drm/nouveau/gr/gf100-: fix wrong constant definition
[linux-2.6/btrfs-unstable.git] / mm / swap.c
bloba7251a8ed53297a7ec129b6254a5229995d86fc3
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
36 #include "internal.h"
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/pagemap.h>
41 /* How many pages do we try to swap or page in/out together? */
42 int page_cluster;
44 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 * This path almost never happens for VM activity - pages are normally
50 * freed via pagevecs. But it gets used by networking.
52 static void __page_cache_release(struct page *page)
54 if (PageLRU(page)) {
55 struct zone *zone = page_zone(page);
56 struct lruvec *lruvec;
57 unsigned long flags;
59 spin_lock_irqsave(&zone->lru_lock, flags);
60 lruvec = mem_cgroup_page_lruvec(page, zone);
61 VM_BUG_ON_PAGE(!PageLRU(page), page);
62 __ClearPageLRU(page);
63 del_page_from_lru_list(page, lruvec, page_off_lru(page));
64 spin_unlock_irqrestore(&zone->lru_lock, flags);
66 mem_cgroup_uncharge(page);
69 static void __put_single_page(struct page *page)
71 __page_cache_release(page);
72 free_hot_cold_page(page, false);
75 static void __put_compound_page(struct page *page)
77 compound_page_dtor *dtor;
80 * __page_cache_release() is supposed to be called for thp, not for
81 * hugetlb. This is because hugetlb page does never have PageLRU set
82 * (it's never listed to any LRU lists) and no memcg routines should
83 * be called for hugetlb (it has a separate hugetlb_cgroup.)
85 if (!PageHuge(page))
86 __page_cache_release(page);
87 dtor = get_compound_page_dtor(page);
88 (*dtor)(page);
91 /**
92 * Two special cases here: we could avoid taking compound_lock_irqsave
93 * and could skip the tail refcounting(in _mapcount).
95 * 1. Hugetlbfs page:
97 * PageHeadHuge will remain true until the compound page
98 * is released and enters the buddy allocator, and it could
99 * not be split by __split_huge_page_refcount().
101 * So if we see PageHeadHuge set, and we have the tail page pin,
102 * then we could safely put head page.
104 * 2. Slab THP page:
106 * PG_slab is cleared before the slab frees the head page, and
107 * tail pin cannot be the last reference left on the head page,
108 * because the slab code is free to reuse the compound page
109 * after a kfree/kmem_cache_free without having to check if
110 * there's any tail pin left. In turn all tail pinsmust be always
111 * released while the head is still pinned by the slab code
112 * and so we know PG_slab will be still set too.
114 * So if we see PageSlab set, and we have the tail page pin,
115 * then we could safely put head page.
117 static __always_inline
118 void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
121 * If @page is a THP tail, we must read the tail page
122 * flags after the head page flags. The
123 * __split_huge_page_refcount side enforces write memory barriers
124 * between clearing PageTail and before the head page
125 * can be freed and reallocated.
127 smp_rmb();
128 if (likely(PageTail(page))) {
130 * __split_huge_page_refcount cannot race
131 * here, see the comment above this function.
133 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
134 VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
135 if (put_page_testzero(page_head)) {
137 * If this is the tail of a slab THP page,
138 * the tail pin must not be the last reference
139 * held on the page, because the PG_slab cannot
140 * be cleared before all tail pins (which skips
141 * the _mapcount tail refcounting) have been
142 * released.
144 * If this is the tail of a hugetlbfs page,
145 * the tail pin may be the last reference on
146 * the page instead, because PageHeadHuge will
147 * not go away until the compound page enters
148 * the buddy allocator.
150 VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
151 __put_compound_page(page_head);
153 } else
155 * __split_huge_page_refcount run before us,
156 * @page was a THP tail. The split @page_head
157 * has been freed and reallocated as slab or
158 * hugetlbfs page of smaller order (only
159 * possible if reallocated as slab on x86).
161 if (put_page_testzero(page))
162 __put_single_page(page);
165 static __always_inline
166 void put_refcounted_compound_page(struct page *page_head, struct page *page)
168 if (likely(page != page_head && get_page_unless_zero(page_head))) {
169 unsigned long flags;
172 * @page_head wasn't a dangling pointer but it may not
173 * be a head page anymore by the time we obtain the
174 * lock. That is ok as long as it can't be freed from
175 * under us.
177 flags = compound_lock_irqsave(page_head);
178 if (unlikely(!PageTail(page))) {
179 /* __split_huge_page_refcount run before us */
180 compound_unlock_irqrestore(page_head, flags);
181 if (put_page_testzero(page_head)) {
183 * The @page_head may have been freed
184 * and reallocated as a compound page
185 * of smaller order and then freed
186 * again. All we know is that it
187 * cannot have become: a THP page, a
188 * compound page of higher order, a
189 * tail page. That is because we
190 * still hold the refcount of the
191 * split THP tail and page_head was
192 * the THP head before the split.
194 if (PageHead(page_head))
195 __put_compound_page(page_head);
196 else
197 __put_single_page(page_head);
199 out_put_single:
200 if (put_page_testzero(page))
201 __put_single_page(page);
202 return;
204 VM_BUG_ON_PAGE(page_head != page->first_page, page);
206 * We can release the refcount taken by
207 * get_page_unless_zero() now that
208 * __split_huge_page_refcount() is blocked on the
209 * compound_lock.
211 if (put_page_testzero(page_head))
212 VM_BUG_ON_PAGE(1, page_head);
213 /* __split_huge_page_refcount will wait now */
214 VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
215 atomic_dec(&page->_mapcount);
216 VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
217 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
218 compound_unlock_irqrestore(page_head, flags);
220 if (put_page_testzero(page_head)) {
221 if (PageHead(page_head))
222 __put_compound_page(page_head);
223 else
224 __put_single_page(page_head);
226 } else {
227 /* @page_head is a dangling pointer */
228 VM_BUG_ON_PAGE(PageTail(page), page);
229 goto out_put_single;
233 static void put_compound_page(struct page *page)
235 struct page *page_head;
238 * We see the PageCompound set and PageTail not set, so @page maybe:
239 * 1. hugetlbfs head page, or
240 * 2. THP head page.
242 if (likely(!PageTail(page))) {
243 if (put_page_testzero(page)) {
245 * By the time all refcounts have been released
246 * split_huge_page cannot run anymore from under us.
248 if (PageHead(page))
249 __put_compound_page(page);
250 else
251 __put_single_page(page);
253 return;
257 * We see the PageCompound set and PageTail set, so @page maybe:
258 * 1. a tail hugetlbfs page, or
259 * 2. a tail THP page, or
260 * 3. a split THP page.
262 * Case 3 is possible, as we may race with
263 * __split_huge_page_refcount tearing down a THP page.
265 page_head = compound_head_by_tail(page);
266 if (!__compound_tail_refcounted(page_head))
267 put_unrefcounted_compound_page(page_head, page);
268 else
269 put_refcounted_compound_page(page_head, page);
272 void put_page(struct page *page)
274 if (unlikely(PageCompound(page)))
275 put_compound_page(page);
276 else if (put_page_testzero(page))
277 __put_single_page(page);
279 EXPORT_SYMBOL(put_page);
282 * This function is exported but must not be called by anything other
283 * than get_page(). It implements the slow path of get_page().
285 bool __get_page_tail(struct page *page)
288 * This takes care of get_page() if run on a tail page
289 * returned by one of the get_user_pages/follow_page variants.
290 * get_user_pages/follow_page itself doesn't need the compound
291 * lock because it runs __get_page_tail_foll() under the
292 * proper PT lock that already serializes against
293 * split_huge_page().
295 unsigned long flags;
296 bool got;
297 struct page *page_head = compound_head(page);
299 /* Ref to put_compound_page() comment. */
300 if (!__compound_tail_refcounted(page_head)) {
301 smp_rmb();
302 if (likely(PageTail(page))) {
304 * This is a hugetlbfs page or a slab
305 * page. __split_huge_page_refcount
306 * cannot race here.
308 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
309 __get_page_tail_foll(page, true);
310 return true;
311 } else {
313 * __split_huge_page_refcount run
314 * before us, "page" was a THP
315 * tail. The split page_head has been
316 * freed and reallocated as slab or
317 * hugetlbfs page of smaller order
318 * (only possible if reallocated as
319 * slab on x86).
321 return false;
325 got = false;
326 if (likely(page != page_head && get_page_unless_zero(page_head))) {
328 * page_head wasn't a dangling pointer but it
329 * may not be a head page anymore by the time
330 * we obtain the lock. That is ok as long as it
331 * can't be freed from under us.
333 flags = compound_lock_irqsave(page_head);
334 /* here __split_huge_page_refcount won't run anymore */
335 if (likely(PageTail(page))) {
336 __get_page_tail_foll(page, false);
337 got = true;
339 compound_unlock_irqrestore(page_head, flags);
340 if (unlikely(!got))
341 put_page(page_head);
343 return got;
345 EXPORT_SYMBOL(__get_page_tail);
348 * put_pages_list() - release a list of pages
349 * @pages: list of pages threaded on page->lru
351 * Release a list of pages which are strung together on page.lru. Currently
352 * used by read_cache_pages() and related error recovery code.
354 void put_pages_list(struct list_head *pages)
356 while (!list_empty(pages)) {
357 struct page *victim;
359 victim = list_entry(pages->prev, struct page, lru);
360 list_del(&victim->lru);
361 page_cache_release(victim);
364 EXPORT_SYMBOL(put_pages_list);
367 * get_kernel_pages() - pin kernel pages in memory
368 * @kiov: An array of struct kvec structures
369 * @nr_segs: number of segments to pin
370 * @write: pinning for read/write, currently ignored
371 * @pages: array that receives pointers to the pages pinned.
372 * Should be at least nr_segs long.
374 * Returns number of pages pinned. This may be fewer than the number
375 * requested. If nr_pages is 0 or negative, returns 0. If no pages
376 * were pinned, returns -errno. Each page returned must be released
377 * with a put_page() call when it is finished with.
379 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
380 struct page **pages)
382 int seg;
384 for (seg = 0; seg < nr_segs; seg++) {
385 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
386 return seg;
388 pages[seg] = kmap_to_page(kiov[seg].iov_base);
389 page_cache_get(pages[seg]);
392 return seg;
394 EXPORT_SYMBOL_GPL(get_kernel_pages);
397 * get_kernel_page() - pin a kernel page in memory
398 * @start: starting kernel address
399 * @write: pinning for read/write, currently ignored
400 * @pages: array that receives pointer to the page pinned.
401 * Must be at least nr_segs long.
403 * Returns 1 if page is pinned. If the page was not pinned, returns
404 * -errno. The page returned must be released with a put_page() call
405 * when it is finished with.
407 int get_kernel_page(unsigned long start, int write, struct page **pages)
409 const struct kvec kiov = {
410 .iov_base = (void *)start,
411 .iov_len = PAGE_SIZE
414 return get_kernel_pages(&kiov, 1, write, pages);
416 EXPORT_SYMBOL_GPL(get_kernel_page);
418 static void pagevec_lru_move_fn(struct pagevec *pvec,
419 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
420 void *arg)
422 int i;
423 struct zone *zone = NULL;
424 struct lruvec *lruvec;
425 unsigned long flags = 0;
427 for (i = 0; i < pagevec_count(pvec); i++) {
428 struct page *page = pvec->pages[i];
429 struct zone *pagezone = page_zone(page);
431 if (pagezone != zone) {
432 if (zone)
433 spin_unlock_irqrestore(&zone->lru_lock, flags);
434 zone = pagezone;
435 spin_lock_irqsave(&zone->lru_lock, flags);
438 lruvec = mem_cgroup_page_lruvec(page, zone);
439 (*move_fn)(page, lruvec, arg);
441 if (zone)
442 spin_unlock_irqrestore(&zone->lru_lock, flags);
443 release_pages(pvec->pages, pvec->nr, pvec->cold);
444 pagevec_reinit(pvec);
447 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
448 void *arg)
450 int *pgmoved = arg;
452 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
453 enum lru_list lru = page_lru_base_type(page);
454 list_move_tail(&page->lru, &lruvec->lists[lru]);
455 (*pgmoved)++;
460 * pagevec_move_tail() must be called with IRQ disabled.
461 * Otherwise this may cause nasty races.
463 static void pagevec_move_tail(struct pagevec *pvec)
465 int pgmoved = 0;
467 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
468 __count_vm_events(PGROTATED, pgmoved);
472 * Writeback is about to end against a page which has been marked for immediate
473 * reclaim. If it still appears to be reclaimable, move it to the tail of the
474 * inactive list.
476 void rotate_reclaimable_page(struct page *page)
478 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
479 !PageUnevictable(page) && PageLRU(page)) {
480 struct pagevec *pvec;
481 unsigned long flags;
483 page_cache_get(page);
484 local_irq_save(flags);
485 pvec = this_cpu_ptr(&lru_rotate_pvecs);
486 if (!pagevec_add(pvec, page))
487 pagevec_move_tail(pvec);
488 local_irq_restore(flags);
492 static void update_page_reclaim_stat(struct lruvec *lruvec,
493 int file, int rotated)
495 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
497 reclaim_stat->recent_scanned[file]++;
498 if (rotated)
499 reclaim_stat->recent_rotated[file]++;
502 static void __activate_page(struct page *page, struct lruvec *lruvec,
503 void *arg)
505 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
506 int file = page_is_file_cache(page);
507 int lru = page_lru_base_type(page);
509 del_page_from_lru_list(page, lruvec, lru);
510 SetPageActive(page);
511 lru += LRU_ACTIVE;
512 add_page_to_lru_list(page, lruvec, lru);
513 trace_mm_lru_activate(page);
515 __count_vm_event(PGACTIVATE);
516 update_page_reclaim_stat(lruvec, file, 1);
520 #ifdef CONFIG_SMP
521 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
523 static void activate_page_drain(int cpu)
525 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
527 if (pagevec_count(pvec))
528 pagevec_lru_move_fn(pvec, __activate_page, NULL);
531 static bool need_activate_page_drain(int cpu)
533 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
536 void activate_page(struct page *page)
538 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
539 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
541 page_cache_get(page);
542 if (!pagevec_add(pvec, page))
543 pagevec_lru_move_fn(pvec, __activate_page, NULL);
544 put_cpu_var(activate_page_pvecs);
548 #else
549 static inline void activate_page_drain(int cpu)
553 static bool need_activate_page_drain(int cpu)
555 return false;
558 void activate_page(struct page *page)
560 struct zone *zone = page_zone(page);
562 spin_lock_irq(&zone->lru_lock);
563 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
564 spin_unlock_irq(&zone->lru_lock);
566 #endif
568 static void __lru_cache_activate_page(struct page *page)
570 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
571 int i;
574 * Search backwards on the optimistic assumption that the page being
575 * activated has just been added to this pagevec. Note that only
576 * the local pagevec is examined as a !PageLRU page could be in the
577 * process of being released, reclaimed, migrated or on a remote
578 * pagevec that is currently being drained. Furthermore, marking
579 * a remote pagevec's page PageActive potentially hits a race where
580 * a page is marked PageActive just after it is added to the inactive
581 * list causing accounting errors and BUG_ON checks to trigger.
583 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
584 struct page *pagevec_page = pvec->pages[i];
586 if (pagevec_page == page) {
587 SetPageActive(page);
588 break;
592 put_cpu_var(lru_add_pvec);
596 * Mark a page as having seen activity.
598 * inactive,unreferenced -> inactive,referenced
599 * inactive,referenced -> active,unreferenced
600 * active,unreferenced -> active,referenced
602 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
603 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
605 void mark_page_accessed(struct page *page)
607 if (!PageActive(page) && !PageUnevictable(page) &&
608 PageReferenced(page)) {
611 * If the page is on the LRU, queue it for activation via
612 * activate_page_pvecs. Otherwise, assume the page is on a
613 * pagevec, mark it active and it'll be moved to the active
614 * LRU on the next drain.
616 if (PageLRU(page))
617 activate_page(page);
618 else
619 __lru_cache_activate_page(page);
620 ClearPageReferenced(page);
621 if (page_is_file_cache(page))
622 workingset_activation(page);
623 } else if (!PageReferenced(page)) {
624 SetPageReferenced(page);
627 EXPORT_SYMBOL(mark_page_accessed);
629 static void __lru_cache_add(struct page *page)
631 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
633 page_cache_get(page);
634 if (!pagevec_space(pvec))
635 __pagevec_lru_add(pvec);
636 pagevec_add(pvec, page);
637 put_cpu_var(lru_add_pvec);
641 * lru_cache_add: add a page to the page lists
642 * @page: the page to add
644 void lru_cache_add_anon(struct page *page)
646 if (PageActive(page))
647 ClearPageActive(page);
648 __lru_cache_add(page);
651 void lru_cache_add_file(struct page *page)
653 if (PageActive(page))
654 ClearPageActive(page);
655 __lru_cache_add(page);
657 EXPORT_SYMBOL(lru_cache_add_file);
660 * lru_cache_add - add a page to a page list
661 * @page: the page to be added to the LRU.
663 * Queue the page for addition to the LRU via pagevec. The decision on whether
664 * to add the page to the [in]active [file|anon] list is deferred until the
665 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
666 * have the page added to the active list using mark_page_accessed().
668 void lru_cache_add(struct page *page)
670 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
671 VM_BUG_ON_PAGE(PageLRU(page), page);
672 __lru_cache_add(page);
676 * add_page_to_unevictable_list - add a page to the unevictable list
677 * @page: the page to be added to the unevictable list
679 * Add page directly to its zone's unevictable list. To avoid races with
680 * tasks that might be making the page evictable, through eg. munlock,
681 * munmap or exit, while it's not on the lru, we want to add the page
682 * while it's locked or otherwise "invisible" to other tasks. This is
683 * difficult to do when using the pagevec cache, so bypass that.
685 void add_page_to_unevictable_list(struct page *page)
687 struct zone *zone = page_zone(page);
688 struct lruvec *lruvec;
690 spin_lock_irq(&zone->lru_lock);
691 lruvec = mem_cgroup_page_lruvec(page, zone);
692 ClearPageActive(page);
693 SetPageUnevictable(page);
694 SetPageLRU(page);
695 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
696 spin_unlock_irq(&zone->lru_lock);
700 * lru_cache_add_active_or_unevictable
701 * @page: the page to be added to LRU
702 * @vma: vma in which page is mapped for determining reclaimability
704 * Place @page on the active or unevictable LRU list, depending on its
705 * evictability. Note that if the page is not evictable, it goes
706 * directly back onto it's zone's unevictable list, it does NOT use a
707 * per cpu pagevec.
709 void lru_cache_add_active_or_unevictable(struct page *page,
710 struct vm_area_struct *vma)
712 VM_BUG_ON_PAGE(PageLRU(page), page);
714 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
715 SetPageActive(page);
716 lru_cache_add(page);
717 return;
720 if (!TestSetPageMlocked(page)) {
722 * We use the irq-unsafe __mod_zone_page_stat because this
723 * counter is not modified from interrupt context, and the pte
724 * lock is held(spinlock), which implies preemption disabled.
726 __mod_zone_page_state(page_zone(page), NR_MLOCK,
727 hpage_nr_pages(page));
728 count_vm_event(UNEVICTABLE_PGMLOCKED);
730 add_page_to_unevictable_list(page);
734 * If the page can not be invalidated, it is moved to the
735 * inactive list to speed up its reclaim. It is moved to the
736 * head of the list, rather than the tail, to give the flusher
737 * threads some time to write it out, as this is much more
738 * effective than the single-page writeout from reclaim.
740 * If the page isn't page_mapped and dirty/writeback, the page
741 * could reclaim asap using PG_reclaim.
743 * 1. active, mapped page -> none
744 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
745 * 3. inactive, mapped page -> none
746 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
747 * 5. inactive, clean -> inactive, tail
748 * 6. Others -> none
750 * In 4, why it moves inactive's head, the VM expects the page would
751 * be write it out by flusher threads as this is much more effective
752 * than the single-page writeout from reclaim.
754 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
755 void *arg)
757 int lru, file;
758 bool active;
760 if (!PageLRU(page))
761 return;
763 if (PageUnevictable(page))
764 return;
766 /* Some processes are using the page */
767 if (page_mapped(page))
768 return;
770 active = PageActive(page);
771 file = page_is_file_cache(page);
772 lru = page_lru_base_type(page);
774 del_page_from_lru_list(page, lruvec, lru + active);
775 ClearPageActive(page);
776 ClearPageReferenced(page);
777 add_page_to_lru_list(page, lruvec, lru);
779 if (PageWriteback(page) || PageDirty(page)) {
781 * PG_reclaim could be raced with end_page_writeback
782 * It can make readahead confusing. But race window
783 * is _really_ small and it's non-critical problem.
785 SetPageReclaim(page);
786 } else {
788 * The page's writeback ends up during pagevec
789 * We moves tha page into tail of inactive.
791 list_move_tail(&page->lru, &lruvec->lists[lru]);
792 __count_vm_event(PGROTATED);
795 if (active)
796 __count_vm_event(PGDEACTIVATE);
797 update_page_reclaim_stat(lruvec, file, 0);
801 * Drain pages out of the cpu's pagevecs.
802 * Either "cpu" is the current CPU, and preemption has already been
803 * disabled; or "cpu" is being hot-unplugged, and is already dead.
805 void lru_add_drain_cpu(int cpu)
807 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
809 if (pagevec_count(pvec))
810 __pagevec_lru_add(pvec);
812 pvec = &per_cpu(lru_rotate_pvecs, cpu);
813 if (pagevec_count(pvec)) {
814 unsigned long flags;
816 /* No harm done if a racing interrupt already did this */
817 local_irq_save(flags);
818 pagevec_move_tail(pvec);
819 local_irq_restore(flags);
822 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
823 if (pagevec_count(pvec))
824 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
826 activate_page_drain(cpu);
830 * deactivate_file_page - forcefully deactivate a file page
831 * @page: page to deactivate
833 * This function hints the VM that @page is a good reclaim candidate,
834 * for example if its invalidation fails due to the page being dirty
835 * or under writeback.
837 void deactivate_file_page(struct page *page)
840 * In a workload with many unevictable page such as mprotect,
841 * unevictable page deactivation for accelerating reclaim is pointless.
843 if (PageUnevictable(page))
844 return;
846 if (likely(get_page_unless_zero(page))) {
847 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
849 if (!pagevec_add(pvec, page))
850 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
851 put_cpu_var(lru_deactivate_file_pvecs);
855 void lru_add_drain(void)
857 lru_add_drain_cpu(get_cpu());
858 put_cpu();
861 static void lru_add_drain_per_cpu(struct work_struct *dummy)
863 lru_add_drain();
866 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
868 void lru_add_drain_all(void)
870 static DEFINE_MUTEX(lock);
871 static struct cpumask has_work;
872 int cpu;
874 mutex_lock(&lock);
875 get_online_cpus();
876 cpumask_clear(&has_work);
878 for_each_online_cpu(cpu) {
879 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
881 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
882 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
883 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
884 need_activate_page_drain(cpu)) {
885 INIT_WORK(work, lru_add_drain_per_cpu);
886 schedule_work_on(cpu, work);
887 cpumask_set_cpu(cpu, &has_work);
891 for_each_cpu(cpu, &has_work)
892 flush_work(&per_cpu(lru_add_drain_work, cpu));
894 put_online_cpus();
895 mutex_unlock(&lock);
899 * release_pages - batched page_cache_release()
900 * @pages: array of pages to release
901 * @nr: number of pages
902 * @cold: whether the pages are cache cold
904 * Decrement the reference count on all the pages in @pages. If it
905 * fell to zero, remove the page from the LRU and free it.
907 void release_pages(struct page **pages, int nr, bool cold)
909 int i;
910 LIST_HEAD(pages_to_free);
911 struct zone *zone = NULL;
912 struct lruvec *lruvec;
913 unsigned long uninitialized_var(flags);
914 unsigned int uninitialized_var(lock_batch);
916 for (i = 0; i < nr; i++) {
917 struct page *page = pages[i];
919 if (unlikely(PageCompound(page))) {
920 if (zone) {
921 spin_unlock_irqrestore(&zone->lru_lock, flags);
922 zone = NULL;
924 put_compound_page(page);
925 continue;
929 * Make sure the IRQ-safe lock-holding time does not get
930 * excessive with a continuous string of pages from the
931 * same zone. The lock is held only if zone != NULL.
933 if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
934 spin_unlock_irqrestore(&zone->lru_lock, flags);
935 zone = NULL;
938 if (!put_page_testzero(page))
939 continue;
941 if (PageLRU(page)) {
942 struct zone *pagezone = page_zone(page);
944 if (pagezone != zone) {
945 if (zone)
946 spin_unlock_irqrestore(&zone->lru_lock,
947 flags);
948 lock_batch = 0;
949 zone = pagezone;
950 spin_lock_irqsave(&zone->lru_lock, flags);
953 lruvec = mem_cgroup_page_lruvec(page, zone);
954 VM_BUG_ON_PAGE(!PageLRU(page), page);
955 __ClearPageLRU(page);
956 del_page_from_lru_list(page, lruvec, page_off_lru(page));
959 /* Clear Active bit in case of parallel mark_page_accessed */
960 __ClearPageActive(page);
962 list_add(&page->lru, &pages_to_free);
964 if (zone)
965 spin_unlock_irqrestore(&zone->lru_lock, flags);
967 mem_cgroup_uncharge_list(&pages_to_free);
968 free_hot_cold_page_list(&pages_to_free, cold);
970 EXPORT_SYMBOL(release_pages);
973 * The pages which we're about to release may be in the deferred lru-addition
974 * queues. That would prevent them from really being freed right now. That's
975 * OK from a correctness point of view but is inefficient - those pages may be
976 * cache-warm and we want to give them back to the page allocator ASAP.
978 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
979 * and __pagevec_lru_add_active() call release_pages() directly to avoid
980 * mutual recursion.
982 void __pagevec_release(struct pagevec *pvec)
984 lru_add_drain();
985 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
986 pagevec_reinit(pvec);
988 EXPORT_SYMBOL(__pagevec_release);
990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
991 /* used by __split_huge_page_refcount() */
992 void lru_add_page_tail(struct page *page, struct page *page_tail,
993 struct lruvec *lruvec, struct list_head *list)
995 const int file = 0;
997 VM_BUG_ON_PAGE(!PageHead(page), page);
998 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
999 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
1000 VM_BUG_ON(NR_CPUS != 1 &&
1001 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
1003 if (!list)
1004 SetPageLRU(page_tail);
1006 if (likely(PageLRU(page)))
1007 list_add_tail(&page_tail->lru, &page->lru);
1008 else if (list) {
1009 /* page reclaim is reclaiming a huge page */
1010 get_page(page_tail);
1011 list_add_tail(&page_tail->lru, list);
1012 } else {
1013 struct list_head *list_head;
1015 * Head page has not yet been counted, as an hpage,
1016 * so we must account for each subpage individually.
1018 * Use the standard add function to put page_tail on the list,
1019 * but then correct its position so they all end up in order.
1021 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
1022 list_head = page_tail->lru.prev;
1023 list_move_tail(&page_tail->lru, list_head);
1026 if (!PageUnevictable(page))
1027 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
1029 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1031 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1032 void *arg)
1034 int file = page_is_file_cache(page);
1035 int active = PageActive(page);
1036 enum lru_list lru = page_lru(page);
1038 VM_BUG_ON_PAGE(PageLRU(page), page);
1040 SetPageLRU(page);
1041 add_page_to_lru_list(page, lruvec, lru);
1042 update_page_reclaim_stat(lruvec, file, active);
1043 trace_mm_lru_insertion(page, lru);
1047 * Add the passed pages to the LRU, then drop the caller's refcount
1048 * on them. Reinitialises the caller's pagevec.
1050 void __pagevec_lru_add(struct pagevec *pvec)
1052 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1054 EXPORT_SYMBOL(__pagevec_lru_add);
1057 * pagevec_lookup_entries - gang pagecache lookup
1058 * @pvec: Where the resulting entries are placed
1059 * @mapping: The address_space to search
1060 * @start: The starting entry index
1061 * @nr_entries: The maximum number of entries
1062 * @indices: The cache indices corresponding to the entries in @pvec
1064 * pagevec_lookup_entries() will search for and return a group of up
1065 * to @nr_entries pages and shadow entries in the mapping. All
1066 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1067 * reference against actual pages in @pvec.
1069 * The search returns a group of mapping-contiguous entries with
1070 * ascending indexes. There may be holes in the indices due to
1071 * not-present entries.
1073 * pagevec_lookup_entries() returns the number of entries which were
1074 * found.
1076 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1077 struct address_space *mapping,
1078 pgoff_t start, unsigned nr_pages,
1079 pgoff_t *indices)
1081 pvec->nr = find_get_entries(mapping, start, nr_pages,
1082 pvec->pages, indices);
1083 return pagevec_count(pvec);
1087 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1088 * @pvec: The pagevec to prune
1090 * pagevec_lookup_entries() fills both pages and exceptional radix
1091 * tree entries into the pagevec. This function prunes all
1092 * exceptionals from @pvec without leaving holes, so that it can be
1093 * passed on to page-only pagevec operations.
1095 void pagevec_remove_exceptionals(struct pagevec *pvec)
1097 int i, j;
1099 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1100 struct page *page = pvec->pages[i];
1101 if (!radix_tree_exceptional_entry(page))
1102 pvec->pages[j++] = page;
1104 pvec->nr = j;
1108 * pagevec_lookup - gang pagecache lookup
1109 * @pvec: Where the resulting pages are placed
1110 * @mapping: The address_space to search
1111 * @start: The starting page index
1112 * @nr_pages: The maximum number of pages
1114 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1115 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
1116 * reference against the pages in @pvec.
1118 * The search returns a group of mapping-contiguous pages with ascending
1119 * indexes. There may be holes in the indices due to not-present pages.
1121 * pagevec_lookup() returns the number of pages which were found.
1123 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1124 pgoff_t start, unsigned nr_pages)
1126 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1127 return pagevec_count(pvec);
1129 EXPORT_SYMBOL(pagevec_lookup);
1131 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1132 pgoff_t *index, int tag, unsigned nr_pages)
1134 pvec->nr = find_get_pages_tag(mapping, index, tag,
1135 nr_pages, pvec->pages);
1136 return pagevec_count(pvec);
1138 EXPORT_SYMBOL(pagevec_lookup_tag);
1141 * Perform any setup for the swap system
1143 void __init swap_setup(void)
1145 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1146 #ifdef CONFIG_SWAP
1147 int i;
1149 for (i = 0; i < MAX_SWAPFILES; i++)
1150 spin_lock_init(&swapper_spaces[i].tree_lock);
1151 #endif
1153 /* Use a smaller cluster for small-memory machines */
1154 if (megs < 16)
1155 page_cluster = 2;
1156 else
1157 page_cluster = 3;
1159 * Right now other parts of the system means that we
1160 * _really_ don't want to cluster much more