writeback: Add tracing to write_cache_pages
[linux-2.6/btrfs-unstable.git] / mm / page-writeback.c
blob3d2111a2223633d817ccbd6714fcd994509f1ca8
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
43 static long ratelimit_pages = 32;
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
48 * It should be somewhat larger than dirtied pages to ensure that reasonably
49 * large amounts of I/O are submitted.
51 static inline long sync_writeback_pages(unsigned long dirtied)
53 if (dirtied < ratelimit_pages)
54 dirtied = ratelimit_pages;
56 return dirtied + dirtied / 2;
59 /* The following parameters are exported via /proc/sys/vm */
62 * Start background writeback (via writeback threads) at this percentage
64 int dirty_background_ratio = 10;
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
70 unsigned long dirty_background_bytes;
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
76 int vm_highmem_is_dirtyable;
79 * The generator of dirty data starts writeback at this percentage
81 int vm_dirty_ratio = 20;
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
87 unsigned long vm_dirty_bytes;
90 * The interval between `kupdate'-style writebacks
92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
95 * The longest time for which data is allowed to remain dirty
97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
100 * Flag that makes the machine dump writes/reads and block dirtyings.
102 int block_dump;
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
108 int laptop_mode;
110 EXPORT_SYMBOL(laptop_mode);
112 /* End of sysctl-exported parameters */
116 * Scale the writeback cache size proportional to the relative writeout speeds.
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
121 * share.
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
131 static struct prop_descriptor vm_completions;
132 static struct prop_descriptor vm_dirties;
135 * couple the period to the dirty_ratio:
137 * period/2 ~ roundup_pow_of_two(dirty limit)
139 static int calc_period_shift(void)
141 unsigned long dirty_total;
143 if (vm_dirty_bytes)
144 dirty_total = vm_dirty_bytes / PAGE_SIZE;
145 else
146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147 100;
148 return 2 + ilog2(dirty_total - 1);
152 * update the period when the dirty threshold changes.
154 static void update_completion_period(void)
156 int shift = calc_period_shift();
157 prop_change_shift(&vm_completions, shift);
158 prop_change_shift(&vm_dirties, shift);
161 int dirty_background_ratio_handler(struct ctl_table *table, int write,
162 void __user *buffer, size_t *lenp,
163 loff_t *ppos)
165 int ret;
167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
168 if (ret == 0 && write)
169 dirty_background_bytes = 0;
170 return ret;
173 int dirty_background_bytes_handler(struct ctl_table *table, int write,
174 void __user *buffer, size_t *lenp,
175 loff_t *ppos)
177 int ret;
179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180 if (ret == 0 && write)
181 dirty_background_ratio = 0;
182 return ret;
185 int dirty_ratio_handler(struct ctl_table *table, int write,
186 void __user *buffer, size_t *lenp,
187 loff_t *ppos)
189 int old_ratio = vm_dirty_ratio;
190 int ret;
192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
194 update_completion_period();
195 vm_dirty_bytes = 0;
197 return ret;
201 int dirty_bytes_handler(struct ctl_table *table, int write,
202 void __user *buffer, size_t *lenp,
203 loff_t *ppos)
205 unsigned long old_bytes = vm_dirty_bytes;
206 int ret;
208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210 update_completion_period();
211 vm_dirty_ratio = 0;
213 return ret;
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
222 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 bdi->max_prop_frac);
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
228 unsigned long flags;
230 local_irq_save(flags);
231 __bdi_writeout_inc(bdi);
232 local_irq_restore(flags);
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
236 void task_dirty_inc(struct task_struct *tsk)
238 prop_inc_single(&vm_dirties, &tsk->dirties);
242 * Obtain an accurate fraction of the BDI's portion.
244 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245 long *numerator, long *denominator)
247 if (bdi_cap_writeback_dirty(bdi)) {
248 prop_fraction_percpu(&vm_completions, &bdi->completions,
249 numerator, denominator);
250 } else {
251 *numerator = 0;
252 *denominator = 1;
257 * Clip the earned share of dirty pages to that which is actually available.
258 * This avoids exceeding the total dirty_limit when the floating averages
259 * fluctuate too quickly.
261 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
262 unsigned long dirty, unsigned long *pbdi_dirty)
264 unsigned long avail_dirty;
266 avail_dirty = global_page_state(NR_FILE_DIRTY) +
267 global_page_state(NR_WRITEBACK) +
268 global_page_state(NR_UNSTABLE_NFS) +
269 global_page_state(NR_WRITEBACK_TEMP);
271 if (avail_dirty < dirty)
272 avail_dirty = dirty - avail_dirty;
273 else
274 avail_dirty = 0;
276 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
277 bdi_stat(bdi, BDI_WRITEBACK);
279 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
282 static inline void task_dirties_fraction(struct task_struct *tsk,
283 long *numerator, long *denominator)
285 prop_fraction_single(&vm_dirties, &tsk->dirties,
286 numerator, denominator);
290 * scale the dirty limit
292 * task specific dirty limit:
294 * dirty -= (dirty/8) * p_{t}
296 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
298 long numerator, denominator;
299 unsigned long dirty = *pdirty;
300 u64 inv = dirty >> 3;
302 task_dirties_fraction(tsk, &numerator, &denominator);
303 inv *= numerator;
304 do_div(inv, denominator);
306 dirty -= inv;
307 if (dirty < *pdirty/2)
308 dirty = *pdirty/2;
310 *pdirty = dirty;
316 static unsigned int bdi_min_ratio;
318 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
320 int ret = 0;
322 spin_lock_bh(&bdi_lock);
323 if (min_ratio > bdi->max_ratio) {
324 ret = -EINVAL;
325 } else {
326 min_ratio -= bdi->min_ratio;
327 if (bdi_min_ratio + min_ratio < 100) {
328 bdi_min_ratio += min_ratio;
329 bdi->min_ratio += min_ratio;
330 } else {
331 ret = -EINVAL;
334 spin_unlock_bh(&bdi_lock);
336 return ret;
339 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
341 int ret = 0;
343 if (max_ratio > 100)
344 return -EINVAL;
346 spin_lock_bh(&bdi_lock);
347 if (bdi->min_ratio > max_ratio) {
348 ret = -EINVAL;
349 } else {
350 bdi->max_ratio = max_ratio;
351 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
353 spin_unlock_bh(&bdi_lock);
355 return ret;
357 EXPORT_SYMBOL(bdi_set_max_ratio);
360 * Work out the current dirty-memory clamping and background writeout
361 * thresholds.
363 * The main aim here is to lower them aggressively if there is a lot of mapped
364 * memory around. To avoid stressing page reclaim with lots of unreclaimable
365 * pages. It is better to clamp down on writers than to start swapping, and
366 * performing lots of scanning.
368 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
370 * We don't permit the clamping level to fall below 5% - that is getting rather
371 * excessive.
373 * We make sure that the background writeout level is below the adjusted
374 * clamping level.
377 static unsigned long highmem_dirtyable_memory(unsigned long total)
379 #ifdef CONFIG_HIGHMEM
380 int node;
381 unsigned long x = 0;
383 for_each_node_state(node, N_HIGH_MEMORY) {
384 struct zone *z =
385 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
387 x += zone_page_state(z, NR_FREE_PAGES) +
388 zone_reclaimable_pages(z);
391 * Make sure that the number of highmem pages is never larger
392 * than the number of the total dirtyable memory. This can only
393 * occur in very strange VM situations but we want to make sure
394 * that this does not occur.
396 return min(x, total);
397 #else
398 return 0;
399 #endif
403 * determine_dirtyable_memory - amount of memory that may be used
405 * Returns the numebr of pages that can currently be freed and used
406 * by the kernel for direct mappings.
408 unsigned long determine_dirtyable_memory(void)
410 unsigned long x;
412 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
414 if (!vm_highmem_is_dirtyable)
415 x -= highmem_dirtyable_memory(x);
417 return x + 1; /* Ensure that we never return 0 */
420 void
421 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
422 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
424 unsigned long background;
425 unsigned long dirty;
426 unsigned long available_memory = determine_dirtyable_memory();
427 struct task_struct *tsk;
429 if (vm_dirty_bytes)
430 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
431 else {
432 int dirty_ratio;
434 dirty_ratio = vm_dirty_ratio;
435 if (dirty_ratio < 5)
436 dirty_ratio = 5;
437 dirty = (dirty_ratio * available_memory) / 100;
440 if (dirty_background_bytes)
441 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
442 else
443 background = (dirty_background_ratio * available_memory) / 100;
445 if (background >= dirty)
446 background = dirty / 2;
447 tsk = current;
448 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
449 background += background / 4;
450 dirty += dirty / 4;
452 *pbackground = background;
453 *pdirty = dirty;
455 if (bdi) {
456 u64 bdi_dirty;
457 long numerator, denominator;
460 * Calculate this BDI's share of the dirty ratio.
462 bdi_writeout_fraction(bdi, &numerator, &denominator);
464 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
465 bdi_dirty *= numerator;
466 do_div(bdi_dirty, denominator);
467 bdi_dirty += (dirty * bdi->min_ratio) / 100;
468 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
469 bdi_dirty = dirty * bdi->max_ratio / 100;
471 *pbdi_dirty = bdi_dirty;
472 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
473 task_dirty_limit(current, pbdi_dirty);
478 * balance_dirty_pages() must be called by processes which are generating dirty
479 * data. It looks at the number of dirty pages in the machine and will force
480 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
481 * If we're over `background_thresh' then the writeback threads are woken to
482 * perform some writeout.
484 static void balance_dirty_pages(struct address_space *mapping,
485 unsigned long write_chunk)
487 long nr_reclaimable, bdi_nr_reclaimable;
488 long nr_writeback, bdi_nr_writeback;
489 unsigned long background_thresh;
490 unsigned long dirty_thresh;
491 unsigned long bdi_thresh;
492 unsigned long pages_written = 0;
493 unsigned long pause = 1;
495 struct backing_dev_info *bdi = mapping->backing_dev_info;
497 for (;;) {
498 struct writeback_control wbc = {
499 .sync_mode = WB_SYNC_NONE,
500 .older_than_this = NULL,
501 .nr_to_write = write_chunk,
502 .range_cyclic = 1,
505 get_dirty_limits(&background_thresh, &dirty_thresh,
506 &bdi_thresh, bdi);
508 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
509 global_page_state(NR_UNSTABLE_NFS);
510 nr_writeback = global_page_state(NR_WRITEBACK);
512 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
513 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
515 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
516 break;
519 * Throttle it only when the background writeback cannot
520 * catch-up. This avoids (excessively) small writeouts
521 * when the bdi limits are ramping up.
523 if (nr_reclaimable + nr_writeback <
524 (background_thresh + dirty_thresh) / 2)
525 break;
527 if (!bdi->dirty_exceeded)
528 bdi->dirty_exceeded = 1;
530 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
531 * Unstable writes are a feature of certain networked
532 * filesystems (i.e. NFS) in which data may have been
533 * written to the server's write cache, but has not yet
534 * been flushed to permanent storage.
535 * Only move pages to writeback if this bdi is over its
536 * threshold otherwise wait until the disk writes catch
537 * up.
539 trace_wbc_balance_dirty_start(&wbc, bdi);
540 if (bdi_nr_reclaimable > bdi_thresh) {
541 writeback_inodes_wb(&bdi->wb, &wbc);
542 pages_written += write_chunk - wbc.nr_to_write;
543 get_dirty_limits(&background_thresh, &dirty_thresh,
544 &bdi_thresh, bdi);
545 trace_wbc_balance_dirty_written(&wbc, bdi);
549 * In order to avoid the stacked BDI deadlock we need
550 * to ensure we accurately count the 'dirty' pages when
551 * the threshold is low.
553 * Otherwise it would be possible to get thresh+n pages
554 * reported dirty, even though there are thresh-m pages
555 * actually dirty; with m+n sitting in the percpu
556 * deltas.
558 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
559 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
560 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
561 } else if (bdi_nr_reclaimable) {
562 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
563 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
566 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
567 break;
568 if (pages_written >= write_chunk)
569 break; /* We've done our duty */
571 trace_wbc_balance_dirty_wait(&wbc, bdi);
572 __set_current_state(TASK_INTERRUPTIBLE);
573 io_schedule_timeout(pause);
576 * Increase the delay for each loop, up to our previous
577 * default of taking a 100ms nap.
579 pause <<= 1;
580 if (pause > HZ / 10)
581 pause = HZ / 10;
584 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
585 bdi->dirty_exceeded)
586 bdi->dirty_exceeded = 0;
588 if (writeback_in_progress(bdi))
589 return;
592 * In laptop mode, we wait until hitting the higher threshold before
593 * starting background writeout, and then write out all the way down
594 * to the lower threshold. So slow writers cause minimal disk activity.
596 * In normal mode, we start background writeout at the lower
597 * background_thresh, to keep the amount of dirty memory low.
599 if ((laptop_mode && pages_written) ||
600 (!laptop_mode && ((global_page_state(NR_FILE_DIRTY)
601 + global_page_state(NR_UNSTABLE_NFS))
602 > background_thresh)))
603 bdi_start_background_writeback(bdi);
606 void set_page_dirty_balance(struct page *page, int page_mkwrite)
608 if (set_page_dirty(page) || page_mkwrite) {
609 struct address_space *mapping = page_mapping(page);
611 if (mapping)
612 balance_dirty_pages_ratelimited(mapping);
616 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
619 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
620 * @mapping: address_space which was dirtied
621 * @nr_pages_dirtied: number of pages which the caller has just dirtied
623 * Processes which are dirtying memory should call in here once for each page
624 * which was newly dirtied. The function will periodically check the system's
625 * dirty state and will initiate writeback if needed.
627 * On really big machines, get_writeback_state is expensive, so try to avoid
628 * calling it too often (ratelimiting). But once we're over the dirty memory
629 * limit we decrease the ratelimiting by a lot, to prevent individual processes
630 * from overshooting the limit by (ratelimit_pages) each.
632 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
633 unsigned long nr_pages_dirtied)
635 unsigned long ratelimit;
636 unsigned long *p;
638 ratelimit = ratelimit_pages;
639 if (mapping->backing_dev_info->dirty_exceeded)
640 ratelimit = 8;
643 * Check the rate limiting. Also, we do not want to throttle real-time
644 * tasks in balance_dirty_pages(). Period.
646 preempt_disable();
647 p = &__get_cpu_var(bdp_ratelimits);
648 *p += nr_pages_dirtied;
649 if (unlikely(*p >= ratelimit)) {
650 ratelimit = sync_writeback_pages(*p);
651 *p = 0;
652 preempt_enable();
653 balance_dirty_pages(mapping, ratelimit);
654 return;
656 preempt_enable();
658 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
660 void throttle_vm_writeout(gfp_t gfp_mask)
662 unsigned long background_thresh;
663 unsigned long dirty_thresh;
665 for ( ; ; ) {
666 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
669 * Boost the allowable dirty threshold a bit for page
670 * allocators so they don't get DoS'ed by heavy writers
672 dirty_thresh += dirty_thresh / 10; /* wheeee... */
674 if (global_page_state(NR_UNSTABLE_NFS) +
675 global_page_state(NR_WRITEBACK) <= dirty_thresh)
676 break;
677 congestion_wait(BLK_RW_ASYNC, HZ/10);
680 * The caller might hold locks which can prevent IO completion
681 * or progress in the filesystem. So we cannot just sit here
682 * waiting for IO to complete.
684 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
685 break;
690 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
692 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
693 void __user *buffer, size_t *length, loff_t *ppos)
695 proc_dointvec(table, write, buffer, length, ppos);
696 bdi_arm_supers_timer();
697 return 0;
700 #ifdef CONFIG_BLOCK
701 void laptop_mode_timer_fn(unsigned long data)
703 struct request_queue *q = (struct request_queue *)data;
704 int nr_pages = global_page_state(NR_FILE_DIRTY) +
705 global_page_state(NR_UNSTABLE_NFS);
708 * We want to write everything out, not just down to the dirty
709 * threshold
711 if (bdi_has_dirty_io(&q->backing_dev_info))
712 bdi_start_writeback(&q->backing_dev_info, nr_pages);
716 * We've spun up the disk and we're in laptop mode: schedule writeback
717 * of all dirty data a few seconds from now. If the flush is already scheduled
718 * then push it back - the user is still using the disk.
720 void laptop_io_completion(struct backing_dev_info *info)
722 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
726 * We're in laptop mode and we've just synced. The sync's writes will have
727 * caused another writeback to be scheduled by laptop_io_completion.
728 * Nothing needs to be written back anymore, so we unschedule the writeback.
730 void laptop_sync_completion(void)
732 struct backing_dev_info *bdi;
734 rcu_read_lock();
736 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
737 del_timer(&bdi->laptop_mode_wb_timer);
739 rcu_read_unlock();
741 #endif
744 * If ratelimit_pages is too high then we can get into dirty-data overload
745 * if a large number of processes all perform writes at the same time.
746 * If it is too low then SMP machines will call the (expensive)
747 * get_writeback_state too often.
749 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
750 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
751 * thresholds before writeback cuts in.
753 * But the limit should not be set too high. Because it also controls the
754 * amount of memory which the balance_dirty_pages() caller has to write back.
755 * If this is too large then the caller will block on the IO queue all the
756 * time. So limit it to four megabytes - the balance_dirty_pages() caller
757 * will write six megabyte chunks, max.
760 void writeback_set_ratelimit(void)
762 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
763 if (ratelimit_pages < 16)
764 ratelimit_pages = 16;
765 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
766 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
769 static int __cpuinit
770 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
772 writeback_set_ratelimit();
773 return NOTIFY_DONE;
776 static struct notifier_block __cpuinitdata ratelimit_nb = {
777 .notifier_call = ratelimit_handler,
778 .next = NULL,
782 * Called early on to tune the page writeback dirty limits.
784 * We used to scale dirty pages according to how total memory
785 * related to pages that could be allocated for buffers (by
786 * comparing nr_free_buffer_pages() to vm_total_pages.
788 * However, that was when we used "dirty_ratio" to scale with
789 * all memory, and we don't do that any more. "dirty_ratio"
790 * is now applied to total non-HIGHPAGE memory (by subtracting
791 * totalhigh_pages from vm_total_pages), and as such we can't
792 * get into the old insane situation any more where we had
793 * large amounts of dirty pages compared to a small amount of
794 * non-HIGHMEM memory.
796 * But we might still want to scale the dirty_ratio by how
797 * much memory the box has..
799 void __init page_writeback_init(void)
801 int shift;
803 writeback_set_ratelimit();
804 register_cpu_notifier(&ratelimit_nb);
806 shift = calc_period_shift();
807 prop_descriptor_init(&vm_completions, shift);
808 prop_descriptor_init(&vm_dirties, shift);
812 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
813 * @mapping: address space structure to write
814 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
815 * @writepage: function called for each page
816 * @data: data passed to writepage function
818 * If a page is already under I/O, write_cache_pages() skips it, even
819 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
820 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
821 * and msync() need to guarantee that all the data which was dirty at the time
822 * the call was made get new I/O started against them. If wbc->sync_mode is
823 * WB_SYNC_ALL then we were called for data integrity and we must wait for
824 * existing IO to complete.
826 int write_cache_pages(struct address_space *mapping,
827 struct writeback_control *wbc, writepage_t writepage,
828 void *data)
830 int ret = 0;
831 int done = 0;
832 struct pagevec pvec;
833 int nr_pages;
834 pgoff_t uninitialized_var(writeback_index);
835 pgoff_t index;
836 pgoff_t end; /* Inclusive */
837 pgoff_t done_index;
838 int cycled;
839 int range_whole = 0;
841 pagevec_init(&pvec, 0);
842 if (wbc->range_cyclic) {
843 writeback_index = mapping->writeback_index; /* prev offset */
844 index = writeback_index;
845 if (index == 0)
846 cycled = 1;
847 else
848 cycled = 0;
849 end = -1;
850 } else {
851 index = wbc->range_start >> PAGE_CACHE_SHIFT;
852 end = wbc->range_end >> PAGE_CACHE_SHIFT;
853 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
854 range_whole = 1;
855 cycled = 1; /* ignore range_cyclic tests */
858 * If this is a data integrity sync, cap the writeback to the
859 * current end of file. Any extension to the file that occurs
860 * after this is a new write and we don't need to write those
861 * pages out to fulfil our data integrity requirements. If we
862 * try to write them out, we can get stuck in this scan until
863 * the concurrent writer stops adding dirty pages and extending
864 * EOF.
866 if (wbc->sync_mode == WB_SYNC_ALL &&
867 wbc->range_end == LLONG_MAX) {
868 end = i_size_read(mapping->host) >> PAGE_CACHE_SHIFT;
872 retry:
873 done_index = index;
874 while (!done && (index <= end)) {
875 int i;
877 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
878 PAGECACHE_TAG_DIRTY,
879 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
880 if (nr_pages == 0)
881 break;
883 for (i = 0; i < nr_pages; i++) {
884 struct page *page = pvec.pages[i];
887 * At this point, the page may be truncated or
888 * invalidated (changing page->mapping to NULL), or
889 * even swizzled back from swapper_space to tmpfs file
890 * mapping. However, page->index will not change
891 * because we have a reference on the page.
893 if (page->index > end) {
895 * can't be range_cyclic (1st pass) because
896 * end == -1 in that case.
898 done = 1;
899 break;
902 done_index = page->index + 1;
904 lock_page(page);
907 * Page truncated or invalidated. We can freely skip it
908 * then, even for data integrity operations: the page
909 * has disappeared concurrently, so there could be no
910 * real expectation of this data interity operation
911 * even if there is now a new, dirty page at the same
912 * pagecache address.
914 if (unlikely(page->mapping != mapping)) {
915 continue_unlock:
916 unlock_page(page);
917 continue;
920 if (!PageDirty(page)) {
921 /* someone wrote it for us */
922 goto continue_unlock;
925 if (PageWriteback(page)) {
926 if (wbc->sync_mode != WB_SYNC_NONE)
927 wait_on_page_writeback(page);
928 else
929 goto continue_unlock;
932 BUG_ON(PageWriteback(page));
933 if (!clear_page_dirty_for_io(page))
934 goto continue_unlock;
936 trace_wbc_writepage(wbc, mapping->backing_dev_info);
937 ret = (*writepage)(page, wbc, data);
938 if (unlikely(ret)) {
939 if (ret == AOP_WRITEPAGE_ACTIVATE) {
940 unlock_page(page);
941 ret = 0;
942 } else {
944 * done_index is set past this page,
945 * so media errors will not choke
946 * background writeout for the entire
947 * file. This has consequences for
948 * range_cyclic semantics (ie. it may
949 * not be suitable for data integrity
950 * writeout).
952 done = 1;
953 break;
957 if (wbc->nr_to_write > 0) {
958 if (--wbc->nr_to_write == 0 &&
959 wbc->sync_mode == WB_SYNC_NONE) {
961 * We stop writing back only if we are
962 * not doing integrity sync. In case of
963 * integrity sync we have to keep going
964 * because someone may be concurrently
965 * dirtying pages, and we might have
966 * synced a lot of newly appeared dirty
967 * pages, but have not synced all of the
968 * old dirty pages.
970 done = 1;
971 break;
975 pagevec_release(&pvec);
976 cond_resched();
978 if (!cycled && !done) {
980 * range_cyclic:
981 * We hit the last page and there is more work to be done: wrap
982 * back to the start of the file
984 cycled = 1;
985 index = 0;
986 end = writeback_index - 1;
987 goto retry;
989 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
990 mapping->writeback_index = done_index;
992 return ret;
994 EXPORT_SYMBOL(write_cache_pages);
997 * Function used by generic_writepages to call the real writepage
998 * function and set the mapping flags on error
1000 static int __writepage(struct page *page, struct writeback_control *wbc,
1001 void *data)
1003 struct address_space *mapping = data;
1004 int ret = mapping->a_ops->writepage(page, wbc);
1005 mapping_set_error(mapping, ret);
1006 return ret;
1010 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1011 * @mapping: address space structure to write
1012 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1014 * This is a library function, which implements the writepages()
1015 * address_space_operation.
1017 int generic_writepages(struct address_space *mapping,
1018 struct writeback_control *wbc)
1020 /* deal with chardevs and other special file */
1021 if (!mapping->a_ops->writepage)
1022 return 0;
1024 return write_cache_pages(mapping, wbc, __writepage, mapping);
1027 EXPORT_SYMBOL(generic_writepages);
1029 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1031 int ret;
1033 if (wbc->nr_to_write <= 0)
1034 return 0;
1035 if (mapping->a_ops->writepages)
1036 ret = mapping->a_ops->writepages(mapping, wbc);
1037 else
1038 ret = generic_writepages(mapping, wbc);
1039 return ret;
1043 * write_one_page - write out a single page and optionally wait on I/O
1044 * @page: the page to write
1045 * @wait: if true, wait on writeout
1047 * The page must be locked by the caller and will be unlocked upon return.
1049 * write_one_page() returns a negative error code if I/O failed.
1051 int write_one_page(struct page *page, int wait)
1053 struct address_space *mapping = page->mapping;
1054 int ret = 0;
1055 struct writeback_control wbc = {
1056 .sync_mode = WB_SYNC_ALL,
1057 .nr_to_write = 1,
1060 BUG_ON(!PageLocked(page));
1062 if (wait)
1063 wait_on_page_writeback(page);
1065 if (clear_page_dirty_for_io(page)) {
1066 page_cache_get(page);
1067 ret = mapping->a_ops->writepage(page, &wbc);
1068 if (ret == 0 && wait) {
1069 wait_on_page_writeback(page);
1070 if (PageError(page))
1071 ret = -EIO;
1073 page_cache_release(page);
1074 } else {
1075 unlock_page(page);
1077 return ret;
1079 EXPORT_SYMBOL(write_one_page);
1082 * For address_spaces which do not use buffers nor write back.
1084 int __set_page_dirty_no_writeback(struct page *page)
1086 if (!PageDirty(page))
1087 SetPageDirty(page);
1088 return 0;
1092 * Helper function for set_page_dirty family.
1093 * NOTE: This relies on being atomic wrt interrupts.
1095 void account_page_dirtied(struct page *page, struct address_space *mapping)
1097 if (mapping_cap_account_dirty(mapping)) {
1098 __inc_zone_page_state(page, NR_FILE_DIRTY);
1099 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1100 task_dirty_inc(current);
1101 task_io_account_write(PAGE_CACHE_SIZE);
1106 * For address_spaces which do not use buffers. Just tag the page as dirty in
1107 * its radix tree.
1109 * This is also used when a single buffer is being dirtied: we want to set the
1110 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1111 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1113 * Most callers have locked the page, which pins the address_space in memory.
1114 * But zap_pte_range() does not lock the page, however in that case the
1115 * mapping is pinned by the vma's ->vm_file reference.
1117 * We take care to handle the case where the page was truncated from the
1118 * mapping by re-checking page_mapping() inside tree_lock.
1120 int __set_page_dirty_nobuffers(struct page *page)
1122 if (!TestSetPageDirty(page)) {
1123 struct address_space *mapping = page_mapping(page);
1124 struct address_space *mapping2;
1126 if (!mapping)
1127 return 1;
1129 spin_lock_irq(&mapping->tree_lock);
1130 mapping2 = page_mapping(page);
1131 if (mapping2) { /* Race with truncate? */
1132 BUG_ON(mapping2 != mapping);
1133 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1134 account_page_dirtied(page, mapping);
1135 radix_tree_tag_set(&mapping->page_tree,
1136 page_index(page), PAGECACHE_TAG_DIRTY);
1138 spin_unlock_irq(&mapping->tree_lock);
1139 if (mapping->host) {
1140 /* !PageAnon && !swapper_space */
1141 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1143 return 1;
1145 return 0;
1147 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1150 * When a writepage implementation decides that it doesn't want to write this
1151 * page for some reason, it should redirty the locked page via
1152 * redirty_page_for_writepage() and it should then unlock the page and return 0
1154 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1156 wbc->pages_skipped++;
1157 return __set_page_dirty_nobuffers(page);
1159 EXPORT_SYMBOL(redirty_page_for_writepage);
1162 * Dirty a page.
1164 * For pages with a mapping this should be done under the page lock
1165 * for the benefit of asynchronous memory errors who prefer a consistent
1166 * dirty state. This rule can be broken in some special cases,
1167 * but should be better not to.
1169 * If the mapping doesn't provide a set_page_dirty a_op, then
1170 * just fall through and assume that it wants buffer_heads.
1172 int set_page_dirty(struct page *page)
1174 struct address_space *mapping = page_mapping(page);
1176 if (likely(mapping)) {
1177 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1178 #ifdef CONFIG_BLOCK
1179 if (!spd)
1180 spd = __set_page_dirty_buffers;
1181 #endif
1182 return (*spd)(page);
1184 if (!PageDirty(page)) {
1185 if (!TestSetPageDirty(page))
1186 return 1;
1188 return 0;
1190 EXPORT_SYMBOL(set_page_dirty);
1193 * set_page_dirty() is racy if the caller has no reference against
1194 * page->mapping->host, and if the page is unlocked. This is because another
1195 * CPU could truncate the page off the mapping and then free the mapping.
1197 * Usually, the page _is_ locked, or the caller is a user-space process which
1198 * holds a reference on the inode by having an open file.
1200 * In other cases, the page should be locked before running set_page_dirty().
1202 int set_page_dirty_lock(struct page *page)
1204 int ret;
1206 lock_page_nosync(page);
1207 ret = set_page_dirty(page);
1208 unlock_page(page);
1209 return ret;
1211 EXPORT_SYMBOL(set_page_dirty_lock);
1214 * Clear a page's dirty flag, while caring for dirty memory accounting.
1215 * Returns true if the page was previously dirty.
1217 * This is for preparing to put the page under writeout. We leave the page
1218 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1219 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1220 * implementation will run either set_page_writeback() or set_page_dirty(),
1221 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1222 * back into sync.
1224 * This incoherency between the page's dirty flag and radix-tree tag is
1225 * unfortunate, but it only exists while the page is locked.
1227 int clear_page_dirty_for_io(struct page *page)
1229 struct address_space *mapping = page_mapping(page);
1231 BUG_ON(!PageLocked(page));
1233 ClearPageReclaim(page);
1234 if (mapping && mapping_cap_account_dirty(mapping)) {
1236 * Yes, Virginia, this is indeed insane.
1238 * We use this sequence to make sure that
1239 * (a) we account for dirty stats properly
1240 * (b) we tell the low-level filesystem to
1241 * mark the whole page dirty if it was
1242 * dirty in a pagetable. Only to then
1243 * (c) clean the page again and return 1 to
1244 * cause the writeback.
1246 * This way we avoid all nasty races with the
1247 * dirty bit in multiple places and clearing
1248 * them concurrently from different threads.
1250 * Note! Normally the "set_page_dirty(page)"
1251 * has no effect on the actual dirty bit - since
1252 * that will already usually be set. But we
1253 * need the side effects, and it can help us
1254 * avoid races.
1256 * We basically use the page "master dirty bit"
1257 * as a serialization point for all the different
1258 * threads doing their things.
1260 if (page_mkclean(page))
1261 set_page_dirty(page);
1263 * We carefully synchronise fault handlers against
1264 * installing a dirty pte and marking the page dirty
1265 * at this point. We do this by having them hold the
1266 * page lock at some point after installing their
1267 * pte, but before marking the page dirty.
1268 * Pages are always locked coming in here, so we get
1269 * the desired exclusion. See mm/memory.c:do_wp_page()
1270 * for more comments.
1272 if (TestClearPageDirty(page)) {
1273 dec_zone_page_state(page, NR_FILE_DIRTY);
1274 dec_bdi_stat(mapping->backing_dev_info,
1275 BDI_RECLAIMABLE);
1276 return 1;
1278 return 0;
1280 return TestClearPageDirty(page);
1282 EXPORT_SYMBOL(clear_page_dirty_for_io);
1284 int test_clear_page_writeback(struct page *page)
1286 struct address_space *mapping = page_mapping(page);
1287 int ret;
1289 if (mapping) {
1290 struct backing_dev_info *bdi = mapping->backing_dev_info;
1291 unsigned long flags;
1293 spin_lock_irqsave(&mapping->tree_lock, flags);
1294 ret = TestClearPageWriteback(page);
1295 if (ret) {
1296 radix_tree_tag_clear(&mapping->page_tree,
1297 page_index(page),
1298 PAGECACHE_TAG_WRITEBACK);
1299 if (bdi_cap_account_writeback(bdi)) {
1300 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1301 __bdi_writeout_inc(bdi);
1304 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1305 } else {
1306 ret = TestClearPageWriteback(page);
1308 if (ret)
1309 dec_zone_page_state(page, NR_WRITEBACK);
1310 return ret;
1313 int test_set_page_writeback(struct page *page)
1315 struct address_space *mapping = page_mapping(page);
1316 int ret;
1318 if (mapping) {
1319 struct backing_dev_info *bdi = mapping->backing_dev_info;
1320 unsigned long flags;
1322 spin_lock_irqsave(&mapping->tree_lock, flags);
1323 ret = TestSetPageWriteback(page);
1324 if (!ret) {
1325 radix_tree_tag_set(&mapping->page_tree,
1326 page_index(page),
1327 PAGECACHE_TAG_WRITEBACK);
1328 if (bdi_cap_account_writeback(bdi))
1329 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1331 if (!PageDirty(page))
1332 radix_tree_tag_clear(&mapping->page_tree,
1333 page_index(page),
1334 PAGECACHE_TAG_DIRTY);
1335 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1336 } else {
1337 ret = TestSetPageWriteback(page);
1339 if (!ret)
1340 inc_zone_page_state(page, NR_WRITEBACK);
1341 return ret;
1344 EXPORT_SYMBOL(test_set_page_writeback);
1347 * Return true if any of the pages in the mapping are marked with the
1348 * passed tag.
1350 int mapping_tagged(struct address_space *mapping, int tag)
1352 int ret;
1353 rcu_read_lock();
1354 ret = radix_tree_tagged(&mapping->page_tree, tag);
1355 rcu_read_unlock();
1356 return ret;
1358 EXPORT_SYMBOL(mapping_tagged);