drm/nouveau/gr/gf100-: fix wrong constant definition
[linux-2.6/btrfs-unstable.git] / mm / hugetlb.c
blob271e4432734c376baf0bf4b8953a38e391ac011c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
38 int hugepages_treat_as_movable;
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
44 __initdata LIST_HEAD(huge_boot_pages);
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
55 DEFINE_SPINLOCK(hugetlb_lock);
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 static int num_fault_mutexes;
62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64 /* Forward declaration */
65 static int hugetlb_acct_memory(struct hstate *h, long delta);
67 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
69 bool free = (spool->count == 0) && (spool->used_hpages == 0);
71 spin_unlock(&spool->lock);
73 /* If no pages are used, and no other handles to the subpool
74 * remain, give up any reservations mased on minimum size and
75 * free the subpool */
76 if (free) {
77 if (spool->min_hpages != -1)
78 hugetlb_acct_memory(spool->hstate,
79 -spool->min_hpages);
80 kfree(spool);
84 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
85 long min_hpages)
87 struct hugepage_subpool *spool;
89 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90 if (!spool)
91 return NULL;
93 spin_lock_init(&spool->lock);
94 spool->count = 1;
95 spool->max_hpages = max_hpages;
96 spool->hstate = h;
97 spool->min_hpages = min_hpages;
99 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
100 kfree(spool);
101 return NULL;
103 spool->rsv_hpages = min_hpages;
105 return spool;
108 void hugepage_put_subpool(struct hugepage_subpool *spool)
110 spin_lock(&spool->lock);
111 BUG_ON(!spool->count);
112 spool->count--;
113 unlock_or_release_subpool(spool);
117 * Subpool accounting for allocating and reserving pages.
118 * Return -ENOMEM if there are not enough resources to satisfy the
119 * the request. Otherwise, return the number of pages by which the
120 * global pools must be adjusted (upward). The returned value may
121 * only be different than the passed value (delta) in the case where
122 * a subpool minimum size must be manitained.
124 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
125 long delta)
127 long ret = delta;
129 if (!spool)
130 return ret;
132 spin_lock(&spool->lock);
134 if (spool->max_hpages != -1) { /* maximum size accounting */
135 if ((spool->used_hpages + delta) <= spool->max_hpages)
136 spool->used_hpages += delta;
137 else {
138 ret = -ENOMEM;
139 goto unlock_ret;
143 if (spool->min_hpages != -1) { /* minimum size accounting */
144 if (delta > spool->rsv_hpages) {
146 * Asking for more reserves than those already taken on
147 * behalf of subpool. Return difference.
149 ret = delta - spool->rsv_hpages;
150 spool->rsv_hpages = 0;
151 } else {
152 ret = 0; /* reserves already accounted for */
153 spool->rsv_hpages -= delta;
157 unlock_ret:
158 spin_unlock(&spool->lock);
159 return ret;
163 * Subpool accounting for freeing and unreserving pages.
164 * Return the number of global page reservations that must be dropped.
165 * The return value may only be different than the passed value (delta)
166 * in the case where a subpool minimum size must be maintained.
168 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
169 long delta)
171 long ret = delta;
173 if (!spool)
174 return delta;
176 spin_lock(&spool->lock);
178 if (spool->max_hpages != -1) /* maximum size accounting */
179 spool->used_hpages -= delta;
181 if (spool->min_hpages != -1) { /* minimum size accounting */
182 if (spool->rsv_hpages + delta <= spool->min_hpages)
183 ret = 0;
184 else
185 ret = spool->rsv_hpages + delta - spool->min_hpages;
187 spool->rsv_hpages += delta;
188 if (spool->rsv_hpages > spool->min_hpages)
189 spool->rsv_hpages = spool->min_hpages;
193 * If hugetlbfs_put_super couldn't free spool due to an outstanding
194 * quota reference, free it now.
196 unlock_or_release_subpool(spool);
198 return ret;
201 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
203 return HUGETLBFS_SB(inode->i_sb)->spool;
206 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
208 return subpool_inode(file_inode(vma->vm_file));
212 * Region tracking -- allows tracking of reservations and instantiated pages
213 * across the pages in a mapping.
215 * The region data structures are embedded into a resv_map and
216 * protected by a resv_map's lock
218 struct file_region {
219 struct list_head link;
220 long from;
221 long to;
224 static long region_add(struct resv_map *resv, long f, long t)
226 struct list_head *head = &resv->regions;
227 struct file_region *rg, *nrg, *trg;
229 spin_lock(&resv->lock);
230 /* Locate the region we are either in or before. */
231 list_for_each_entry(rg, head, link)
232 if (f <= rg->to)
233 break;
235 /* Round our left edge to the current segment if it encloses us. */
236 if (f > rg->from)
237 f = rg->from;
239 /* Check for and consume any regions we now overlap with. */
240 nrg = rg;
241 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
242 if (&rg->link == head)
243 break;
244 if (rg->from > t)
245 break;
247 /* If this area reaches higher then extend our area to
248 * include it completely. If this is not the first area
249 * which we intend to reuse, free it. */
250 if (rg->to > t)
251 t = rg->to;
252 if (rg != nrg) {
253 list_del(&rg->link);
254 kfree(rg);
257 nrg->from = f;
258 nrg->to = t;
259 spin_unlock(&resv->lock);
260 return 0;
263 static long region_chg(struct resv_map *resv, long f, long t)
265 struct list_head *head = &resv->regions;
266 struct file_region *rg, *nrg = NULL;
267 long chg = 0;
269 retry:
270 spin_lock(&resv->lock);
271 /* Locate the region we are before or in. */
272 list_for_each_entry(rg, head, link)
273 if (f <= rg->to)
274 break;
276 /* If we are below the current region then a new region is required.
277 * Subtle, allocate a new region at the position but make it zero
278 * size such that we can guarantee to record the reservation. */
279 if (&rg->link == head || t < rg->from) {
280 if (!nrg) {
281 spin_unlock(&resv->lock);
282 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
283 if (!nrg)
284 return -ENOMEM;
286 nrg->from = f;
287 nrg->to = f;
288 INIT_LIST_HEAD(&nrg->link);
289 goto retry;
292 list_add(&nrg->link, rg->link.prev);
293 chg = t - f;
294 goto out_nrg;
297 /* Round our left edge to the current segment if it encloses us. */
298 if (f > rg->from)
299 f = rg->from;
300 chg = t - f;
302 /* Check for and consume any regions we now overlap with. */
303 list_for_each_entry(rg, rg->link.prev, link) {
304 if (&rg->link == head)
305 break;
306 if (rg->from > t)
307 goto out;
309 /* We overlap with this area, if it extends further than
310 * us then we must extend ourselves. Account for its
311 * existing reservation. */
312 if (rg->to > t) {
313 chg += rg->to - t;
314 t = rg->to;
316 chg -= rg->to - rg->from;
319 out:
320 spin_unlock(&resv->lock);
321 /* We already know we raced and no longer need the new region */
322 kfree(nrg);
323 return chg;
324 out_nrg:
325 spin_unlock(&resv->lock);
326 return chg;
329 static long region_truncate(struct resv_map *resv, long end)
331 struct list_head *head = &resv->regions;
332 struct file_region *rg, *trg;
333 long chg = 0;
335 spin_lock(&resv->lock);
336 /* Locate the region we are either in or before. */
337 list_for_each_entry(rg, head, link)
338 if (end <= rg->to)
339 break;
340 if (&rg->link == head)
341 goto out;
343 /* If we are in the middle of a region then adjust it. */
344 if (end > rg->from) {
345 chg = rg->to - end;
346 rg->to = end;
347 rg = list_entry(rg->link.next, typeof(*rg), link);
350 /* Drop any remaining regions. */
351 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
352 if (&rg->link == head)
353 break;
354 chg += rg->to - rg->from;
355 list_del(&rg->link);
356 kfree(rg);
359 out:
360 spin_unlock(&resv->lock);
361 return chg;
364 static long region_count(struct resv_map *resv, long f, long t)
366 struct list_head *head = &resv->regions;
367 struct file_region *rg;
368 long chg = 0;
370 spin_lock(&resv->lock);
371 /* Locate each segment we overlap with, and count that overlap. */
372 list_for_each_entry(rg, head, link) {
373 long seg_from;
374 long seg_to;
376 if (rg->to <= f)
377 continue;
378 if (rg->from >= t)
379 break;
381 seg_from = max(rg->from, f);
382 seg_to = min(rg->to, t);
384 chg += seg_to - seg_from;
386 spin_unlock(&resv->lock);
388 return chg;
392 * Convert the address within this vma to the page offset within
393 * the mapping, in pagecache page units; huge pages here.
395 static pgoff_t vma_hugecache_offset(struct hstate *h,
396 struct vm_area_struct *vma, unsigned long address)
398 return ((address - vma->vm_start) >> huge_page_shift(h)) +
399 (vma->vm_pgoff >> huge_page_order(h));
402 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
403 unsigned long address)
405 return vma_hugecache_offset(hstate_vma(vma), vma, address);
409 * Return the size of the pages allocated when backing a VMA. In the majority
410 * cases this will be same size as used by the page table entries.
412 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
414 struct hstate *hstate;
416 if (!is_vm_hugetlb_page(vma))
417 return PAGE_SIZE;
419 hstate = hstate_vma(vma);
421 return 1UL << huge_page_shift(hstate);
423 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
426 * Return the page size being used by the MMU to back a VMA. In the majority
427 * of cases, the page size used by the kernel matches the MMU size. On
428 * architectures where it differs, an architecture-specific version of this
429 * function is required.
431 #ifndef vma_mmu_pagesize
432 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
434 return vma_kernel_pagesize(vma);
436 #endif
439 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
440 * bits of the reservation map pointer, which are always clear due to
441 * alignment.
443 #define HPAGE_RESV_OWNER (1UL << 0)
444 #define HPAGE_RESV_UNMAPPED (1UL << 1)
445 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
448 * These helpers are used to track how many pages are reserved for
449 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
450 * is guaranteed to have their future faults succeed.
452 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
453 * the reserve counters are updated with the hugetlb_lock held. It is safe
454 * to reset the VMA at fork() time as it is not in use yet and there is no
455 * chance of the global counters getting corrupted as a result of the values.
457 * The private mapping reservation is represented in a subtly different
458 * manner to a shared mapping. A shared mapping has a region map associated
459 * with the underlying file, this region map represents the backing file
460 * pages which have ever had a reservation assigned which this persists even
461 * after the page is instantiated. A private mapping has a region map
462 * associated with the original mmap which is attached to all VMAs which
463 * reference it, this region map represents those offsets which have consumed
464 * reservation ie. where pages have been instantiated.
466 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
468 return (unsigned long)vma->vm_private_data;
471 static void set_vma_private_data(struct vm_area_struct *vma,
472 unsigned long value)
474 vma->vm_private_data = (void *)value;
477 struct resv_map *resv_map_alloc(void)
479 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
480 if (!resv_map)
481 return NULL;
483 kref_init(&resv_map->refs);
484 spin_lock_init(&resv_map->lock);
485 INIT_LIST_HEAD(&resv_map->regions);
487 return resv_map;
490 void resv_map_release(struct kref *ref)
492 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
494 /* Clear out any active regions before we release the map. */
495 region_truncate(resv_map, 0);
496 kfree(resv_map);
499 static inline struct resv_map *inode_resv_map(struct inode *inode)
501 return inode->i_mapping->private_data;
504 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
506 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
507 if (vma->vm_flags & VM_MAYSHARE) {
508 struct address_space *mapping = vma->vm_file->f_mapping;
509 struct inode *inode = mapping->host;
511 return inode_resv_map(inode);
513 } else {
514 return (struct resv_map *)(get_vma_private_data(vma) &
515 ~HPAGE_RESV_MASK);
519 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
521 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
522 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
524 set_vma_private_data(vma, (get_vma_private_data(vma) &
525 HPAGE_RESV_MASK) | (unsigned long)map);
528 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
530 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
531 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
533 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
536 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
538 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
540 return (get_vma_private_data(vma) & flag) != 0;
543 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
544 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
546 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
547 if (!(vma->vm_flags & VM_MAYSHARE))
548 vma->vm_private_data = (void *)0;
551 /* Returns true if the VMA has associated reserve pages */
552 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
554 if (vma->vm_flags & VM_NORESERVE) {
556 * This address is already reserved by other process(chg == 0),
557 * so, we should decrement reserved count. Without decrementing,
558 * reserve count remains after releasing inode, because this
559 * allocated page will go into page cache and is regarded as
560 * coming from reserved pool in releasing step. Currently, we
561 * don't have any other solution to deal with this situation
562 * properly, so add work-around here.
564 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
565 return 1;
566 else
567 return 0;
570 /* Shared mappings always use reserves */
571 if (vma->vm_flags & VM_MAYSHARE)
572 return 1;
575 * Only the process that called mmap() has reserves for
576 * private mappings.
578 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
579 return 1;
581 return 0;
584 static void enqueue_huge_page(struct hstate *h, struct page *page)
586 int nid = page_to_nid(page);
587 list_move(&page->lru, &h->hugepage_freelists[nid]);
588 h->free_huge_pages++;
589 h->free_huge_pages_node[nid]++;
592 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
594 struct page *page;
596 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
597 if (!is_migrate_isolate_page(page))
598 break;
600 * if 'non-isolated free hugepage' not found on the list,
601 * the allocation fails.
603 if (&h->hugepage_freelists[nid] == &page->lru)
604 return NULL;
605 list_move(&page->lru, &h->hugepage_activelist);
606 set_page_refcounted(page);
607 h->free_huge_pages--;
608 h->free_huge_pages_node[nid]--;
609 return page;
612 /* Movability of hugepages depends on migration support. */
613 static inline gfp_t htlb_alloc_mask(struct hstate *h)
615 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
616 return GFP_HIGHUSER_MOVABLE;
617 else
618 return GFP_HIGHUSER;
621 static struct page *dequeue_huge_page_vma(struct hstate *h,
622 struct vm_area_struct *vma,
623 unsigned long address, int avoid_reserve,
624 long chg)
626 struct page *page = NULL;
627 struct mempolicy *mpol;
628 nodemask_t *nodemask;
629 struct zonelist *zonelist;
630 struct zone *zone;
631 struct zoneref *z;
632 unsigned int cpuset_mems_cookie;
635 * A child process with MAP_PRIVATE mappings created by their parent
636 * have no page reserves. This check ensures that reservations are
637 * not "stolen". The child may still get SIGKILLed
639 if (!vma_has_reserves(vma, chg) &&
640 h->free_huge_pages - h->resv_huge_pages == 0)
641 goto err;
643 /* If reserves cannot be used, ensure enough pages are in the pool */
644 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
645 goto err;
647 retry_cpuset:
648 cpuset_mems_cookie = read_mems_allowed_begin();
649 zonelist = huge_zonelist(vma, address,
650 htlb_alloc_mask(h), &mpol, &nodemask);
652 for_each_zone_zonelist_nodemask(zone, z, zonelist,
653 MAX_NR_ZONES - 1, nodemask) {
654 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
655 page = dequeue_huge_page_node(h, zone_to_nid(zone));
656 if (page) {
657 if (avoid_reserve)
658 break;
659 if (!vma_has_reserves(vma, chg))
660 break;
662 SetPagePrivate(page);
663 h->resv_huge_pages--;
664 break;
669 mpol_cond_put(mpol);
670 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
671 goto retry_cpuset;
672 return page;
674 err:
675 return NULL;
679 * common helper functions for hstate_next_node_to_{alloc|free}.
680 * We may have allocated or freed a huge page based on a different
681 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
682 * be outside of *nodes_allowed. Ensure that we use an allowed
683 * node for alloc or free.
685 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
687 nid = next_node(nid, *nodes_allowed);
688 if (nid == MAX_NUMNODES)
689 nid = first_node(*nodes_allowed);
690 VM_BUG_ON(nid >= MAX_NUMNODES);
692 return nid;
695 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
697 if (!node_isset(nid, *nodes_allowed))
698 nid = next_node_allowed(nid, nodes_allowed);
699 return nid;
703 * returns the previously saved node ["this node"] from which to
704 * allocate a persistent huge page for the pool and advance the
705 * next node from which to allocate, handling wrap at end of node
706 * mask.
708 static int hstate_next_node_to_alloc(struct hstate *h,
709 nodemask_t *nodes_allowed)
711 int nid;
713 VM_BUG_ON(!nodes_allowed);
715 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
716 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
718 return nid;
722 * helper for free_pool_huge_page() - return the previously saved
723 * node ["this node"] from which to free a huge page. Advance the
724 * next node id whether or not we find a free huge page to free so
725 * that the next attempt to free addresses the next node.
727 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
729 int nid;
731 VM_BUG_ON(!nodes_allowed);
733 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
734 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
736 return nid;
739 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
740 for (nr_nodes = nodes_weight(*mask); \
741 nr_nodes > 0 && \
742 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
743 nr_nodes--)
745 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
746 for (nr_nodes = nodes_weight(*mask); \
747 nr_nodes > 0 && \
748 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
749 nr_nodes--)
751 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
752 static void destroy_compound_gigantic_page(struct page *page,
753 unsigned long order)
755 int i;
756 int nr_pages = 1 << order;
757 struct page *p = page + 1;
759 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
760 __ClearPageTail(p);
761 set_page_refcounted(p);
762 p->first_page = NULL;
765 set_compound_order(page, 0);
766 __ClearPageHead(page);
769 static void free_gigantic_page(struct page *page, unsigned order)
771 free_contig_range(page_to_pfn(page), 1 << order);
774 static int __alloc_gigantic_page(unsigned long start_pfn,
775 unsigned long nr_pages)
777 unsigned long end_pfn = start_pfn + nr_pages;
778 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
781 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
782 unsigned long nr_pages)
784 unsigned long i, end_pfn = start_pfn + nr_pages;
785 struct page *page;
787 for (i = start_pfn; i < end_pfn; i++) {
788 if (!pfn_valid(i))
789 return false;
791 page = pfn_to_page(i);
793 if (PageReserved(page))
794 return false;
796 if (page_count(page) > 0)
797 return false;
799 if (PageHuge(page))
800 return false;
803 return true;
806 static bool zone_spans_last_pfn(const struct zone *zone,
807 unsigned long start_pfn, unsigned long nr_pages)
809 unsigned long last_pfn = start_pfn + nr_pages - 1;
810 return zone_spans_pfn(zone, last_pfn);
813 static struct page *alloc_gigantic_page(int nid, unsigned order)
815 unsigned long nr_pages = 1 << order;
816 unsigned long ret, pfn, flags;
817 struct zone *z;
819 z = NODE_DATA(nid)->node_zones;
820 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
821 spin_lock_irqsave(&z->lock, flags);
823 pfn = ALIGN(z->zone_start_pfn, nr_pages);
824 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
825 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
827 * We release the zone lock here because
828 * alloc_contig_range() will also lock the zone
829 * at some point. If there's an allocation
830 * spinning on this lock, it may win the race
831 * and cause alloc_contig_range() to fail...
833 spin_unlock_irqrestore(&z->lock, flags);
834 ret = __alloc_gigantic_page(pfn, nr_pages);
835 if (!ret)
836 return pfn_to_page(pfn);
837 spin_lock_irqsave(&z->lock, flags);
839 pfn += nr_pages;
842 spin_unlock_irqrestore(&z->lock, flags);
845 return NULL;
848 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
849 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
851 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
853 struct page *page;
855 page = alloc_gigantic_page(nid, huge_page_order(h));
856 if (page) {
857 prep_compound_gigantic_page(page, huge_page_order(h));
858 prep_new_huge_page(h, page, nid);
861 return page;
864 static int alloc_fresh_gigantic_page(struct hstate *h,
865 nodemask_t *nodes_allowed)
867 struct page *page = NULL;
868 int nr_nodes, node;
870 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
871 page = alloc_fresh_gigantic_page_node(h, node);
872 if (page)
873 return 1;
876 return 0;
879 static inline bool gigantic_page_supported(void) { return true; }
880 #else
881 static inline bool gigantic_page_supported(void) { return false; }
882 static inline void free_gigantic_page(struct page *page, unsigned order) { }
883 static inline void destroy_compound_gigantic_page(struct page *page,
884 unsigned long order) { }
885 static inline int alloc_fresh_gigantic_page(struct hstate *h,
886 nodemask_t *nodes_allowed) { return 0; }
887 #endif
889 static void update_and_free_page(struct hstate *h, struct page *page)
891 int i;
893 if (hstate_is_gigantic(h) && !gigantic_page_supported())
894 return;
896 h->nr_huge_pages--;
897 h->nr_huge_pages_node[page_to_nid(page)]--;
898 for (i = 0; i < pages_per_huge_page(h); i++) {
899 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
900 1 << PG_referenced | 1 << PG_dirty |
901 1 << PG_active | 1 << PG_private |
902 1 << PG_writeback);
904 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
905 set_compound_page_dtor(page, NULL);
906 set_page_refcounted(page);
907 if (hstate_is_gigantic(h)) {
908 destroy_compound_gigantic_page(page, huge_page_order(h));
909 free_gigantic_page(page, huge_page_order(h));
910 } else {
911 arch_release_hugepage(page);
912 __free_pages(page, huge_page_order(h));
916 struct hstate *size_to_hstate(unsigned long size)
918 struct hstate *h;
920 for_each_hstate(h) {
921 if (huge_page_size(h) == size)
922 return h;
924 return NULL;
928 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
929 * to hstate->hugepage_activelist.)
931 * This function can be called for tail pages, but never returns true for them.
933 bool page_huge_active(struct page *page)
935 VM_BUG_ON_PAGE(!PageHuge(page), page);
936 return PageHead(page) && PagePrivate(&page[1]);
939 /* never called for tail page */
940 static void set_page_huge_active(struct page *page)
942 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
943 SetPagePrivate(&page[1]);
946 static void clear_page_huge_active(struct page *page)
948 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
949 ClearPagePrivate(&page[1]);
952 void free_huge_page(struct page *page)
955 * Can't pass hstate in here because it is called from the
956 * compound page destructor.
958 struct hstate *h = page_hstate(page);
959 int nid = page_to_nid(page);
960 struct hugepage_subpool *spool =
961 (struct hugepage_subpool *)page_private(page);
962 bool restore_reserve;
964 set_page_private(page, 0);
965 page->mapping = NULL;
966 BUG_ON(page_count(page));
967 BUG_ON(page_mapcount(page));
968 restore_reserve = PagePrivate(page);
969 ClearPagePrivate(page);
972 * A return code of zero implies that the subpool will be under its
973 * minimum size if the reservation is not restored after page is free.
974 * Therefore, force restore_reserve operation.
976 if (hugepage_subpool_put_pages(spool, 1) == 0)
977 restore_reserve = true;
979 spin_lock(&hugetlb_lock);
980 clear_page_huge_active(page);
981 hugetlb_cgroup_uncharge_page(hstate_index(h),
982 pages_per_huge_page(h), page);
983 if (restore_reserve)
984 h->resv_huge_pages++;
986 if (h->surplus_huge_pages_node[nid]) {
987 /* remove the page from active list */
988 list_del(&page->lru);
989 update_and_free_page(h, page);
990 h->surplus_huge_pages--;
991 h->surplus_huge_pages_node[nid]--;
992 } else {
993 arch_clear_hugepage_flags(page);
994 enqueue_huge_page(h, page);
996 spin_unlock(&hugetlb_lock);
999 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1001 INIT_LIST_HEAD(&page->lru);
1002 set_compound_page_dtor(page, free_huge_page);
1003 spin_lock(&hugetlb_lock);
1004 set_hugetlb_cgroup(page, NULL);
1005 h->nr_huge_pages++;
1006 h->nr_huge_pages_node[nid]++;
1007 spin_unlock(&hugetlb_lock);
1008 put_page(page); /* free it into the hugepage allocator */
1011 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1013 int i;
1014 int nr_pages = 1 << order;
1015 struct page *p = page + 1;
1017 /* we rely on prep_new_huge_page to set the destructor */
1018 set_compound_order(page, order);
1019 __SetPageHead(page);
1020 __ClearPageReserved(page);
1021 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1023 * For gigantic hugepages allocated through bootmem at
1024 * boot, it's safer to be consistent with the not-gigantic
1025 * hugepages and clear the PG_reserved bit from all tail pages
1026 * too. Otherwse drivers using get_user_pages() to access tail
1027 * pages may get the reference counting wrong if they see
1028 * PG_reserved set on a tail page (despite the head page not
1029 * having PG_reserved set). Enforcing this consistency between
1030 * head and tail pages allows drivers to optimize away a check
1031 * on the head page when they need know if put_page() is needed
1032 * after get_user_pages().
1034 __ClearPageReserved(p);
1035 set_page_count(p, 0);
1036 p->first_page = page;
1037 /* Make sure p->first_page is always valid for PageTail() */
1038 smp_wmb();
1039 __SetPageTail(p);
1044 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1045 * transparent huge pages. See the PageTransHuge() documentation for more
1046 * details.
1048 int PageHuge(struct page *page)
1050 if (!PageCompound(page))
1051 return 0;
1053 page = compound_head(page);
1054 return get_compound_page_dtor(page) == free_huge_page;
1056 EXPORT_SYMBOL_GPL(PageHuge);
1059 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1060 * normal or transparent huge pages.
1062 int PageHeadHuge(struct page *page_head)
1064 if (!PageHead(page_head))
1065 return 0;
1067 return get_compound_page_dtor(page_head) == free_huge_page;
1070 pgoff_t __basepage_index(struct page *page)
1072 struct page *page_head = compound_head(page);
1073 pgoff_t index = page_index(page_head);
1074 unsigned long compound_idx;
1076 if (!PageHuge(page_head))
1077 return page_index(page);
1079 if (compound_order(page_head) >= MAX_ORDER)
1080 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1081 else
1082 compound_idx = page - page_head;
1084 return (index << compound_order(page_head)) + compound_idx;
1087 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1089 struct page *page;
1091 page = alloc_pages_exact_node(nid,
1092 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1093 __GFP_REPEAT|__GFP_NOWARN,
1094 huge_page_order(h));
1095 if (page) {
1096 if (arch_prepare_hugepage(page)) {
1097 __free_pages(page, huge_page_order(h));
1098 return NULL;
1100 prep_new_huge_page(h, page, nid);
1103 return page;
1106 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1108 struct page *page;
1109 int nr_nodes, node;
1110 int ret = 0;
1112 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1113 page = alloc_fresh_huge_page_node(h, node);
1114 if (page) {
1115 ret = 1;
1116 break;
1120 if (ret)
1121 count_vm_event(HTLB_BUDDY_PGALLOC);
1122 else
1123 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1125 return ret;
1129 * Free huge page from pool from next node to free.
1130 * Attempt to keep persistent huge pages more or less
1131 * balanced over allowed nodes.
1132 * Called with hugetlb_lock locked.
1134 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1135 bool acct_surplus)
1137 int nr_nodes, node;
1138 int ret = 0;
1140 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1142 * If we're returning unused surplus pages, only examine
1143 * nodes with surplus pages.
1145 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1146 !list_empty(&h->hugepage_freelists[node])) {
1147 struct page *page =
1148 list_entry(h->hugepage_freelists[node].next,
1149 struct page, lru);
1150 list_del(&page->lru);
1151 h->free_huge_pages--;
1152 h->free_huge_pages_node[node]--;
1153 if (acct_surplus) {
1154 h->surplus_huge_pages--;
1155 h->surplus_huge_pages_node[node]--;
1157 update_and_free_page(h, page);
1158 ret = 1;
1159 break;
1163 return ret;
1167 * Dissolve a given free hugepage into free buddy pages. This function does
1168 * nothing for in-use (including surplus) hugepages.
1170 static void dissolve_free_huge_page(struct page *page)
1172 spin_lock(&hugetlb_lock);
1173 if (PageHuge(page) && !page_count(page)) {
1174 struct hstate *h = page_hstate(page);
1175 int nid = page_to_nid(page);
1176 list_del(&page->lru);
1177 h->free_huge_pages--;
1178 h->free_huge_pages_node[nid]--;
1179 update_and_free_page(h, page);
1181 spin_unlock(&hugetlb_lock);
1185 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1186 * make specified memory blocks removable from the system.
1187 * Note that start_pfn should aligned with (minimum) hugepage size.
1189 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1191 unsigned int order = 8 * sizeof(void *);
1192 unsigned long pfn;
1193 struct hstate *h;
1195 if (!hugepages_supported())
1196 return;
1198 /* Set scan step to minimum hugepage size */
1199 for_each_hstate(h)
1200 if (order > huge_page_order(h))
1201 order = huge_page_order(h);
1202 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1203 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1204 dissolve_free_huge_page(pfn_to_page(pfn));
1207 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1209 struct page *page;
1210 unsigned int r_nid;
1212 if (hstate_is_gigantic(h))
1213 return NULL;
1216 * Assume we will successfully allocate the surplus page to
1217 * prevent racing processes from causing the surplus to exceed
1218 * overcommit
1220 * This however introduces a different race, where a process B
1221 * tries to grow the static hugepage pool while alloc_pages() is
1222 * called by process A. B will only examine the per-node
1223 * counters in determining if surplus huge pages can be
1224 * converted to normal huge pages in adjust_pool_surplus(). A
1225 * won't be able to increment the per-node counter, until the
1226 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1227 * no more huge pages can be converted from surplus to normal
1228 * state (and doesn't try to convert again). Thus, we have a
1229 * case where a surplus huge page exists, the pool is grown, and
1230 * the surplus huge page still exists after, even though it
1231 * should just have been converted to a normal huge page. This
1232 * does not leak memory, though, as the hugepage will be freed
1233 * once it is out of use. It also does not allow the counters to
1234 * go out of whack in adjust_pool_surplus() as we don't modify
1235 * the node values until we've gotten the hugepage and only the
1236 * per-node value is checked there.
1238 spin_lock(&hugetlb_lock);
1239 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1240 spin_unlock(&hugetlb_lock);
1241 return NULL;
1242 } else {
1243 h->nr_huge_pages++;
1244 h->surplus_huge_pages++;
1246 spin_unlock(&hugetlb_lock);
1248 if (nid == NUMA_NO_NODE)
1249 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1250 __GFP_REPEAT|__GFP_NOWARN,
1251 huge_page_order(h));
1252 else
1253 page = alloc_pages_exact_node(nid,
1254 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1255 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1257 if (page && arch_prepare_hugepage(page)) {
1258 __free_pages(page, huge_page_order(h));
1259 page = NULL;
1262 spin_lock(&hugetlb_lock);
1263 if (page) {
1264 INIT_LIST_HEAD(&page->lru);
1265 r_nid = page_to_nid(page);
1266 set_compound_page_dtor(page, free_huge_page);
1267 set_hugetlb_cgroup(page, NULL);
1269 * We incremented the global counters already
1271 h->nr_huge_pages_node[r_nid]++;
1272 h->surplus_huge_pages_node[r_nid]++;
1273 __count_vm_event(HTLB_BUDDY_PGALLOC);
1274 } else {
1275 h->nr_huge_pages--;
1276 h->surplus_huge_pages--;
1277 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1279 spin_unlock(&hugetlb_lock);
1281 return page;
1285 * This allocation function is useful in the context where vma is irrelevant.
1286 * E.g. soft-offlining uses this function because it only cares physical
1287 * address of error page.
1289 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1291 struct page *page = NULL;
1293 spin_lock(&hugetlb_lock);
1294 if (h->free_huge_pages - h->resv_huge_pages > 0)
1295 page = dequeue_huge_page_node(h, nid);
1296 spin_unlock(&hugetlb_lock);
1298 if (!page)
1299 page = alloc_buddy_huge_page(h, nid);
1301 return page;
1305 * Increase the hugetlb pool such that it can accommodate a reservation
1306 * of size 'delta'.
1308 static int gather_surplus_pages(struct hstate *h, int delta)
1310 struct list_head surplus_list;
1311 struct page *page, *tmp;
1312 int ret, i;
1313 int needed, allocated;
1314 bool alloc_ok = true;
1316 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1317 if (needed <= 0) {
1318 h->resv_huge_pages += delta;
1319 return 0;
1322 allocated = 0;
1323 INIT_LIST_HEAD(&surplus_list);
1325 ret = -ENOMEM;
1326 retry:
1327 spin_unlock(&hugetlb_lock);
1328 for (i = 0; i < needed; i++) {
1329 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1330 if (!page) {
1331 alloc_ok = false;
1332 break;
1334 list_add(&page->lru, &surplus_list);
1336 allocated += i;
1339 * After retaking hugetlb_lock, we need to recalculate 'needed'
1340 * because either resv_huge_pages or free_huge_pages may have changed.
1342 spin_lock(&hugetlb_lock);
1343 needed = (h->resv_huge_pages + delta) -
1344 (h->free_huge_pages + allocated);
1345 if (needed > 0) {
1346 if (alloc_ok)
1347 goto retry;
1349 * We were not able to allocate enough pages to
1350 * satisfy the entire reservation so we free what
1351 * we've allocated so far.
1353 goto free;
1356 * The surplus_list now contains _at_least_ the number of extra pages
1357 * needed to accommodate the reservation. Add the appropriate number
1358 * of pages to the hugetlb pool and free the extras back to the buddy
1359 * allocator. Commit the entire reservation here to prevent another
1360 * process from stealing the pages as they are added to the pool but
1361 * before they are reserved.
1363 needed += allocated;
1364 h->resv_huge_pages += delta;
1365 ret = 0;
1367 /* Free the needed pages to the hugetlb pool */
1368 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1369 if ((--needed) < 0)
1370 break;
1372 * This page is now managed by the hugetlb allocator and has
1373 * no users -- drop the buddy allocator's reference.
1375 put_page_testzero(page);
1376 VM_BUG_ON_PAGE(page_count(page), page);
1377 enqueue_huge_page(h, page);
1379 free:
1380 spin_unlock(&hugetlb_lock);
1382 /* Free unnecessary surplus pages to the buddy allocator */
1383 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1384 put_page(page);
1385 spin_lock(&hugetlb_lock);
1387 return ret;
1391 * When releasing a hugetlb pool reservation, any surplus pages that were
1392 * allocated to satisfy the reservation must be explicitly freed if they were
1393 * never used.
1394 * Called with hugetlb_lock held.
1396 static void return_unused_surplus_pages(struct hstate *h,
1397 unsigned long unused_resv_pages)
1399 unsigned long nr_pages;
1401 /* Uncommit the reservation */
1402 h->resv_huge_pages -= unused_resv_pages;
1404 /* Cannot return gigantic pages currently */
1405 if (hstate_is_gigantic(h))
1406 return;
1408 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1411 * We want to release as many surplus pages as possible, spread
1412 * evenly across all nodes with memory. Iterate across these nodes
1413 * until we can no longer free unreserved surplus pages. This occurs
1414 * when the nodes with surplus pages have no free pages.
1415 * free_pool_huge_page() will balance the the freed pages across the
1416 * on-line nodes with memory and will handle the hstate accounting.
1418 while (nr_pages--) {
1419 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1420 break;
1421 cond_resched_lock(&hugetlb_lock);
1426 * Determine if the huge page at addr within the vma has an associated
1427 * reservation. Where it does not we will need to logically increase
1428 * reservation and actually increase subpool usage before an allocation
1429 * can occur. Where any new reservation would be required the
1430 * reservation change is prepared, but not committed. Once the page
1431 * has been allocated from the subpool and instantiated the change should
1432 * be committed via vma_commit_reservation. No action is required on
1433 * failure.
1435 static long vma_needs_reservation(struct hstate *h,
1436 struct vm_area_struct *vma, unsigned long addr)
1438 struct resv_map *resv;
1439 pgoff_t idx;
1440 long chg;
1442 resv = vma_resv_map(vma);
1443 if (!resv)
1444 return 1;
1446 idx = vma_hugecache_offset(h, vma, addr);
1447 chg = region_chg(resv, idx, idx + 1);
1449 if (vma->vm_flags & VM_MAYSHARE)
1450 return chg;
1451 else
1452 return chg < 0 ? chg : 0;
1454 static void vma_commit_reservation(struct hstate *h,
1455 struct vm_area_struct *vma, unsigned long addr)
1457 struct resv_map *resv;
1458 pgoff_t idx;
1460 resv = vma_resv_map(vma);
1461 if (!resv)
1462 return;
1464 idx = vma_hugecache_offset(h, vma, addr);
1465 region_add(resv, idx, idx + 1);
1468 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1469 unsigned long addr, int avoid_reserve)
1471 struct hugepage_subpool *spool = subpool_vma(vma);
1472 struct hstate *h = hstate_vma(vma);
1473 struct page *page;
1474 long chg;
1475 int ret, idx;
1476 struct hugetlb_cgroup *h_cg;
1478 idx = hstate_index(h);
1480 * Processes that did not create the mapping will have no
1481 * reserves and will not have accounted against subpool
1482 * limit. Check that the subpool limit can be made before
1483 * satisfying the allocation MAP_NORESERVE mappings may also
1484 * need pages and subpool limit allocated allocated if no reserve
1485 * mapping overlaps.
1487 chg = vma_needs_reservation(h, vma, addr);
1488 if (chg < 0)
1489 return ERR_PTR(-ENOMEM);
1490 if (chg || avoid_reserve)
1491 if (hugepage_subpool_get_pages(spool, 1) < 0)
1492 return ERR_PTR(-ENOSPC);
1494 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1495 if (ret)
1496 goto out_subpool_put;
1498 spin_lock(&hugetlb_lock);
1499 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1500 if (!page) {
1501 spin_unlock(&hugetlb_lock);
1502 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1503 if (!page)
1504 goto out_uncharge_cgroup;
1506 spin_lock(&hugetlb_lock);
1507 list_move(&page->lru, &h->hugepage_activelist);
1508 /* Fall through */
1510 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1511 spin_unlock(&hugetlb_lock);
1513 set_page_private(page, (unsigned long)spool);
1515 vma_commit_reservation(h, vma, addr);
1516 return page;
1518 out_uncharge_cgroup:
1519 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1520 out_subpool_put:
1521 if (chg || avoid_reserve)
1522 hugepage_subpool_put_pages(spool, 1);
1523 return ERR_PTR(-ENOSPC);
1527 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1528 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1529 * where no ERR_VALUE is expected to be returned.
1531 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1532 unsigned long addr, int avoid_reserve)
1534 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1535 if (IS_ERR(page))
1536 page = NULL;
1537 return page;
1540 int __weak alloc_bootmem_huge_page(struct hstate *h)
1542 struct huge_bootmem_page *m;
1543 int nr_nodes, node;
1545 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1546 void *addr;
1548 addr = memblock_virt_alloc_try_nid_nopanic(
1549 huge_page_size(h), huge_page_size(h),
1550 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1551 if (addr) {
1553 * Use the beginning of the huge page to store the
1554 * huge_bootmem_page struct (until gather_bootmem
1555 * puts them into the mem_map).
1557 m = addr;
1558 goto found;
1561 return 0;
1563 found:
1564 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1565 /* Put them into a private list first because mem_map is not up yet */
1566 list_add(&m->list, &huge_boot_pages);
1567 m->hstate = h;
1568 return 1;
1571 static void __init prep_compound_huge_page(struct page *page, int order)
1573 if (unlikely(order > (MAX_ORDER - 1)))
1574 prep_compound_gigantic_page(page, order);
1575 else
1576 prep_compound_page(page, order);
1579 /* Put bootmem huge pages into the standard lists after mem_map is up */
1580 static void __init gather_bootmem_prealloc(void)
1582 struct huge_bootmem_page *m;
1584 list_for_each_entry(m, &huge_boot_pages, list) {
1585 struct hstate *h = m->hstate;
1586 struct page *page;
1588 #ifdef CONFIG_HIGHMEM
1589 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1590 memblock_free_late(__pa(m),
1591 sizeof(struct huge_bootmem_page));
1592 #else
1593 page = virt_to_page(m);
1594 #endif
1595 WARN_ON(page_count(page) != 1);
1596 prep_compound_huge_page(page, h->order);
1597 WARN_ON(PageReserved(page));
1598 prep_new_huge_page(h, page, page_to_nid(page));
1600 * If we had gigantic hugepages allocated at boot time, we need
1601 * to restore the 'stolen' pages to totalram_pages in order to
1602 * fix confusing memory reports from free(1) and another
1603 * side-effects, like CommitLimit going negative.
1605 if (hstate_is_gigantic(h))
1606 adjust_managed_page_count(page, 1 << h->order);
1610 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1612 unsigned long i;
1614 for (i = 0; i < h->max_huge_pages; ++i) {
1615 if (hstate_is_gigantic(h)) {
1616 if (!alloc_bootmem_huge_page(h))
1617 break;
1618 } else if (!alloc_fresh_huge_page(h,
1619 &node_states[N_MEMORY]))
1620 break;
1622 h->max_huge_pages = i;
1625 static void __init hugetlb_init_hstates(void)
1627 struct hstate *h;
1629 for_each_hstate(h) {
1630 /* oversize hugepages were init'ed in early boot */
1631 if (!hstate_is_gigantic(h))
1632 hugetlb_hstate_alloc_pages(h);
1636 static char * __init memfmt(char *buf, unsigned long n)
1638 if (n >= (1UL << 30))
1639 sprintf(buf, "%lu GB", n >> 30);
1640 else if (n >= (1UL << 20))
1641 sprintf(buf, "%lu MB", n >> 20);
1642 else
1643 sprintf(buf, "%lu KB", n >> 10);
1644 return buf;
1647 static void __init report_hugepages(void)
1649 struct hstate *h;
1651 for_each_hstate(h) {
1652 char buf[32];
1653 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1654 memfmt(buf, huge_page_size(h)),
1655 h->free_huge_pages);
1659 #ifdef CONFIG_HIGHMEM
1660 static void try_to_free_low(struct hstate *h, unsigned long count,
1661 nodemask_t *nodes_allowed)
1663 int i;
1665 if (hstate_is_gigantic(h))
1666 return;
1668 for_each_node_mask(i, *nodes_allowed) {
1669 struct page *page, *next;
1670 struct list_head *freel = &h->hugepage_freelists[i];
1671 list_for_each_entry_safe(page, next, freel, lru) {
1672 if (count >= h->nr_huge_pages)
1673 return;
1674 if (PageHighMem(page))
1675 continue;
1676 list_del(&page->lru);
1677 update_and_free_page(h, page);
1678 h->free_huge_pages--;
1679 h->free_huge_pages_node[page_to_nid(page)]--;
1683 #else
1684 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1685 nodemask_t *nodes_allowed)
1688 #endif
1691 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1692 * balanced by operating on them in a round-robin fashion.
1693 * Returns 1 if an adjustment was made.
1695 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1696 int delta)
1698 int nr_nodes, node;
1700 VM_BUG_ON(delta != -1 && delta != 1);
1702 if (delta < 0) {
1703 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1704 if (h->surplus_huge_pages_node[node])
1705 goto found;
1707 } else {
1708 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1709 if (h->surplus_huge_pages_node[node] <
1710 h->nr_huge_pages_node[node])
1711 goto found;
1714 return 0;
1716 found:
1717 h->surplus_huge_pages += delta;
1718 h->surplus_huge_pages_node[node] += delta;
1719 return 1;
1722 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1723 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1724 nodemask_t *nodes_allowed)
1726 unsigned long min_count, ret;
1728 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1729 return h->max_huge_pages;
1732 * Increase the pool size
1733 * First take pages out of surplus state. Then make up the
1734 * remaining difference by allocating fresh huge pages.
1736 * We might race with alloc_buddy_huge_page() here and be unable
1737 * to convert a surplus huge page to a normal huge page. That is
1738 * not critical, though, it just means the overall size of the
1739 * pool might be one hugepage larger than it needs to be, but
1740 * within all the constraints specified by the sysctls.
1742 spin_lock(&hugetlb_lock);
1743 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1744 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1745 break;
1748 while (count > persistent_huge_pages(h)) {
1750 * If this allocation races such that we no longer need the
1751 * page, free_huge_page will handle it by freeing the page
1752 * and reducing the surplus.
1754 spin_unlock(&hugetlb_lock);
1755 if (hstate_is_gigantic(h))
1756 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1757 else
1758 ret = alloc_fresh_huge_page(h, nodes_allowed);
1759 spin_lock(&hugetlb_lock);
1760 if (!ret)
1761 goto out;
1763 /* Bail for signals. Probably ctrl-c from user */
1764 if (signal_pending(current))
1765 goto out;
1769 * Decrease the pool size
1770 * First return free pages to the buddy allocator (being careful
1771 * to keep enough around to satisfy reservations). Then place
1772 * pages into surplus state as needed so the pool will shrink
1773 * to the desired size as pages become free.
1775 * By placing pages into the surplus state independent of the
1776 * overcommit value, we are allowing the surplus pool size to
1777 * exceed overcommit. There are few sane options here. Since
1778 * alloc_buddy_huge_page() is checking the global counter,
1779 * though, we'll note that we're not allowed to exceed surplus
1780 * and won't grow the pool anywhere else. Not until one of the
1781 * sysctls are changed, or the surplus pages go out of use.
1783 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1784 min_count = max(count, min_count);
1785 try_to_free_low(h, min_count, nodes_allowed);
1786 while (min_count < persistent_huge_pages(h)) {
1787 if (!free_pool_huge_page(h, nodes_allowed, 0))
1788 break;
1789 cond_resched_lock(&hugetlb_lock);
1791 while (count < persistent_huge_pages(h)) {
1792 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1793 break;
1795 out:
1796 ret = persistent_huge_pages(h);
1797 spin_unlock(&hugetlb_lock);
1798 return ret;
1801 #define HSTATE_ATTR_RO(_name) \
1802 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1804 #define HSTATE_ATTR(_name) \
1805 static struct kobj_attribute _name##_attr = \
1806 __ATTR(_name, 0644, _name##_show, _name##_store)
1808 static struct kobject *hugepages_kobj;
1809 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1811 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1813 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1815 int i;
1817 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1818 if (hstate_kobjs[i] == kobj) {
1819 if (nidp)
1820 *nidp = NUMA_NO_NODE;
1821 return &hstates[i];
1824 return kobj_to_node_hstate(kobj, nidp);
1827 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1828 struct kobj_attribute *attr, char *buf)
1830 struct hstate *h;
1831 unsigned long nr_huge_pages;
1832 int nid;
1834 h = kobj_to_hstate(kobj, &nid);
1835 if (nid == NUMA_NO_NODE)
1836 nr_huge_pages = h->nr_huge_pages;
1837 else
1838 nr_huge_pages = h->nr_huge_pages_node[nid];
1840 return sprintf(buf, "%lu\n", nr_huge_pages);
1843 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1844 struct hstate *h, int nid,
1845 unsigned long count, size_t len)
1847 int err;
1848 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1850 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1851 err = -EINVAL;
1852 goto out;
1855 if (nid == NUMA_NO_NODE) {
1857 * global hstate attribute
1859 if (!(obey_mempolicy &&
1860 init_nodemask_of_mempolicy(nodes_allowed))) {
1861 NODEMASK_FREE(nodes_allowed);
1862 nodes_allowed = &node_states[N_MEMORY];
1864 } else if (nodes_allowed) {
1866 * per node hstate attribute: adjust count to global,
1867 * but restrict alloc/free to the specified node.
1869 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1870 init_nodemask_of_node(nodes_allowed, nid);
1871 } else
1872 nodes_allowed = &node_states[N_MEMORY];
1874 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1876 if (nodes_allowed != &node_states[N_MEMORY])
1877 NODEMASK_FREE(nodes_allowed);
1879 return len;
1880 out:
1881 NODEMASK_FREE(nodes_allowed);
1882 return err;
1885 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1886 struct kobject *kobj, const char *buf,
1887 size_t len)
1889 struct hstate *h;
1890 unsigned long count;
1891 int nid;
1892 int err;
1894 err = kstrtoul(buf, 10, &count);
1895 if (err)
1896 return err;
1898 h = kobj_to_hstate(kobj, &nid);
1899 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1902 static ssize_t nr_hugepages_show(struct kobject *kobj,
1903 struct kobj_attribute *attr, char *buf)
1905 return nr_hugepages_show_common(kobj, attr, buf);
1908 static ssize_t nr_hugepages_store(struct kobject *kobj,
1909 struct kobj_attribute *attr, const char *buf, size_t len)
1911 return nr_hugepages_store_common(false, kobj, buf, len);
1913 HSTATE_ATTR(nr_hugepages);
1915 #ifdef CONFIG_NUMA
1918 * hstate attribute for optionally mempolicy-based constraint on persistent
1919 * huge page alloc/free.
1921 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1922 struct kobj_attribute *attr, char *buf)
1924 return nr_hugepages_show_common(kobj, attr, buf);
1927 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1928 struct kobj_attribute *attr, const char *buf, size_t len)
1930 return nr_hugepages_store_common(true, kobj, buf, len);
1932 HSTATE_ATTR(nr_hugepages_mempolicy);
1933 #endif
1936 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1937 struct kobj_attribute *attr, char *buf)
1939 struct hstate *h = kobj_to_hstate(kobj, NULL);
1940 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1943 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1944 struct kobj_attribute *attr, const char *buf, size_t count)
1946 int err;
1947 unsigned long input;
1948 struct hstate *h = kobj_to_hstate(kobj, NULL);
1950 if (hstate_is_gigantic(h))
1951 return -EINVAL;
1953 err = kstrtoul(buf, 10, &input);
1954 if (err)
1955 return err;
1957 spin_lock(&hugetlb_lock);
1958 h->nr_overcommit_huge_pages = input;
1959 spin_unlock(&hugetlb_lock);
1961 return count;
1963 HSTATE_ATTR(nr_overcommit_hugepages);
1965 static ssize_t free_hugepages_show(struct kobject *kobj,
1966 struct kobj_attribute *attr, char *buf)
1968 struct hstate *h;
1969 unsigned long free_huge_pages;
1970 int nid;
1972 h = kobj_to_hstate(kobj, &nid);
1973 if (nid == NUMA_NO_NODE)
1974 free_huge_pages = h->free_huge_pages;
1975 else
1976 free_huge_pages = h->free_huge_pages_node[nid];
1978 return sprintf(buf, "%lu\n", free_huge_pages);
1980 HSTATE_ATTR_RO(free_hugepages);
1982 static ssize_t resv_hugepages_show(struct kobject *kobj,
1983 struct kobj_attribute *attr, char *buf)
1985 struct hstate *h = kobj_to_hstate(kobj, NULL);
1986 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1988 HSTATE_ATTR_RO(resv_hugepages);
1990 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1991 struct kobj_attribute *attr, char *buf)
1993 struct hstate *h;
1994 unsigned long surplus_huge_pages;
1995 int nid;
1997 h = kobj_to_hstate(kobj, &nid);
1998 if (nid == NUMA_NO_NODE)
1999 surplus_huge_pages = h->surplus_huge_pages;
2000 else
2001 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2003 return sprintf(buf, "%lu\n", surplus_huge_pages);
2005 HSTATE_ATTR_RO(surplus_hugepages);
2007 static struct attribute *hstate_attrs[] = {
2008 &nr_hugepages_attr.attr,
2009 &nr_overcommit_hugepages_attr.attr,
2010 &free_hugepages_attr.attr,
2011 &resv_hugepages_attr.attr,
2012 &surplus_hugepages_attr.attr,
2013 #ifdef CONFIG_NUMA
2014 &nr_hugepages_mempolicy_attr.attr,
2015 #endif
2016 NULL,
2019 static struct attribute_group hstate_attr_group = {
2020 .attrs = hstate_attrs,
2023 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2024 struct kobject **hstate_kobjs,
2025 struct attribute_group *hstate_attr_group)
2027 int retval;
2028 int hi = hstate_index(h);
2030 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2031 if (!hstate_kobjs[hi])
2032 return -ENOMEM;
2034 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2035 if (retval)
2036 kobject_put(hstate_kobjs[hi]);
2038 return retval;
2041 static void __init hugetlb_sysfs_init(void)
2043 struct hstate *h;
2044 int err;
2046 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2047 if (!hugepages_kobj)
2048 return;
2050 for_each_hstate(h) {
2051 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2052 hstate_kobjs, &hstate_attr_group);
2053 if (err)
2054 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2058 #ifdef CONFIG_NUMA
2061 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2062 * with node devices in node_devices[] using a parallel array. The array
2063 * index of a node device or _hstate == node id.
2064 * This is here to avoid any static dependency of the node device driver, in
2065 * the base kernel, on the hugetlb module.
2067 struct node_hstate {
2068 struct kobject *hugepages_kobj;
2069 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2071 struct node_hstate node_hstates[MAX_NUMNODES];
2074 * A subset of global hstate attributes for node devices
2076 static struct attribute *per_node_hstate_attrs[] = {
2077 &nr_hugepages_attr.attr,
2078 &free_hugepages_attr.attr,
2079 &surplus_hugepages_attr.attr,
2080 NULL,
2083 static struct attribute_group per_node_hstate_attr_group = {
2084 .attrs = per_node_hstate_attrs,
2088 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2089 * Returns node id via non-NULL nidp.
2091 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2093 int nid;
2095 for (nid = 0; nid < nr_node_ids; nid++) {
2096 struct node_hstate *nhs = &node_hstates[nid];
2097 int i;
2098 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2099 if (nhs->hstate_kobjs[i] == kobj) {
2100 if (nidp)
2101 *nidp = nid;
2102 return &hstates[i];
2106 BUG();
2107 return NULL;
2111 * Unregister hstate attributes from a single node device.
2112 * No-op if no hstate attributes attached.
2114 static void hugetlb_unregister_node(struct node *node)
2116 struct hstate *h;
2117 struct node_hstate *nhs = &node_hstates[node->dev.id];
2119 if (!nhs->hugepages_kobj)
2120 return; /* no hstate attributes */
2122 for_each_hstate(h) {
2123 int idx = hstate_index(h);
2124 if (nhs->hstate_kobjs[idx]) {
2125 kobject_put(nhs->hstate_kobjs[idx]);
2126 nhs->hstate_kobjs[idx] = NULL;
2130 kobject_put(nhs->hugepages_kobj);
2131 nhs->hugepages_kobj = NULL;
2135 * hugetlb module exit: unregister hstate attributes from node devices
2136 * that have them.
2138 static void hugetlb_unregister_all_nodes(void)
2140 int nid;
2143 * disable node device registrations.
2145 register_hugetlbfs_with_node(NULL, NULL);
2148 * remove hstate attributes from any nodes that have them.
2150 for (nid = 0; nid < nr_node_ids; nid++)
2151 hugetlb_unregister_node(node_devices[nid]);
2155 * Register hstate attributes for a single node device.
2156 * No-op if attributes already registered.
2158 static void hugetlb_register_node(struct node *node)
2160 struct hstate *h;
2161 struct node_hstate *nhs = &node_hstates[node->dev.id];
2162 int err;
2164 if (nhs->hugepages_kobj)
2165 return; /* already allocated */
2167 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2168 &node->dev.kobj);
2169 if (!nhs->hugepages_kobj)
2170 return;
2172 for_each_hstate(h) {
2173 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2174 nhs->hstate_kobjs,
2175 &per_node_hstate_attr_group);
2176 if (err) {
2177 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2178 h->name, node->dev.id);
2179 hugetlb_unregister_node(node);
2180 break;
2186 * hugetlb init time: register hstate attributes for all registered node
2187 * devices of nodes that have memory. All on-line nodes should have
2188 * registered their associated device by this time.
2190 static void __init hugetlb_register_all_nodes(void)
2192 int nid;
2194 for_each_node_state(nid, N_MEMORY) {
2195 struct node *node = node_devices[nid];
2196 if (node->dev.id == nid)
2197 hugetlb_register_node(node);
2201 * Let the node device driver know we're here so it can
2202 * [un]register hstate attributes on node hotplug.
2204 register_hugetlbfs_with_node(hugetlb_register_node,
2205 hugetlb_unregister_node);
2207 #else /* !CONFIG_NUMA */
2209 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2211 BUG();
2212 if (nidp)
2213 *nidp = -1;
2214 return NULL;
2217 static void hugetlb_unregister_all_nodes(void) { }
2219 static void hugetlb_register_all_nodes(void) { }
2221 #endif
2223 static void __exit hugetlb_exit(void)
2225 struct hstate *h;
2227 hugetlb_unregister_all_nodes();
2229 for_each_hstate(h) {
2230 kobject_put(hstate_kobjs[hstate_index(h)]);
2233 kobject_put(hugepages_kobj);
2234 kfree(htlb_fault_mutex_table);
2236 module_exit(hugetlb_exit);
2238 static int __init hugetlb_init(void)
2240 int i;
2242 if (!hugepages_supported())
2243 return 0;
2245 if (!size_to_hstate(default_hstate_size)) {
2246 default_hstate_size = HPAGE_SIZE;
2247 if (!size_to_hstate(default_hstate_size))
2248 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2250 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2251 if (default_hstate_max_huge_pages)
2252 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2254 hugetlb_init_hstates();
2255 gather_bootmem_prealloc();
2256 report_hugepages();
2258 hugetlb_sysfs_init();
2259 hugetlb_register_all_nodes();
2260 hugetlb_cgroup_file_init();
2262 #ifdef CONFIG_SMP
2263 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2264 #else
2265 num_fault_mutexes = 1;
2266 #endif
2267 htlb_fault_mutex_table =
2268 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2269 BUG_ON(!htlb_fault_mutex_table);
2271 for (i = 0; i < num_fault_mutexes; i++)
2272 mutex_init(&htlb_fault_mutex_table[i]);
2273 return 0;
2275 module_init(hugetlb_init);
2277 /* Should be called on processing a hugepagesz=... option */
2278 void __init hugetlb_add_hstate(unsigned order)
2280 struct hstate *h;
2281 unsigned long i;
2283 if (size_to_hstate(PAGE_SIZE << order)) {
2284 pr_warning("hugepagesz= specified twice, ignoring\n");
2285 return;
2287 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2288 BUG_ON(order == 0);
2289 h = &hstates[hugetlb_max_hstate++];
2290 h->order = order;
2291 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2292 h->nr_huge_pages = 0;
2293 h->free_huge_pages = 0;
2294 for (i = 0; i < MAX_NUMNODES; ++i)
2295 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2296 INIT_LIST_HEAD(&h->hugepage_activelist);
2297 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2298 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2299 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2300 huge_page_size(h)/1024);
2302 parsed_hstate = h;
2305 static int __init hugetlb_nrpages_setup(char *s)
2307 unsigned long *mhp;
2308 static unsigned long *last_mhp;
2311 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2312 * so this hugepages= parameter goes to the "default hstate".
2314 if (!hugetlb_max_hstate)
2315 mhp = &default_hstate_max_huge_pages;
2316 else
2317 mhp = &parsed_hstate->max_huge_pages;
2319 if (mhp == last_mhp) {
2320 pr_warning("hugepages= specified twice without "
2321 "interleaving hugepagesz=, ignoring\n");
2322 return 1;
2325 if (sscanf(s, "%lu", mhp) <= 0)
2326 *mhp = 0;
2329 * Global state is always initialized later in hugetlb_init.
2330 * But we need to allocate >= MAX_ORDER hstates here early to still
2331 * use the bootmem allocator.
2333 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2334 hugetlb_hstate_alloc_pages(parsed_hstate);
2336 last_mhp = mhp;
2338 return 1;
2340 __setup("hugepages=", hugetlb_nrpages_setup);
2342 static int __init hugetlb_default_setup(char *s)
2344 default_hstate_size = memparse(s, &s);
2345 return 1;
2347 __setup("default_hugepagesz=", hugetlb_default_setup);
2349 static unsigned int cpuset_mems_nr(unsigned int *array)
2351 int node;
2352 unsigned int nr = 0;
2354 for_each_node_mask(node, cpuset_current_mems_allowed)
2355 nr += array[node];
2357 return nr;
2360 #ifdef CONFIG_SYSCTL
2361 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2362 struct ctl_table *table, int write,
2363 void __user *buffer, size_t *length, loff_t *ppos)
2365 struct hstate *h = &default_hstate;
2366 unsigned long tmp = h->max_huge_pages;
2367 int ret;
2369 if (!hugepages_supported())
2370 return -ENOTSUPP;
2372 table->data = &tmp;
2373 table->maxlen = sizeof(unsigned long);
2374 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2375 if (ret)
2376 goto out;
2378 if (write)
2379 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2380 NUMA_NO_NODE, tmp, *length);
2381 out:
2382 return ret;
2385 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2386 void __user *buffer, size_t *length, loff_t *ppos)
2389 return hugetlb_sysctl_handler_common(false, table, write,
2390 buffer, length, ppos);
2393 #ifdef CONFIG_NUMA
2394 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2395 void __user *buffer, size_t *length, loff_t *ppos)
2397 return hugetlb_sysctl_handler_common(true, table, write,
2398 buffer, length, ppos);
2400 #endif /* CONFIG_NUMA */
2402 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2403 void __user *buffer,
2404 size_t *length, loff_t *ppos)
2406 struct hstate *h = &default_hstate;
2407 unsigned long tmp;
2408 int ret;
2410 if (!hugepages_supported())
2411 return -ENOTSUPP;
2413 tmp = h->nr_overcommit_huge_pages;
2415 if (write && hstate_is_gigantic(h))
2416 return -EINVAL;
2418 table->data = &tmp;
2419 table->maxlen = sizeof(unsigned long);
2420 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2421 if (ret)
2422 goto out;
2424 if (write) {
2425 spin_lock(&hugetlb_lock);
2426 h->nr_overcommit_huge_pages = tmp;
2427 spin_unlock(&hugetlb_lock);
2429 out:
2430 return ret;
2433 #endif /* CONFIG_SYSCTL */
2435 void hugetlb_report_meminfo(struct seq_file *m)
2437 struct hstate *h = &default_hstate;
2438 if (!hugepages_supported())
2439 return;
2440 seq_printf(m,
2441 "HugePages_Total: %5lu\n"
2442 "HugePages_Free: %5lu\n"
2443 "HugePages_Rsvd: %5lu\n"
2444 "HugePages_Surp: %5lu\n"
2445 "Hugepagesize: %8lu kB\n",
2446 h->nr_huge_pages,
2447 h->free_huge_pages,
2448 h->resv_huge_pages,
2449 h->surplus_huge_pages,
2450 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2453 int hugetlb_report_node_meminfo(int nid, char *buf)
2455 struct hstate *h = &default_hstate;
2456 if (!hugepages_supported())
2457 return 0;
2458 return sprintf(buf,
2459 "Node %d HugePages_Total: %5u\n"
2460 "Node %d HugePages_Free: %5u\n"
2461 "Node %d HugePages_Surp: %5u\n",
2462 nid, h->nr_huge_pages_node[nid],
2463 nid, h->free_huge_pages_node[nid],
2464 nid, h->surplus_huge_pages_node[nid]);
2467 void hugetlb_show_meminfo(void)
2469 struct hstate *h;
2470 int nid;
2472 if (!hugepages_supported())
2473 return;
2475 for_each_node_state(nid, N_MEMORY)
2476 for_each_hstate(h)
2477 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2478 nid,
2479 h->nr_huge_pages_node[nid],
2480 h->free_huge_pages_node[nid],
2481 h->surplus_huge_pages_node[nid],
2482 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2485 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2486 unsigned long hugetlb_total_pages(void)
2488 struct hstate *h;
2489 unsigned long nr_total_pages = 0;
2491 for_each_hstate(h)
2492 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2493 return nr_total_pages;
2496 static int hugetlb_acct_memory(struct hstate *h, long delta)
2498 int ret = -ENOMEM;
2500 spin_lock(&hugetlb_lock);
2502 * When cpuset is configured, it breaks the strict hugetlb page
2503 * reservation as the accounting is done on a global variable. Such
2504 * reservation is completely rubbish in the presence of cpuset because
2505 * the reservation is not checked against page availability for the
2506 * current cpuset. Application can still potentially OOM'ed by kernel
2507 * with lack of free htlb page in cpuset that the task is in.
2508 * Attempt to enforce strict accounting with cpuset is almost
2509 * impossible (or too ugly) because cpuset is too fluid that
2510 * task or memory node can be dynamically moved between cpusets.
2512 * The change of semantics for shared hugetlb mapping with cpuset is
2513 * undesirable. However, in order to preserve some of the semantics,
2514 * we fall back to check against current free page availability as
2515 * a best attempt and hopefully to minimize the impact of changing
2516 * semantics that cpuset has.
2518 if (delta > 0) {
2519 if (gather_surplus_pages(h, delta) < 0)
2520 goto out;
2522 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2523 return_unused_surplus_pages(h, delta);
2524 goto out;
2528 ret = 0;
2529 if (delta < 0)
2530 return_unused_surplus_pages(h, (unsigned long) -delta);
2532 out:
2533 spin_unlock(&hugetlb_lock);
2534 return ret;
2537 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2539 struct resv_map *resv = vma_resv_map(vma);
2542 * This new VMA should share its siblings reservation map if present.
2543 * The VMA will only ever have a valid reservation map pointer where
2544 * it is being copied for another still existing VMA. As that VMA
2545 * has a reference to the reservation map it cannot disappear until
2546 * after this open call completes. It is therefore safe to take a
2547 * new reference here without additional locking.
2549 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2550 kref_get(&resv->refs);
2553 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2555 struct hstate *h = hstate_vma(vma);
2556 struct resv_map *resv = vma_resv_map(vma);
2557 struct hugepage_subpool *spool = subpool_vma(vma);
2558 unsigned long reserve, start, end;
2559 long gbl_reserve;
2561 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2562 return;
2564 start = vma_hugecache_offset(h, vma, vma->vm_start);
2565 end = vma_hugecache_offset(h, vma, vma->vm_end);
2567 reserve = (end - start) - region_count(resv, start, end);
2569 kref_put(&resv->refs, resv_map_release);
2571 if (reserve) {
2573 * Decrement reserve counts. The global reserve count may be
2574 * adjusted if the subpool has a minimum size.
2576 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2577 hugetlb_acct_memory(h, -gbl_reserve);
2582 * We cannot handle pagefaults against hugetlb pages at all. They cause
2583 * handle_mm_fault() to try to instantiate regular-sized pages in the
2584 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2585 * this far.
2587 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2589 BUG();
2590 return 0;
2593 const struct vm_operations_struct hugetlb_vm_ops = {
2594 .fault = hugetlb_vm_op_fault,
2595 .open = hugetlb_vm_op_open,
2596 .close = hugetlb_vm_op_close,
2599 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2600 int writable)
2602 pte_t entry;
2604 if (writable) {
2605 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2606 vma->vm_page_prot)));
2607 } else {
2608 entry = huge_pte_wrprotect(mk_huge_pte(page,
2609 vma->vm_page_prot));
2611 entry = pte_mkyoung(entry);
2612 entry = pte_mkhuge(entry);
2613 entry = arch_make_huge_pte(entry, vma, page, writable);
2615 return entry;
2618 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2619 unsigned long address, pte_t *ptep)
2621 pte_t entry;
2623 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2624 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2625 update_mmu_cache(vma, address, ptep);
2628 static int is_hugetlb_entry_migration(pte_t pte)
2630 swp_entry_t swp;
2632 if (huge_pte_none(pte) || pte_present(pte))
2633 return 0;
2634 swp = pte_to_swp_entry(pte);
2635 if (non_swap_entry(swp) && is_migration_entry(swp))
2636 return 1;
2637 else
2638 return 0;
2641 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2643 swp_entry_t swp;
2645 if (huge_pte_none(pte) || pte_present(pte))
2646 return 0;
2647 swp = pte_to_swp_entry(pte);
2648 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2649 return 1;
2650 else
2651 return 0;
2654 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2655 struct vm_area_struct *vma)
2657 pte_t *src_pte, *dst_pte, entry;
2658 struct page *ptepage;
2659 unsigned long addr;
2660 int cow;
2661 struct hstate *h = hstate_vma(vma);
2662 unsigned long sz = huge_page_size(h);
2663 unsigned long mmun_start; /* For mmu_notifiers */
2664 unsigned long mmun_end; /* For mmu_notifiers */
2665 int ret = 0;
2667 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2669 mmun_start = vma->vm_start;
2670 mmun_end = vma->vm_end;
2671 if (cow)
2672 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2674 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2675 spinlock_t *src_ptl, *dst_ptl;
2676 src_pte = huge_pte_offset(src, addr);
2677 if (!src_pte)
2678 continue;
2679 dst_pte = huge_pte_alloc(dst, addr, sz);
2680 if (!dst_pte) {
2681 ret = -ENOMEM;
2682 break;
2685 /* If the pagetables are shared don't copy or take references */
2686 if (dst_pte == src_pte)
2687 continue;
2689 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2690 src_ptl = huge_pte_lockptr(h, src, src_pte);
2691 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2692 entry = huge_ptep_get(src_pte);
2693 if (huge_pte_none(entry)) { /* skip none entry */
2695 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2696 is_hugetlb_entry_hwpoisoned(entry))) {
2697 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2699 if (is_write_migration_entry(swp_entry) && cow) {
2701 * COW mappings require pages in both
2702 * parent and child to be set to read.
2704 make_migration_entry_read(&swp_entry);
2705 entry = swp_entry_to_pte(swp_entry);
2706 set_huge_pte_at(src, addr, src_pte, entry);
2708 set_huge_pte_at(dst, addr, dst_pte, entry);
2709 } else {
2710 if (cow) {
2711 huge_ptep_set_wrprotect(src, addr, src_pte);
2712 mmu_notifier_invalidate_range(src, mmun_start,
2713 mmun_end);
2715 entry = huge_ptep_get(src_pte);
2716 ptepage = pte_page(entry);
2717 get_page(ptepage);
2718 page_dup_rmap(ptepage);
2719 set_huge_pte_at(dst, addr, dst_pte, entry);
2721 spin_unlock(src_ptl);
2722 spin_unlock(dst_ptl);
2725 if (cow)
2726 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2728 return ret;
2731 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2732 unsigned long start, unsigned long end,
2733 struct page *ref_page)
2735 int force_flush = 0;
2736 struct mm_struct *mm = vma->vm_mm;
2737 unsigned long address;
2738 pte_t *ptep;
2739 pte_t pte;
2740 spinlock_t *ptl;
2741 struct page *page;
2742 struct hstate *h = hstate_vma(vma);
2743 unsigned long sz = huge_page_size(h);
2744 const unsigned long mmun_start = start; /* For mmu_notifiers */
2745 const unsigned long mmun_end = end; /* For mmu_notifiers */
2747 WARN_ON(!is_vm_hugetlb_page(vma));
2748 BUG_ON(start & ~huge_page_mask(h));
2749 BUG_ON(end & ~huge_page_mask(h));
2751 tlb_start_vma(tlb, vma);
2752 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2753 address = start;
2754 again:
2755 for (; address < end; address += sz) {
2756 ptep = huge_pte_offset(mm, address);
2757 if (!ptep)
2758 continue;
2760 ptl = huge_pte_lock(h, mm, ptep);
2761 if (huge_pmd_unshare(mm, &address, ptep))
2762 goto unlock;
2764 pte = huge_ptep_get(ptep);
2765 if (huge_pte_none(pte))
2766 goto unlock;
2769 * Migrating hugepage or HWPoisoned hugepage is already
2770 * unmapped and its refcount is dropped, so just clear pte here.
2772 if (unlikely(!pte_present(pte))) {
2773 huge_pte_clear(mm, address, ptep);
2774 goto unlock;
2777 page = pte_page(pte);
2779 * If a reference page is supplied, it is because a specific
2780 * page is being unmapped, not a range. Ensure the page we
2781 * are about to unmap is the actual page of interest.
2783 if (ref_page) {
2784 if (page != ref_page)
2785 goto unlock;
2788 * Mark the VMA as having unmapped its page so that
2789 * future faults in this VMA will fail rather than
2790 * looking like data was lost
2792 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2795 pte = huge_ptep_get_and_clear(mm, address, ptep);
2796 tlb_remove_tlb_entry(tlb, ptep, address);
2797 if (huge_pte_dirty(pte))
2798 set_page_dirty(page);
2800 page_remove_rmap(page);
2801 force_flush = !__tlb_remove_page(tlb, page);
2802 if (force_flush) {
2803 address += sz;
2804 spin_unlock(ptl);
2805 break;
2807 /* Bail out after unmapping reference page if supplied */
2808 if (ref_page) {
2809 spin_unlock(ptl);
2810 break;
2812 unlock:
2813 spin_unlock(ptl);
2816 * mmu_gather ran out of room to batch pages, we break out of
2817 * the PTE lock to avoid doing the potential expensive TLB invalidate
2818 * and page-free while holding it.
2820 if (force_flush) {
2821 force_flush = 0;
2822 tlb_flush_mmu(tlb);
2823 if (address < end && !ref_page)
2824 goto again;
2826 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2827 tlb_end_vma(tlb, vma);
2830 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2831 struct vm_area_struct *vma, unsigned long start,
2832 unsigned long end, struct page *ref_page)
2834 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2837 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2838 * test will fail on a vma being torn down, and not grab a page table
2839 * on its way out. We're lucky that the flag has such an appropriate
2840 * name, and can in fact be safely cleared here. We could clear it
2841 * before the __unmap_hugepage_range above, but all that's necessary
2842 * is to clear it before releasing the i_mmap_rwsem. This works
2843 * because in the context this is called, the VMA is about to be
2844 * destroyed and the i_mmap_rwsem is held.
2846 vma->vm_flags &= ~VM_MAYSHARE;
2849 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2850 unsigned long end, struct page *ref_page)
2852 struct mm_struct *mm;
2853 struct mmu_gather tlb;
2855 mm = vma->vm_mm;
2857 tlb_gather_mmu(&tlb, mm, start, end);
2858 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2859 tlb_finish_mmu(&tlb, start, end);
2863 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2864 * mappping it owns the reserve page for. The intention is to unmap the page
2865 * from other VMAs and let the children be SIGKILLed if they are faulting the
2866 * same region.
2868 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2869 struct page *page, unsigned long address)
2871 struct hstate *h = hstate_vma(vma);
2872 struct vm_area_struct *iter_vma;
2873 struct address_space *mapping;
2874 pgoff_t pgoff;
2877 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2878 * from page cache lookup which is in HPAGE_SIZE units.
2880 address = address & huge_page_mask(h);
2881 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2882 vma->vm_pgoff;
2883 mapping = file_inode(vma->vm_file)->i_mapping;
2886 * Take the mapping lock for the duration of the table walk. As
2887 * this mapping should be shared between all the VMAs,
2888 * __unmap_hugepage_range() is called as the lock is already held
2890 i_mmap_lock_write(mapping);
2891 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2892 /* Do not unmap the current VMA */
2893 if (iter_vma == vma)
2894 continue;
2897 * Unmap the page from other VMAs without their own reserves.
2898 * They get marked to be SIGKILLed if they fault in these
2899 * areas. This is because a future no-page fault on this VMA
2900 * could insert a zeroed page instead of the data existing
2901 * from the time of fork. This would look like data corruption
2903 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2904 unmap_hugepage_range(iter_vma, address,
2905 address + huge_page_size(h), page);
2907 i_mmap_unlock_write(mapping);
2911 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2912 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2913 * cannot race with other handlers or page migration.
2914 * Keep the pte_same checks anyway to make transition from the mutex easier.
2916 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2917 unsigned long address, pte_t *ptep, pte_t pte,
2918 struct page *pagecache_page, spinlock_t *ptl)
2920 struct hstate *h = hstate_vma(vma);
2921 struct page *old_page, *new_page;
2922 int ret = 0, outside_reserve = 0;
2923 unsigned long mmun_start; /* For mmu_notifiers */
2924 unsigned long mmun_end; /* For mmu_notifiers */
2926 old_page = pte_page(pte);
2928 retry_avoidcopy:
2929 /* If no-one else is actually using this page, avoid the copy
2930 * and just make the page writable */
2931 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2932 page_move_anon_rmap(old_page, vma, address);
2933 set_huge_ptep_writable(vma, address, ptep);
2934 return 0;
2938 * If the process that created a MAP_PRIVATE mapping is about to
2939 * perform a COW due to a shared page count, attempt to satisfy
2940 * the allocation without using the existing reserves. The pagecache
2941 * page is used to determine if the reserve at this address was
2942 * consumed or not. If reserves were used, a partial faulted mapping
2943 * at the time of fork() could consume its reserves on COW instead
2944 * of the full address range.
2946 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2947 old_page != pagecache_page)
2948 outside_reserve = 1;
2950 page_cache_get(old_page);
2953 * Drop page table lock as buddy allocator may be called. It will
2954 * be acquired again before returning to the caller, as expected.
2956 spin_unlock(ptl);
2957 new_page = alloc_huge_page(vma, address, outside_reserve);
2959 if (IS_ERR(new_page)) {
2961 * If a process owning a MAP_PRIVATE mapping fails to COW,
2962 * it is due to references held by a child and an insufficient
2963 * huge page pool. To guarantee the original mappers
2964 * reliability, unmap the page from child processes. The child
2965 * may get SIGKILLed if it later faults.
2967 if (outside_reserve) {
2968 page_cache_release(old_page);
2969 BUG_ON(huge_pte_none(pte));
2970 unmap_ref_private(mm, vma, old_page, address);
2971 BUG_ON(huge_pte_none(pte));
2972 spin_lock(ptl);
2973 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2974 if (likely(ptep &&
2975 pte_same(huge_ptep_get(ptep), pte)))
2976 goto retry_avoidcopy;
2978 * race occurs while re-acquiring page table
2979 * lock, and our job is done.
2981 return 0;
2984 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2985 VM_FAULT_OOM : VM_FAULT_SIGBUS;
2986 goto out_release_old;
2990 * When the original hugepage is shared one, it does not have
2991 * anon_vma prepared.
2993 if (unlikely(anon_vma_prepare(vma))) {
2994 ret = VM_FAULT_OOM;
2995 goto out_release_all;
2998 copy_user_huge_page(new_page, old_page, address, vma,
2999 pages_per_huge_page(h));
3000 __SetPageUptodate(new_page);
3001 set_page_huge_active(new_page);
3003 mmun_start = address & huge_page_mask(h);
3004 mmun_end = mmun_start + huge_page_size(h);
3005 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3008 * Retake the page table lock to check for racing updates
3009 * before the page tables are altered
3011 spin_lock(ptl);
3012 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3013 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3014 ClearPagePrivate(new_page);
3016 /* Break COW */
3017 huge_ptep_clear_flush(vma, address, ptep);
3018 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3019 set_huge_pte_at(mm, address, ptep,
3020 make_huge_pte(vma, new_page, 1));
3021 page_remove_rmap(old_page);
3022 hugepage_add_new_anon_rmap(new_page, vma, address);
3023 /* Make the old page be freed below */
3024 new_page = old_page;
3026 spin_unlock(ptl);
3027 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3028 out_release_all:
3029 page_cache_release(new_page);
3030 out_release_old:
3031 page_cache_release(old_page);
3033 spin_lock(ptl); /* Caller expects lock to be held */
3034 return ret;
3037 /* Return the pagecache page at a given address within a VMA */
3038 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3039 struct vm_area_struct *vma, unsigned long address)
3041 struct address_space *mapping;
3042 pgoff_t idx;
3044 mapping = vma->vm_file->f_mapping;
3045 idx = vma_hugecache_offset(h, vma, address);
3047 return find_lock_page(mapping, idx);
3051 * Return whether there is a pagecache page to back given address within VMA.
3052 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3054 static bool hugetlbfs_pagecache_present(struct hstate *h,
3055 struct vm_area_struct *vma, unsigned long address)
3057 struct address_space *mapping;
3058 pgoff_t idx;
3059 struct page *page;
3061 mapping = vma->vm_file->f_mapping;
3062 idx = vma_hugecache_offset(h, vma, address);
3064 page = find_get_page(mapping, idx);
3065 if (page)
3066 put_page(page);
3067 return page != NULL;
3070 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3071 struct address_space *mapping, pgoff_t idx,
3072 unsigned long address, pte_t *ptep, unsigned int flags)
3074 struct hstate *h = hstate_vma(vma);
3075 int ret = VM_FAULT_SIGBUS;
3076 int anon_rmap = 0;
3077 unsigned long size;
3078 struct page *page;
3079 pte_t new_pte;
3080 spinlock_t *ptl;
3083 * Currently, we are forced to kill the process in the event the
3084 * original mapper has unmapped pages from the child due to a failed
3085 * COW. Warn that such a situation has occurred as it may not be obvious
3087 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3088 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3089 current->pid);
3090 return ret;
3094 * Use page lock to guard against racing truncation
3095 * before we get page_table_lock.
3097 retry:
3098 page = find_lock_page(mapping, idx);
3099 if (!page) {
3100 size = i_size_read(mapping->host) >> huge_page_shift(h);
3101 if (idx >= size)
3102 goto out;
3103 page = alloc_huge_page(vma, address, 0);
3104 if (IS_ERR(page)) {
3105 ret = PTR_ERR(page);
3106 if (ret == -ENOMEM)
3107 ret = VM_FAULT_OOM;
3108 else
3109 ret = VM_FAULT_SIGBUS;
3110 goto out;
3112 clear_huge_page(page, address, pages_per_huge_page(h));
3113 __SetPageUptodate(page);
3114 set_page_huge_active(page);
3116 if (vma->vm_flags & VM_MAYSHARE) {
3117 int err;
3118 struct inode *inode = mapping->host;
3120 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3121 if (err) {
3122 put_page(page);
3123 if (err == -EEXIST)
3124 goto retry;
3125 goto out;
3127 ClearPagePrivate(page);
3129 spin_lock(&inode->i_lock);
3130 inode->i_blocks += blocks_per_huge_page(h);
3131 spin_unlock(&inode->i_lock);
3132 } else {
3133 lock_page(page);
3134 if (unlikely(anon_vma_prepare(vma))) {
3135 ret = VM_FAULT_OOM;
3136 goto backout_unlocked;
3138 anon_rmap = 1;
3140 } else {
3142 * If memory error occurs between mmap() and fault, some process
3143 * don't have hwpoisoned swap entry for errored virtual address.
3144 * So we need to block hugepage fault by PG_hwpoison bit check.
3146 if (unlikely(PageHWPoison(page))) {
3147 ret = VM_FAULT_HWPOISON |
3148 VM_FAULT_SET_HINDEX(hstate_index(h));
3149 goto backout_unlocked;
3154 * If we are going to COW a private mapping later, we examine the
3155 * pending reservations for this page now. This will ensure that
3156 * any allocations necessary to record that reservation occur outside
3157 * the spinlock.
3159 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3160 if (vma_needs_reservation(h, vma, address) < 0) {
3161 ret = VM_FAULT_OOM;
3162 goto backout_unlocked;
3165 ptl = huge_pte_lockptr(h, mm, ptep);
3166 spin_lock(ptl);
3167 size = i_size_read(mapping->host) >> huge_page_shift(h);
3168 if (idx >= size)
3169 goto backout;
3171 ret = 0;
3172 if (!huge_pte_none(huge_ptep_get(ptep)))
3173 goto backout;
3175 if (anon_rmap) {
3176 ClearPagePrivate(page);
3177 hugepage_add_new_anon_rmap(page, vma, address);
3178 } else
3179 page_dup_rmap(page);
3180 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3181 && (vma->vm_flags & VM_SHARED)));
3182 set_huge_pte_at(mm, address, ptep, new_pte);
3184 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3185 /* Optimization, do the COW without a second fault */
3186 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3189 spin_unlock(ptl);
3190 unlock_page(page);
3191 out:
3192 return ret;
3194 backout:
3195 spin_unlock(ptl);
3196 backout_unlocked:
3197 unlock_page(page);
3198 put_page(page);
3199 goto out;
3202 #ifdef CONFIG_SMP
3203 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3204 struct vm_area_struct *vma,
3205 struct address_space *mapping,
3206 pgoff_t idx, unsigned long address)
3208 unsigned long key[2];
3209 u32 hash;
3211 if (vma->vm_flags & VM_SHARED) {
3212 key[0] = (unsigned long) mapping;
3213 key[1] = idx;
3214 } else {
3215 key[0] = (unsigned long) mm;
3216 key[1] = address >> huge_page_shift(h);
3219 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3221 return hash & (num_fault_mutexes - 1);
3223 #else
3225 * For uniprocesor systems we always use a single mutex, so just
3226 * return 0 and avoid the hashing overhead.
3228 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3229 struct vm_area_struct *vma,
3230 struct address_space *mapping,
3231 pgoff_t idx, unsigned long address)
3233 return 0;
3235 #endif
3237 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3238 unsigned long address, unsigned int flags)
3240 pte_t *ptep, entry;
3241 spinlock_t *ptl;
3242 int ret;
3243 u32 hash;
3244 pgoff_t idx;
3245 struct page *page = NULL;
3246 struct page *pagecache_page = NULL;
3247 struct hstate *h = hstate_vma(vma);
3248 struct address_space *mapping;
3249 int need_wait_lock = 0;
3251 address &= huge_page_mask(h);
3253 ptep = huge_pte_offset(mm, address);
3254 if (ptep) {
3255 entry = huge_ptep_get(ptep);
3256 if (unlikely(is_hugetlb_entry_migration(entry))) {
3257 migration_entry_wait_huge(vma, mm, ptep);
3258 return 0;
3259 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3260 return VM_FAULT_HWPOISON_LARGE |
3261 VM_FAULT_SET_HINDEX(hstate_index(h));
3264 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3265 if (!ptep)
3266 return VM_FAULT_OOM;
3268 mapping = vma->vm_file->f_mapping;
3269 idx = vma_hugecache_offset(h, vma, address);
3272 * Serialize hugepage allocation and instantiation, so that we don't
3273 * get spurious allocation failures if two CPUs race to instantiate
3274 * the same page in the page cache.
3276 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3277 mutex_lock(&htlb_fault_mutex_table[hash]);
3279 entry = huge_ptep_get(ptep);
3280 if (huge_pte_none(entry)) {
3281 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3282 goto out_mutex;
3285 ret = 0;
3288 * entry could be a migration/hwpoison entry at this point, so this
3289 * check prevents the kernel from going below assuming that we have
3290 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3291 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3292 * handle it.
3294 if (!pte_present(entry))
3295 goto out_mutex;
3298 * If we are going to COW the mapping later, we examine the pending
3299 * reservations for this page now. This will ensure that any
3300 * allocations necessary to record that reservation occur outside the
3301 * spinlock. For private mappings, we also lookup the pagecache
3302 * page now as it is used to determine if a reservation has been
3303 * consumed.
3305 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3306 if (vma_needs_reservation(h, vma, address) < 0) {
3307 ret = VM_FAULT_OOM;
3308 goto out_mutex;
3311 if (!(vma->vm_flags & VM_MAYSHARE))
3312 pagecache_page = hugetlbfs_pagecache_page(h,
3313 vma, address);
3316 ptl = huge_pte_lock(h, mm, ptep);
3318 /* Check for a racing update before calling hugetlb_cow */
3319 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3320 goto out_ptl;
3323 * hugetlb_cow() requires page locks of pte_page(entry) and
3324 * pagecache_page, so here we need take the former one
3325 * when page != pagecache_page or !pagecache_page.
3327 page = pte_page(entry);
3328 if (page != pagecache_page)
3329 if (!trylock_page(page)) {
3330 need_wait_lock = 1;
3331 goto out_ptl;
3334 get_page(page);
3336 if (flags & FAULT_FLAG_WRITE) {
3337 if (!huge_pte_write(entry)) {
3338 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3339 pagecache_page, ptl);
3340 goto out_put_page;
3342 entry = huge_pte_mkdirty(entry);
3344 entry = pte_mkyoung(entry);
3345 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3346 flags & FAULT_FLAG_WRITE))
3347 update_mmu_cache(vma, address, ptep);
3348 out_put_page:
3349 if (page != pagecache_page)
3350 unlock_page(page);
3351 put_page(page);
3352 out_ptl:
3353 spin_unlock(ptl);
3355 if (pagecache_page) {
3356 unlock_page(pagecache_page);
3357 put_page(pagecache_page);
3359 out_mutex:
3360 mutex_unlock(&htlb_fault_mutex_table[hash]);
3362 * Generally it's safe to hold refcount during waiting page lock. But
3363 * here we just wait to defer the next page fault to avoid busy loop and
3364 * the page is not used after unlocked before returning from the current
3365 * page fault. So we are safe from accessing freed page, even if we wait
3366 * here without taking refcount.
3368 if (need_wait_lock)
3369 wait_on_page_locked(page);
3370 return ret;
3373 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3374 struct page **pages, struct vm_area_struct **vmas,
3375 unsigned long *position, unsigned long *nr_pages,
3376 long i, unsigned int flags)
3378 unsigned long pfn_offset;
3379 unsigned long vaddr = *position;
3380 unsigned long remainder = *nr_pages;
3381 struct hstate *h = hstate_vma(vma);
3383 while (vaddr < vma->vm_end && remainder) {
3384 pte_t *pte;
3385 spinlock_t *ptl = NULL;
3386 int absent;
3387 struct page *page;
3390 * If we have a pending SIGKILL, don't keep faulting pages and
3391 * potentially allocating memory.
3393 if (unlikely(fatal_signal_pending(current))) {
3394 remainder = 0;
3395 break;
3399 * Some archs (sparc64, sh*) have multiple pte_ts to
3400 * each hugepage. We have to make sure we get the
3401 * first, for the page indexing below to work.
3403 * Note that page table lock is not held when pte is null.
3405 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3406 if (pte)
3407 ptl = huge_pte_lock(h, mm, pte);
3408 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3411 * When coredumping, it suits get_dump_page if we just return
3412 * an error where there's an empty slot with no huge pagecache
3413 * to back it. This way, we avoid allocating a hugepage, and
3414 * the sparse dumpfile avoids allocating disk blocks, but its
3415 * huge holes still show up with zeroes where they need to be.
3417 if (absent && (flags & FOLL_DUMP) &&
3418 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3419 if (pte)
3420 spin_unlock(ptl);
3421 remainder = 0;
3422 break;
3426 * We need call hugetlb_fault for both hugepages under migration
3427 * (in which case hugetlb_fault waits for the migration,) and
3428 * hwpoisoned hugepages (in which case we need to prevent the
3429 * caller from accessing to them.) In order to do this, we use
3430 * here is_swap_pte instead of is_hugetlb_entry_migration and
3431 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3432 * both cases, and because we can't follow correct pages
3433 * directly from any kind of swap entries.
3435 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3436 ((flags & FOLL_WRITE) &&
3437 !huge_pte_write(huge_ptep_get(pte)))) {
3438 int ret;
3440 if (pte)
3441 spin_unlock(ptl);
3442 ret = hugetlb_fault(mm, vma, vaddr,
3443 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3444 if (!(ret & VM_FAULT_ERROR))
3445 continue;
3447 remainder = 0;
3448 break;
3451 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3452 page = pte_page(huge_ptep_get(pte));
3453 same_page:
3454 if (pages) {
3455 pages[i] = mem_map_offset(page, pfn_offset);
3456 get_page_foll(pages[i]);
3459 if (vmas)
3460 vmas[i] = vma;
3462 vaddr += PAGE_SIZE;
3463 ++pfn_offset;
3464 --remainder;
3465 ++i;
3466 if (vaddr < vma->vm_end && remainder &&
3467 pfn_offset < pages_per_huge_page(h)) {
3469 * We use pfn_offset to avoid touching the pageframes
3470 * of this compound page.
3472 goto same_page;
3474 spin_unlock(ptl);
3476 *nr_pages = remainder;
3477 *position = vaddr;
3479 return i ? i : -EFAULT;
3482 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3483 unsigned long address, unsigned long end, pgprot_t newprot)
3485 struct mm_struct *mm = vma->vm_mm;
3486 unsigned long start = address;
3487 pte_t *ptep;
3488 pte_t pte;
3489 struct hstate *h = hstate_vma(vma);
3490 unsigned long pages = 0;
3492 BUG_ON(address >= end);
3493 flush_cache_range(vma, address, end);
3495 mmu_notifier_invalidate_range_start(mm, start, end);
3496 i_mmap_lock_write(vma->vm_file->f_mapping);
3497 for (; address < end; address += huge_page_size(h)) {
3498 spinlock_t *ptl;
3499 ptep = huge_pte_offset(mm, address);
3500 if (!ptep)
3501 continue;
3502 ptl = huge_pte_lock(h, mm, ptep);
3503 if (huge_pmd_unshare(mm, &address, ptep)) {
3504 pages++;
3505 spin_unlock(ptl);
3506 continue;
3508 pte = huge_ptep_get(ptep);
3509 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3510 spin_unlock(ptl);
3511 continue;
3513 if (unlikely(is_hugetlb_entry_migration(pte))) {
3514 swp_entry_t entry = pte_to_swp_entry(pte);
3516 if (is_write_migration_entry(entry)) {
3517 pte_t newpte;
3519 make_migration_entry_read(&entry);
3520 newpte = swp_entry_to_pte(entry);
3521 set_huge_pte_at(mm, address, ptep, newpte);
3522 pages++;
3524 spin_unlock(ptl);
3525 continue;
3527 if (!huge_pte_none(pte)) {
3528 pte = huge_ptep_get_and_clear(mm, address, ptep);
3529 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3530 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3531 set_huge_pte_at(mm, address, ptep, pte);
3532 pages++;
3534 spin_unlock(ptl);
3537 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3538 * may have cleared our pud entry and done put_page on the page table:
3539 * once we release i_mmap_rwsem, another task can do the final put_page
3540 * and that page table be reused and filled with junk.
3542 flush_tlb_range(vma, start, end);
3543 mmu_notifier_invalidate_range(mm, start, end);
3544 i_mmap_unlock_write(vma->vm_file->f_mapping);
3545 mmu_notifier_invalidate_range_end(mm, start, end);
3547 return pages << h->order;
3550 int hugetlb_reserve_pages(struct inode *inode,
3551 long from, long to,
3552 struct vm_area_struct *vma,
3553 vm_flags_t vm_flags)
3555 long ret, chg;
3556 struct hstate *h = hstate_inode(inode);
3557 struct hugepage_subpool *spool = subpool_inode(inode);
3558 struct resv_map *resv_map;
3559 long gbl_reserve;
3562 * Only apply hugepage reservation if asked. At fault time, an
3563 * attempt will be made for VM_NORESERVE to allocate a page
3564 * without using reserves
3566 if (vm_flags & VM_NORESERVE)
3567 return 0;
3570 * Shared mappings base their reservation on the number of pages that
3571 * are already allocated on behalf of the file. Private mappings need
3572 * to reserve the full area even if read-only as mprotect() may be
3573 * called to make the mapping read-write. Assume !vma is a shm mapping
3575 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3576 resv_map = inode_resv_map(inode);
3578 chg = region_chg(resv_map, from, to);
3580 } else {
3581 resv_map = resv_map_alloc();
3582 if (!resv_map)
3583 return -ENOMEM;
3585 chg = to - from;
3587 set_vma_resv_map(vma, resv_map);
3588 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3591 if (chg < 0) {
3592 ret = chg;
3593 goto out_err;
3597 * There must be enough pages in the subpool for the mapping. If
3598 * the subpool has a minimum size, there may be some global
3599 * reservations already in place (gbl_reserve).
3601 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3602 if (gbl_reserve < 0) {
3603 ret = -ENOSPC;
3604 goto out_err;
3608 * Check enough hugepages are available for the reservation.
3609 * Hand the pages back to the subpool if there are not
3611 ret = hugetlb_acct_memory(h, gbl_reserve);
3612 if (ret < 0) {
3613 /* put back original number of pages, chg */
3614 (void)hugepage_subpool_put_pages(spool, chg);
3615 goto out_err;
3619 * Account for the reservations made. Shared mappings record regions
3620 * that have reservations as they are shared by multiple VMAs.
3621 * When the last VMA disappears, the region map says how much
3622 * the reservation was and the page cache tells how much of
3623 * the reservation was consumed. Private mappings are per-VMA and
3624 * only the consumed reservations are tracked. When the VMA
3625 * disappears, the original reservation is the VMA size and the
3626 * consumed reservations are stored in the map. Hence, nothing
3627 * else has to be done for private mappings here
3629 if (!vma || vma->vm_flags & VM_MAYSHARE)
3630 region_add(resv_map, from, to);
3631 return 0;
3632 out_err:
3633 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3634 kref_put(&resv_map->refs, resv_map_release);
3635 return ret;
3638 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3640 struct hstate *h = hstate_inode(inode);
3641 struct resv_map *resv_map = inode_resv_map(inode);
3642 long chg = 0;
3643 struct hugepage_subpool *spool = subpool_inode(inode);
3644 long gbl_reserve;
3646 if (resv_map)
3647 chg = region_truncate(resv_map, offset);
3648 spin_lock(&inode->i_lock);
3649 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3650 spin_unlock(&inode->i_lock);
3653 * If the subpool has a minimum size, the number of global
3654 * reservations to be released may be adjusted.
3656 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3657 hugetlb_acct_memory(h, -gbl_reserve);
3660 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3661 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3662 struct vm_area_struct *vma,
3663 unsigned long addr, pgoff_t idx)
3665 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3666 svma->vm_start;
3667 unsigned long sbase = saddr & PUD_MASK;
3668 unsigned long s_end = sbase + PUD_SIZE;
3670 /* Allow segments to share if only one is marked locked */
3671 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3672 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3675 * match the virtual addresses, permission and the alignment of the
3676 * page table page.
3678 if (pmd_index(addr) != pmd_index(saddr) ||
3679 vm_flags != svm_flags ||
3680 sbase < svma->vm_start || svma->vm_end < s_end)
3681 return 0;
3683 return saddr;
3686 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3688 unsigned long base = addr & PUD_MASK;
3689 unsigned long end = base + PUD_SIZE;
3692 * check on proper vm_flags and page table alignment
3694 if (vma->vm_flags & VM_MAYSHARE &&
3695 vma->vm_start <= base && end <= vma->vm_end)
3696 return 1;
3697 return 0;
3701 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3702 * and returns the corresponding pte. While this is not necessary for the
3703 * !shared pmd case because we can allocate the pmd later as well, it makes the
3704 * code much cleaner. pmd allocation is essential for the shared case because
3705 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3706 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3707 * bad pmd for sharing.
3709 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3711 struct vm_area_struct *vma = find_vma(mm, addr);
3712 struct address_space *mapping = vma->vm_file->f_mapping;
3713 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3714 vma->vm_pgoff;
3715 struct vm_area_struct *svma;
3716 unsigned long saddr;
3717 pte_t *spte = NULL;
3718 pte_t *pte;
3719 spinlock_t *ptl;
3721 if (!vma_shareable(vma, addr))
3722 return (pte_t *)pmd_alloc(mm, pud, addr);
3724 i_mmap_lock_write(mapping);
3725 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3726 if (svma == vma)
3727 continue;
3729 saddr = page_table_shareable(svma, vma, addr, idx);
3730 if (saddr) {
3731 spte = huge_pte_offset(svma->vm_mm, saddr);
3732 if (spte) {
3733 mm_inc_nr_pmds(mm);
3734 get_page(virt_to_page(spte));
3735 break;
3740 if (!spte)
3741 goto out;
3743 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3744 spin_lock(ptl);
3745 if (pud_none(*pud)) {
3746 pud_populate(mm, pud,
3747 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3748 } else {
3749 put_page(virt_to_page(spte));
3750 mm_inc_nr_pmds(mm);
3752 spin_unlock(ptl);
3753 out:
3754 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3755 i_mmap_unlock_write(mapping);
3756 return pte;
3760 * unmap huge page backed by shared pte.
3762 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3763 * indicated by page_count > 1, unmap is achieved by clearing pud and
3764 * decrementing the ref count. If count == 1, the pte page is not shared.
3766 * called with page table lock held.
3768 * returns: 1 successfully unmapped a shared pte page
3769 * 0 the underlying pte page is not shared, or it is the last user
3771 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3773 pgd_t *pgd = pgd_offset(mm, *addr);
3774 pud_t *pud = pud_offset(pgd, *addr);
3776 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3777 if (page_count(virt_to_page(ptep)) == 1)
3778 return 0;
3780 pud_clear(pud);
3781 put_page(virt_to_page(ptep));
3782 mm_dec_nr_pmds(mm);
3783 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3784 return 1;
3786 #define want_pmd_share() (1)
3787 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3788 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3790 return NULL;
3792 #define want_pmd_share() (0)
3793 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3795 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3796 pte_t *huge_pte_alloc(struct mm_struct *mm,
3797 unsigned long addr, unsigned long sz)
3799 pgd_t *pgd;
3800 pud_t *pud;
3801 pte_t *pte = NULL;
3803 pgd = pgd_offset(mm, addr);
3804 pud = pud_alloc(mm, pgd, addr);
3805 if (pud) {
3806 if (sz == PUD_SIZE) {
3807 pte = (pte_t *)pud;
3808 } else {
3809 BUG_ON(sz != PMD_SIZE);
3810 if (want_pmd_share() && pud_none(*pud))
3811 pte = huge_pmd_share(mm, addr, pud);
3812 else
3813 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3816 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3818 return pte;
3821 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3823 pgd_t *pgd;
3824 pud_t *pud;
3825 pmd_t *pmd = NULL;
3827 pgd = pgd_offset(mm, addr);
3828 if (pgd_present(*pgd)) {
3829 pud = pud_offset(pgd, addr);
3830 if (pud_present(*pud)) {
3831 if (pud_huge(*pud))
3832 return (pte_t *)pud;
3833 pmd = pmd_offset(pud, addr);
3836 return (pte_t *) pmd;
3839 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3842 * These functions are overwritable if your architecture needs its own
3843 * behavior.
3845 struct page * __weak
3846 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3847 int write)
3849 return ERR_PTR(-EINVAL);
3852 struct page * __weak
3853 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3854 pmd_t *pmd, int flags)
3856 struct page *page = NULL;
3857 spinlock_t *ptl;
3858 retry:
3859 ptl = pmd_lockptr(mm, pmd);
3860 spin_lock(ptl);
3862 * make sure that the address range covered by this pmd is not
3863 * unmapped from other threads.
3865 if (!pmd_huge(*pmd))
3866 goto out;
3867 if (pmd_present(*pmd)) {
3868 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3869 if (flags & FOLL_GET)
3870 get_page(page);
3871 } else {
3872 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3873 spin_unlock(ptl);
3874 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3875 goto retry;
3878 * hwpoisoned entry is treated as no_page_table in
3879 * follow_page_mask().
3882 out:
3883 spin_unlock(ptl);
3884 return page;
3887 struct page * __weak
3888 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3889 pud_t *pud, int flags)
3891 if (flags & FOLL_GET)
3892 return NULL;
3894 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3897 #ifdef CONFIG_MEMORY_FAILURE
3900 * This function is called from memory failure code.
3901 * Assume the caller holds page lock of the head page.
3903 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3905 struct hstate *h = page_hstate(hpage);
3906 int nid = page_to_nid(hpage);
3907 int ret = -EBUSY;
3909 spin_lock(&hugetlb_lock);
3911 * Just checking !page_huge_active is not enough, because that could be
3912 * an isolated/hwpoisoned hugepage (which have >0 refcount).
3914 if (!page_huge_active(hpage) && !page_count(hpage)) {
3916 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3917 * but dangling hpage->lru can trigger list-debug warnings
3918 * (this happens when we call unpoison_memory() on it),
3919 * so let it point to itself with list_del_init().
3921 list_del_init(&hpage->lru);
3922 set_page_refcounted(hpage);
3923 h->free_huge_pages--;
3924 h->free_huge_pages_node[nid]--;
3925 ret = 0;
3927 spin_unlock(&hugetlb_lock);
3928 return ret;
3930 #endif
3932 bool isolate_huge_page(struct page *page, struct list_head *list)
3934 bool ret = true;
3936 VM_BUG_ON_PAGE(!PageHead(page), page);
3937 spin_lock(&hugetlb_lock);
3938 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
3939 ret = false;
3940 goto unlock;
3942 clear_page_huge_active(page);
3943 list_move_tail(&page->lru, list);
3944 unlock:
3945 spin_unlock(&hugetlb_lock);
3946 return ret;
3949 void putback_active_hugepage(struct page *page)
3951 VM_BUG_ON_PAGE(!PageHead(page), page);
3952 spin_lock(&hugetlb_lock);
3953 set_page_huge_active(page);
3954 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3955 spin_unlock(&hugetlb_lock);
3956 put_page(page);