Merge branch 'cleanups-for-4.1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/btrfs-unstable.git] / fs / btrfs / transaction.c
blobfae816b6671d875beae95fb40d4a5d3d652a7c7f
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 while (!list_empty(&transaction->pending_chunks)) {
68 struct extent_map *em;
70 em = list_first_entry(&transaction->pending_chunks,
71 struct extent_map, list);
72 list_del_init(&em->list);
73 free_extent_map(em);
75 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 static void clear_btree_io_tree(struct extent_io_tree *tree)
81 spin_lock(&tree->lock);
82 while (!RB_EMPTY_ROOT(&tree->state)) {
83 struct rb_node *node;
84 struct extent_state *state;
86 node = rb_first(&tree->state);
87 state = rb_entry(node, struct extent_state, rb_node);
88 rb_erase(&state->rb_node, &tree->state);
89 RB_CLEAR_NODE(&state->rb_node);
91 * btree io trees aren't supposed to have tasks waiting for
92 * changes in the flags of extent states ever.
94 ASSERT(!waitqueue_active(&state->wq));
95 free_extent_state(state);
97 cond_resched_lock(&tree->lock);
99 spin_unlock(&tree->lock);
102 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
103 struct btrfs_fs_info *fs_info)
105 struct btrfs_root *root, *tmp;
107 down_write(&fs_info->commit_root_sem);
108 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
109 dirty_list) {
110 list_del_init(&root->dirty_list);
111 free_extent_buffer(root->commit_root);
112 root->commit_root = btrfs_root_node(root);
113 if (is_fstree(root->objectid))
114 btrfs_unpin_free_ino(root);
115 clear_btree_io_tree(&root->dirty_log_pages);
117 up_write(&fs_info->commit_root_sem);
120 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
121 unsigned int type)
123 if (type & TRANS_EXTWRITERS)
124 atomic_inc(&trans->num_extwriters);
127 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
128 unsigned int type)
130 if (type & TRANS_EXTWRITERS)
131 atomic_dec(&trans->num_extwriters);
134 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
135 unsigned int type)
137 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
140 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
142 return atomic_read(&trans->num_extwriters);
146 * either allocate a new transaction or hop into the existing one
148 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
150 struct btrfs_transaction *cur_trans;
151 struct btrfs_fs_info *fs_info = root->fs_info;
153 spin_lock(&fs_info->trans_lock);
154 loop:
155 /* The file system has been taken offline. No new transactions. */
156 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
157 spin_unlock(&fs_info->trans_lock);
158 return -EROFS;
161 cur_trans = fs_info->running_transaction;
162 if (cur_trans) {
163 if (cur_trans->aborted) {
164 spin_unlock(&fs_info->trans_lock);
165 return cur_trans->aborted;
167 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
168 spin_unlock(&fs_info->trans_lock);
169 return -EBUSY;
171 atomic_inc(&cur_trans->use_count);
172 atomic_inc(&cur_trans->num_writers);
173 extwriter_counter_inc(cur_trans, type);
174 spin_unlock(&fs_info->trans_lock);
175 return 0;
177 spin_unlock(&fs_info->trans_lock);
180 * If we are ATTACH, we just want to catch the current transaction,
181 * and commit it. If there is no transaction, just return ENOENT.
183 if (type == TRANS_ATTACH)
184 return -ENOENT;
187 * JOIN_NOLOCK only happens during the transaction commit, so
188 * it is impossible that ->running_transaction is NULL
190 BUG_ON(type == TRANS_JOIN_NOLOCK);
192 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
193 if (!cur_trans)
194 return -ENOMEM;
196 spin_lock(&fs_info->trans_lock);
197 if (fs_info->running_transaction) {
199 * someone started a transaction after we unlocked. Make sure
200 * to redo the checks above
202 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
203 goto loop;
204 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
205 spin_unlock(&fs_info->trans_lock);
206 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
207 return -EROFS;
210 atomic_set(&cur_trans->num_writers, 1);
211 extwriter_counter_init(cur_trans, type);
212 init_waitqueue_head(&cur_trans->writer_wait);
213 init_waitqueue_head(&cur_trans->commit_wait);
214 cur_trans->state = TRANS_STATE_RUNNING;
216 * One for this trans handle, one so it will live on until we
217 * commit the transaction.
219 atomic_set(&cur_trans->use_count, 2);
220 cur_trans->have_free_bgs = 0;
221 cur_trans->start_time = get_seconds();
223 cur_trans->delayed_refs.href_root = RB_ROOT;
224 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
225 cur_trans->delayed_refs.num_heads_ready = 0;
226 cur_trans->delayed_refs.num_heads = 0;
227 cur_trans->delayed_refs.flushing = 0;
228 cur_trans->delayed_refs.run_delayed_start = 0;
231 * although the tree mod log is per file system and not per transaction,
232 * the log must never go across transaction boundaries.
234 smp_mb();
235 if (!list_empty(&fs_info->tree_mod_seq_list))
236 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
237 "creating a fresh transaction\n");
238 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
239 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
240 "creating a fresh transaction\n");
241 atomic64_set(&fs_info->tree_mod_seq, 0);
243 spin_lock_init(&cur_trans->delayed_refs.lock);
245 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
246 INIT_LIST_HEAD(&cur_trans->pending_chunks);
247 INIT_LIST_HEAD(&cur_trans->switch_commits);
248 INIT_LIST_HEAD(&cur_trans->pending_ordered);
249 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
250 spin_lock_init(&cur_trans->dirty_bgs_lock);
251 list_add_tail(&cur_trans->list, &fs_info->trans_list);
252 extent_io_tree_init(&cur_trans->dirty_pages,
253 fs_info->btree_inode->i_mapping);
254 fs_info->generation++;
255 cur_trans->transid = fs_info->generation;
256 fs_info->running_transaction = cur_trans;
257 cur_trans->aborted = 0;
258 spin_unlock(&fs_info->trans_lock);
260 return 0;
264 * this does all the record keeping required to make sure that a reference
265 * counted root is properly recorded in a given transaction. This is required
266 * to make sure the old root from before we joined the transaction is deleted
267 * when the transaction commits
269 static int record_root_in_trans(struct btrfs_trans_handle *trans,
270 struct btrfs_root *root)
272 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
273 root->last_trans < trans->transid) {
274 WARN_ON(root == root->fs_info->extent_root);
275 WARN_ON(root->commit_root != root->node);
278 * see below for IN_TRANS_SETUP usage rules
279 * we have the reloc mutex held now, so there
280 * is only one writer in this function
282 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
284 /* make sure readers find IN_TRANS_SETUP before
285 * they find our root->last_trans update
287 smp_wmb();
289 spin_lock(&root->fs_info->fs_roots_radix_lock);
290 if (root->last_trans == trans->transid) {
291 spin_unlock(&root->fs_info->fs_roots_radix_lock);
292 return 0;
294 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
295 (unsigned long)root->root_key.objectid,
296 BTRFS_ROOT_TRANS_TAG);
297 spin_unlock(&root->fs_info->fs_roots_radix_lock);
298 root->last_trans = trans->transid;
300 /* this is pretty tricky. We don't want to
301 * take the relocation lock in btrfs_record_root_in_trans
302 * unless we're really doing the first setup for this root in
303 * this transaction.
305 * Normally we'd use root->last_trans as a flag to decide
306 * if we want to take the expensive mutex.
308 * But, we have to set root->last_trans before we
309 * init the relocation root, otherwise, we trip over warnings
310 * in ctree.c. The solution used here is to flag ourselves
311 * with root IN_TRANS_SETUP. When this is 1, we're still
312 * fixing up the reloc trees and everyone must wait.
314 * When this is zero, they can trust root->last_trans and fly
315 * through btrfs_record_root_in_trans without having to take the
316 * lock. smp_wmb() makes sure that all the writes above are
317 * done before we pop in the zero below
319 btrfs_init_reloc_root(trans, root);
320 smp_mb__before_atomic();
321 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
323 return 0;
327 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
328 struct btrfs_root *root)
330 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
331 return 0;
334 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
335 * and barriers
337 smp_rmb();
338 if (root->last_trans == trans->transid &&
339 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
340 return 0;
342 mutex_lock(&root->fs_info->reloc_mutex);
343 record_root_in_trans(trans, root);
344 mutex_unlock(&root->fs_info->reloc_mutex);
346 return 0;
349 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
351 return (trans->state >= TRANS_STATE_BLOCKED &&
352 trans->state < TRANS_STATE_UNBLOCKED &&
353 !trans->aborted);
356 /* wait for commit against the current transaction to become unblocked
357 * when this is done, it is safe to start a new transaction, but the current
358 * transaction might not be fully on disk.
360 static void wait_current_trans(struct btrfs_root *root)
362 struct btrfs_transaction *cur_trans;
364 spin_lock(&root->fs_info->trans_lock);
365 cur_trans = root->fs_info->running_transaction;
366 if (cur_trans && is_transaction_blocked(cur_trans)) {
367 atomic_inc(&cur_trans->use_count);
368 spin_unlock(&root->fs_info->trans_lock);
370 wait_event(root->fs_info->transaction_wait,
371 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
372 cur_trans->aborted);
373 btrfs_put_transaction(cur_trans);
374 } else {
375 spin_unlock(&root->fs_info->trans_lock);
379 static int may_wait_transaction(struct btrfs_root *root, int type)
381 if (root->fs_info->log_root_recovering)
382 return 0;
384 if (type == TRANS_USERSPACE)
385 return 1;
387 if (type == TRANS_START &&
388 !atomic_read(&root->fs_info->open_ioctl_trans))
389 return 1;
391 return 0;
394 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
396 if (!root->fs_info->reloc_ctl ||
397 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
398 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
399 root->reloc_root)
400 return false;
402 return true;
405 static struct btrfs_trans_handle *
406 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
407 enum btrfs_reserve_flush_enum flush)
409 struct btrfs_trans_handle *h;
410 struct btrfs_transaction *cur_trans;
411 u64 num_bytes = 0;
412 u64 qgroup_reserved = 0;
413 bool reloc_reserved = false;
414 int ret;
416 /* Send isn't supposed to start transactions. */
417 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
419 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
420 return ERR_PTR(-EROFS);
422 if (current->journal_info) {
423 WARN_ON(type & TRANS_EXTWRITERS);
424 h = current->journal_info;
425 h->use_count++;
426 WARN_ON(h->use_count > 2);
427 h->orig_rsv = h->block_rsv;
428 h->block_rsv = NULL;
429 goto got_it;
433 * Do the reservation before we join the transaction so we can do all
434 * the appropriate flushing if need be.
436 if (num_items > 0 && root != root->fs_info->chunk_root) {
437 if (root->fs_info->quota_enabled &&
438 is_fstree(root->root_key.objectid)) {
439 qgroup_reserved = num_items * root->nodesize;
440 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
441 if (ret)
442 return ERR_PTR(ret);
445 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
447 * Do the reservation for the relocation root creation
449 if (need_reserve_reloc_root(root)) {
450 num_bytes += root->nodesize;
451 reloc_reserved = true;
454 ret = btrfs_block_rsv_add(root,
455 &root->fs_info->trans_block_rsv,
456 num_bytes, flush);
457 if (ret)
458 goto reserve_fail;
460 again:
461 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
462 if (!h) {
463 ret = -ENOMEM;
464 goto alloc_fail;
468 * If we are JOIN_NOLOCK we're already committing a transaction and
469 * waiting on this guy, so we don't need to do the sb_start_intwrite
470 * because we're already holding a ref. We need this because we could
471 * have raced in and did an fsync() on a file which can kick a commit
472 * and then we deadlock with somebody doing a freeze.
474 * If we are ATTACH, it means we just want to catch the current
475 * transaction and commit it, so we needn't do sb_start_intwrite().
477 if (type & __TRANS_FREEZABLE)
478 sb_start_intwrite(root->fs_info->sb);
480 if (may_wait_transaction(root, type))
481 wait_current_trans(root);
483 do {
484 ret = join_transaction(root, type);
485 if (ret == -EBUSY) {
486 wait_current_trans(root);
487 if (unlikely(type == TRANS_ATTACH))
488 ret = -ENOENT;
490 } while (ret == -EBUSY);
492 if (ret < 0) {
493 /* We must get the transaction if we are JOIN_NOLOCK. */
494 BUG_ON(type == TRANS_JOIN_NOLOCK);
495 goto join_fail;
498 cur_trans = root->fs_info->running_transaction;
500 h->transid = cur_trans->transid;
501 h->transaction = cur_trans;
502 h->blocks_used = 0;
503 h->bytes_reserved = 0;
504 h->root = root;
505 h->delayed_ref_updates = 0;
506 h->use_count = 1;
507 h->adding_csums = 0;
508 h->block_rsv = NULL;
509 h->orig_rsv = NULL;
510 h->aborted = 0;
511 h->qgroup_reserved = 0;
512 h->delayed_ref_elem.seq = 0;
513 h->type = type;
514 h->allocating_chunk = false;
515 h->reloc_reserved = false;
516 h->sync = false;
517 INIT_LIST_HEAD(&h->qgroup_ref_list);
518 INIT_LIST_HEAD(&h->new_bgs);
519 INIT_LIST_HEAD(&h->ordered);
521 smp_mb();
522 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
523 may_wait_transaction(root, type)) {
524 current->journal_info = h;
525 btrfs_commit_transaction(h, root);
526 goto again;
529 if (num_bytes) {
530 trace_btrfs_space_reservation(root->fs_info, "transaction",
531 h->transid, num_bytes, 1);
532 h->block_rsv = &root->fs_info->trans_block_rsv;
533 h->bytes_reserved = num_bytes;
534 h->reloc_reserved = reloc_reserved;
536 h->qgroup_reserved = qgroup_reserved;
538 got_it:
539 btrfs_record_root_in_trans(h, root);
541 if (!current->journal_info && type != TRANS_USERSPACE)
542 current->journal_info = h;
543 return h;
545 join_fail:
546 if (type & __TRANS_FREEZABLE)
547 sb_end_intwrite(root->fs_info->sb);
548 kmem_cache_free(btrfs_trans_handle_cachep, h);
549 alloc_fail:
550 if (num_bytes)
551 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
552 num_bytes);
553 reserve_fail:
554 if (qgroup_reserved)
555 btrfs_qgroup_free(root, qgroup_reserved);
556 return ERR_PTR(ret);
559 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
560 int num_items)
562 return start_transaction(root, num_items, TRANS_START,
563 BTRFS_RESERVE_FLUSH_ALL);
566 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
567 struct btrfs_root *root, int num_items)
569 return start_transaction(root, num_items, TRANS_START,
570 BTRFS_RESERVE_FLUSH_LIMIT);
573 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
575 return start_transaction(root, 0, TRANS_JOIN, 0);
578 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
580 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
583 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
585 return start_transaction(root, 0, TRANS_USERSPACE, 0);
589 * btrfs_attach_transaction() - catch the running transaction
591 * It is used when we want to commit the current the transaction, but
592 * don't want to start a new one.
594 * Note: If this function return -ENOENT, it just means there is no
595 * running transaction. But it is possible that the inactive transaction
596 * is still in the memory, not fully on disk. If you hope there is no
597 * inactive transaction in the fs when -ENOENT is returned, you should
598 * invoke
599 * btrfs_attach_transaction_barrier()
601 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
603 return start_transaction(root, 0, TRANS_ATTACH, 0);
607 * btrfs_attach_transaction_barrier() - catch the running transaction
609 * It is similar to the above function, the differentia is this one
610 * will wait for all the inactive transactions until they fully
611 * complete.
613 struct btrfs_trans_handle *
614 btrfs_attach_transaction_barrier(struct btrfs_root *root)
616 struct btrfs_trans_handle *trans;
618 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
619 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
620 btrfs_wait_for_commit(root, 0);
622 return trans;
625 /* wait for a transaction commit to be fully complete */
626 static noinline void wait_for_commit(struct btrfs_root *root,
627 struct btrfs_transaction *commit)
629 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
632 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
634 struct btrfs_transaction *cur_trans = NULL, *t;
635 int ret = 0;
637 if (transid) {
638 if (transid <= root->fs_info->last_trans_committed)
639 goto out;
641 /* find specified transaction */
642 spin_lock(&root->fs_info->trans_lock);
643 list_for_each_entry(t, &root->fs_info->trans_list, list) {
644 if (t->transid == transid) {
645 cur_trans = t;
646 atomic_inc(&cur_trans->use_count);
647 ret = 0;
648 break;
650 if (t->transid > transid) {
651 ret = 0;
652 break;
655 spin_unlock(&root->fs_info->trans_lock);
658 * The specified transaction doesn't exist, or we
659 * raced with btrfs_commit_transaction
661 if (!cur_trans) {
662 if (transid > root->fs_info->last_trans_committed)
663 ret = -EINVAL;
664 goto out;
666 } else {
667 /* find newest transaction that is committing | committed */
668 spin_lock(&root->fs_info->trans_lock);
669 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
670 list) {
671 if (t->state >= TRANS_STATE_COMMIT_START) {
672 if (t->state == TRANS_STATE_COMPLETED)
673 break;
674 cur_trans = t;
675 atomic_inc(&cur_trans->use_count);
676 break;
679 spin_unlock(&root->fs_info->trans_lock);
680 if (!cur_trans)
681 goto out; /* nothing committing|committed */
684 wait_for_commit(root, cur_trans);
685 btrfs_put_transaction(cur_trans);
686 out:
687 return ret;
690 void btrfs_throttle(struct btrfs_root *root)
692 if (!atomic_read(&root->fs_info->open_ioctl_trans))
693 wait_current_trans(root);
696 static int should_end_transaction(struct btrfs_trans_handle *trans,
697 struct btrfs_root *root)
699 if (root->fs_info->global_block_rsv.space_info->full &&
700 btrfs_check_space_for_delayed_refs(trans, root))
701 return 1;
703 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
706 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
707 struct btrfs_root *root)
709 struct btrfs_transaction *cur_trans = trans->transaction;
710 int updates;
711 int err;
713 smp_mb();
714 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
715 cur_trans->delayed_refs.flushing)
716 return 1;
718 updates = trans->delayed_ref_updates;
719 trans->delayed_ref_updates = 0;
720 if (updates) {
721 err = btrfs_run_delayed_refs(trans, root, updates);
722 if (err) /* Error code will also eval true */
723 return err;
726 return should_end_transaction(trans, root);
729 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
730 struct btrfs_root *root, int throttle)
732 struct btrfs_transaction *cur_trans = trans->transaction;
733 struct btrfs_fs_info *info = root->fs_info;
734 unsigned long cur = trans->delayed_ref_updates;
735 int lock = (trans->type != TRANS_JOIN_NOLOCK);
736 int err = 0;
737 int must_run_delayed_refs = 0;
739 if (trans->use_count > 1) {
740 trans->use_count--;
741 trans->block_rsv = trans->orig_rsv;
742 return 0;
745 btrfs_trans_release_metadata(trans, root);
746 trans->block_rsv = NULL;
748 if (!list_empty(&trans->new_bgs))
749 btrfs_create_pending_block_groups(trans, root);
751 if (!list_empty(&trans->ordered)) {
752 spin_lock(&info->trans_lock);
753 list_splice(&trans->ordered, &cur_trans->pending_ordered);
754 spin_unlock(&info->trans_lock);
757 trans->delayed_ref_updates = 0;
758 if (!trans->sync) {
759 must_run_delayed_refs =
760 btrfs_should_throttle_delayed_refs(trans, root);
761 cur = max_t(unsigned long, cur, 32);
764 * don't make the caller wait if they are from a NOLOCK
765 * or ATTACH transaction, it will deadlock with commit
767 if (must_run_delayed_refs == 1 &&
768 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
769 must_run_delayed_refs = 2;
772 if (trans->qgroup_reserved) {
774 * the same root has to be passed here between start_transaction
775 * and end_transaction. Subvolume quota depends on this.
777 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
778 trans->qgroup_reserved = 0;
781 btrfs_trans_release_metadata(trans, root);
782 trans->block_rsv = NULL;
784 if (!list_empty(&trans->new_bgs))
785 btrfs_create_pending_block_groups(trans, root);
787 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
788 should_end_transaction(trans, root) &&
789 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
790 spin_lock(&info->trans_lock);
791 if (cur_trans->state == TRANS_STATE_RUNNING)
792 cur_trans->state = TRANS_STATE_BLOCKED;
793 spin_unlock(&info->trans_lock);
796 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
797 if (throttle)
798 return btrfs_commit_transaction(trans, root);
799 else
800 wake_up_process(info->transaction_kthread);
803 if (trans->type & __TRANS_FREEZABLE)
804 sb_end_intwrite(root->fs_info->sb);
806 WARN_ON(cur_trans != info->running_transaction);
807 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
808 atomic_dec(&cur_trans->num_writers);
809 extwriter_counter_dec(cur_trans, trans->type);
811 smp_mb();
812 if (waitqueue_active(&cur_trans->writer_wait))
813 wake_up(&cur_trans->writer_wait);
814 btrfs_put_transaction(cur_trans);
816 if (current->journal_info == trans)
817 current->journal_info = NULL;
819 if (throttle)
820 btrfs_run_delayed_iputs(root);
822 if (trans->aborted ||
823 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
824 wake_up_process(info->transaction_kthread);
825 err = -EIO;
827 assert_qgroups_uptodate(trans);
829 kmem_cache_free(btrfs_trans_handle_cachep, trans);
830 if (must_run_delayed_refs) {
831 btrfs_async_run_delayed_refs(root, cur,
832 must_run_delayed_refs == 1);
834 return err;
837 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root)
840 return __btrfs_end_transaction(trans, root, 0);
843 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
844 struct btrfs_root *root)
846 return __btrfs_end_transaction(trans, root, 1);
850 * when btree blocks are allocated, they have some corresponding bits set for
851 * them in one of two extent_io trees. This is used to make sure all of
852 * those extents are sent to disk but does not wait on them
854 int btrfs_write_marked_extents(struct btrfs_root *root,
855 struct extent_io_tree *dirty_pages, int mark)
857 int err = 0;
858 int werr = 0;
859 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
860 struct extent_state *cached_state = NULL;
861 u64 start = 0;
862 u64 end;
864 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
865 mark, &cached_state)) {
866 bool wait_writeback = false;
868 err = convert_extent_bit(dirty_pages, start, end,
869 EXTENT_NEED_WAIT,
870 mark, &cached_state, GFP_NOFS);
872 * convert_extent_bit can return -ENOMEM, which is most of the
873 * time a temporary error. So when it happens, ignore the error
874 * and wait for writeback of this range to finish - because we
875 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
876 * to btrfs_wait_marked_extents() would not know that writeback
877 * for this range started and therefore wouldn't wait for it to
878 * finish - we don't want to commit a superblock that points to
879 * btree nodes/leafs for which writeback hasn't finished yet
880 * (and without errors).
881 * We cleanup any entries left in the io tree when committing
882 * the transaction (through clear_btree_io_tree()).
884 if (err == -ENOMEM) {
885 err = 0;
886 wait_writeback = true;
888 if (!err)
889 err = filemap_fdatawrite_range(mapping, start, end);
890 if (err)
891 werr = err;
892 else if (wait_writeback)
893 werr = filemap_fdatawait_range(mapping, start, end);
894 free_extent_state(cached_state);
895 cached_state = NULL;
896 cond_resched();
897 start = end + 1;
899 return werr;
903 * when btree blocks are allocated, they have some corresponding bits set for
904 * them in one of two extent_io trees. This is used to make sure all of
905 * those extents are on disk for transaction or log commit. We wait
906 * on all the pages and clear them from the dirty pages state tree
908 int btrfs_wait_marked_extents(struct btrfs_root *root,
909 struct extent_io_tree *dirty_pages, int mark)
911 int err = 0;
912 int werr = 0;
913 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
914 struct extent_state *cached_state = NULL;
915 u64 start = 0;
916 u64 end;
917 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
918 bool errors = false;
920 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
921 EXTENT_NEED_WAIT, &cached_state)) {
923 * Ignore -ENOMEM errors returned by clear_extent_bit().
924 * When committing the transaction, we'll remove any entries
925 * left in the io tree. For a log commit, we don't remove them
926 * after committing the log because the tree can be accessed
927 * concurrently - we do it only at transaction commit time when
928 * it's safe to do it (through clear_btree_io_tree()).
930 err = clear_extent_bit(dirty_pages, start, end,
931 EXTENT_NEED_WAIT,
932 0, 0, &cached_state, GFP_NOFS);
933 if (err == -ENOMEM)
934 err = 0;
935 if (!err)
936 err = filemap_fdatawait_range(mapping, start, end);
937 if (err)
938 werr = err;
939 free_extent_state(cached_state);
940 cached_state = NULL;
941 cond_resched();
942 start = end + 1;
944 if (err)
945 werr = err;
947 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
948 if ((mark & EXTENT_DIRTY) &&
949 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
950 &btree_ino->runtime_flags))
951 errors = true;
953 if ((mark & EXTENT_NEW) &&
954 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
955 &btree_ino->runtime_flags))
956 errors = true;
957 } else {
958 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
959 &btree_ino->runtime_flags))
960 errors = true;
963 if (errors && !werr)
964 werr = -EIO;
966 return werr;
970 * when btree blocks are allocated, they have some corresponding bits set for
971 * them in one of two extent_io trees. This is used to make sure all of
972 * those extents are on disk for transaction or log commit
974 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
975 struct extent_io_tree *dirty_pages, int mark)
977 int ret;
978 int ret2;
979 struct blk_plug plug;
981 blk_start_plug(&plug);
982 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
983 blk_finish_plug(&plug);
984 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
986 if (ret)
987 return ret;
988 if (ret2)
989 return ret2;
990 return 0;
993 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
994 struct btrfs_root *root)
996 int ret;
998 ret = btrfs_write_and_wait_marked_extents(root,
999 &trans->transaction->dirty_pages,
1000 EXTENT_DIRTY);
1001 clear_btree_io_tree(&trans->transaction->dirty_pages);
1003 return ret;
1007 * this is used to update the root pointer in the tree of tree roots.
1009 * But, in the case of the extent allocation tree, updating the root
1010 * pointer may allocate blocks which may change the root of the extent
1011 * allocation tree.
1013 * So, this loops and repeats and makes sure the cowonly root didn't
1014 * change while the root pointer was being updated in the metadata.
1016 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1017 struct btrfs_root *root)
1019 int ret;
1020 u64 old_root_bytenr;
1021 u64 old_root_used;
1022 struct btrfs_root *tree_root = root->fs_info->tree_root;
1024 old_root_used = btrfs_root_used(&root->root_item);
1026 while (1) {
1027 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1028 if (old_root_bytenr == root->node->start &&
1029 old_root_used == btrfs_root_used(&root->root_item))
1030 break;
1032 btrfs_set_root_node(&root->root_item, root->node);
1033 ret = btrfs_update_root(trans, tree_root,
1034 &root->root_key,
1035 &root->root_item);
1036 if (ret)
1037 return ret;
1039 old_root_used = btrfs_root_used(&root->root_item);
1042 return 0;
1046 * update all the cowonly tree roots on disk
1048 * The error handling in this function may not be obvious. Any of the
1049 * failures will cause the file system to go offline. We still need
1050 * to clean up the delayed refs.
1052 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1053 struct btrfs_root *root)
1055 struct btrfs_fs_info *fs_info = root->fs_info;
1056 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1057 struct list_head *next;
1058 struct extent_buffer *eb;
1059 int ret;
1061 eb = btrfs_lock_root_node(fs_info->tree_root);
1062 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1063 0, &eb);
1064 btrfs_tree_unlock(eb);
1065 free_extent_buffer(eb);
1067 if (ret)
1068 return ret;
1070 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1071 if (ret)
1072 return ret;
1074 ret = btrfs_run_dev_stats(trans, root->fs_info);
1075 if (ret)
1076 return ret;
1077 ret = btrfs_run_dev_replace(trans, root->fs_info);
1078 if (ret)
1079 return ret;
1080 ret = btrfs_run_qgroups(trans, root->fs_info);
1081 if (ret)
1082 return ret;
1084 ret = btrfs_setup_space_cache(trans, root);
1085 if (ret)
1086 return ret;
1088 /* run_qgroups might have added some more refs */
1089 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1090 if (ret)
1091 return ret;
1092 again:
1093 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1094 next = fs_info->dirty_cowonly_roots.next;
1095 list_del_init(next);
1096 root = list_entry(next, struct btrfs_root, dirty_list);
1097 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1099 if (root != fs_info->extent_root)
1100 list_add_tail(&root->dirty_list,
1101 &trans->transaction->switch_commits);
1102 ret = update_cowonly_root(trans, root);
1103 if (ret)
1104 return ret;
1105 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1106 if (ret)
1107 return ret;
1110 while (!list_empty(dirty_bgs)) {
1111 ret = btrfs_write_dirty_block_groups(trans, root);
1112 if (ret)
1113 return ret;
1114 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1115 if (ret)
1116 return ret;
1119 if (!list_empty(&fs_info->dirty_cowonly_roots))
1120 goto again;
1122 list_add_tail(&fs_info->extent_root->dirty_list,
1123 &trans->transaction->switch_commits);
1124 btrfs_after_dev_replace_commit(fs_info);
1126 return 0;
1130 * dead roots are old snapshots that need to be deleted. This allocates
1131 * a dirty root struct and adds it into the list of dead roots that need to
1132 * be deleted
1134 void btrfs_add_dead_root(struct btrfs_root *root)
1136 spin_lock(&root->fs_info->trans_lock);
1137 if (list_empty(&root->root_list))
1138 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1139 spin_unlock(&root->fs_info->trans_lock);
1143 * update all the cowonly tree roots on disk
1145 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1146 struct btrfs_root *root)
1148 struct btrfs_root *gang[8];
1149 struct btrfs_fs_info *fs_info = root->fs_info;
1150 int i;
1151 int ret;
1152 int err = 0;
1154 spin_lock(&fs_info->fs_roots_radix_lock);
1155 while (1) {
1156 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1157 (void **)gang, 0,
1158 ARRAY_SIZE(gang),
1159 BTRFS_ROOT_TRANS_TAG);
1160 if (ret == 0)
1161 break;
1162 for (i = 0; i < ret; i++) {
1163 root = gang[i];
1164 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1165 (unsigned long)root->root_key.objectid,
1166 BTRFS_ROOT_TRANS_TAG);
1167 spin_unlock(&fs_info->fs_roots_radix_lock);
1169 btrfs_free_log(trans, root);
1170 btrfs_update_reloc_root(trans, root);
1171 btrfs_orphan_commit_root(trans, root);
1173 btrfs_save_ino_cache(root, trans);
1175 /* see comments in should_cow_block() */
1176 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1177 smp_mb__after_atomic();
1179 if (root->commit_root != root->node) {
1180 list_add_tail(&root->dirty_list,
1181 &trans->transaction->switch_commits);
1182 btrfs_set_root_node(&root->root_item,
1183 root->node);
1186 err = btrfs_update_root(trans, fs_info->tree_root,
1187 &root->root_key,
1188 &root->root_item);
1189 spin_lock(&fs_info->fs_roots_radix_lock);
1190 if (err)
1191 break;
1194 spin_unlock(&fs_info->fs_roots_radix_lock);
1195 return err;
1199 * defrag a given btree.
1200 * Every leaf in the btree is read and defragged.
1202 int btrfs_defrag_root(struct btrfs_root *root)
1204 struct btrfs_fs_info *info = root->fs_info;
1205 struct btrfs_trans_handle *trans;
1206 int ret;
1208 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1209 return 0;
1211 while (1) {
1212 trans = btrfs_start_transaction(root, 0);
1213 if (IS_ERR(trans))
1214 return PTR_ERR(trans);
1216 ret = btrfs_defrag_leaves(trans, root);
1218 btrfs_end_transaction(trans, root);
1219 btrfs_btree_balance_dirty(info->tree_root);
1220 cond_resched();
1222 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1223 break;
1225 if (btrfs_defrag_cancelled(root->fs_info)) {
1226 pr_debug("BTRFS: defrag_root cancelled\n");
1227 ret = -EAGAIN;
1228 break;
1231 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1232 return ret;
1236 * new snapshots need to be created at a very specific time in the
1237 * transaction commit. This does the actual creation.
1239 * Note:
1240 * If the error which may affect the commitment of the current transaction
1241 * happens, we should return the error number. If the error which just affect
1242 * the creation of the pending snapshots, just return 0.
1244 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1245 struct btrfs_fs_info *fs_info,
1246 struct btrfs_pending_snapshot *pending)
1248 struct btrfs_key key;
1249 struct btrfs_root_item *new_root_item;
1250 struct btrfs_root *tree_root = fs_info->tree_root;
1251 struct btrfs_root *root = pending->root;
1252 struct btrfs_root *parent_root;
1253 struct btrfs_block_rsv *rsv;
1254 struct inode *parent_inode;
1255 struct btrfs_path *path;
1256 struct btrfs_dir_item *dir_item;
1257 struct dentry *dentry;
1258 struct extent_buffer *tmp;
1259 struct extent_buffer *old;
1260 struct timespec cur_time = CURRENT_TIME;
1261 int ret = 0;
1262 u64 to_reserve = 0;
1263 u64 index = 0;
1264 u64 objectid;
1265 u64 root_flags;
1266 uuid_le new_uuid;
1268 path = btrfs_alloc_path();
1269 if (!path) {
1270 pending->error = -ENOMEM;
1271 return 0;
1274 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1275 if (!new_root_item) {
1276 pending->error = -ENOMEM;
1277 goto root_item_alloc_fail;
1280 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1281 if (pending->error)
1282 goto no_free_objectid;
1284 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1286 if (to_reserve > 0) {
1287 pending->error = btrfs_block_rsv_add(root,
1288 &pending->block_rsv,
1289 to_reserve,
1290 BTRFS_RESERVE_NO_FLUSH);
1291 if (pending->error)
1292 goto no_free_objectid;
1295 key.objectid = objectid;
1296 key.offset = (u64)-1;
1297 key.type = BTRFS_ROOT_ITEM_KEY;
1299 rsv = trans->block_rsv;
1300 trans->block_rsv = &pending->block_rsv;
1301 trans->bytes_reserved = trans->block_rsv->reserved;
1303 dentry = pending->dentry;
1304 parent_inode = pending->dir;
1305 parent_root = BTRFS_I(parent_inode)->root;
1306 record_root_in_trans(trans, parent_root);
1309 * insert the directory item
1311 ret = btrfs_set_inode_index(parent_inode, &index);
1312 BUG_ON(ret); /* -ENOMEM */
1314 /* check if there is a file/dir which has the same name. */
1315 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1316 btrfs_ino(parent_inode),
1317 dentry->d_name.name,
1318 dentry->d_name.len, 0);
1319 if (dir_item != NULL && !IS_ERR(dir_item)) {
1320 pending->error = -EEXIST;
1321 goto dir_item_existed;
1322 } else if (IS_ERR(dir_item)) {
1323 ret = PTR_ERR(dir_item);
1324 btrfs_abort_transaction(trans, root, ret);
1325 goto fail;
1327 btrfs_release_path(path);
1330 * pull in the delayed directory update
1331 * and the delayed inode item
1332 * otherwise we corrupt the FS during
1333 * snapshot
1335 ret = btrfs_run_delayed_items(trans, root);
1336 if (ret) { /* Transaction aborted */
1337 btrfs_abort_transaction(trans, root, ret);
1338 goto fail;
1341 record_root_in_trans(trans, root);
1342 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1343 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1344 btrfs_check_and_init_root_item(new_root_item);
1346 root_flags = btrfs_root_flags(new_root_item);
1347 if (pending->readonly)
1348 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1349 else
1350 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1351 btrfs_set_root_flags(new_root_item, root_flags);
1353 btrfs_set_root_generation_v2(new_root_item,
1354 trans->transid);
1355 uuid_le_gen(&new_uuid);
1356 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1357 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1358 BTRFS_UUID_SIZE);
1359 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1360 memset(new_root_item->received_uuid, 0,
1361 sizeof(new_root_item->received_uuid));
1362 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1363 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1364 btrfs_set_root_stransid(new_root_item, 0);
1365 btrfs_set_root_rtransid(new_root_item, 0);
1367 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1368 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1369 btrfs_set_root_otransid(new_root_item, trans->transid);
1371 old = btrfs_lock_root_node(root);
1372 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1373 if (ret) {
1374 btrfs_tree_unlock(old);
1375 free_extent_buffer(old);
1376 btrfs_abort_transaction(trans, root, ret);
1377 goto fail;
1380 btrfs_set_lock_blocking(old);
1382 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1383 /* clean up in any case */
1384 btrfs_tree_unlock(old);
1385 free_extent_buffer(old);
1386 if (ret) {
1387 btrfs_abort_transaction(trans, root, ret);
1388 goto fail;
1392 * We need to flush delayed refs in order to make sure all of our quota
1393 * operations have been done before we call btrfs_qgroup_inherit.
1395 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1396 if (ret) {
1397 btrfs_abort_transaction(trans, root, ret);
1398 goto fail;
1401 ret = btrfs_qgroup_inherit(trans, fs_info,
1402 root->root_key.objectid,
1403 objectid, pending->inherit);
1404 if (ret) {
1405 btrfs_abort_transaction(trans, root, ret);
1406 goto fail;
1409 /* see comments in should_cow_block() */
1410 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1411 smp_wmb();
1413 btrfs_set_root_node(new_root_item, tmp);
1414 /* record when the snapshot was created in key.offset */
1415 key.offset = trans->transid;
1416 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1417 btrfs_tree_unlock(tmp);
1418 free_extent_buffer(tmp);
1419 if (ret) {
1420 btrfs_abort_transaction(trans, root, ret);
1421 goto fail;
1425 * insert root back/forward references
1427 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1428 parent_root->root_key.objectid,
1429 btrfs_ino(parent_inode), index,
1430 dentry->d_name.name, dentry->d_name.len);
1431 if (ret) {
1432 btrfs_abort_transaction(trans, root, ret);
1433 goto fail;
1436 key.offset = (u64)-1;
1437 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1438 if (IS_ERR(pending->snap)) {
1439 ret = PTR_ERR(pending->snap);
1440 btrfs_abort_transaction(trans, root, ret);
1441 goto fail;
1444 ret = btrfs_reloc_post_snapshot(trans, pending);
1445 if (ret) {
1446 btrfs_abort_transaction(trans, root, ret);
1447 goto fail;
1450 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1451 if (ret) {
1452 btrfs_abort_transaction(trans, root, ret);
1453 goto fail;
1456 ret = btrfs_insert_dir_item(trans, parent_root,
1457 dentry->d_name.name, dentry->d_name.len,
1458 parent_inode, &key,
1459 BTRFS_FT_DIR, index);
1460 /* We have check then name at the beginning, so it is impossible. */
1461 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1462 if (ret) {
1463 btrfs_abort_transaction(trans, root, ret);
1464 goto fail;
1467 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1468 dentry->d_name.len * 2);
1469 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1470 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1471 if (ret) {
1472 btrfs_abort_transaction(trans, root, ret);
1473 goto fail;
1475 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1476 BTRFS_UUID_KEY_SUBVOL, objectid);
1477 if (ret) {
1478 btrfs_abort_transaction(trans, root, ret);
1479 goto fail;
1481 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1482 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1483 new_root_item->received_uuid,
1484 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1485 objectid);
1486 if (ret && ret != -EEXIST) {
1487 btrfs_abort_transaction(trans, root, ret);
1488 goto fail;
1491 fail:
1492 pending->error = ret;
1493 dir_item_existed:
1494 trans->block_rsv = rsv;
1495 trans->bytes_reserved = 0;
1496 no_free_objectid:
1497 kfree(new_root_item);
1498 root_item_alloc_fail:
1499 btrfs_free_path(path);
1500 return ret;
1504 * create all the snapshots we've scheduled for creation
1506 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1507 struct btrfs_fs_info *fs_info)
1509 struct btrfs_pending_snapshot *pending, *next;
1510 struct list_head *head = &trans->transaction->pending_snapshots;
1511 int ret = 0;
1513 list_for_each_entry_safe(pending, next, head, list) {
1514 list_del(&pending->list);
1515 ret = create_pending_snapshot(trans, fs_info, pending);
1516 if (ret)
1517 break;
1519 return ret;
1522 static void update_super_roots(struct btrfs_root *root)
1524 struct btrfs_root_item *root_item;
1525 struct btrfs_super_block *super;
1527 super = root->fs_info->super_copy;
1529 root_item = &root->fs_info->chunk_root->root_item;
1530 super->chunk_root = root_item->bytenr;
1531 super->chunk_root_generation = root_item->generation;
1532 super->chunk_root_level = root_item->level;
1534 root_item = &root->fs_info->tree_root->root_item;
1535 super->root = root_item->bytenr;
1536 super->generation = root_item->generation;
1537 super->root_level = root_item->level;
1538 if (btrfs_test_opt(root, SPACE_CACHE))
1539 super->cache_generation = root_item->generation;
1540 if (root->fs_info->update_uuid_tree_gen)
1541 super->uuid_tree_generation = root_item->generation;
1544 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1546 struct btrfs_transaction *trans;
1547 int ret = 0;
1549 spin_lock(&info->trans_lock);
1550 trans = info->running_transaction;
1551 if (trans)
1552 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1553 spin_unlock(&info->trans_lock);
1554 return ret;
1557 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1559 struct btrfs_transaction *trans;
1560 int ret = 0;
1562 spin_lock(&info->trans_lock);
1563 trans = info->running_transaction;
1564 if (trans)
1565 ret = is_transaction_blocked(trans);
1566 spin_unlock(&info->trans_lock);
1567 return ret;
1571 * wait for the current transaction commit to start and block subsequent
1572 * transaction joins
1574 static void wait_current_trans_commit_start(struct btrfs_root *root,
1575 struct btrfs_transaction *trans)
1577 wait_event(root->fs_info->transaction_blocked_wait,
1578 trans->state >= TRANS_STATE_COMMIT_START ||
1579 trans->aborted);
1583 * wait for the current transaction to start and then become unblocked.
1584 * caller holds ref.
1586 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1587 struct btrfs_transaction *trans)
1589 wait_event(root->fs_info->transaction_wait,
1590 trans->state >= TRANS_STATE_UNBLOCKED ||
1591 trans->aborted);
1595 * commit transactions asynchronously. once btrfs_commit_transaction_async
1596 * returns, any subsequent transaction will not be allowed to join.
1598 struct btrfs_async_commit {
1599 struct btrfs_trans_handle *newtrans;
1600 struct btrfs_root *root;
1601 struct work_struct work;
1604 static void do_async_commit(struct work_struct *work)
1606 struct btrfs_async_commit *ac =
1607 container_of(work, struct btrfs_async_commit, work);
1610 * We've got freeze protection passed with the transaction.
1611 * Tell lockdep about it.
1613 if (ac->newtrans->type & __TRANS_FREEZABLE)
1614 rwsem_acquire_read(
1615 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1616 0, 1, _THIS_IP_);
1618 current->journal_info = ac->newtrans;
1620 btrfs_commit_transaction(ac->newtrans, ac->root);
1621 kfree(ac);
1624 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1625 struct btrfs_root *root,
1626 int wait_for_unblock)
1628 struct btrfs_async_commit *ac;
1629 struct btrfs_transaction *cur_trans;
1631 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1632 if (!ac)
1633 return -ENOMEM;
1635 INIT_WORK(&ac->work, do_async_commit);
1636 ac->root = root;
1637 ac->newtrans = btrfs_join_transaction(root);
1638 if (IS_ERR(ac->newtrans)) {
1639 int err = PTR_ERR(ac->newtrans);
1640 kfree(ac);
1641 return err;
1644 /* take transaction reference */
1645 cur_trans = trans->transaction;
1646 atomic_inc(&cur_trans->use_count);
1648 btrfs_end_transaction(trans, root);
1651 * Tell lockdep we've released the freeze rwsem, since the
1652 * async commit thread will be the one to unlock it.
1654 if (ac->newtrans->type & __TRANS_FREEZABLE)
1655 rwsem_release(
1656 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1657 1, _THIS_IP_);
1659 schedule_work(&ac->work);
1661 /* wait for transaction to start and unblock */
1662 if (wait_for_unblock)
1663 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1664 else
1665 wait_current_trans_commit_start(root, cur_trans);
1667 if (current->journal_info == trans)
1668 current->journal_info = NULL;
1670 btrfs_put_transaction(cur_trans);
1671 return 0;
1675 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1676 struct btrfs_root *root, int err)
1678 struct btrfs_transaction *cur_trans = trans->transaction;
1679 DEFINE_WAIT(wait);
1681 WARN_ON(trans->use_count > 1);
1683 btrfs_abort_transaction(trans, root, err);
1685 spin_lock(&root->fs_info->trans_lock);
1688 * If the transaction is removed from the list, it means this
1689 * transaction has been committed successfully, so it is impossible
1690 * to call the cleanup function.
1692 BUG_ON(list_empty(&cur_trans->list));
1694 list_del_init(&cur_trans->list);
1695 if (cur_trans == root->fs_info->running_transaction) {
1696 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1697 spin_unlock(&root->fs_info->trans_lock);
1698 wait_event(cur_trans->writer_wait,
1699 atomic_read(&cur_trans->num_writers) == 1);
1701 spin_lock(&root->fs_info->trans_lock);
1703 spin_unlock(&root->fs_info->trans_lock);
1705 btrfs_cleanup_one_transaction(trans->transaction, root);
1707 spin_lock(&root->fs_info->trans_lock);
1708 if (cur_trans == root->fs_info->running_transaction)
1709 root->fs_info->running_transaction = NULL;
1710 spin_unlock(&root->fs_info->trans_lock);
1712 if (trans->type & __TRANS_FREEZABLE)
1713 sb_end_intwrite(root->fs_info->sb);
1714 btrfs_put_transaction(cur_trans);
1715 btrfs_put_transaction(cur_trans);
1717 trace_btrfs_transaction_commit(root);
1719 if (current->journal_info == trans)
1720 current->journal_info = NULL;
1721 btrfs_scrub_cancel(root->fs_info);
1723 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1726 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1728 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1729 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1730 return 0;
1733 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1735 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1736 btrfs_wait_ordered_roots(fs_info, -1);
1739 static inline void
1740 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1741 struct btrfs_fs_info *fs_info)
1743 struct btrfs_ordered_extent *ordered;
1745 spin_lock(&fs_info->trans_lock);
1746 while (!list_empty(&cur_trans->pending_ordered)) {
1747 ordered = list_first_entry(&cur_trans->pending_ordered,
1748 struct btrfs_ordered_extent,
1749 trans_list);
1750 list_del_init(&ordered->trans_list);
1751 spin_unlock(&fs_info->trans_lock);
1753 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1754 &ordered->flags));
1755 btrfs_put_ordered_extent(ordered);
1756 spin_lock(&fs_info->trans_lock);
1758 spin_unlock(&fs_info->trans_lock);
1761 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1762 struct btrfs_root *root)
1764 struct btrfs_transaction *cur_trans = trans->transaction;
1765 struct btrfs_transaction *prev_trans = NULL;
1766 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1767 int ret;
1769 /* Stop the commit early if ->aborted is set */
1770 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1771 ret = cur_trans->aborted;
1772 btrfs_end_transaction(trans, root);
1773 return ret;
1776 /* make a pass through all the delayed refs we have so far
1777 * any runnings procs may add more while we are here
1779 ret = btrfs_run_delayed_refs(trans, root, 0);
1780 if (ret) {
1781 btrfs_end_transaction(trans, root);
1782 return ret;
1785 btrfs_trans_release_metadata(trans, root);
1786 trans->block_rsv = NULL;
1787 if (trans->qgroup_reserved) {
1788 btrfs_qgroup_free(root, trans->qgroup_reserved);
1789 trans->qgroup_reserved = 0;
1792 cur_trans = trans->transaction;
1795 * set the flushing flag so procs in this transaction have to
1796 * start sending their work down.
1798 cur_trans->delayed_refs.flushing = 1;
1799 smp_wmb();
1801 if (!list_empty(&trans->new_bgs))
1802 btrfs_create_pending_block_groups(trans, root);
1804 ret = btrfs_run_delayed_refs(trans, root, 0);
1805 if (ret) {
1806 btrfs_end_transaction(trans, root);
1807 return ret;
1810 spin_lock(&root->fs_info->trans_lock);
1811 list_splice(&trans->ordered, &cur_trans->pending_ordered);
1812 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1813 spin_unlock(&root->fs_info->trans_lock);
1814 atomic_inc(&cur_trans->use_count);
1815 ret = btrfs_end_transaction(trans, root);
1817 wait_for_commit(root, cur_trans);
1819 if (unlikely(cur_trans->aborted))
1820 ret = cur_trans->aborted;
1822 btrfs_put_transaction(cur_trans);
1824 return ret;
1827 cur_trans->state = TRANS_STATE_COMMIT_START;
1828 wake_up(&root->fs_info->transaction_blocked_wait);
1830 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1831 prev_trans = list_entry(cur_trans->list.prev,
1832 struct btrfs_transaction, list);
1833 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1834 atomic_inc(&prev_trans->use_count);
1835 spin_unlock(&root->fs_info->trans_lock);
1837 wait_for_commit(root, prev_trans);
1839 btrfs_put_transaction(prev_trans);
1840 } else {
1841 spin_unlock(&root->fs_info->trans_lock);
1843 } else {
1844 spin_unlock(&root->fs_info->trans_lock);
1847 extwriter_counter_dec(cur_trans, trans->type);
1849 ret = btrfs_start_delalloc_flush(root->fs_info);
1850 if (ret)
1851 goto cleanup_transaction;
1853 ret = btrfs_run_delayed_items(trans, root);
1854 if (ret)
1855 goto cleanup_transaction;
1857 wait_event(cur_trans->writer_wait,
1858 extwriter_counter_read(cur_trans) == 0);
1860 /* some pending stuffs might be added after the previous flush. */
1861 ret = btrfs_run_delayed_items(trans, root);
1862 if (ret)
1863 goto cleanup_transaction;
1865 btrfs_wait_delalloc_flush(root->fs_info);
1867 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1869 btrfs_scrub_pause(root);
1871 * Ok now we need to make sure to block out any other joins while we
1872 * commit the transaction. We could have started a join before setting
1873 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1875 spin_lock(&root->fs_info->trans_lock);
1876 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1877 spin_unlock(&root->fs_info->trans_lock);
1878 wait_event(cur_trans->writer_wait,
1879 atomic_read(&cur_trans->num_writers) == 1);
1881 /* ->aborted might be set after the previous check, so check it */
1882 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1883 ret = cur_trans->aborted;
1884 goto scrub_continue;
1887 * the reloc mutex makes sure that we stop
1888 * the balancing code from coming in and moving
1889 * extents around in the middle of the commit
1891 mutex_lock(&root->fs_info->reloc_mutex);
1894 * We needn't worry about the delayed items because we will
1895 * deal with them in create_pending_snapshot(), which is the
1896 * core function of the snapshot creation.
1898 ret = create_pending_snapshots(trans, root->fs_info);
1899 if (ret) {
1900 mutex_unlock(&root->fs_info->reloc_mutex);
1901 goto scrub_continue;
1905 * We insert the dir indexes of the snapshots and update the inode
1906 * of the snapshots' parents after the snapshot creation, so there
1907 * are some delayed items which are not dealt with. Now deal with
1908 * them.
1910 * We needn't worry that this operation will corrupt the snapshots,
1911 * because all the tree which are snapshoted will be forced to COW
1912 * the nodes and leaves.
1914 ret = btrfs_run_delayed_items(trans, root);
1915 if (ret) {
1916 mutex_unlock(&root->fs_info->reloc_mutex);
1917 goto scrub_continue;
1920 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1921 if (ret) {
1922 mutex_unlock(&root->fs_info->reloc_mutex);
1923 goto scrub_continue;
1927 * make sure none of the code above managed to slip in a
1928 * delayed item
1930 btrfs_assert_delayed_root_empty(root);
1932 WARN_ON(cur_trans != trans->transaction);
1934 /* btrfs_commit_tree_roots is responsible for getting the
1935 * various roots consistent with each other. Every pointer
1936 * in the tree of tree roots has to point to the most up to date
1937 * root for every subvolume and other tree. So, we have to keep
1938 * the tree logging code from jumping in and changing any
1939 * of the trees.
1941 * At this point in the commit, there can't be any tree-log
1942 * writers, but a little lower down we drop the trans mutex
1943 * and let new people in. By holding the tree_log_mutex
1944 * from now until after the super is written, we avoid races
1945 * with the tree-log code.
1947 mutex_lock(&root->fs_info->tree_log_mutex);
1949 ret = commit_fs_roots(trans, root);
1950 if (ret) {
1951 mutex_unlock(&root->fs_info->tree_log_mutex);
1952 mutex_unlock(&root->fs_info->reloc_mutex);
1953 goto scrub_continue;
1957 * Since the transaction is done, we can apply the pending changes
1958 * before the next transaction.
1960 btrfs_apply_pending_changes(root->fs_info);
1962 /* commit_fs_roots gets rid of all the tree log roots, it is now
1963 * safe to free the root of tree log roots
1965 btrfs_free_log_root_tree(trans, root->fs_info);
1967 ret = commit_cowonly_roots(trans, root);
1968 if (ret) {
1969 mutex_unlock(&root->fs_info->tree_log_mutex);
1970 mutex_unlock(&root->fs_info->reloc_mutex);
1971 goto scrub_continue;
1975 * The tasks which save the space cache and inode cache may also
1976 * update ->aborted, check it.
1978 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1979 ret = cur_trans->aborted;
1980 mutex_unlock(&root->fs_info->tree_log_mutex);
1981 mutex_unlock(&root->fs_info->reloc_mutex);
1982 goto scrub_continue;
1985 btrfs_prepare_extent_commit(trans, root);
1987 cur_trans = root->fs_info->running_transaction;
1989 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1990 root->fs_info->tree_root->node);
1991 list_add_tail(&root->fs_info->tree_root->dirty_list,
1992 &cur_trans->switch_commits);
1994 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1995 root->fs_info->chunk_root->node);
1996 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1997 &cur_trans->switch_commits);
1999 switch_commit_roots(cur_trans, root->fs_info);
2001 assert_qgroups_uptodate(trans);
2002 ASSERT(list_empty(&cur_trans->dirty_bgs));
2003 update_super_roots(root);
2005 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2006 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2007 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2008 sizeof(*root->fs_info->super_copy));
2010 btrfs_update_commit_device_size(root->fs_info);
2011 btrfs_update_commit_device_bytes_used(root, cur_trans);
2013 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2014 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2016 spin_lock(&root->fs_info->trans_lock);
2017 cur_trans->state = TRANS_STATE_UNBLOCKED;
2018 root->fs_info->running_transaction = NULL;
2019 spin_unlock(&root->fs_info->trans_lock);
2020 mutex_unlock(&root->fs_info->reloc_mutex);
2022 wake_up(&root->fs_info->transaction_wait);
2024 ret = btrfs_write_and_wait_transaction(trans, root);
2025 if (ret) {
2026 btrfs_error(root->fs_info, ret,
2027 "Error while writing out transaction");
2028 mutex_unlock(&root->fs_info->tree_log_mutex);
2029 goto scrub_continue;
2032 ret = write_ctree_super(trans, root, 0);
2033 if (ret) {
2034 mutex_unlock(&root->fs_info->tree_log_mutex);
2035 goto scrub_continue;
2039 * the super is written, we can safely allow the tree-loggers
2040 * to go about their business
2042 mutex_unlock(&root->fs_info->tree_log_mutex);
2044 btrfs_finish_extent_commit(trans, root);
2046 if (cur_trans->have_free_bgs)
2047 btrfs_clear_space_info_full(root->fs_info);
2049 root->fs_info->last_trans_committed = cur_trans->transid;
2051 * We needn't acquire the lock here because there is no other task
2052 * which can change it.
2054 cur_trans->state = TRANS_STATE_COMPLETED;
2055 wake_up(&cur_trans->commit_wait);
2057 spin_lock(&root->fs_info->trans_lock);
2058 list_del_init(&cur_trans->list);
2059 spin_unlock(&root->fs_info->trans_lock);
2061 btrfs_put_transaction(cur_trans);
2062 btrfs_put_transaction(cur_trans);
2064 if (trans->type & __TRANS_FREEZABLE)
2065 sb_end_intwrite(root->fs_info->sb);
2067 trace_btrfs_transaction_commit(root);
2069 btrfs_scrub_continue(root);
2071 if (current->journal_info == trans)
2072 current->journal_info = NULL;
2074 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2076 if (current != root->fs_info->transaction_kthread)
2077 btrfs_run_delayed_iputs(root);
2079 return ret;
2081 scrub_continue:
2082 btrfs_scrub_continue(root);
2083 cleanup_transaction:
2084 btrfs_trans_release_metadata(trans, root);
2085 trans->block_rsv = NULL;
2086 if (trans->qgroup_reserved) {
2087 btrfs_qgroup_free(root, trans->qgroup_reserved);
2088 trans->qgroup_reserved = 0;
2090 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2091 if (current->journal_info == trans)
2092 current->journal_info = NULL;
2093 cleanup_transaction(trans, root, ret);
2095 return ret;
2099 * return < 0 if error
2100 * 0 if there are no more dead_roots at the time of call
2101 * 1 there are more to be processed, call me again
2103 * The return value indicates there are certainly more snapshots to delete, but
2104 * if there comes a new one during processing, it may return 0. We don't mind,
2105 * because btrfs_commit_super will poke cleaner thread and it will process it a
2106 * few seconds later.
2108 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2110 int ret;
2111 struct btrfs_fs_info *fs_info = root->fs_info;
2113 spin_lock(&fs_info->trans_lock);
2114 if (list_empty(&fs_info->dead_roots)) {
2115 spin_unlock(&fs_info->trans_lock);
2116 return 0;
2118 root = list_first_entry(&fs_info->dead_roots,
2119 struct btrfs_root, root_list);
2120 list_del_init(&root->root_list);
2121 spin_unlock(&fs_info->trans_lock);
2123 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2125 btrfs_kill_all_delayed_nodes(root);
2127 if (btrfs_header_backref_rev(root->node) <
2128 BTRFS_MIXED_BACKREF_REV)
2129 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2130 else
2131 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2133 return (ret < 0) ? 0 : 1;
2136 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2138 unsigned long prev;
2139 unsigned long bit;
2141 prev = xchg(&fs_info->pending_changes, 0);
2142 if (!prev)
2143 return;
2145 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2146 if (prev & bit)
2147 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2148 prev &= ~bit;
2150 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2151 if (prev & bit)
2152 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2153 prev &= ~bit;
2155 bit = 1 << BTRFS_PENDING_COMMIT;
2156 if (prev & bit)
2157 btrfs_debug(fs_info, "pending commit done");
2158 prev &= ~bit;
2160 if (prev)
2161 btrfs_warn(fs_info,
2162 "unknown pending changes left 0x%lx, ignoring", prev);