgroup *iter;
1954 spin_lock(&memcg_oom_lock);
1955 for_each_mem_cgroup_tree(iter, memcg)
1956 iter->oom_lock = false;
1957 spin_unlock(&memcg_oom_lock);
1960 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1962 struct mem_cgroup *iter;
1964 for_each_mem_cgroup_tree(iter, memcg)
1965 atomic_inc(&iter->under_oom);
1968 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1970 struct mem_cgroup *iter;
1973 * When a new child is created while the hierarchy is under oom,
1974 * mem_cgroup_oom_lock() may not be called. We have to use
1975 * atomic_add_unless() here.
1977 for_each_mem_cgroup_tree(iter, memcg)
1978 atomic_add_unless(&iter->under_oom, -1, 0);
1981 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1983 struct oom_wait_info {
1984 struct mem_cgroup *memcg;
1985 wait_queue_t wait;
1988 static int memcg_oom_wake_function(wait_queue_t *wait,
1989 unsigned mode, int sync, void *arg)
1991 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1992 struct mem_cgroup *oom_wait_memcg;
1993 struct oom_wait_info *oom_wait_info;
1995 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1996 oom_wait_memcg = oom_wait_info->memcg;
1999 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2000 * Then we can use css_is_ancestor without taking care of RCU.
2002 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2003 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2004 return 0;
2005 return autoremove_wake_function(wait, mode, sync, arg);
2008 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2010 atomic_inc(&memcg->oom_wakeups);
2011 /* for filtering, pass "memcg" as argument. */
2012 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2015 static void memcg_oom_recover(struct mem_cgroup *memcg)
2017 if (memcg && atomic_read(&memcg->under_oom))
2018 memcg_wakeup_oom(memcg);
2022 * try to call OOM killer
2024 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2026 bool locked;
2027 int wakeups;
2029 if (!current->memcg_oom.may_oom)
2030 return;
2032 current->memcg_oom.in_memcg_oom = 1;
2035 * As with any blocking lock, a contender needs to start
2036 * listening for wakeups before attempting the trylock,
2037 * otherwise it can miss the wakeup from the unlock and sleep
2038 * indefinitely. This is just open-coded because our locking
2039 * is so particular to memcg hierarchies.
2041 wakeups = atomic_read(&memcg->oom_wakeups);
2042 mem_cgroup_mark_under_oom(memcg);
2044 locked = mem_cgroup_oom_trylock(memcg);
2046 if (locked)
2047 mem_cgroup_oom_notify(memcg);
2049 if (locked && !memcg->oom_kill_disable) {
2050 mem_cgroup_unmark_under_oom(memcg);
2051 mem_cgroup_out_of_memory(memcg, mask, order);
2052 mem_cgroup_oom_unlock(memcg);
2054 * There is no guarantee that an OOM-lock contender
2055 * sees the wakeups triggered by the OOM kill
2056 * uncharges. Wake any sleepers explicitely.
2058 memcg_oom_recover(memcg);
2059 } else {
2061 * A system call can just return -ENOMEM, but if this
2062 * is a page fault and somebody else is handling the
2063 * OOM already, we need to sleep on the OOM waitqueue
2064 * for this memcg until the situation is resolved.
2065 * Which can take some time because it might be
2066 * handled by a userspace task.
2068 * However, this is the charge context, which means
2069 * that we may sit on a large call stack and hold
2070 * various filesystem locks, the mmap_sem etc. and we
2071 * don't want the OOM handler to deadlock on them
2072 * while we sit here and wait. Store the current OOM
2073 * context in the task_struct, then return -ENOMEM.
2074 * At the end of the page fault handler, with the
2075 * stack unwound, pagefault_out_of_memory() will check
2076 * back with us by calling
2077 * mem_cgroup_oom_synchronize(), possibly putting the
2078 * task to sleep.
2080 current->memcg_oom.oom_locked = locked;
2081 current->memcg_oom.wakeups = wakeups;
2082 css_get(&memcg->css);
2083 current->memcg_oom.wait_on_memcg = memcg;
2088 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2090 * This has to be called at the end of a page fault if the the memcg
2091 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
2093 * Memcg supports userspace OOM handling, so failed allocations must
2094 * sleep on a waitqueue until the userspace task resolves the
2095 * situation. Sleeping directly in the charge context with all kinds
2096 * of locks held is not a good idea, instead we remember an OOM state
2097 * in the task and mem_cgroup_oom_synchronize() has to be called at
2098 * the end of the page fault to put the task to sleep and clean up the
2099 * OOM state.
2101 * Returns %true if an ongoing memcg OOM situation was detected and
2102 * finalized, %false otherwise.
2104 bool mem_cgroup_oom_synchronize(void)
2106 struct oom_wait_info owait;
2107 struct mem_cgroup *memcg;
2109 /* OOM is global, do not handle */
2110 if (!current->memcg_oom.in_memcg_oom)
2111 return false;
2114 * We invoked the OOM killer but there is a chance that a kill
2115 * did not free up any charges. Everybody else might already
2116 * be sleeping, so restart the fault and keep the rampage
2117 * going until some charges are released.
2119 memcg = current->memcg_oom.wait_on_memcg;
2120 if (!memcg)
2121 goto out;
2123 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2124 goto out_memcg;
2126 owait.memcg = memcg;
2127 owait.wait.flags = 0;
2128 owait.wait.func = memcg_oom_wake_function;
2129 owait.wait.private = current;
2130 INIT_LIST_HEAD(&owait.wait.task_list);
2132 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2133 /* Only sleep if we didn't miss any wakeups since OOM */
2134 if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
2135 schedule();
2136 finish_wait(&memcg_oom_waitq, &owait.wait);
2137 out_memcg:
2138 mem_cgroup_unmark_under_oom(memcg);
2139 if (current->memcg_oom.oom_locked) {
2140 mem_cgroup_oom_unlock(memcg);
2142 * There is no guarantee that an OOM-lock contender
2143 * sees the wakeups triggered by the OOM kill
2144 * uncharges. Wake any sleepers explicitely.
2146 memcg_oom_recover(memcg);
2148 css_put(&memcg->css);
2149 current->memcg_oom.wait_on_memcg = NULL;
2150 out:
2151 current->memcg_oom.in_memcg_oom = 0;
2152 return true;
2156 * Currently used to update mapped file statistics, but the routine can be
2157 * generalized to update other statistics as well.
2159 * Notes: Race condition
2161 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2162 * it tends to be costly. But considering some conditions, we doesn't need
2163 * to do so _always_.
2165 * Considering "charge", lock_page_cgroup() is not required because all
2166 * file-stat operations happen after a page is attached to radix-tree. There
2167 * are no race with "charge".
2169 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2170 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2171 * if there are race with "uncharge". Statistics itself is properly handled
2172 * by flags.
2174 * Considering "move", this is an only case we see a race. To make the race
2175 * small, we check mm->moving_account and detect there are possibility of race
2176 * If there is, we take a lock.
2179 void __mem_cgroup_begin_update_page_stat(struct page *page,
2180 bool *locked, unsigned long *flags)
2182 struct mem_cgroup *memcg;
2183 struct page_cgroup *pc;
2185 pc = lookup_page_cgroup(page);
2186 again:
2187 memcg = pc->mem_cgroup;
2188 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2189 return;
2191 * If this memory cgroup is not under account moving, we don't
2192 * need to take move_lock_mem_cgroup(). Because we already hold
2193 * rcu_read_lock(), any calls to move_account will be delayed until
2194 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2196 if (!mem_cgroup_stolen(memcg))
2197 return;
2199 move_lock_mem_cgroup(memcg, flags);
2200 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2201 move_unlock_mem_cgroup(memcg, flags);
2202 goto again;
2204 *locked = true;
2207 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2209 struct page_cgroup *pc = lookup_page_cgroup(page);
2212 * It's guaranteed that pc->mem_cgroup never changes while
2213 * lock is held because a routine modifies pc->mem_cgroup
2214 * should take move_lock_mem_cgroup().
2216 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2219 void mem_cgroup_update_page_stat(struct page *page,
2220 enum mem_cgroup_stat_index idx, int val)
2222 struct mem_cgroup *memcg;
2223 struct page_cgroup *pc = lookup_page_cgroup(page);
2224 unsigned long uninitialized_var(flags);
2226 if (mem_cgroup_disabled())
2227 return;
2229 VM_BUG_ON(!rcu_read_lock_held());
2230 memcg = pc->mem_cgroup;
2231 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2232 return;
2234 this_cpu_add(memcg->stat->count[idx], val);
2238 * size of first charge trial. "32" comes from vmscan.c's magic value.
2239 * TODO: maybe necessary to use big numbers in big irons.
2241 #define CHARGE_BATCH 32U
2242 struct memcg_stock_pcp {
2243 struct mem_cgroup *cached; /* this never be root cgroup */
2244 unsigned int nr_pages;
2245 struct work_struct work;
2246 unsigned long flags;
2247 #define FLUSHING_CACHED_CHARGE 0
2249 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2250 static DEFINE_MUTEX(percpu_charge_mutex);
2253 * consume_stock: Try to consume stocked charge on this cpu.
2254 * @memcg: memcg to consume from.
2255 * @nr_pages: how many pages to charge.
2257 * The charges will only happen if @memcg matches the current cpu's memcg
2258 * stock, and at least @nr_pages are available in that stock. Failure to
2259 * service an allocation will refill the stock.
2261 * returns true if successful, false otherwise.
2263 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2265 struct memcg_stock_pcp *stock;
2266 bool ret = true;
2268 if (nr_pages > CHARGE_BATCH)
2269 return false;
2271 stock = &get_cpu_var(memcg_stock);
2272 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2273 stock->nr_pages -= nr_pages;
2274 else /* need to call res_counter_charge */
2275 ret = false;
2276 put_cpu_var(memcg_stock);
2277 return ret;
2281 * Returns stocks cached in percpu to res_counter and reset cached information.
2283 static void drain_stock(struct memcg_stock_pcp *stock)
2285 struct mem_cgroup *old = stock->cached;
2287 if (stock->nr_pages) {
2288 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2290 res_counter_uncharge(&old->res, bytes);
2291 if (do_swap_account)
2292 res_counter_uncharge(&old->memsw, bytes);
2293 stock->nr_pages = 0;
2295 stock->cached = NULL;
2299 * This must be called under preempt disabled or must be called by
2300 * a thread which is pinned to local cpu.
2302 static void drain_local_stock(struct work_struct *dummy)
2304 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2305 drain_stock(stock);
2306 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2309 static void __init memcg_stock_init(void)
2311 int cpu;
2313 for_each_possible_cpu(cpu) {
2314 struct memcg_stock_pcp *stock =
2315 &per_cpu(memcg_stock, cpu);
2316 INIT_WORK(&stock->work, drain_local_stock);
2321 * Cache charges(val) which is from res_counter, to local per_cpu area.
2322 * This will be consumed by consume_stock() function, later.
2324 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2326 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2328 if (stock->cached != memcg) { /* reset if necessary */
2329 drain_stock(stock);
2330 stock->cached = memcg;
2332 stock->nr_pages += nr_pages;
2333 put_cpu_var(memcg_stock);
2337 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2338 * of the hierarchy under it. sync flag says whether we should block
2339 * until the work is done.
2341 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2343 int cpu, curcpu;
2345 /* Notify other cpus that system-wide "drain" is running */
2346 get_online_cpus();
2347 curcpu = get_cpu();
2348 for_each_online_cpu(cpu) {
2349 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2350 struct mem_cgroup *memcg;
2352 memcg = stock->cached;
2353 if (!memcg || !stock->nr_pages)
2354 continue;
2355 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2356 continue;
2357 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2358 if (cpu == curcpu)
2359 drain_local_stock(&stock->work);
2360 else
2361 schedule_work_on(cpu, &stock->work);
2364 put_cpu();
2366 if (!sync)
2367 goto out;
2369 for_each_online_cpu(cpu) {
2370 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2371 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2372 flush_work(&stock->work);
2374 out:
2375 put_online_cpus();
2379 * Tries to drain stocked charges in other cpus. This function is asynchronous
2380 * and just put a work per cpu for draining localy on each cpu. Caller can
2381 * expects some charges will be back to res_counter later but cannot wait for
2382 * it.
2384 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2387 * If someone calls draining, avoid adding more kworker runs.
2389 if (!mutex_trylock(&percpu_charge_mutex))
2390 return;
2391 drain_all_stock(root_memcg, false);
2392 mutex_unlock(&percpu_charge_mutex);
2395 /* This is a synchronous drain interface. */
2396 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2398 /* called when force_empty is called */
2399 mutex_lock(&percpu_charge_mutex);
2400 drain_all_stock(root_memcg, true);
2401 mutex_unlock(&percpu_charge_mutex);
2405 * This function drains percpu counter value from DEAD cpu and
2406 * move it to local cpu. Note that this function can be preempted.
2408 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2410 int i;
2412 spin_lock(&memcg->pcp_counter_lock);
2413 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2414 long x = per_cpu(memcg->stat->count[i], cpu);
2416 per_cpu(memcg->stat->count[i], cpu) = 0;
2417 memcg->nocpu_base.count[i] += x;
2419 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2420 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2422 per_cpu(memcg->stat->events[i], cpu) = 0;
2423 memcg->nocpu_base.events[i] += x;
2425 spin_unlock(&memcg->pcp_counter_lock);
2428 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2429 unsigned long action,
2430 void *hcpu)
2432 int cpu = (unsigned long)hcpu;
2433 struct memcg_stock_pcp *stock;
2434 struct mem_cgroup *iter;
2436 if (action == CPU_ONLINE)
2437 return NOTIFY_OK;
2439 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2440 return NOTIFY_OK;
2442 for_each_mem_cgroup(iter)
2443 mem_cgroup_drain_pcp_counter(iter, cpu);
2445 stock = &per_cpu(memcg_stock, cpu);
2446 drain_stock(stock);
2447 return NOTIFY_OK;
2451 /* See __mem_cgroup_try_charge() for details */
2452 enum {
2453 CHARGE_OK, /* success */
2454 CHARGE_RETRY, /* need to retry but retry is not bad */
2455 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2456 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2459 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2460 unsigned int nr_pages, unsigned int min_pages,
2461 bool invoke_oom)
2463 unsigned long csize = nr_pages * PAGE_SIZE;
2464 struct mem_cgroup *mem_over_limit;
2465 struct res_counter *fail_res;
2466 unsigned long flags = 0;
2467 int ret;
2469 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2471 if (likely(!ret)) {
2472 if (!do_swap_account)
2473 return CHARGE_OK;
2474 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2475 if (likely(!ret))
2476 return CHARGE_OK;
2478 res_counter_uncharge(&memcg->res, csize);
2479 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2480 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2481 } else
2482 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2484 * Never reclaim on behalf of optional batching, retry with a
2485 * single page instead.
2487 if (nr_pages > min_pages)
2488 return CHARGE_RETRY;
2490 if (!(gfp_mask & __GFP_WAIT))
2491 return CHARGE_WOULDBLOCK;
2493 if (gfp_mask & __GFP_NORETRY)
2494 return CHARGE_NOMEM;
2496 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2497 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2498 return CHARGE_RETRY;
2500 * Even though the limit is exceeded at this point, reclaim
2501 * may have been able to free some pages. Retry the charge
2502 * before killing the task.
2504 * Only for regular pages, though: huge pages are rather
2505 * unlikely to succeed so close to the limit, and we fall back
2506 * to regular pages anyway in case of failure.
2508 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2509 return CHARGE_RETRY;
2512 * At task move, charge accounts can be doubly counted. So, it's
2513 * better to wait until the end of task_move if something is going on.
2515 if (mem_cgroup_wait_acct_move(mem_over_limit))
2516 return CHARGE_RETRY;
2518 if (invoke_oom)
2519 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2521 return CHARGE_NOMEM;
2525 * __mem_cgroup_try_charge() does
2526 * 1. detect memcg to be charged against from passed *mm and *ptr,
2527 * 2. update res_counter
2528 * 3. call memory reclaim if necessary.
2530 * In some special case, if the task is fatal, fatal_signal_pending() or
2531 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2532 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2533 * as possible without any hazards. 2: all pages should have a valid
2534 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2535 * pointer, that is treated as a charge to root_mem_cgroup.
2537 * So __mem_cgroup_try_charge() will return
2538 * 0 ... on success, filling *ptr with a valid memcg pointer.
2539 * -ENOMEM ... charge failure because of resource limits.
2540 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2542 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2543 * the oom-killer can be invoked.
2545 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2546 gfp_t gfp_mask,
2547 unsigned int nr_pages,
2548 struct mem_cgroup **ptr,
2549 bool oom)
2551 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2552 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2553 struct mem_cgroup *memcg = NULL;
2554 int ret;
2557 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2558 * in system level. So, allow to go ahead dying process in addition to
2559 * MEMDIE process.
2561 if (unlikely(test_thread_flag(TIF_MEMDIE)
2562 || fatal_signal_pending(current)))
2563 goto bypass;
2566 * We always charge the cgroup the mm_struct belongs to.
2567 * The mm_struct's mem_cgroup changes on task migration if the
2568 * thread group leader migrates. It's possible that mm is not
2569 * set, if so charge the root memcg (happens for pagecache usage).
2571 if (!*ptr && !mm)
2572 *ptr = root_mem_cgroup;
2573 again:
2574 if (*ptr) { /* css should be a valid one */
2575 memcg = *ptr;
2576 if (mem_cgroup_is_root(memcg))
2577 goto done;
2578 if (consume_stock(memcg, nr_pages))
2579 goto done;
2580 css_get(&memcg->css);
2581 } else {
2582 struct task_struct *p;
2584 rcu_read_lock();
2585 p = rcu_dereference(mm->owner);
2587 * Because we don't have task_lock(), "p" can exit.
2588 * In that case, "memcg" can point to root or p can be NULL with
2589 * race with swapoff. Then, we have small risk of mis-accouning.
2590 * But such kind of mis-account by race always happens because
2591 * we don't have cgroup_mutex(). It's overkill and we allo that
2592 * small race, here.
2593 * (*) swapoff at el will charge against mm-struct not against
2594 * task-struct. So, mm->owner can be NULL.
2596 memcg = mem_cgroup_from_task(p);
2597 if (!memcg)
2598 memcg = root_mem_cgroup;
2599 if (mem_cgroup_is_root(memcg)) {
2600 rcu_read_unlock();
2601 goto done;
2603 if (consume_stock(memcg, nr_pages)) {
2605 * It seems dagerous to access memcg without css_get().
2606 * But considering how consume_stok works, it's not
2607 * necessary. If consume_stock success, some charges
2608 * from this memcg are cached on this cpu. So, we
2609 * don't need to call css_get()/css_tryget() before
2610 * calling consume_stock().
2612 rcu_read_unlock();
2613 goto done;
2615 /* after here, we may be blocked. we need to get refcnt */
2616 if (!css_tryget(&memcg->css)) {
2617 rcu_read_unlock();
2618 goto again;
2620 rcu_read_unlock();
2623 do {
2624 bool invoke_oom = oom && !nr_oom_retries;
2626 /* If killed, bypass charge */
2627 if (fatal_signal_pending(current)) {
2628 css_put(&memcg->css);
2629 goto bypass;
2632 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2633 nr_pages, invoke_oom);
2634 switch (ret) {
2635 case CHARGE_OK:
2636 break;
2637 case CHARGE_RETRY: /* not in OOM situation but retry */
2638 batch = nr_pages;
2639 css_put(&memcg->css);
2640 memcg = NULL;
2641 goto again;
2642 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2643 css_put(&memcg->css);
2644 goto nomem;
2645 case CHARGE_NOMEM: /* OOM routine works */
2646 if (!oom || invoke_oom) {
2647 css_put(&memcg->css);
2648 goto nomem;
2650 nr_oom_retries--;
2651 break;
2653 } while (ret != CHARGE_OK);
2655 if (batch > nr_pages)
2656 refill_stock(memcg, batch - nr_pages);
2657 css_put(&memcg->css);
2658 done:
2659 *ptr = memcg;
2660 return 0;
2661 nomem:
2662 *ptr = NULL;
2663 return -ENOMEM;
2664 bypass:
2665 *ptr = root_mem_cgroup;
2666 return -EINTR;
2670 * Somemtimes we have to undo a charge we got by try_charge().
2671 * This function is for that and do uncharge, put css's refcnt.
2672 * gotten by try_charge().
2674 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2675 unsigned int nr_pages)
2677 if (!mem_cgroup_is_root(memcg)) {
2678 unsigned long bytes = nr_pages * PAGE_SIZE;
2680 res_counter_uncharge(&memcg->res, bytes);
2681 if (do_swap_account)
2682 res_counter_uncharge(&memcg->memsw, bytes);
2687 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2688 * This is useful when moving usage to parent cgroup.
2690 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2691 unsigned int nr_pages)
2693 unsigned long bytes = nr_pages * PAGE_SIZE;
2695 if (mem_cgroup_is_root(memcg))
2696 return;
2698 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2699 if (do_swap_account)
2700 res_counter_uncharge_until(&memcg->memsw,
2701 memcg->memsw.parent, bytes);
2705 * A helper function to get mem_cgroup from ID. must be called under
2706 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2707 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2708 * called against removed memcg.)
2710 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2712 struct cgroup_subsys_state *css;
2714 /* ID 0 is unused ID */
2715 if (!id)
2716 return NULL;
2717 css = css_lookup(&mem_cgroup_subsys, id);
2718 if (!css)
2719 return NULL;
2720 return mem_cgroup_from_css(css);
2723 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2725 struct mem_cgroup *memcg = NULL;
2726 struct page_cgroup *pc;
2727 unsigned short id;
2728 swp_entry_t ent;
2730 VM_BUG_ON(!PageLocked(page));
2732 pc = lookup_page_cgroup(page);
2733 lock_page_cgroup(pc);
2734 if (PageCgroupUsed(pc)) {
2735 memcg = pc->mem_cgroup;
2736 if (memcg && !css_tryget(&memcg->css))
2737 memcg = NULL;
2738 } else if (PageSwapCache(page)) {
2739 ent.val = page_private(page);
2740 id = lookup_swap_cgroup_id(ent);
2741 rcu_read_lock();
2742 memcg = mem_cgroup_lookup(id);
2743 if (memcg && !css_tryget(&memcg->css))
2744 memcg = NULL;
2745 rcu_read_unlock();
2747 unlock_page_cgroup(pc);
2748 return memcg;
2751 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2752 struct page *page,
2753 unsigned int nr_pages,
2754 enum charge_type ctype,
2755 bool lrucare)
2757 struct page_cgroup *pc = lookup_page_cgroup(page);
2758 struct zone *uninitialized_var(zone);
2759 struct lruvec *lruvec;
2760 bool was_on_lru = false;
2761 bool anon;
2763 lock_page_cgroup(pc);
2764 VM_BUG_ON(PageCgroupUsed(pc));
2766 * we don't need page_cgroup_lock about tail pages, becase they are not
2767 * accessed by any other context at this point.
2771 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2772 * may already be on some other mem_cgroup's LRU. Take care of it.
2774 if (lrucare) {
2775 zone = page_zone(page);
2776 spin_lock_irq(&zone->lru_lock);
2777 if (PageLRU(page)) {
2778 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2779 ClearPageLRU(page);
2780 del_page_from_lru_list(page, lruvec, page_lru(page));
2781 was_on_lru = true;
2785 pc->mem_cgroup = memcg;
2787 * We access a page_cgroup asynchronously without lock_page_cgroup().
2788 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2789 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2790 * before USED bit, we need memory barrier here.
2791 * See mem_cgroup_add_lru_list(), etc.
2793 smp_wmb();
2794 SetPageCgroupUsed(pc);
2796 if (lrucare) {
2797 if (was_on_lru) {
2798 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2799 VM_BUG_ON(PageLRU(page));
2800 SetPageLRU(page);
2801 add_page_to_lru_list(page, lruvec, page_lru(page));
2803 spin_unlock_irq(&zone->lru_lock);
2806 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2807 anon = true;
2808 else
2809 anon = false;
2811 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2812 unlock_page_cgroup(pc);
2815 * "charge_statistics" updated event counter.
2817 memcg_check_events(memcg, page);
2820 static DEFINE_MUTEX(set_limit_mutex);
2822 #ifdef CONFIG_MEMCG_KMEM
2823 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2825 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2826 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2830 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2831 * in the memcg_cache_params struct.
2833 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2835 struct kmem_cache *cachep;
2837 VM_BUG_ON(p->is_root_cache);
2838 cachep = p->root_cache;
2839 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2842 #ifdef CONFIG_SLABINFO
2843 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2844 struct cftype *cft, struct seq_file *m)
2846 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2847 struct memcg_cache_params *params;
2849 if (!memcg_can_account_kmem(memcg))
2850 return -EIO;
2852 print_slabinfo_header(m);
2854 mutex_lock(&memcg->slab_caches_mutex);
2855 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2856 cache_show(memcg_params_to_cache(params), m);
2857 mutex_unlock(&memcg->slab_caches_mutex);
2859 return 0;
2861 #endif
2863 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2865 struct res_counter *fail_res;
2866 struct mem_cgroup *_memcg;
2867 int ret = 0;
2868 bool may_oom;
2870 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2871 if (ret)
2872 return ret;
2875 * Conditions under which we can wait for the oom_killer. Those are
2876 * the same conditions tested by the core page allocator
2878 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2880 _memcg = memcg;
2881 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2882 &_memcg, may_oom);
2884 if (ret == -EINTR) {
2886 * __mem_cgroup_try_charge() chosed to bypass to root due to
2887 * OOM kill or fatal signal. Since our only options are to
2888 * either fail the allocation or charge it to this cgroup, do
2889 * it as a temporary condition. But we can't fail. From a
2890 * kmem/slab perspective, the cache has already been selected,
2891 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2892 * our minds.
2894 * This condition will only trigger if the task entered
2895 * memcg_charge_kmem in a sane state, but was OOM-killed during
2896 * __mem_cgroup_try_charge() above. Tasks that were already
2897 * dying when the allocation triggers should have been already
2898 * directed to the root cgroup in memcontrol.h
2900 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2901 if (do_swap_account)
2902 res_counter_charge_nofail(&memcg->memsw, size,
2903 &fail_res);
2904 ret = 0;
2905 } else if (ret)
2906 res_counter_uncharge(&memcg->kmem, size);
2908 return ret;
2911 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2913 res_counter_uncharge(&memcg->res, size);
2914 if (do_swap_account)
2915 res_counter_uncharge(&memcg->memsw, size);
2917 /* Not down to 0 */
2918 if (res_counter_uncharge(&memcg->kmem, size))
2919 return;
2922 * Releases a reference taken in kmem_cgroup_css_offline in case
2923 * this last uncharge is racing with the offlining code or it is
2924 * outliving the memcg existence.
2926 * The memory barrier imposed by test&clear is paired with the
2927 * explicit one in memcg_kmem_mark_dead().
2929 if (memcg_kmem_test_and_clear_dead(memcg))
2930 css_put(&memcg->css);
2933 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2935 if (!memcg)
2936 return;
2938 mutex_lock(&memcg->slab_caches_mutex);
2939 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2940 mutex_unlock(&memcg->slab_caches_mutex);
2944 * helper for acessing a memcg's index. It will be used as an index in the
2945 * child cache array in kmem_cache, and also to derive its name. This function
2946 * will return -1 when this is not a kmem-limited memcg.
2948 int memcg_cache_id(struct mem_cgroup *memcg)
2950 return memcg ? memcg->kmemcg_id : -1;
2954 * This ends up being protected by the set_limit mutex, during normal
2955 * operation, because that is its main call site.
2957 * But when we create a new cache, we can call this as well if its parent
2958 * is kmem-limited. That will have to hold set_limit_mutex as well.
2960 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2962 int num, ret;
2964 num = ida_simple_get(&kmem_limited_groups,
2965 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2966 if (num < 0)
2967 return num;
2969 * After this point, kmem_accounted (that we test atomically in
2970 * the beginning of this conditional), is no longer 0. This
2971 * guarantees only one process will set the following boolean
2972 * to true. We don't need test_and_set because we're protected
2973 * by the set_limit_mutex anyway.
2975 memcg_kmem_set_activated(memcg);
2977 ret = memcg_update_all_caches(num+1);
2978 if (ret) {
2979 ida_simple_remove(&kmem_limited_groups, num);
2980 memcg_kmem_clear_activated(memcg);
2981 return ret;
2984 memcg->kmemcg_id = num;
2985 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2986 mutex_init(&memcg->slab_caches_mutex);
2987 return 0;
2990 static size_t memcg_caches_array_size(int num_groups)
2992 ssize_t size;
2993 if (num_groups <= 0)
2994 return 0;
2996 size = 2 * num_groups;
2997 if (size < MEMCG_CACHES_MIN_SIZE)
2998 size = MEMCG_CACHES_MIN_SIZE;
2999 else if (size > MEMCG_CACHES_MAX_SIZE)
3000 size = MEMCG_CACHES_MAX_SIZE;
3002 return size;
3006 * We should update the current array size iff all caches updates succeed. This
3007 * can only be done from the slab side. The slab mutex needs to be held when
3008 * calling this.
3010 void memcg_update_array_size(int num)
3012 if (num > memcg_limited_groups_array_size)
3013 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3016 static void kmem_cache_destroy_work_func(struct work_struct *w);
3018 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3020 struct memcg_cache_params *cur_params = s->memcg_params;
3022 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3024 if (num_groups > memcg_limited_groups_array_size) {
3025 int i;
3026 ssize_t size = memcg_caches_array_size(num_groups);
3028 size *= sizeof(void *);
3029 size += offsetof(struct memcg_cache_params, memcg_caches);
3031 s->memcg_params = kzalloc(size, GFP_KERNEL);
3032 if (!s->memcg_params) {
3033 s->memcg_params = cur_params;
3034 return -ENOMEM;
3037 s->memcg_params->is_root_cache = true;
3040 * There is the chance it will be bigger than
3041 * memcg_limited_groups_array_size, if we failed an allocation
3042 * in a cache, in which case all caches updated before it, will
3043 * have a bigger array.
3045 * But if that is the case, the data after
3046 * memcg_limited_groups_array_size is certainly unused
3048 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3049 if (!cur_params->memcg_caches[i])
3050 continue;
3051 s->memcg_params->memcg_caches[i] =
3052 cur_params->memcg_caches[i];
3056 * Ideally, we would wait until all caches succeed, and only
3057 * then free the old one. But this is not worth the extra
3058 * pointer per-cache we'd have to have for this.
3060 * It is not a big deal if some caches are left with a size
3061 * bigger than the others. And all updates will reset this
3062 * anyway.
3064 kfree(cur_params);
3066 return 0;
3069 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3070 struct kmem_cache *root_cache)
3072 size_t size;
3074 if (!memcg_kmem_enabled())
3075 return 0;
3077 if (!memcg) {
3078 size = offsetof(struct memcg_cache_params, memcg_caches);
3079 size += memcg_limited_groups_array_size * sizeof(void *);
3080 } else
3081 size = sizeof(struct memcg_cache_params);
3083 s->memcg_params = kzalloc(size, GFP_KERNEL);
3084 if (!s->memcg_params)
3085 return -ENOMEM;
3087 if (memcg) {
3088 s->memcg_params->memcg = memcg;
3089 s->memcg_params->root_cache = root_cache;
3090 INIT_WORK(&s->memcg_params->destroy,
3091 kmem_cache_destroy_work_func);
3092 } else
3093 s->memcg_params->is_root_cache = true;
3095 return 0;
3098 void memcg_release_cache(struct kmem_cache *s)
3100 struct kmem_cache *root;
3101 struct mem_cgroup *memcg;
3102 int id;
3105 * This happens, for instance, when a root cache goes away before we
3106 * add any memcg.
3108 if (!s->memcg_params)
3109 return;
3111 if (s->memcg_params->is_root_cache)
3112 goto out;
3114 memcg = s->memcg_params->memcg;
3115 id = memcg_cache_id(memcg);
3117 root = s->memcg_params->root_cache;
3118 root->memcg_params->memcg_caches[id] = NULL;
3120 mutex_lock(&memcg->slab_caches_mutex);
3121 list_del(&s->memcg_params->list);
3122 mutex_unlock(&memcg->slab_caches_mutex);
3124 css_put(&memcg->css);
3125 out:
3126 kfree(s->memcg_params);
3130 * During the creation a new cache, we need to disable our accounting mechanism
3131 * altogether. This is true even if we are not creating, but rather just
3132 * enqueing new caches to be created.
3134 * This is because that process will trigger allocations; some visible, like
3135 * explicit kmallocs to auxiliary data structures, name strings and internal
3136 * cache structures; some well concealed, like INIT_WORK() that can allocate
3137 * objects during debug.
3139 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3140 * to it. This may not be a bounded recursion: since the first cache creation
3141 * failed to complete (waiting on the allocation), we'll just try to create the
3142 * cache again, failing at the same point.
3144 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3145 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3146 * inside the following two functions.
3148 static inline void memcg_stop_kmem_account(void)
3150 VM_BUG_ON(!current->mm);
3151 current->memcg_kmem_skip_account++;
3154 static inline void memcg_resume_kmem_account(void)
3156 VM_BUG_ON(!current->mm);
3157 current->memcg_kmem_skip_account--;
3160 static void kmem_cache_destroy_work_func(struct work_struct *w)
3162 struct kmem_cache *cachep;
3163 struct memcg_cache_params *p;
3165 p = container_of(w, struct memcg_cache_params, destroy);
3167 cachep = memcg_params_to_cache(p);
3170 * If we get down to 0 after shrink, we could delete right away.
3171 * However, memcg_release_pages() already puts us back in the workqueue
3172 * in that case. If we proceed deleting, we'll get a dangling
3173 * reference, and removing the object from the workqueue in that case
3174 * is unnecessary complication. We are not a fast path.
3176 * Note that this case is fundamentally different from racing with
3177 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3178 * kmem_cache_shrink, not only we would be reinserting a dead cache
3179 * into the queue, but doing so from inside the worker racing to
3180 * destroy it.
3182 * So if we aren't down to zero, we'll just schedule a worker and try
3183 * again
3185 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3186 kmem_cache_shrink(cachep);
3187 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3188 return;
3189 } else
3190 kmem_cache_destroy(cachep);
3193 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3195 if (!cachep->memcg_params->dead)
3196 return;
3199 * There are many ways in which we can get here.
3201 * We can get to a memory-pressure situation while the delayed work is
3202 * still pending to run. The vmscan shrinkers can then release all
3203 * cache memory and get us to destruction. If this is the case, we'll
3204 * be executed twice, which is a bug (the second time will execute over
3205 * bogus data). In this case, cancelling the work should be fine.
3207 * But we can also get here from the worker itself, if
3208 * kmem_cache_shrink is enough to shake all the remaining objects and
3209 * get the page count to 0. In this case, we'll deadlock if we try to
3210 * cancel the work (the worker runs with an internal lock held, which
3211 * is the same lock we would hold for cancel_work_sync().)
3213 * Since we can't possibly know who got us here, just refrain from
3214 * running if there is already work pending
3216 if (work_pending(&cachep->memcg_params->destroy))
3217 return;
3219 * We have to defer the actual destroying to a workqueue, because
3220 * we might currently be in a context that cannot sleep.
3222 schedule_work(&cachep->memcg_params->destroy);
3226 * This lock protects updaters, not readers. We want readers to be as fast as
3227 * they can, and they will either see NULL or a valid cache value. Our model
3228 * allow them to see NULL, in which case the root memcg will be selected.
3230 * We need this lock because multiple allocations to the same cache from a non
3231 * will span more than one worker. Only one of them can create the cache.
3233 static DEFINE_MUTEX(memcg_cache_mutex);
3236 * Called with memcg_cache_mutex held
3238 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3239 struct kmem_cache *s)
3241 struct kmem_cache *new;
3242 static char *tmp_name = NULL;
3244 lockdep_assert_held(&memcg_cache_mutex);
3247 * kmem_cache_create_memcg duplicates the given name and
3248 * cgroup_name for this name requires RCU context.
3249 * This static temporary buffer is used to prevent from
3250 * pointless shortliving allocation.
3252 if (!tmp_name) {
3253 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3254 if (!tmp_name)
3255 return NULL;
3258 rcu_read_lock();
3259 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3260 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3261 rcu_read_unlock();
3263 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3264 (s->flags & ~SLAB_PANIC), s->ctor, s);
3266 if (new)
3267 new->allocflags |= __GFP_KMEMCG;
3269 return new;
3272 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3273 struct kmem_cache *cachep)
3275 struct kmem_cache *new_cachep;
3276 int idx;
3278 BUG_ON(!memcg_can_account_kmem(memcg));
3280 idx = memcg_cache_id(memcg);
3282 mutex_lock(&memcg_cache_mutex);
3283 new_cachep = cachep->memcg_params->memcg_caches[idx];
3284 if (new_cachep) {
3285 css_put(&memcg->css);
3286 goto out;
3289 new_cachep = kmem_cache_dup(memcg, cachep);
3290 if (new_cachep == NULL) {
3291 new_cachep = cachep;
3292 css_put(&memcg->css);
3293 goto out;
3296 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3298 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3300 * the readers won't lock, make sure everybody sees the updated value,
3301 * so they won't put stuff in the queue again for no reason
3303 wmb();
3304 out:
3305 mutex_unlock(&memcg_cache_mutex);
3306 return new_cachep;
3309 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3311 struct kmem_cache *c;
3312 int i;
3314 if (!s->memcg_params)
3315 return;
3316 if (!s->memcg_params->is_root_cache)
3317 return;
3320 * If the cache is being destroyed, we trust that there is no one else
3321 * requesting objects from it. Even if there are, the sanity checks in
3322 * kmem_cache_destroy should caught this ill-case.
3324 * Still, we don't want anyone else freeing memcg_caches under our
3325 * noses, which can happen if a new memcg comes to life. As usual,
3326 * we'll take the set_limit_mutex to protect ourselves against this.
3328 mutex_lock(&set_limit_mutex);
3329 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3330 c = s->memcg_params->memcg_caches[i];
3331 if (!c)
3332 continue;
3335 * We will now manually delete the caches, so to avoid races
3336 * we need to cancel all pending destruction workers and
3337 * proceed with destruction ourselves.
3339 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3340 * and that could spawn the workers again: it is likely that
3341 * the cache still have active pages until this very moment.
3342 * This would lead us back to mem_cgroup_destroy_cache.
3344 * But that will not execute at all if the "dead" flag is not
3345 * set, so flip it down to guarantee we are in control.
3347 c->memcg_params->dead = false;
3348 cancel_work_sync(&c->memcg_params->destroy);
3349 kmem_cache_destroy(c);
3351 mutex_unlock(&set_limit_mutex);
3354 struct create_work {
3355 struct mem_cgroup *memcg;
3356 struct kmem_cache *cachep;
3357 struct work_struct work;
3360 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3362 struct kmem_cache *cachep;
3363 struct memcg_cache_params *params;
3365 if (!memcg_kmem_is_active(memcg))
3366 return;
3368 mutex_lock(&memcg->slab_caches_mutex);
3369 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3370 cachep = memcg_params_to_cache(params);
3371 cachep->memcg_params->dead = true;
3372 schedule_work(&cachep->memcg_params->destroy);
3374 mutex_unlock(&memcg->slab_caches_mutex);
3377 static void memcg_create_cache_work_func(struct work_struct *w)
3379 struct create_work *cw;
3381 cw = container_of(w, struct create_work, work);
3382 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3383 kfree(cw);
3387 * Enqueue the creation of a per-memcg kmem_cache.
3389 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3390 struct kmem_cache *cachep)
3392 struct create_work *cw;
3394 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3395 if (cw == NULL) {
3396 css_put(&memcg->css);
3397 return;
3400 cw->memcg = memcg;
3401 cw->cachep = cachep;
3403 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3404 schedule_work(&cw->work);
3407 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3408 struct kmem_cache *cachep)
3411 * We need to stop accounting when we kmalloc, because if the
3412 * corresponding kmalloc cache is not yet created, the first allocation
3413 * in __memcg_create_cache_enqueue will recurse.
3415 * However, it is better to enclose the whole function. Depending on
3416 * the debugging options enabled, INIT_WORK(), for instance, can
3417 * trigger an allocation. This too, will make us recurse. Because at
3418 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3419 * the safest choice is to do it like this, wrapping the whole function.
3421 memcg_stop_kmem_account();
3422 __memcg_create_cache_enqueue(memcg, cachep);
3423 memcg_resume_kmem_account();
3426 * Return the kmem_cache we're supposed to use for a slab allocation.
3427 * We try to use the current memcg's version of the cache.
3429 * If the cache does not exist yet, if we are the first user of it,
3430 * we either create it immediately, if possible, or create it asynchronously
3431 * in a workqueue.
3432 * In the latter case, we will let the current allocation go through with
3433 * the original cache.
3435 * Can't be called in interrupt context or from kernel threads.
3436 * This function needs to be called with rcu_read_lock() held.
3438 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3439 gfp_t gfp)
3441 struct mem_cgroup *memcg;
3442 int idx;
3444 VM_BUG_ON(!cachep->memcg_params);
3445 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3447 if (!current->mm || current->memcg_kmem_skip_account)
3448 return cachep;
3450 rcu_read_lock();
3451 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3453 if (!memcg_can_account_kmem(memcg))
3454 goto out;
3456 idx = memcg_cache_id(memcg);
3459 * barrier to mare sure we're always seeing the up to date value. The
3460 * code updating memcg_caches will issue a write barrier to match this.
3462 read_barrier_depends();
3463 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3464 cachep = cachep->memcg_params->memcg_caches[idx];
3465 goto out;
3468 /* The corresponding put will be done in the workqueue. */
3469 if (!css_tryget(&memcg->css))
3470 goto out;
3471 rcu_read_unlock();
3474 * If we are in a safe context (can wait, and not in interrupt
3475 * context), we could be be predictable and return right away.
3476 * This would guarantee that the allocation being performed
3477 * already belongs in the new cache.
3479 * However, there are some clashes that can arrive from locking.
3480 * For instance, because we acquire the slab_mutex while doing
3481 * kmem_cache_dup, this means no further allocation could happen
3482 * with the slab_mutex held.
3484 * Also, because cache creation issue get_online_cpus(), this
3485 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3486 * that ends up reversed during cpu hotplug. (cpuset allocates
3487 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3488 * better to defer everything.
3490 memcg_create_cache_enqueue(memcg, cachep);
3491 return cachep;
3492 out:
3493 rcu_read_unlock();
3494 return cachep;
3496 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3499 * We need to verify if the allocation against current->mm->owner's memcg is
3500 * possible for the given order. But the page is not allocated yet, so we'll
3501 * need a further commit step to do the final arrangements.
3503 * It is possible for the task to switch cgroups in this mean time, so at
3504 * commit time, we can't rely on task conversion any longer. We'll then use
3505 * the handle argument to return to the caller which cgroup we should commit
3506 * against. We could also return the memcg directly and avoid the pointer
3507 * passing, but a boolean return value gives better semantics considering
3508 * the compiled-out case as well.
3510 * Returning true means the allocation is possible.
3512 bool
3513 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3515 struct mem_cgroup *memcg;
3516 int ret;
3518 *_memcg = NULL;
3521 * Disabling accounting is only relevant for some specific memcg
3522 * internal allocations. Therefore we would initially not have such
3523 * check here, since direct calls to the page allocator that are marked
3524 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3525 * concerned with cache allocations, and by having this test at
3526 * memcg_kmem_get_cache, we are already able to relay the allocation to
3527 * the root cache and bypass the memcg cache altogether.
3529 * There is one exception, though: the SLUB allocator does not create
3530 * large order caches, but rather service large kmallocs directly from
3531 * the page allocator. Therefore, the following sequence when backed by
3532 * the SLUB allocator:
3534 * memcg_stop_kmem_account();
3535 * kmalloc(<large_number>)
3536 * memcg_resume_kmem_account();
3538 * would effectively ignore the fact that we should skip accounting,
3539 * since it will drive us directly to this function without passing
3540 * through the cache selector memcg_kmem_get_cache. Such large
3541 * allocations are extremely rare but can happen, for instance, for the
3542 * cache arrays. We bring this test here.
3544 if (!current->mm || current->memcg_kmem_skip_account)
3545 return true;
3547 memcg = try_get_mem_cgroup_from_mm(current->mm);
3550 * very rare case described in mem_cgroup_from_task. Unfortunately there
3551 * isn't much we can do without complicating this too much, and it would
3552 * be gfp-dependent anyway. Just let it go
3554 if (unlikely(!memcg))
3555 return true;
3557 if (!memcg_can_account_kmem(memcg)) {
3558 css_put(&memcg->css);
3559 return true;
3562 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3563 if (!ret)
3564 *_memcg = memcg;
3566 css_put(&memcg->css);
3567 return (ret == 0);
3570 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3571 int order)
3573 struct page_cgroup *pc;
3575 VM_BUG_ON(mem_cgroup_is_root(memcg));
3577 /* The page allocation failed. Revert */
3578 if (!page) {
3579 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3580 return;
3583 pc = lookup_page_cgroup(page);
3584 lock_page_cgroup(pc);
3585 pc->mem_cgroup = memcg;
3586 SetPageCgroupUsed(pc);
3587 unlock_page_cgroup(pc);
3590 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3592 struct mem_cgroup *memcg = NULL;
3593 struct page_cgroup *pc;
3596 pc = lookup_page_cgroup(page);
3598 * Fast unlocked return. Theoretically might have changed, have to
3599 * check again after locking.
3601 if (!PageCgroupUsed(pc))
3602 return;
3604 lock_page_cgroup(pc);
3605 if (PageCgroupUsed(pc)) {
3606 memcg = pc->mem_cgroup;
3607 ClearPageCgroupUsed(pc);
3609 unlock_page_cgroup(pc);
3612 * We trust that only if there is a memcg associated with the page, it
3613 * is a valid allocation
3615 if (!memcg)
3616 return;
3618 VM_BUG_ON(mem_cgroup_is_root(memcg));
3619 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3621 #else
3622 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3625 #endif /* CONFIG_MEMCG_KMEM */
3627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3629 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3631 * Because tail pages are not marked as "used", set it. We're under
3632 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3633 * charge/uncharge will be never happen and move_account() is done under
3634 * compound_lock(), so we don't have to take care of races.
3636 void mem_cgroup_split_huge_fixup(struct page *head)
3638 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3639 struct page_cgroup *pc;
3640 struct mem_cgroup *memcg;
3641 int i;
3643 if (mem_cgroup_disabled())
3644 return;
3646 memcg = head_pc->mem_cgroup;
3647 for (i = 1; i < HPAGE_PMD_NR; i++) {
3648 pc = head_pc + i;
3649 pc->mem_cgroup = memcg;
3650 smp_wmb();/* see __commit_charge() */
3651 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3653 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3654 HPAGE_PMD_NR);
3656 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3658 static inline
3659 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3660 struct mem_cgroup *to,
3661 unsigned int nr_pages,
3662 enum mem_cgroup_stat_index idx)
3664 /* Update stat data for mem_cgroup */
3665 preempt_disable();
3666 WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3667 __this_cpu_add(from->stat->count[idx], -nr_pages);
3668 __this_cpu_add(to->stat->count[idx], nr_pages);
3669 preempt_enable();
3673 * mem_cgroup_move_account - move account of the page
3674 * @page: the page
3675 * @nr_pages: number of regular pages (>1 for huge pages)
3676 * @pc: page_cgroup of the page.
3677 * @from: mem_cgroup which the page is moved from.
3678 * @to: mem_cgroup which the page is moved to. @from != @to.
3680 * The caller must confirm following.
3681 * - page is not on LRU (isolate_page() is useful.)
3682 * - compound_lock is held when nr_pages > 1
3684 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3685 * from old cgroup.
3687 static int mem_cgroup_move_account(struct page *page,
3688 unsigned int nr_pages,
3689 struct page_cgroup *pc,
3690 struct mem_cgroup *from,
3691 struct mem_cgroup *to)
3693 unsigned long flags;
3694 int ret;
3695 bool anon = PageAnon(page);
3697 VM_BUG_ON(from == to);
3698 VM_BUG_ON(PageLRU(page));
3700 * The page is isolated from LRU. So, collapse function
3701 * will not handle this page. But page splitting can happen.
3702 * Do this check under compound_page_lock(). The caller should
3703 * hold it.
3705 ret = -EBUSY;
3706 if (nr_pages > 1 && !PageTransHuge(page))
3707 goto out;
3709 lock_page_cgroup(pc);
3711 ret = -EINVAL;
3712 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3713 goto unlock;
3715 move_lock_mem_cgroup(from, &flags);
3717 if (!anon && page_mapped(page))
3718 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3719 MEM_CGROUP_STAT_FILE_MAPPED);
3721 if (PageWriteback(page))
3722 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3723 MEM_CGROUP_STAT_WRITEBACK);
3725 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3727 /* caller should have done css_get */
3728 pc->mem_cgroup = to;
3729 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3730 move_unlock_mem_cgroup(from, &flags);
3731 ret = 0;
3732 unlock:
3733 unlock_page_cgroup(pc);
3735 * check events
3737 memcg_check_events(to, page);
3738 memcg_check_events(from, page);
3739 out:
3740 return ret;
3744 * mem_cgroup_move_parent - moves page to the parent group
3745 * @page: the page to move
3746 * @pc: page_cgroup of the page
3747 * @child: page's cgroup
3749 * move charges to its parent or the root cgroup if the group has no
3750 * parent (aka use_hierarchy==0).
3751 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3752 * mem_cgroup_move_account fails) the failure is always temporary and
3753 * it signals a race with a page removal/uncharge or migration. In the
3754 * first case the page is on the way out and it will vanish from the LRU
3755 * on the next attempt and the call should be retried later.
3756 * Isolation from the LRU fails only if page has been isolated from
3757 * the LRU since we looked at it and that usually means either global
3758 * reclaim or migration going on. The page will either get back to the
3759 * LRU or vanish.
3760 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3761 * (!PageCgroupUsed) or moved to a different group. The page will
3762 * disappear in the next attempt.
3764 static int mem_cgroup_move_parent(struct page *page,
3765 struct page_cgroup *pc,
3766 struct mem_cgroup *child)
3768 struct mem_cgroup *parent;
3769 unsigned int nr_pages;
3770 unsigned long uninitialized_var(flags);
3771 int ret;
3773 VM_BUG_ON(mem_cgroup_is_root(child));
3775 ret = -EBUSY;
3776 if (!get_page_unless_zero(page))
3777 goto out;
3778 if (isolate_lru_page(page))
3779 goto put;
3781 nr_pages = hpage_nr_pages(page);
3783 parent = parent_mem_cgroup(child);
3785 * If no parent, move charges to root cgroup.
3787 if (!parent)
3788 parent = root_mem_cgroup;
3790 if (nr_pages > 1) {
3791 VM_BUG_ON(!PageTransHuge(page));
3792 flags = compound_lock_irqsave(page);
3795 ret = mem_cgroup_move_account(page, nr_pages,
3796 pc, child, parent);
3797 if (!ret)
3798 __mem_cgroup_cancel_local_charge(child, nr_pages);
3800 if (nr_pages > 1)
3801 compound_unlock_irqrestore(page, flags);
3802 putback_lru_page(page);
3803 put:
3804 put_page(page);
3805 out:
3806 return ret;
3810 * Charge the memory controller for page usage.
3811 * Return
3812 * 0 if the charge was successful
3813 * < 0 if the cgroup is over its limit
3815 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3816 gfp_t gfp_mask, enum charge_type ctype)
3818 struct mem_cgroup *memcg = NULL;
3819 unsigned int nr_pages = 1;
3820 bool oom = true;
3821 int ret;
3823 if (PageTransHuge(page)) {
3824 nr_pages <<= compound_order(page);
3825 VM_BUG_ON(!PageTransHuge(page));
3827 * Never OOM-kill a process for a huge page. The
3828 * fault handler will fall back to regular pages.
3830 oom = false;
3833 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3834 if (ret == -ENOMEM)
3835 return ret;
3836 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3837 return 0;
3840 int mem_cgroup_newpage_charge(struct page *page,
3841 struct mm_struct *mm, gfp_t gfp_mask)
3843 if (mem_cgroup_disabled())
3844 return 0;
3845 VM_BUG_ON(page_mapped(page));
3846 VM_BUG_ON(page->mapping && !PageAnon(page));
3847 VM_BUG_ON(!mm);
3848 return mem_cgroup_charge_common(page, mm, gfp_mask,
3849 MEM_CGROUP_CHARGE_TYPE_ANON);
3853 * While swap-in, try_charge -> commit or cancel, the page is locked.
3854 * And when try_charge() successfully returns, one refcnt to memcg without
3855 * struct page_cgroup is acquired. This refcnt will be consumed by
3856 * "commit()" or removed by "cancel()"
3858 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3859 struct page *page,
3860 gfp_t mask,
3861 struct mem_cgroup **memcgp)
3863 struct mem_cgroup *memcg;
3864 struct page_cgroup *pc;
3865 int ret;
3867 pc = lookup_page_cgroup(page);
3869 * Every swap fault against a single page tries to charge the
3870 * page, bail as early as possible. shmem_unuse() encounters
3871 * already charged pages, too. The USED bit is protected by
3872 * the page lock, which serializes swap cache removal, which
3873 * in turn serializes uncharging.
3875 if (PageCgroupUsed(pc))
3876 return 0;
3877 if (!do_swap_account)
3878 goto charge_cur_mm;
3879 memcg = try_get_mem_cgroup_from_page(page);
3880 if (!memcg)
3881 goto charge_cur_mm;
3882 *memcgp = memcg;
3883 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3884 css_put(&memcg->css);
3885 if (ret == -EINTR)
3886 ret = 0;
3887 return ret;
3888 charge_cur_mm:
3889 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3890 if (ret == -EINTR)
3891 ret = 0;
3892 return ret;
3895 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3896 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3898 *memcgp = NULL;
3899 if (mem_cgroup_disabled())
3900 return 0;
3902 * A racing thread's fault, or swapoff, may have already
3903 * updated the pte, and even removed page from swap cache: in
3904 * those cases unuse_pte()'s pte_same() test will fail; but
3905 * there's also a KSM case which does need to charge the page.
3907 if (!PageSwapCache(page)) {
3908 int ret;
3910 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3911 if (ret == -EINTR)
3912 ret = 0;
3913 return ret;
3915 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3918 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3920 if (mem_cgroup_disabled())
3921 return;
3922 if (!memcg)
3923 return;
3924 __mem_cgroup_cancel_charge(memcg, 1);
3927 static void
3928 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3929 enum charge_type ctype)
3931 if (mem_cgroup_disabled())
3932 return;
3933 if (!memcg)
3934 return;
3936 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3938 * Now swap is on-memory. This means this page may be
3939 * counted both as mem and swap....double count.
3940 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3941 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3942 * may call delete_from_swap_cache() before reach here.
3944 if (do_swap_account && PageSwapCache(page)) {
3945 swp_entry_t ent = {.val = page_private(page)};
3946 mem_cgroup_uncharge_swap(ent);
3950 void mem_cgroup_commit_charge_swapin(struct page *page,
3951 struct mem_cgroup *memcg)
3953 __mem_cgroup_commit_charge_swapin(page, memcg,
3954 MEM_CGROUP_CHARGE_TYPE_ANON);
3957 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3958 gfp_t gfp_mask)
3960 struct mem_cgroup *memcg = NULL;
3961 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3962 int ret;
3964 if (mem_cgroup_disabled())
3965 return 0;
3966 if (PageCompound(page))
3967 return 0;
3969 if (!PageSwapCache(page))
3970 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3971 else { /* page is swapcache/shmem */
3972 ret = __mem_cgroup_try_charge_swapin(mm, page,
3973 gfp_mask, &memcg);
3974 if (!ret)
3975 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3977 return ret;
3980 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3981 unsigned int nr_pages,
3982 const enum charge_type ctype)
3984 struct memcg_batch_info *batch = NULL;
3985 bool uncharge_memsw = true;
3987 /* If swapout, usage of swap doesn't decrease */
3988 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3989 uncharge_memsw = false;
3991 batch = &current->memcg_batch;
3993 * In usual, we do css_get() when we remember memcg pointer.
3994 * But in this case, we keep res->usage until end of a series of
3995 * uncharges. Then, it's ok to ignore memcg's refcnt.
3997 if (!batch->memcg)
3998 batch->memcg = memcg;
4000 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4001 * In those cases, all pages freed continuously can be expected to be in
4002 * the same cgroup and we have chance to coalesce uncharges.
4003 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4004 * because we want to do uncharge as soon as possible.
4007 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4008 goto direct_uncharge;
4010 if (nr_pages > 1)
4011 goto direct_uncharge;
4014 * In typical case, batch->memcg == mem. This means we can
4015 * merge a series of uncharges to an uncharge of res_counter.
4016 * If not, we uncharge res_counter ony by one.
4018 if (batch->memcg != memcg)
4019 goto direct_uncharge;
4020 /* remember freed charge and uncharge it later */
4021 batch->nr_pages++;
4022 if (uncharge_memsw)
4023 batch->memsw_nr_pages++;
4024 return;
4025 direct_uncharge:
4026 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4027 if (uncharge_memsw)
4028 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4029 if (unlikely(batch->memcg != memcg))
4030 memcg_oom_recover(memcg);
4034 * uncharge if !page_mapped(page)
4036 static struct mem_cgroup *
4037 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4038 bool end_migration)
4040 struct mem_cgroup *memcg = NULL;
4041 unsigned int nr_pages = 1;
4042 struct page_cgroup *pc;
4043 bool anon;
4045 if (mem_cgroup_disabled())
4046 return NULL;
4048 if (PageTransHuge(page)) {
4049 nr_pages <<= compound_order(page);
4050 VM_BUG_ON(!PageTransHuge(page));
4053 * Check if our page_cgroup is valid
4055 pc = lookup_page_cgroup(page);
4056 if (unlikely(!PageCgroupUsed(pc)))
4057 return NULL;
4059 lock_page_cgroup(pc);
4061 memcg = pc->mem_cgroup;
4063 if (!PageCgroupUsed(pc))
4064 goto unlock_out;
4066 anon = PageAnon(page);
4068 switch (ctype) {
4069 case MEM_CGROUP_CHARGE_TYPE_ANON:
4071 * Generally PageAnon tells if it's the anon statistics to be
4072 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4073 * used before page reached the stage of being marked PageAnon.
4075 anon = true;
4076 /* fallthrough */
4077 case MEM_CGROUP_CHARGE_TYPE_DROP:
4078 /* See mem_cgroup_prepare_migration() */
4079 if (page_mapped(page))
4080 goto unlock_out;
4082 * Pages under migration may not be uncharged. But
4083 * end_migration() /must/ be the one uncharging the
4084 * unused post-migration page and so it has to call
4085 * here with the migration bit still set. See the
4086 * res_counter handling below.
4088 if (!end_migration && PageCgroupMigration(pc))
4089 goto unlock_out;
4090 break;
4091 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4092 if (!PageAnon(page)) { /* Shared memory */
4093 if (page->mapping && !page_is_file_cache(page))
4094 goto unlock_out;
4095 } else if (page_mapped(page)) /* Anon */
4096 goto unlock_out;
4097 break;
4098 default:
4099 break;
4102 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4104 ClearPageCgroupUsed(pc);
4106 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4107 * freed from LRU. This is safe because uncharged page is expected not
4108 * to be reused (freed soon). Exception is SwapCache, it's handled by
4109 * special functions.
4112 unlock_page_cgroup(pc);
4114 * even after unlock, we have memcg->res.usage here and this memcg
4115 * will never be freed, so it's safe to call css_get().
4117 memcg_check_events(memcg, page);
4118 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4119 mem_cgroup_swap_statistics(memcg, true);
4120 css_get(&memcg->css);
4123 * Migration does not charge the res_counter for the
4124 * replacement page, so leave it alone when phasing out the
4125 * page that is unused after the migration.
4127 if (!end_migration && !mem_cgroup_is_root(memcg))
4128 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4130 return memcg;
4132 unlock_out:
4133 unlock_page_cgroup(pc);
4134 return NULL;
4137 void mem_cgroup_uncharge_page(struct page *page)
4139 /* early check. */
4140 if (page_mapped(page))
4141 return;
4142 VM_BUG_ON(page->mapping && !PageAnon(page));
4144 * If the page is in swap cache, uncharge should be deferred
4145 * to the swap path, which also properly accounts swap usage
4146 * and handles memcg lifetime.
4148 * Note that this check is not stable and reclaim may add the
4149 * page to swap cache at any time after this. However, if the
4150 * page is not in swap cache by the time page->mapcount hits
4151 * 0, there won't be any page table references to the swap
4152 * slot, and reclaim will free it and not actually write the
4153 * page to disk.
4155 if (PageSwapCache(page))
4156 return;
4157 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4160 void mem_cgroup_uncharge_cache_page(struct page *page)
4162 VM_BUG_ON(page_mapped(page));
4163 VM_BUG_ON(page->mapping);
4164 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4168 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4169 * In that cases, pages are freed continuously and we can expect pages
4170 * are in the same memcg. All these calls itself limits the number of
4171 * pages freed at once, then uncharge_start/end() is called properly.
4172 * This may be called prural(2) times in a context,
4175 void mem_cgroup_uncharge_start(void)
4177 current->memcg_batch.do_batch++;
4178 /* We can do nest. */
4179 if (current->memcg_batch.do_batch == 1) {
4180 current->memcg_batch.memcg = NULL;
4181 current->memcg_batch.nr_pages = 0;
4182 current->memcg_batch.memsw_nr_pages = 0;
4186 void mem_cgroup_uncharge_end(void)
4188 struct memcg_batch_info *batch = &current->memcg_batch;
4190 if (!batch->do_batch)
4191 return;
4193 batch->do_batch--;
4194 if (batch->do_batch) /* If stacked, do nothing. */
4195 return;
4197 if (!batch->memcg)
4198 return;
4200 * This "batch->memcg" is valid without any css_get/put etc...
4201 * bacause we hide charges behind us.
4203 if (batch->nr_pages)
4204 res_counter_uncharge(&batch->memcg->res,
4205 batch->nr_pages * PAGE_SIZE);
4206 if (batch->memsw_nr_pages)
4207 res_counter_uncharge(&batch->memcg->memsw,
4208 batch->memsw_nr_pages * PAGE_SIZE);
4209 memcg_oom_recover(batch->memcg);
4210 /* forget this pointer (for sanity check) */
4211 batch->memcg = NULL;
4214 #ifdef CONFIG_SWAP
4216 * called after __delete_from_swap_cache() and drop "page" account.
4217 * memcg information is recorded to swap_cgroup of "ent"
4219 void
4220 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4222 struct mem_cgroup *memcg;
4223 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4225 if (!swapout) /* this was a swap cache but the swap is unused ! */
4226 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4228 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4231 * record memcg information, if swapout && memcg != NULL,
4232 * css_get() was called in uncharge().
4234 if (do_swap_account && swapout && memcg)
4235 swap_cgroup_record(ent, css_id(&memcg->css));
4237 #endif
4239 #ifdef CONFIG_MEMCG_SWAP
4241 * called from swap_entry_free(). remove record in swap_cgroup and
4242 * uncharge "memsw" account.
4244 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4246 struct mem_cgroup *memcg;
4247 unsigned short id;
4249 if (!do_swap_account)
4250 return;
4252 id = swap_cgroup_record(ent, 0);
4253 rcu_read_lock();
4254 memcg = mem_cgroup_lookup(id);
4255 if (memcg) {
4257 * We uncharge this because swap is freed.
4258 * This memcg can be obsolete one. We avoid calling css_tryget
4260 if (!mem_cgroup_is_root(memcg))
4261 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4262 mem_cgroup_swap_statistics(memcg, false);
4263 css_put(&memcg->css);
4265 rcu_read_unlock();
4269 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4270 * @entry: swap entry to be moved
4271 * @from: mem_cgroup which the entry is moved from
4272 * @to: mem_cgroup which the entry is moved to
4274 * It succeeds only when the swap_cgroup's record for this entry is the same
4275 * as the mem_cgroup's id of @from.
4277 * Returns 0 on success, -EINVAL on failure.
4279 * The caller must have charged to @to, IOW, called res_counter_charge() about
4280 * both res and memsw, and called css_get().
4282 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4283 struct mem_cgroup *from, struct mem_cgroup *to)
4285 unsigned short old_id, new_id;
4287 old_id = css_id(&from->css);
4288 new_id = css_id(&to->css);
4290 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4291 mem_cgroup_swap_statistics(from, false);
4292 mem_cgroup_swap_statistics(to, true);
4294 * This function is only called from task migration context now.
4295 * It postpones res_counter and refcount handling till the end
4296 * of task migration(mem_cgroup_clear_mc()) for performance
4297 * improvement. But we cannot postpone css_get(to) because if
4298 * the process that has been moved to @to does swap-in, the
4299 * refcount of @to might be decreased to 0.
4301 * We are in attach() phase, so the cgroup is guaranteed to be
4302 * alive, so we can just call css_get().
4304 css_get(&to->css);
4305 return 0;
4307 return -EINVAL;
4309 #else
4310 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4311 struct mem_cgroup *from, struct mem_cgroup *to)
4313 return -EINVAL;
4315 #endif
4318 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4319 * page belongs to.
4321 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4322 struct mem_cgroup **memcgp)
4324 struct mem_cgroup *memcg = NULL;
4325 unsigned int nr_pages = 1;
4326 struct page_cgroup *pc;
4327 enum charge_type ctype;
4329 *memcgp = NULL;
4331 if (mem_cgroup_disabled())
4332 return;
4334 if (PageTransHuge(page))
4335 nr_pages <<= compound_order(page);
4337 pc = lookup_page_cgroup(page);
4338 lock_page_cgroup(pc);
4339 if (PageCgroupUsed(pc)) {
4340 memcg = pc->mem_cgroup;
4341 css_get(&memcg->css);
4343 * At migrating an anonymous page, its mapcount goes down
4344 * to 0 and uncharge() will be called. But, even if it's fully
4345 * unmapped, migration may fail and this page has to be
4346 * charged again. We set MIGRATION flag here and delay uncharge
4347 * until end_migration() is called
4349 * Corner Case Thinking
4350 * A)
4351 * When the old page was mapped as Anon and it's unmap-and-freed
4352 * while migration was ongoing.
4353 * If unmap finds the old page, uncharge() of it will be delayed
4354 * until end_migration(). If unmap finds a new page, it's
4355 * uncharged when it make mapcount to be 1->0. If unmap code
4356 * finds swap_migration_entry, the new page will not be mapped
4357 * and end_migration() will find it(mapcount==0).
4359 * B)
4360 * When the old page was mapped but migraion fails, the kernel
4361 * remaps it. A charge for it is kept by MIGRATION flag even
4362 * if mapcount goes down to 0. We can do remap successfully
4363 * without charging it again.
4365 * C)
4366 * The "old" page is under lock_page() until the end of
4367 * migration, so, the old page itself will not be swapped-out.
4368 * If the new page is swapped out before end_migraton, our
4369 * hook to usual swap-out path will catch the event.
4371 if (PageAnon(page))
4372 SetPageCgroupMigration(pc);
4374 unlock_page_cgroup(pc);
4376 * If the page is not charged at this point,
4377 * we return here.
4379 if (!memcg)
4380 return;
4382 *memcgp = memcg;
4384 * We charge new page before it's used/mapped. So, even if unlock_page()
4385 * is called before end_migration, we can catch all events on this new
4386 * page. In the case new page is migrated but not remapped, new page's
4387 * mapcount will be finally 0 and we call uncharge in end_migration().
4389 if (PageAnon(page))
4390 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4391 else
4392 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4394 * The page is committed to the memcg, but it's not actually
4395 * charged to the res_counter since we plan on replacing the
4396 * old one and only one page is going to be left afterwards.
4398 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4401 /* remove redundant charge if migration failed*/
4402 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4403 struct page *oldpage, struct page *newpage, bool migration_ok)
4405 struct page *used, *unused;
4406 struct page_cgroup *pc;
4407 bool anon;
4409 if (!memcg)
4410 return;
4412 if (!migration_ok) {
4413 used = oldpage;
4414 unused = newpage;
4415 } else {
4416 used = newpage;
4417 unused = oldpage;
4419 anon = PageAnon(used);
4420 __mem_cgroup_uncharge_common(unused,
4421 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4422 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4423 true);
4424 css_put(&memcg->css);
4426 * We disallowed uncharge of pages under migration because mapcount
4427 * of the page goes down to zero, temporarly.
4428 * Clear the flag and check the page should be charged.
4430 pc = lookup_page_cgroup(oldpage);
4431 lock_page_cgroup(pc);
4432 ClearPageCgroupMigration(pc);
4433 unlock_page_cgroup(pc);
4436 * If a page is a file cache, radix-tree replacement is very atomic
4437 * and we can skip this check. When it was an Anon page, its mapcount
4438 * goes down to 0. But because we added MIGRATION flage, it's not
4439 * uncharged yet. There are several case but page->mapcount check
4440 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4441 * check. (see prepare_charge() also)
4443 if (anon)
4444 mem_cgroup_uncharge_page(used);
4448 * At replace page cache, newpage is not under any memcg but it's on
4449 * LRU. So, this function doesn't touch res_counter but handles LRU
4450 * in correct way. Both pages are locked so we cannot race with uncharge.
4452 void mem_cgroup_replace_page_cache(struct page *oldpage,
4453 struct page *newpage)
4455 struct mem_cgroup *memcg = NULL;
4456 struct page_cgroup *pc;
4457 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4459 if (mem_cgroup_disabled())
4460 return;
4462 pc = lookup_page_cgroup(oldpage);
4463 /* fix accounting on old pages */
4464 lock_page_cgroup(pc);
4465 if (PageCgroupUsed(pc)) {
4466 memcg = pc->mem_cgroup;
4467 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4468 ClearPageCgroupUsed(pc);
4470 unlock_page_cgroup(pc);
4473 * When called from shmem_replace_page(), in some cases the
4474 * oldpage has already been charged, and in some cases not.
4476 if (!memcg)
4477 return;
4479 * Even if newpage->mapping was NULL before starting replacement,
4480 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4481 * LRU while we overwrite pc->mem_cgroup.
4483 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4486 #ifdef CONFIG_DEBUG_VM
4487 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4489 struct page_cgroup *pc;
4491 pc = lookup_page_cgroup(page);
4493 * Can be NULL while feeding pages into the page allocator for
4494 * the first time, i.e. during boot or memory hotplug;
4495 * or when mem_cgroup_disabled().
4497 if (likely(pc) && PageCgroupUsed(pc))
4498 return pc;
4499 return NULL;
4502 bool mem_cgroup_bad_page_check(struct page *page)
4504 if (mem_cgroup_disabled())
4505 return false;
4507 return lookup_page_cgroup_used(page) != NULL;
4510 void mem_cgroup_print_bad_page(struct page *page)
4512 struct page_cgroup *pc;
4514 pc = lookup_page_cgroup_used(page);
4515 if (pc) {
4516 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4517 pc, pc->flags, pc->mem_cgroup);
4520 #endif
4522 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4523 unsigned long long val)
4525 int retry_count;
4526 u64 memswlimit, memlimit;
4527 int ret = 0;
4528 int children = mem_cgroup_count_children(memcg);
4529 u64 curusage, oldusage;
4530 int enlarge;
4533 * For keeping hierarchical_reclaim simple, how long we should retry
4534 * is depends on callers. We set our retry-count to be function
4535 * of # of children which we should visit in this loop.
4537 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4539 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4541 enlarge = 0;
4542 while (retry_count) {
4543 if (signal_pending(current)) {
4544 ret = -EINTR;
4545 break;
4548 * Rather than hide all in some function, I do this in
4549 * open coded manner. You see what this really does.
4550 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4552 mutex_lock(&set_limit_mutex);
4553 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4554 if (memswlimit < val) {
4555 ret = -EINVAL;
4556 mutex_unlock(&set_limit_mutex);
4557 break;
4560 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4561 if (memlimit < val)
4562 enlarge = 1;
4564 ret = res_counter_set_limit(&memcg->res, val);
4565 if (!ret) {
4566 if (memswlimit == val)
4567 memcg->memsw_is_minimum = true;
4568 else
4569 memcg->memsw_is_minimum = false;
4571 mutex_unlock(&set_limit_mutex);
4573 if (!ret)
4574 break;
4576 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4577 MEM_CGROUP_RECLAIM_SHRINK);
4578 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4579 /* Usage is reduced ? */
4580 if (curusage >= oldusage)
4581 retry_count--;
4582 else
4583 oldusage = curusage;
4585 if (!ret && enlarge)
4586 memcg_oom_recover(memcg);
4588 return ret;
4591 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4592 unsigned long long val)
4594 int retry_count;
4595 u64 memlimit, memswlimit, oldusage, curusage;
4596 int children = mem_cgroup_count_children(memcg);
4597 int ret = -EBUSY;
4598 int enlarge = 0;
4600 /* see mem_cgroup_resize_res_limit */
4601 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4602 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4603 while (retry_count) {
4604 if (signal_pending(current)) {
4605 ret = -EINTR;
4606 break;
4609 * Rather than hide all in some function, I do this in
4610 * open coded manner. You see what this really does.
4611 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4613 mutex_lock(&set_limit_mutex);
4614 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4615 if (memlimit > val) {
4616 ret = -EINVAL;
4617 mutex_unlock(&set_limit_mutex);
4618 break;
4620 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4621 if (memswlimit < val)
4622 enlarge = 1;
4623 ret = res_counter_set_limit(&memcg->memsw, val);
4624 if (!ret) {
4625 if (memlimit == val)
4626 memcg->memsw_is_minimum = true;
4627 else
4628 memcg->memsw_is_minimum = false;
4630 mutex_unlock(&set_limit_mutex);
4632 if (!ret)
4633 break;
4635 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4636 MEM_CGROUP_RECLAIM_NOSWAP |
4637 MEM_CGROUP_RECLAIM_SHRINK);
4638 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4639 /* Usage is reduced ? */
4640 if (curusage >= oldusage)
4641 retry_count--;
4642 else
4643 oldusage = curusage;
4645 if (!ret && enlarge)
4646 memcg_oom_recover(memcg);
4647 return ret;
4651 * mem_cgroup_force_empty_list - clears LRU of a group
4652 * @memcg: group to clear
4653 * @node: NUMA node
4654 * @zid: zone id
4655 * @lru: lru to to clear
4657 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4658 * reclaim the pages page themselves - pages are moved to the parent (or root)
4659 * group.
4661 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4662 int node, int zid, enum lru_list lru)
4664 struct lruvec *lruvec;
4665 unsigned long flags;
4666 struct list_head *list;
4667 struct page *busy;
4668 struct zone *zone;
4670 zone = &NODE_DATA(node)->node_zones[zid];
4671 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4672 list = &lruvec->lists[lru];
4674 busy = NULL;
4675 do {
4676 struct page_cgroup *pc;
4677 struct page *page;
4679 spin_lock_irqsave(&zone->lru_lock, flags);
4680 if (list_empty(list)) {
4681 spin_unlock_irqrestore(&zone->lru_lock, flags);
4682 break;
4684 page = list_entry(list->prev, struct page, lru);
4685 if (busy == page) {
4686 list_move(&page->lru, list);
4687 busy = NULL;
4688 spin_unlock_irqrestore(&zone->lru_lock, flags);
4689 continue;
4691 spin_unlock_irqrestore(&zone->lru_lock, flags);
4693 pc = lookup_page_cgroup(page);
4695 if (mem_cgroup_move_parent(page, pc, memcg)) {
4696 /* found lock contention or "pc" is obsolete. */
4697 busy = page;
4698 cond_resched();
4699 } else
4700 busy = NULL;
4701 } while (!list_empty(list));
4705 * make mem_cgroup's charge to be 0 if there is no task by moving
4706 * all the charges and pages to the parent.
4707 * This enables deleting this mem_cgroup.
4709 * Caller is responsible for holding css reference on the memcg.
4711 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4713 int node, zid;
4714 u64 usage;
4716 do {
4717 /* This is for making all *used* pages to be on LRU. */
4718 lru_add_drain_all();
4719 drain_all_stock_sync(memcg);
4720 mem_cgroup_start_move(memcg);
4721 for_each_node_state(node, N_MEMORY) {
4722 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4723 enum lru_list lru;
4724 for_each_lru(lru) {
4725 mem_cgroup_force_empty_list(memcg,
4726 node, zid, lru);
4730 mem_cgroup_end_move(memcg);
4731 memcg_oom_recover(memcg);
4732 cond_resched();
4735 * Kernel memory may not necessarily be trackable to a specific
4736 * process. So they are not migrated, and therefore we can't
4737 * expect their value to drop to 0 here.
4738 * Having res filled up with kmem only is enough.
4740 * This is a safety check because mem_cgroup_force_empty_list
4741 * could have raced with mem_cgroup_replace_page_cache callers
4742 * so the lru seemed empty but the page could have been added
4743 * right after the check. RES_USAGE should be safe as we always
4744 * charge before adding to the LRU.
4746 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4747 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4748 } while (usage > 0);
4752 * This mainly exists for tests during the setting of set of use_hierarchy.
4753 * Since this is the very setting we are changing, the current hierarchy value
4754 * is meaningless
4756 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4758 struct cgroup_subsys_state *pos;
4760 /* bounce at first found */
4761 css_for_each_child(pos, &memcg->css)
4762 return true;
4763 return false;
4767 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4768 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4769 * from mem_cgroup_count_children(), in the sense that we don't really care how
4770 * many children we have; we only need to know if we have any. It also counts
4771 * any memcg without hierarchy as infertile.
4773 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4775 return memcg->use_hierarchy && __memcg_has_children(memcg);
4779 * Reclaims as many pages from the given memcg as possible and moves
4780 * the rest to the parent.
4782 * Caller is responsible for holding css reference for memcg.
4784 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4786 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4787 struct cgroup *cgrp = memcg->css.cgroup;
4789 /* returns EBUSY if there is a task or if we come here twice. */
4790 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4791 return -EBUSY;
4793 /* we call try-to-free pages for make this cgroup empty */
4794 lru_add_drain_all();
4795 /* try to free all pages in this cgroup */
4796 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4797 int progress;
4799 if (signal_pending(current))
4800 return -EINTR;
4802 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4803 false);
4804 if (!progress) {
4805 nr_retries--;
4806 /* maybe some writeback is necessary */
4807 congestion_wait(BLK_RW_ASYNC, HZ/10);
4811 lru_add_drain();
4812 mem_cgroup_reparent_charges(memcg);
4814 return 0;
4817 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4818 unsigned int event)
4820 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4822 if (mem_cgroup_is_root(memcg))
4823 return -EINVAL;
4824 return mem_cgroup_force_empty(memcg);
4827 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4828 struct cftype *cft)
4830 return mem_cgroup_from_css(css)->use_hierarchy;
4833 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4834 struct cftype *cft, u64 val)
4836 int retval = 0;
4837 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4838 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4840 mutex_lock(&memcg_create_mutex);
4842 if (memcg->use_hierarchy == val)
4843 goto out;
4846 * If parent's use_hierarchy is set, we can't make any modifications
4847 * in the child subtrees. If it is unset, then the change can
4848 * occur, provided the current cgroup has no children.
4850 * For the root cgroup, parent_mem is NULL, we allow value to be
4851 * set if there are no children.
4853 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4854 (val == 1 || val == 0)) {
4855 if (!__memcg_has_children(memcg))
4856 memcg->use_hierarchy = val;
4857 else
4858 retval = -EBUSY;
4859 } else
4860 retval = -EINVAL;
4862 out:
4863 mutex_unlock(&memcg_create_mutex);
4865 return retval;
4869 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4870 enum mem_cgroup_stat_index idx)
4872 struct mem_cgroup *iter;
4873 long val = 0;
4875 /* Per-cpu values can be negative, use a signed accumulator */
4876 for_each_mem_cgroup_tree(iter, memcg)
4877 val += mem_cgroup_read_stat(iter, idx);
4879 if (val < 0) /* race ? */
4880 val = 0;
4881 return val;
4884 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4886 u64 val;
4888 if (!mem_cgroup_is_root(memcg)) {
4889 if (!swap)
4890 return res_counter_read_u64(&memcg->res, RES_USAGE);
4891 else
4892 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4896 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4897 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4899 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4900 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4902 if (swap)
4903 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4905 return val << PAGE_SHIFT;
4908 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
4909 struct cftype *cft, struct file *file,
4910 char __user *buf, size_t nbytes, loff_t *ppos)
4912 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4913 char str[64];
4914 u64 val;
4915 int name, len;
4916 enum res_type type;
4918 type = MEMFILE_TYPE(cft->private);
4919 name = MEMFILE_ATTR(cft->private);
4921 switch (type) {
4922 case _MEM:
4923 if (name == RES_USAGE)
4924 val = mem_cgroup_usage(memcg, false);
4925 else
4926 val = res_counter_read_u64(&memcg->res, name);
4927 break;
4928 case _MEMSWAP:
4929 if (name == RES_USAGE)
4930 val = mem_cgroup_usage(memcg, true);
4931 else
4932 val = res_counter_read_u64(&memcg->memsw, name);
4933 break;
4934 case _KMEM:
4935 val = res_counter_read_u64(&memcg->kmem, name);
4936 break;
4937 default:
4938 BUG();
4941 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4942 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
4945 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4947 int ret = -EINVAL;
4948 #ifdef CONFIG_MEMCG_KMEM
4949 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4951 * For simplicity, we won't allow this to be disabled. It also can't
4952 * be changed if the cgroup has children already, or if tasks had
4953 * already joined.
4955 * If tasks join before we set the limit, a person looking at
4956 * kmem.usage_in_bytes will have no way to determine when it took
4957 * place, which makes the value quite meaningless.
4959 * After it first became limited, changes in the value of the limit are
4960 * of course permitted.
4962 mutex_lock(&memcg_create_mutex);
4963 mutex_lock(&set_limit_mutex);
4964 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
4965 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4966 ret = -EBUSY;
4967 goto out;
4969 ret = res_counter_set_limit(&memcg->kmem, val);
4970 VM_BUG_ON(ret);
4972 ret = memcg_update_cache_sizes(memcg);
4973 if (ret) {
4974 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
4975 goto out;
4977 static_key_slow_inc(&memcg_kmem_enabled_key);
4979 * setting the active bit after the inc will guarantee no one
4980 * starts accounting before all call sites are patched
4982 memcg_kmem_set_active(memcg);
4983 } else
4984 ret = res_counter_set_limit(&memcg->kmem, val);
4985 out:
4986 mutex_unlock(&set_limit_mutex);
4987 mutex_unlock(&memcg_create_mutex);
4988 #endif
4989 return ret;
4992 #ifdef CONFIG_MEMCG_KMEM
4993 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4995 int ret = 0;
4996 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4997 if (!parent)
4998 goto out;
5000 memcg->kmem_account_flags = parent->kmem_account_flags;
5002 * When that happen, we need to disable the static branch only on those
5003 * memcgs that enabled it. To achieve this, we would be forced to
5004 * complicate the code by keeping track of which memcgs were the ones
5005 * that actually enabled limits, and which ones got it from its
5006 * parents.
5008 * It is a lot simpler just to do static_key_slow_inc() on every child
5009 * that is accounted.
5011 if (!memcg_kmem_is_active(memcg))
5012 goto out;
5015 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5016 * memcg is active already. If the later initialization fails then the
5017 * cgroup core triggers the cleanup so we do not have to do it here.
5019 static_key_slow_inc(&memcg_kmem_enabled_key);
5021 mutex_lock(&set_limit_mutex);
5022 memcg_stop_kmem_account();
5023 ret = memcg_update_cache_sizes(memcg);
5024 memcg_resume_kmem_account();
5025 mutex_unlock(&set_limit_mutex);
5026 out:
5027 return ret;
5029 #endif /* CONFIG_MEMCG_KMEM */
5032 * The user of this function is...
5033 * RES_LIMIT.
5035 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5036 const char *buffer)
5038 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5039 enum res_type type;
5040 int name;
5041 unsigned long long val;
5042 int ret;
5044 type = MEMFILE_TYPE(cft->private);
5045 name = MEMFILE_ATTR(cft->private);
5047 switch (name) {
5048 case RES_LIMIT:
5049 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5050 ret = -EINVAL;
5051 break;
5053 /* This function does all necessary parse...reuse it */
5054 ret = res_counter_memparse_write_strategy(buffer, &val);
5055 if (ret)
5056 break;
5057 if (type == _MEM)
5058 ret = mem_cgroup_resize_limit(memcg, val);
5059 else if (type == _MEMSWAP)
5060 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5061 else if (type == _KMEM)
5062 ret = memcg_update_kmem_limit(css, val);
5063 else
5064 return -EINVAL;
5065 break;
5066 case RES_SOFT_LIMIT:
5067 ret = res_counter_memparse_write_strategy(buffer, &val);
5068 if (ret)
5069 break;
5071 * For memsw, soft limits are hard to implement in terms
5072 * of semantics, for now, we support soft limits for
5073 * control without swap
5075 if (type == _MEM)
5076 ret = res_counter_set_soft_limit(&memcg->res, val);
5077 else
5078 ret = -EINVAL;
5079 break;
5080 default:
5081 ret = -EINVAL; /* should be BUG() ? */
5082 break;
5084 return ret;
5087 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5088 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5090 unsigned long long min_limit, min_memsw_limit, tmp;
5092 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5093 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5094 if (!memcg->use_hierarchy)
5095 goto out;
5097 while (css_parent(&memcg->css)) {
5098 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5099 if (!memcg->use_hierarchy)
5100 break;
5101 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5102 min_limit = min(min_limit, tmp);
5103 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5104 min_memsw_limit = min(min_memsw_limit, tmp);
5106 out:
5107 *mem_limit = min_limit;
5108 *memsw_limit = min_memsw_limit;
5111 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5114 int name;
5115 enum res_type type;
5117 type = MEMFILE_TYPE(event);
5118 name = MEMFILE_ATTR(event);
5120 switch (name) {
5121 case RES_MAX_USAGE:
5122 if (type == _MEM)
5123 res_counter_reset_max(&memcg->res);
5124 else if (type == _MEMSWAP)
5125 res_counter_reset_max(&memcg->memsw);
5126 else if (type == _KMEM)
5127 res_counter_reset_max(&memcg->kmem);
5128 else
5129 return -EINVAL;
5130 break;
5131 case RES_FAILCNT:
5132 if (type == _MEM)
5133 res_counter_reset_failcnt(&memcg->res);
5134 else if (type == _MEMSWAP)
5135 res_counter_reset_failcnt(&memcg->memsw);
5136 else if (type == _KMEM)
5137 res_counter_reset_failcnt(&memcg->kmem);
5138 else
5139 return -EINVAL;
5140 break;
5143 return 0;
5146 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5147 struct cftype *cft)
5149 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5152 #ifdef CONFIG_MMU
5153 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5154 struct cftype *cft, u64 val)
5156 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5158 if (val >= (1 << NR_MOVE_TYPE))
5159 return -EINVAL;
5162 * No kind of locking is needed in here, because ->can_attach() will
5163 * check this value once in the beginning of the process, and then carry
5164 * on with stale data. This means that changes to this value will only
5165 * affect task migrations starting after the change.
5167 memcg->move_charge_at_immigrate = val;
5168 return 0;
5170 #else
5171 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5172 struct cftype *cft, u64 val)
5174 return -ENOSYS;
5176 #endif
5178 #ifdef CONFIG_NUMA
5179 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5180 struct cftype *cft, struct seq_file *m)
5182 int nid;
5183 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5184 unsigned long node_nr;
5185 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5187 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5188 seq_printf(m, "total=%lu", total_nr);
5189 for_each_node_state(nid, N_MEMORY) {
5190 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5191 seq_printf(m, " N%d=%lu", nid, node_nr);
5193 seq_putc(m, '\n');
5195 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5196 seq_printf(m, "file=%lu", file_nr);
5197 for_each_node_state(nid, N_MEMORY) {
5198 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5199 LRU_ALL_FILE);
5200 seq_printf(m, " N%d=%lu", nid, node_nr);
5202 seq_putc(m, '\n');
5204 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5205 seq_printf(m, "anon=%lu", anon_nr);
5206 for_each_node_state(nid, N_MEMORY) {
5207 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5208 LRU_ALL_ANON);
5209 seq_printf(m, " N%d=%lu", nid, node_nr);
5211 seq_putc(m, '\n');
5213 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5214 seq_printf(m, "unevictable=%lu", unevictable_nr);
5215 for_each_node_state(nid, N_MEMORY) {
5216 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5217 BIT(LRU_UNEVICTABLE));
5218 seq_printf(m, " N%d=%lu", nid, node_nr);
5220 seq_putc(m, '\n');
5221 return 0;
5223 #endif /* CONFIG_NUMA */
5225 static inline void mem_cgroup_lru_names_not_uptodate(void)
5227 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5230 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5231 struct seq_file *m)
5233 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5234 struct mem_cgroup *mi;
5235 unsigned int i;
5237 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5238 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5239 continue;
5240 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5241 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5244 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5245 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5246 mem_cgroup_read_events(memcg, i));
5248 for (i = 0; i < NR_LRU_LISTS; i++)
5249 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5250 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5252 /* Hierarchical information */
5254 unsigned long long limit, memsw_limit;
5255 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5256 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5257 if (do_swap_account)
5258 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5259 memsw_limit);
5262 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5263 long long val = 0;
5265 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5266 continue;
5267 for_each_mem_cgroup_tree(mi, memcg)
5268 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5269 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5272 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5273 unsigned long long val = 0;
5275 for_each_mem_cgroup_tree(mi, memcg)
5276 val += mem_cgroup_read_events(mi, i);
5277 seq_printf(m, "total_%s %llu\n",
5278 mem_cgroup_events_names[i], val);
5281 for (i = 0; i < NR_LRU_LISTS; i++) {
5282 unsigned long long val = 0;
5284 for_each_mem_cgroup_tree(mi, memcg)
5285 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5286 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5289 #ifdef CONFIG_DEBUG_VM
5291 int nid, zid;
5292 struct mem_cgroup_per_zone *mz;
5293 struct zone_reclaim_stat *rstat;
5294 unsigned long recent_rotated[2] = {0, 0};
5295 unsigned long recent_scanned[2] = {0, 0};
5297 for_each_online_node(nid)
5298 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5299 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5300 rstat = &mz->lruvec.reclaim_stat;
5302 recent_rotated[0] += rstat->recent_rotated[0];
5303 recent_rotated[1] += rstat->recent_rotated[1];
5304 recent_scanned[0] += rstat->recent_scanned[0];
5305 recent_scanned[1] += rstat->recent_scanned[1];
5307 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5308 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5309 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5310 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5312 #endif
5314 return 0;
5317 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5318 struct cftype *cft)
5320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5322 return mem_cgroup_swappiness(memcg);
5325 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5326 struct cftype *cft, u64 val)
5328 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5329 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5331 if (val > 100 || !parent)
5332 return -EINVAL;
5334 mutex_lock(&memcg_create_mutex);
5336 /* If under hierarchy, only empty-root can set this value */
5337 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5338 mutex_unlock(&memcg_create_mutex);
5339 return -EINVAL;
5342 memcg->swappiness = val;
5344 mutex_unlock(&memcg_create_mutex);
5346 return 0;
5349 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5351 struct mem_cgroup_threshold_ary *t;
5352 u64 usage;
5353 int i;
5355 rcu_read_lock();
5356 if (!swap)
5357 t = rcu_dereference(memcg->thresholds.primary);
5358 else
5359 t = rcu_dereference(memcg->memsw_thresholds.primary);
5361 if (!t)
5362 goto unlock;
5364 usage = mem_cgroup_usage(memcg, swap);
5367 * current_threshold points to threshold just below or equal to usage.
5368 * If it's not true, a threshold was crossed after last
5369 * call of __mem_cgroup_threshold().
5371 i = t->current_threshold;
5374 * Iterate backward over array of thresholds starting from
5375 * current_threshold and check if a threshold is crossed.
5376 * If none of thresholds below usage is crossed, we read
5377 * only one element of the array here.
5379 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5380 eventfd_signal(t->entries[i].eventfd, 1);
5382 /* i = current_threshold + 1 */
5383 i++;
5386 * Iterate forward over array of thresholds starting from
5387 * current_threshold+1 and check if a threshold is crossed.
5388 * If none of thresholds above usage is crossed, we read
5389 * only one element of the array here.
5391 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5392 eventfd_signal(t->entries[i].eventfd, 1);
5394 /* Update current_threshold */
5395 t->current_threshold = i - 1;
5396 unlock:
5397 rcu_read_unlock();
5400 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5402 while (memcg) {
5403 __mem_cgroup_threshold(memcg, false);
5404 if (do_swap_account)
5405 __mem_cgroup_threshold(memcg, true);
5407 memcg = parent_mem_cgroup(memcg);
5411 static int compare_thresholds(const void *a, const void *b)
5413 const struct mem_cgroup_threshold *_a = a;
5414 const struct mem_cgroup_threshold *_b = b;
5416 if (_a->threshold > _b->threshold)
5417 return 1;
5419 if (_a->threshold < _b->threshold)
5420 return -1;
5422 return 0;
5425 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5427 struct mem_cgroup_eventfd_list *ev;
5429 list_for_each_entry(ev, &memcg->oom_notify, list)
5430 eventfd_signal(ev->eventfd, 1);
5431 return 0;
5434 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5436 struct mem_cgroup *iter;
5438 for_each_mem_cgroup_tree(iter, memcg)
5439 mem_cgroup_oom_notify_cb(iter);
5442 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5443 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5445 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5446 struct mem_cgroup_thresholds *thresholds;
5447 struct mem_cgroup_threshold_ary *new;
5448 enum res_type type = MEMFILE_TYPE(cft->private);
5449 u64 threshold, usage;
5450 int i, size, ret;
5452 ret = res_counter_memparse_write_strategy(args, &threshold);
5453 if (ret)
5454 return ret;
5456 mutex_lock(&memcg->thresholds_lock);
5458 if (type == _MEM)
5459 thresholds = &memcg->thresholds;
5460 else if (type == _MEMSWAP)
5461 thresholds = &memcg->memsw_thresholds;
5462 else
5463 BUG();
5465 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5467 /* Check if a threshold crossed before adding a new one */
5468 if (thresholds->primary)
5469 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5471 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5473 /* Allocate memory for new array of thresholds */
5474 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5475 GFP_KERNEL);
5476 if (!new) {
5477 ret = -ENOMEM;
5478 goto unlock;
5480 new->size = size;
5482 /* Copy thresholds (if any) to new array */
5483 if (thresholds->primary) {
5484 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5485 sizeof(struct mem_cgroup_threshold));
5488 /* Add new threshold */
5489 new->entries[size - 1].eventfd = eventfd;
5490 new->entries[size - 1].threshold = threshold;
5492 /* Sort thresholds. Registering of new threshold isn't time-critical */
5493 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5494 compare_thresholds, NULL);
5496 /* Find current threshold */
5497 new->current_threshold = -1;
5498 for (i = 0; i < size; i++) {
5499 if (new->entries[i].threshold <= usage) {
5501 * new->current_threshold will not be used until
5502 * rcu_assign_pointer(), so it's safe to increment
5503 * it here.
5505 ++new->current_threshold;
5506 } else
5507 break;
5510 /* Free old spare buffer and save old primary buffer as spare */
5511 kfree(thresholds->spare);
5512 thresholds->spare = thresholds->primary;
5514 rcu_assign_pointer(thresholds->primary, new);
5516 /* To be sure that nobody uses thresholds */
5517 synchronize_rcu();
5519 unlock:
5520 mutex_unlock(&memcg->thresholds_lock);
5522 return ret;
5525 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5526 struct cftype *cft, struct eventfd_ctx *eventfd)
5528 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5529 struct mem_cgroup_thresholds *thresholds;
5530 struct mem_cgroup_threshold_ary *new;
5531 enum res_type type = MEMFILE_TYPE(cft->private);
5532 u64 usage;
5533 int i, j, size;
5535 mutex_lock(&memcg->thresholds_lock);
5536 if (type == _MEM)
5537 thresholds = &memcg->thresholds;
5538 else if (type == _MEMSWAP)
5539 thresholds = &memcg->memsw_thresholds;
5540 else
5541 BUG();
5543 if (!thresholds->primary)
5544 goto unlock;
5546 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5548 /* Check if a threshold crossed before removing */
5549 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5551 /* Calculate new number of threshold */
5552 size = 0;
5553 for (i = 0; i < thresholds->primary->size; i++) {
5554 if (thresholds->primary->entries[i].eventfd != eventfd)
5555 size++;
5558 new = thresholds->spare;
5560 /* Set thresholds array to NULL if we don't have thresholds */
5561 if (!size) {
5562 kfree(new);
5563 new = NULL;
5564 goto swap_buffers;
5567 new->size = size;
5569 /* Copy thresholds and find current threshold */
5570 new->current_threshold = -1;
5571 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5572 if (thresholds->primary->entries[i].eventfd == eventfd)
5573 continue;
5575 new->entries[j] = thresholds->primary->entries[i];
5576 if (new->entries[j].threshold <= usage) {
5578 * new->current_threshold will not be used
5579 * until rcu_assign_pointer(), so it's safe to increment
5580 * it here.
5582 ++new->current_threshold;
5584 j++;
5587 swap_buffers:
5588 /* Swap primary and spare array */
5589 thresholds->spare = thresholds->primary;
5590 /* If all events are unregistered, free the spare array */
5591 if (!new) {
5592 kfree(thresholds->spare);
5593 thresholds->spare = NULL;
5596 rcu_assign_pointer(thresholds->primary, new);
5598 /* To be sure that nobody uses thresholds */
5599 synchronize_rcu();
5600 unlock:
5601 mutex_unlock(&memcg->thresholds_lock);
5604 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5605 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5608 struct mem_cgroup_eventfd_list *event;
5609 enum res_type type = MEMFILE_TYPE(cft->private);
5611 BUG_ON(type != _OOM_TYPE);
5612 event = kmalloc(sizeof(*event), GFP_KERNEL);
5613 if (!event)
5614 return -ENOMEM;
5616 spin_lock(&memcg_oom_lock);
5618 event->eventfd = eventfd;
5619 list_add(&event->list, &memcg->oom_notify);
5621 /* already in OOM ? */
5622 if (atomic_read(&memcg->under_oom))
5623 eventfd_signal(eventfd, 1);
5624 spin_unlock(&memcg_oom_lock);
5626 return 0;
5629 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5630 struct cftype *cft, struct eventfd_ctx *eventfd)
5632 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5633 struct mem_cgroup_eventfd_list *ev, *tmp;
5634 enum res_type type = MEMFILE_TYPE(cft->private);
5636 BUG_ON(type != _OOM_TYPE);
5638 spin_lock(&memcg_oom_lock);
5640 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5641 if (ev->eventfd == eventfd) {
5642 list_del(&ev->list);
5643 kfree(ev);
5647 spin_unlock(&memcg_oom_lock);
5650 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5651 struct cftype *cft, struct cgroup_map_cb *cb)
5653 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5655 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5657 if (atomic_read(&memcg->under_oom))
5658 cb->fill(cb, "under_oom", 1);
5659 else
5660 cb->fill(cb, "under_oom", 0);
5661 return 0;
5664 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5665 struct cftype *cft, u64 val)
5667 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5668 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5670 /* cannot set to root cgroup and only 0 and 1 are allowed */
5671 if (!parent || !((val == 0) || (val == 1)))
5672 return -EINVAL;
5674 mutex_lock(&memcg_create_mutex);
5675 /* oom-kill-disable is a flag for subhierarchy. */
5676 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5677 mutex_unlock(&memcg_create_mutex);
5678 return -EINVAL;
5680 memcg->oom_kill_disable = val;
5681 if (!val)
5682 memcg_oom_recover(memcg);
5683 mutex_unlock(&memcg_create_mutex);
5684 return 0;
5687 #ifdef CONFIG_MEMCG_KMEM
5688 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5690 int ret;
5692 memcg->kmemcg_id = -1;
5693 ret = memcg_propagate_kmem(memcg);
5694 if (ret)
5695 return ret;
5697 return mem_cgroup_sockets_init(memcg, ss);
5700 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5702 mem_cgroup_sockets_destroy(memcg);
5705 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5707 if (!memcg_kmem_is_active(memcg))
5708 return;
5711 * kmem charges can outlive the cgroup. In the case of slab
5712 * pages, for instance, a page contain objects from various
5713 * processes. As we prevent from taking a reference for every
5714 * such allocation we have to be careful when doing uncharge
5715 * (see memcg_uncharge_kmem) and here during offlining.
5717 * The idea is that that only the _last_ uncharge which sees
5718 * the dead memcg will drop the last reference. An additional
5719 * reference is taken here before the group is marked dead
5720 * which is then paired with css_put during uncharge resp. here.
5722 * Although this might sound strange as this path is called from
5723 * css_offline() when the referencemight have dropped down to 0
5724 * and shouldn't be incremented anymore (css_tryget would fail)
5725 * we do not have other options because of the kmem allocations
5726 * lifetime.
5728 css_get(&memcg->css);
5730 memcg_kmem_mark_dead(memcg);
5732 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5733 return;
5735 if (memcg_kmem_test_and_clear_dead(memcg))
5736 css_put(&memcg->css);
5738 #else
5739 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5741 return 0;
5744 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5748 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5751 #endif
5753 static struct cftype mem_cgroup_files[] = {
5755 .name = "usage_in_bytes",
5756 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5757 .read = mem_cgroup_read,
5758 .register_event = mem_cgroup_usage_register_event,
5759 .unregister_event = mem_cgroup_usage_unregister_event,
5762 .name = "max_usage_in_bytes",
5763 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5764 .trigger = mem_cgroup_reset,
5765 .read = mem_cgroup_read,
5768 .name = "limit_in_bytes",
5769 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5770 .write_string = mem_cgroup_write,
5771 .read = mem_cgroup_read,
5774 .name = "soft_limit_in_bytes",
5775 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5776 .write_string = mem_cgroup_write,
5777 .read = mem_cgroup_read,
5780 .name = "failcnt",
5781 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5782 .trigger = mem_cgroup_reset,
5783 .read = mem_cgroup_read,
5786 .name = "stat",
5787 .read_seq_string = memcg_stat_show,
5790 .name = "force_empty",
5791 .trigger = mem_cgroup_force_empty_write,
5794 .name = "use_hierarchy",
5795 .flags = CFTYPE_INSANE,
5796 .write_u64 = mem_cgroup_hierarchy_write,
5797 .read_u64 = mem_cgroup_hierarchy_read,
5800 .name = "swappiness",
5801 .read_u64 = mem_cgroup_swappiness_read,
5802 .write_u64 = mem_cgroup_swappiness_write,
5805 .name = "move_charge_at_immigrate",
5806 .read_u64 = mem_cgroup_move_charge_read,
5807 .write_u64 = mem_cgroup_move_charge_write,
5810 .name = "oom_control",
5811 .read_map = mem_cgroup_oom_control_read,
5812 .write_u64 = mem_cgroup_oom_control_write,
5813 .register_event = mem_cgroup_oom_register_event,
5814 .unregister_event = mem_cgroup_oom_unregister_event,
5815 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5818 .name = "pressure_level",
5819 .register_event = vmpressure_register_event,
5820 .unregister_event = vmpressure_unregister_event,
5822 #ifdef CONFIG_NUMA
5824 .name = "numa_stat",
5825 .read_seq_string = memcg_numa_stat_show,
5827 #endif
5828 #ifdef CONFIG_MEMCG_KMEM
5830 .name = "kmem.limit_in_bytes",
5831 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5832 .write_string = mem_cgroup_write,
5833 .read = mem_cgroup_read,
5836 .name = "kmem.usage_in_bytes",
5837 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5838 .read = mem_cgroup_read,
5841 .name = "kmem.failcnt",
5842 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5843 .trigger = mem_cgroup_reset,
5844 .read = mem_cgroup_read,
5847 .name = "kmem.max_usage_in_bytes",
5848 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5849 .trigger = mem_cgroup_reset,
5850 .read = mem_cgroup_read,
5852 #ifdef CONFIG_SLABINFO
5854 .name = "kmem.slabinfo",
5855 .read_seq_string = mem_cgroup_slabinfo_read,
5857 #endif
5858 #endif
5859 { }, /* terminate */
5862 #ifdef CONFIG_MEMCG_SWAP
5863 static struct cftype memsw_cgroup_files[] = {
5865 .name = "memsw.usage_in_bytes",
5866 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5867 .read = mem_cgroup_read,
5868 .register_event = mem_cgroup_usage_register_event,
5869 .unregister_event = mem_cgroup_usage_unregister_event,
5872 .name = "memsw.max_usage_in_bytes",
5873 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5874 .trigger = mem_cgroup_reset,
5875 .read = mem_cgroup_read,
5878 .name = "memsw.limit_in_bytes",
5879 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5880 .write_string = mem_cgroup_write,
5881 .read = mem_cgroup_read,
5884 .name = "memsw.failcnt",
5885 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5886 .trigger = mem_cgroup_reset,
5887 .read = mem_cgroup_read,
5889 { }, /* terminate */
5891 #endif
5892 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5894 struct mem_cgroup_per_node *pn;
5895 struct mem_cgroup_per_zone *mz;
5896 int zone, tmp = node;
5898 * This routine is called against possible nodes.
5899 * But it's BUG to call kmalloc() against offline node.
5901 * TODO: this routine can waste much memory for nodes which will
5902 * never be onlined. It's better to use memory hotplug callback
5903 * function.
5905 if (!node_state(node, N_NORMAL_MEMORY))
5906 tmp = -1;
5907 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5908 if (!pn)
5909 return 1;
5911 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5912 mz = &pn->zoneinfo[zone];
5913 lruvec_init(&mz->lruvec);
5914 mz->memcg = memcg;
5916 memcg->nodeinfo[node] = pn;
5917 return 0;
5920 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5922 kfree(memcg->nodeinfo[node]);
5925 static struct mem_cgroup *mem_cgroup_alloc(void)
5927 struct mem_cgroup *memcg;
5928 size_t size = memcg_size();
5930 /* Can be very big if nr_node_ids is very big */
5931 if (size < PAGE_SIZE)
5932 memcg = kzalloc(size, GFP_KERNEL);
5933 else
5934 memcg = vzalloc(size);
5936 if (!memcg)
5937 return NULL;
5939 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5940 if (!memcg->stat)
5941 goto out_free;
5942 spin_lock_init(&memcg->pcp_counter_lock);
5943 return memcg;
5945 out_free:
5946 if (size < PAGE_SIZE)
5947 kfree(memcg);
5948 else
5949 vfree(memcg);
5950 return NULL;
5954 * At destroying mem_cgroup, references from swap_cgroup can remain.
5955 * (scanning all at force_empty is too costly...)
5957 * Instead of clearing all references at force_empty, we remember
5958 * the number of reference from swap_cgroup and free mem_cgroup when
5959 * it goes down to 0.
5961 * Removal of cgroup itself succeeds regardless of refs from swap.
5964 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5966 int node;
5967 size_t size = memcg_size();
5969 free_css_id(&mem_cgroup_subsys, &memcg->css);
5971 for_each_node(node)
5972 free_mem_cgroup_per_zone_info(memcg, node);
5974 free_percpu(memcg->stat);
5977 * We need to make sure that (at least for now), the jump label
5978 * destruction code runs outside of the cgroup lock. This is because
5979 * get_online_cpus(), which is called from the static_branch update,
5980 * can't be called inside the cgroup_lock. cpusets are the ones
5981 * enforcing this dependency, so if they ever change, we might as well.
5983 * schedule_work() will guarantee this happens. Be careful if you need
5984 * to move this code around, and make sure it is outside
5985 * the cgroup_lock.
5987 disarm_static_keys(memcg);
5988 if (size < PAGE_SIZE)
5989 kfree(memcg);
5990 else
5991 vfree(memcg);
5995 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5997 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5999 if (!memcg->res.parent)
6000 return NULL;
6001 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6003 EXPORT_SYMBOL(parent_mem_cgroup);
6005 static struct cgroup_subsys_state * __ref
6006 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6008 struct mem_cgroup *memcg;
6009 long error = -ENOMEM;
6010 int node;
6012 memcg = mem_cgroup_alloc();
6013 if (!memcg)
6014 return ERR_PTR(error);
6016 for_each_node(node)
6017 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6018 goto free_out;
6020 /* root ? */
6021 if (parent_css == NULL) {
6022 root_mem_cgroup = memcg;
6023 res_counter_init(&memcg->res, NULL);
6024 res_counter_init(&memcg->memsw, NULL);
6025 res_counter_init(&memcg->kmem, NULL);
6028 memcg->last_scanned_node = MAX_NUMNODES;
6029 INIT_LIST_HEAD(&memcg->oom_notify);
6030 memcg->move_charge_at_immigrate = 0;
6031 mutex_init(&memcg->thresholds_lock);
6032 spin_lock_init(&memcg->move_lock);
6033 vmpressure_init(&memcg->vmpressure);
6034 spin_lock_init(&memcg->soft_lock);
6036 return &memcg->css;
6038 free_out:
6039 __mem_cgroup_free(memcg);
6040 return ERR_PTR(error);
6043 static int
6044 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6046 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6047 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6048 int error = 0;
6050 if (!parent)
6051 return 0;
6053 mutex_lock(&memcg_create_mutex);
6055 memcg->use_hierarchy = parent->use_hierarchy;
6056 memcg->oom_kill_disable = parent->oom_kill_disable;
6057 memcg->swappiness = mem_cgroup_swappiness(parent);
6059 if (parent->use_hierarchy) {
6060 res_counter_init(&memcg->res, &parent->res);
6061 res_counter_init(&memcg->memsw, &parent->memsw);
6062 res_counter_init(&memcg->kmem, &parent->kmem);
6065 * No need to take a reference to the parent because cgroup
6066 * core guarantees its existence.
6068 } else {
6069 res_counter_init(&memcg->res, NULL);
6070 res_counter_init(&memcg->memsw, NULL);
6071 res_counter_init(&memcg->kmem, NULL);
6073 * Deeper hierachy with use_hierarchy == false doesn't make
6074 * much sense so let cgroup subsystem know about this
6075 * unfortunate state in our controller.
6077 if (parent != root_mem_cgroup)
6078 mem_cgroup_subsys.broken_hierarchy = true;
6081 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6082 mutex_unlock(&memcg_create_mutex);
6083 return error;
6087 * Announce all parents that a group from their hierarchy is gone.
6089 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6091 struct mem_cgroup *parent = memcg;
6093 while ((parent = parent_mem_cgroup(parent)))
6094 mem_cgroup_iter_invalidate(parent);
6097 * if the root memcg is not hierarchical we have to check it
6098 * explicitely.
6100 if (!root_mem_cgroup->use_hierarchy)
6101 mem_cgroup_iter_invalidate(root_mem_cgroup);
6104 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6106 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6108 kmem_cgroup_css_offline(memcg);
6110 mem_cgroup_invalidate_reclaim_iterators(memcg);
6111 mem_cgroup_reparent_charges(memcg);
6112 if (memcg->soft_contributed) {
6113 while ((memcg = parent_mem_cgroup(memcg)))
6114 atomic_dec(&memcg->children_in_excess);
6116 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
6117 atomic_dec(&root_mem_cgroup->children_in_excess);
6119 mem_cgroup_destroy_all_caches(memcg);
6120 vmpressure_cleanup(&memcg->vmpressure);
6123 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6125 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6127 memcg_destroy_kmem(memcg);
6128 __mem_cgroup_free(memcg);
6131 #ifdef CONFIG_MMU
6132 /* Handlers for move charge at task migration. */
6133 #define PRECHARGE_COUNT_AT_ONCE 256
6134 static int mem_cgroup_do_precharge(unsigned long count)
6136 int ret = 0;
6137 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6138 struct mem_cgroup *memcg = mc.to;
6140 if (mem_cgroup_is_root(memcg)) {
6141 mc.precharge += count;
6142 /* we don't need css_get for root */
6143 return ret;
6145 /* try to charge at once */
6146 if (count > 1) {
6147 struct res_counter *dummy;
6149 * "memcg" cannot be under rmdir() because we've already checked
6150 * by cgroup_lock_live_cgroup() that it is not removed and we
6151 * are still under the same cgroup_mutex. So we can postpone
6152 * css_get().
6154 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6155 goto one_by_one;
6156 if (do_swap_account && res_counter_charge(&memcg->memsw,
6157 PAGE_SIZE * count, &dummy)) {
6158 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6159 goto one_by_one;
6161 mc.precharge += count;
6162 return ret;
6164 one_by_one:
6165 /* fall back to one by one charge */
6166 while (count--) {
6167 if (signal_pending(current)) {
6168 ret = -EINTR;
6169 break;
6171 if (!batch_count--) {
6172 batch_count = PRECHARGE_COUNT_AT_ONCE;
6173 cond_resched();
6175 ret = __mem_cgroup_try_charge(NULL,
6176 GFP_KERNEL, 1, &memcg, false);
6177 if (ret)
6178 /* mem_cgroup_clear_mc() will do uncharge later */
6179 return ret;
6180 mc.precharge++;
6182 return ret;
6186 * get_mctgt_type - get target type of moving charge
6187 * @vma: the vma the pte to be checked belongs
6188 * @addr: the address corresponding to the pte to be checked
6189 * @ptent: the pte to be checked
6190 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6192 * Returns
6193 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6194 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6195 * move charge. if @target is not NULL, the page is stored in target->page
6196 * with extra refcnt got(Callers should handle it).
6197 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6198 * target for charge migration. if @target is not NULL, the entry is stored
6199 * in target->ent.
6201 * Called with pte lock held.
6203 union mc_target {
6204 struct page *page;
6205 swp_entry_t ent;
6208 enum mc_target_type {
6209 MC_TARGET_NONE = 0,
6210 MC_TARGET_PAGE,
6211 MC_TARGET_SWAP,
6214 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6215 unsigned long addr, pte_t ptent)
6217 struct page *page = vm_normal_page(vma, addr, ptent);
6219 if (!page || !page_mapped(page))
6220 return NULL;
6221 if (PageAnon(page)) {
6222 /* we don't move shared anon */
6223 if (!move_anon())
6224 return NULL;
6225 } else if (!move_file())
6226 /* we ignore mapcount for file pages */
6227 return NULL;
6228 if (!get_page_unless_zero(page))
6229 return NULL;
6231 return page;
6234 #ifdef CONFIG_SWAP
6235 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6236 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6238 struct page *page = NULL;
6239 swp_entry_t ent = pte_to_swp_entry(ptent);
6241 if (!move_anon() || non_swap_entry(ent))
6242 return NULL;
6244 * Because lookup_swap_cache() updates some statistics counter,
6245 * we call find_get_page() with swapper_space directly.
6247 page = find_get_page(swap_address_space(ent), ent.val);
6248 if (do_swap_account)
6249 entry->val = ent.val;
6251 return page;
6253 #else
6254 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6255 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6257 return NULL;
6259 #endif
6261 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6262 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6264 struct page *page = NULL;
6265 struct address_space *mapping;
6266 pgoff_t pgoff;
6268 if (!vma->vm_file) /* anonymous vma */
6269 return NULL;
6270 if (!move_file())
6271 return NULL;
6273 mapping = vma->vm_file->f_mapping;
6274 if (pte_none(ptent))
6275 pgoff = linear_page_index(vma, addr);
6276 else /* pte_file(ptent) is true */
6277 pgoff = pte_to_pgoff(ptent);
6279 /* page is moved even if it's not RSS of this task(page-faulted). */
6280 page = find_get_page(mapping, pgoff);
6282 #ifdef CONFIG_SWAP
6283 /* shmem/tmpfs may report page out on swap: account for that too. */
6284 if (radix_tree_exceptional_entry(page)) {
6285 swp_entry_t swap = radix_to_swp_entry(page);
6286 if (do_swap_account)
6287 *entry = swap;
6288 page = find_get_page(swap_address_space(swap), swap.val);
6290 #endif
6291 return page;
6294 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6295 unsigned long addr, pte_t ptent, union mc_target *target)
6297 struct page *page = NULL;
6298 struct page_cgroup *pc;
6299 enum mc_target_type ret = MC_TARGET_NONE;
6300 swp_entry_t ent = { .val = 0 };
6302 if (pte_present(ptent))
6303 page = mc_handle_present_pte(vma, addr, ptent);
6304 else if (is_swap_pte(ptent))
6305 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6306 else if (pte_none(ptent) || pte_file(ptent))
6307 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6309 if (!page && !ent.val)
6310 return ret;
6311 if (page) {
6312 pc = lookup_page_cgroup(page);
6314 * Do only loose check w/o page_cgroup lock.
6315 * mem_cgroup_move_account() checks the pc is valid or not under
6316 * the lock.
6318 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6319 ret = MC_TARGET_PAGE;
6320 if (target)
6321 target->page = page;
6323 if (!ret || !target)
6324 put_page(page);
6326 /* There is a swap entry and a page doesn't exist or isn't charged */
6327 if (ent.val && !ret &&
6328 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6329 ret = MC_TARGET_SWAP;
6330 if (target)
6331 target->ent = ent;
6333 return ret;
6336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6338 * We don't consider swapping or file mapped pages because THP does not
6339 * support them for now.
6340 * Caller should make sure that pmd_trans_huge(pmd) is true.
6342 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6343 unsigned long addr, pmd_t pmd, union mc_target *target)
6345 struct page *page = NULL;
6346 struct page_cgroup *pc;
6347 enum mc_target_type ret = MC_TARGET_NONE;
6349 page = pmd_page(pmd);
6350 VM_BUG_ON(!page || !PageHead(page));
6351 if (!move_anon())
6352 return ret;
6353 pc = lookup_page_cgroup(page);
6354 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6355 ret = MC_TARGET_PAGE;
6356 if (target) {
6357 get_page(page);
6358 target->page = page;
6361 return ret;
6363 #else
6364 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6365 unsigned long addr, pmd_t pmd, union mc_target *target)
6367 return MC_TARGET_NONE;
6369 #endif
6371 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6372 unsigned long addr, unsigned long end,
6373 struct mm_walk *walk)
6375 struct vm_area_struct *vma = walk->private;
6376 pte_t *pte;
6377 spinlock_t *ptl;
6379 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6380 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6381 mc.precharge += HPAGE_PMD_NR;
6382 spin_unlock(&vma->vm_mm->page_table_lock);
6383 return 0;
6386 if (pmd_trans_unstable(pmd))
6387 return 0;
6388 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6389 for (; addr != end; pte++, addr += PAGE_SIZE)
6390 if (get_mctgt_type(vma, addr, *pte, NULL))
6391 mc.precharge++; /* increment precharge temporarily */
6392 pte_unmap_unlock(pte - 1, ptl);
6393 cond_resched();
6395 return 0;
6398 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6400 unsigned long precharge;
6401 struct vm_area_struct *vma;
6403 down_read(&mm->mmap_sem);
6404 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6405 struct mm_walk mem_cgroup_count_precharge_walk = {
6406 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6407 .mm = mm,
6408 .private = vma,
6410 if (is_vm_hugetlb_page(vma))
6411 continue;
6412 walk_page_range(vma->vm_start, vma->vm_end,
6413 &mem_cgroup_count_precharge_walk);
6415 up_read(&mm->mmap_sem);
6417 precharge = mc.precharge;
6418 mc.precharge = 0;
6420 return precharge;
6423 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6425 unsigned long precharge = mem_cgroup_count_precharge(mm);
6427 VM_BUG_ON(mc.moving_task);
6428 mc.moving_task = current;
6429 return mem_cgroup_do_precharge(precharge);
6432 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6433 static void __mem_cgroup_clear_mc(void)
6435 struct mem_cgroup *from = mc.from;
6436 struct mem_cgroup *to = mc.to;
6437 int i;
6439 /* we must uncharge all the leftover precharges from mc.to */
6440 if (mc.precharge) {
6441 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6442 mc.precharge = 0;
6445 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6446 * we must uncharge here.
6448 if (mc.moved_charge) {
6449 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6450 mc.moved_charge = 0;
6452 /* we must fixup refcnts and charges */
6453 if (mc.moved_swap) {
6454 /* uncharge swap account from the old cgroup */
6455 if (!mem_cgroup_is_root(mc.from))
6456 res_counter_uncharge(&mc.from->memsw,
6457 PAGE_SIZE * mc.moved_swap);
6459 for (i = 0; i < mc.moved_swap; i++)
6460 css_put(&mc.from->css);
6462 if (!mem_cgroup_is_root(mc.to)) {
6464 * we charged both to->res and to->memsw, so we should
6465 * uncharge to->res.
6467 res_counter_uncharge(&mc.to->res,
6468 PAGE_SIZE * mc.moved_swap);
6470 /* we've already done css_get(mc.to) */
6471 mc.moved_swap = 0;
6473 memcg_oom_recover(from);
6474 memcg_oom_recover(to);
6475 wake_up_all(&mc.waitq);
6478 static void mem_cgroup_clear_mc(void)
6480 struct mem_cgroup *from = mc.from;
6483 * we must clear moving_task before waking up waiters at the end of
6484 * task migration.
6486 mc.moving_task = NULL;
6487 __mem_cgroup_clear_mc();
6488 spin_lock(&mc.lock);
6489 mc.from = NULL;
6490 mc.to = NULL;
6491 spin_unlock(&mc.lock);
6492 mem_cgroup_end_move(from);
6495 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6496 struct cgroup_taskset *tset)
6498 struct task_struct *p = cgroup_taskset_first(tset);
6499 int ret = 0;
6500 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6501 unsigned long move_charge_at_immigrate;
6504 * We are now commited to this value whatever it is. Changes in this
6505 * tunable will only affect upcoming migrations, not the current one.
6506 * So we need to save it, and keep it going.
6508 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6509 if (move_charge_at_immigrate) {
6510 struct mm_struct *mm;
6511 struct mem_cgroup *from = mem_cgroup_from_task(p);
6513 VM_BUG_ON(from == memcg);
6515 mm = get_task_mm(p);
6516 if (!mm)
6517 return 0;
6518 /* We move charges only when we move a owner of the mm */
6519 if (mm->owner == p) {
6520 VM_BUG_ON(mc.from);
6521 VM_BUG_ON(mc.to);
6522 VM_BUG_ON(mc.precharge);
6523 VM_BUG_ON(mc.moved_charge);
6524 VM_BUG_ON(mc.moved_swap);
6525 mem_cgroup_start_move(from);
6526 spin_lock(&mc.lock);
6527 mc.from = from;
6528 mc.to = memcg;
6529 mc.immigrate_flags = move_charge_at_immigrate;
6530 spin_unlock(&mc.lock);
6531 /* We set mc.moving_task later */
6533 ret = mem_cgroup_precharge_mc(mm);
6534 if (ret)
6535 mem_cgroup_clear_mc();
6537 mmput(mm);
6539 return ret;
6542 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6543 struct cgroup_taskset *tset)
6545 mem_cgroup_clear_mc();
6548 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6549 unsigned long addr, unsigned long end,
6550 struct mm_walk *walk)
6552 int ret = 0;
6553 struct vm_area_struct *vma = walk->private;
6554 pte_t *pte;
6555 spinlock_t *ptl;
6556 enum mc_target_type target_type;
6557 union mc_target target;
6558 struct page *page;
6559 struct page_cgroup *pc;
6562 * We don't take compound_lock() here but no race with splitting thp
6563 * happens because:
6564 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6565 * under splitting, which means there's no concurrent thp split,
6566 * - if another thread runs into split_huge_page() just after we
6567 * entered this if-block, the thread must wait for page table lock
6568 * to be unlocked in __split_huge_page_splitting(), where the main
6569 * part of thp split is not executed yet.
6571 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6572 if (mc.precharge < HPAGE_PMD_NR) {
6573 spin_unlock(&vma->vm_mm->page_table_lock);
6574 return 0;
6576 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6577 if (target_type == MC_TARGET_PAGE) {
6578 page = target.page;
6579 if (!isolate_lru_page(page)) {
6580 pc = lookup_page_cgroup(page);
6581 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6582 pc, mc.from, mc.to)) {
6583 mc.precharge -= HPAGE_PMD_NR;
6584 mc.moved_charge += HPAGE_PMD_NR;
6586 putback_lru_page(page);
6588 put_page(page);
6590 spin_unlock(&vma->vm_mm->page_table_lock);
6591 return 0;
6594 if (pmd_trans_unstable(pmd))
6595 return 0;
6596 retry:
6597 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6598 for (; addr != end; addr += PAGE_SIZE) {
6599 pte_t ptent = *(pte++);
6600 swp_entry_t ent;
6602 if (!mc.precharge)
6603 break;
6605 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6606 case MC_TARGET_PAGE:
6607 page = target.page;
6608 if (isolate_lru_page(page))
6609 goto put;
6610 pc = lookup_page_cgroup(page);
6611 if (!mem_cgroup_move_account(page, 1, pc,
6612 mc.from, mc.to)) {
6613 mc.precharge--;
6614 /* we uncharge from mc.from later. */
6615 mc.moved_charge++;
6617 putback_lru_page(page);
6618 put: /* get_mctgt_type() gets the page */
6619 put_page(page);
6620 break;
6621 case MC_TARGET_SWAP:
6622 ent = target.ent;
6623 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6624 mc.precharge--;
6625 /* we fixup refcnts and charges later. */
6626 mc.moved_swap++;
6628 break;
6629 default:
6630 break;
6633 pte_unmap_unlock(pte - 1, ptl);
6634 cond_resched();
6636 if (addr != end) {
6638 * We have consumed all precharges we got in can_attach().
6639 * We try charge one by one, but don't do any additional
6640 * charges to mc.to if we have failed in charge once in attach()
6641 * phase.
6643 ret = mem_cgroup_do_precharge(1);
6644 if (!ret)
6645 goto retry;
6648 return ret;
6651 static void mem_cgroup_move_charge(struct mm_struct *mm)
6653 struct vm_area_struct *vma;
6655 lru_add_drain_all();
6656 retry:
6657 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6659 * Someone who are holding the mmap_sem might be waiting in
6660 * waitq. So we cancel all extra charges, wake up all waiters,
6661 * and retry. Because we cancel precharges, we might not be able
6662 * to move enough charges, but moving charge is a best-effort
6663 * feature anyway, so it wouldn't be a big problem.
6665 __mem_cgroup_clear_mc();
6666 cond_resched();
6667 goto retry;
6669 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6670 int ret;
6671 struct mm_walk mem_cgroup_move_charge_walk = {
6672 .pmd_entry = mem_cgroup_move_charge_pte_range,
6673 .mm = mm,
6674 .private = vma,
6676 if (is_vm_hugetlb_page(vma))
6677 continue;
6678 ret = walk_page_range(vma->vm_start, vma->vm_end,
6679 &mem_cgroup_move_charge_walk);
6680 if (ret)
6682 * means we have consumed all precharges and failed in
6683 * doing additional charge. Just abandon here.
6685 break;
6687 up_read(&mm->mmap_sem);
6690 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6691 struct cgroup_taskset *tset)
6693 struct task_struct *p = cgroup_taskset_first(tset);
6694 struct mm_struct *mm = get_task_mm(p);
6696 if (mm) {
6697 if (mc.to)
6698 mem_cgroup_move_charge(mm);
6699 mmput(mm);
6701 if (mc.to)
6702 mem_cgroup_clear_mc();
6704 #else /* !CONFIG_MMU */
6705 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6706 struct cgroup_taskset *tset)
6708 return 0;
6710 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6711 struct cgroup_taskset *tset)
6714 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6715 struct cgroup_taskset *tset)
6718 #endif
6721 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6722 * to verify sane_behavior flag on each mount attempt.
6724 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6727 * use_hierarchy is forced with sane_behavior. cgroup core
6728 * guarantees that @root doesn't have any children, so turning it
6729 * on for the root memcg is enough.
6731 if (cgroup_sane_behavior(root_css->cgroup))
6732 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6735 struct cgroup_subsys mem_cgroup_subsys = {
6736 .name = "memory",
6737 .subsys_id = mem_cgroup_subsys_id,
6738 .css_alloc = mem_cgroup_css_alloc,
6739 .css_online = mem_cgroup_css_online,
6740 .css_offline = mem_cgroup_css_offline,
6741 .css_free = mem_cgroup_css_free,
6742 .can_attach = mem_cgroup_can_attach,
6743 .cancel_attach = mem_cgroup_cancel_attach,
6744 .attach = mem_cgroup_move_task,
6745 .bind = mem_cgroup_bind,
6746 .base_cftypes = mem_cgroup_files,
6747 .early_init = 0,
6748 .use_id = 1,
6751 #ifdef CONFIG_MEMCG_SWAP
6752 static int __init enable_swap_account(char *s)
6754 if (!strcmp(s, "1"))
6755 really_do_swap_account = 1;
6756 else if (!strcmp(s, "0"))
6757 really_do_swap_account = 0;
6758 return 1;
6760 __setup("swapaccount=", enable_swap_account);
6762 static void __init memsw_file_init(void)
6764 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6767 static void __init enable_swap_cgroup(void)
6769 if (!mem_cgroup_disabled() && really_do_swap_account) {
6770 do_swap_account = 1;
6771 memsw_file_init();
6775 #else
6776 static void __init enable_swap_cgroup(void)
6779 #endif
6782 * subsys_initcall() for memory controller.
6784 * Some parts like hotcpu_notifier() have to be initialized from this context
6785 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6786 * everything that doesn't depend on a specific mem_cgroup structure should
6787 * be initialized from here.
6789 static int __init mem_cgroup_init(void)
6791 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6792 enable_swap_cgroup();
6793 memcg_stock_init();
6794 return 0;
6796 subsys_initcall(mem_cgroup_init);