Merge branch 'cleanups-for-4.1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/btrfs-unstable.git] / fs / btrfs / ctree.c
blob1c7e913f1a4b2d8743c620ed5936d085d1ed793f
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
45 struct btrfs_path *btrfs_alloc_path(void)
47 struct btrfs_path *path;
48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 return path;
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
71 * reset all the locked nodes in the patch to spinning locks.
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw)
81 int i;
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
90 btrfs_set_path_blocking(p);
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
102 if (held)
103 btrfs_clear_lock_blocking_rw(held, held_rw);
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
109 if (!p)
110 return;
111 btrfs_release_path(p);
112 kmem_cache_free(btrfs_path_cachep, p);
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
119 * It is safe to call this on paths that no locks or extent buffers held.
121 noinline void btrfs_release_path(struct btrfs_path *p)
123 int i;
125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 p->slots[i] = 0;
127 if (!p->nodes[i])
128 continue;
129 if (p->locks[i]) {
130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 p->locks[i] = 0;
133 free_extent_buffer(p->nodes[i]);
134 p->nodes[i] = NULL;
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 struct extent_buffer *eb;
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
157 * RCU really hurts here, we could free up the root node because
158 * it was cow'ed but we may not get the new root node yet so do
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
166 rcu_read_unlock();
167 synchronize_rcu();
169 return eb;
172 /* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 struct extent_buffer *eb;
180 while (1) {
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
183 if (eb == root->node)
184 break;
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
188 return eb;
191 /* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 struct extent_buffer *eb;
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
207 return eb;
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
214 static void add_root_to_dirty_list(struct btrfs_root *root)
216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218 return;
220 spin_lock(&root->fs_info->trans_lock);
221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222 /* Want the extent tree to be the last on the list */
223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224 list_move_tail(&root->dirty_list,
225 &root->fs_info->dirty_cowonly_roots);
226 else
227 list_move(&root->dirty_list,
228 &root->fs_info->dirty_cowonly_roots);
230 spin_unlock(&root->fs_info->trans_lock);
234 * used by snapshot creation to make a copy of a root for a tree with
235 * a given objectid. The buffer with the new root node is returned in
236 * cow_ret, and this func returns zero on success or a negative error code.
238 int btrfs_copy_root(struct btrfs_trans_handle *trans,
239 struct btrfs_root *root,
240 struct extent_buffer *buf,
241 struct extent_buffer **cow_ret, u64 new_root_objectid)
243 struct extent_buffer *cow;
244 int ret = 0;
245 int level;
246 struct btrfs_disk_key disk_key;
248 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
249 trans->transid != root->fs_info->running_transaction->transid);
250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 trans->transid != root->last_trans);
253 level = btrfs_header_level(buf);
254 if (level == 0)
255 btrfs_item_key(buf, &disk_key, 0);
256 else
257 btrfs_node_key(buf, &disk_key, 0);
259 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
260 &disk_key, level, buf->start, 0);
261 if (IS_ERR(cow))
262 return PTR_ERR(cow);
264 copy_extent_buffer(cow, buf, 0, 0, cow->len);
265 btrfs_set_header_bytenr(cow, cow->start);
266 btrfs_set_header_generation(cow, trans->transid);
267 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
268 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
269 BTRFS_HEADER_FLAG_RELOC);
270 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
271 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272 else
273 btrfs_set_header_owner(cow, new_root_objectid);
275 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
276 BTRFS_FSID_SIZE);
278 WARN_ON(btrfs_header_generation(buf) > trans->transid);
279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280 ret = btrfs_inc_ref(trans, root, cow, 1);
281 else
282 ret = btrfs_inc_ref(trans, root, cow, 0);
284 if (ret)
285 return ret;
287 btrfs_mark_buffer_dirty(cow);
288 *cow_ret = cow;
289 return 0;
292 enum mod_log_op {
293 MOD_LOG_KEY_REPLACE,
294 MOD_LOG_KEY_ADD,
295 MOD_LOG_KEY_REMOVE,
296 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298 MOD_LOG_MOVE_KEYS,
299 MOD_LOG_ROOT_REPLACE,
302 struct tree_mod_move {
303 int dst_slot;
304 int nr_items;
307 struct tree_mod_root {
308 u64 logical;
309 u8 level;
312 struct tree_mod_elem {
313 struct rb_node node;
314 u64 index; /* shifted logical */
315 u64 seq;
316 enum mod_log_op op;
318 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319 int slot;
321 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322 u64 generation;
324 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325 struct btrfs_disk_key key;
326 u64 blockptr;
328 /* this is used for op == MOD_LOG_MOVE_KEYS */
329 struct tree_mod_move move;
331 /* this is used for op == MOD_LOG_ROOT_REPLACE */
332 struct tree_mod_root old_root;
335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 read_lock(&fs_info->tree_mod_log_lock);
340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 read_unlock(&fs_info->tree_mod_log_lock);
345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 write_lock(&fs_info->tree_mod_log_lock);
350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 write_unlock(&fs_info->tree_mod_log_lock);
356 * Pull a new tree mod seq number for our operation.
358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 return atomic64_inc_return(&fs_info->tree_mod_seq);
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
374 tree_mod_log_write_lock(fs_info);
375 spin_lock(&fs_info->tree_mod_seq_lock);
376 if (!elem->seq) {
377 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
378 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380 spin_unlock(&fs_info->tree_mod_seq_lock);
381 tree_mod_log_write_unlock(fs_info);
383 return elem->seq;
386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
387 struct seq_list *elem)
389 struct rb_root *tm_root;
390 struct rb_node *node;
391 struct rb_node *next;
392 struct seq_list *cur_elem;
393 struct tree_mod_elem *tm;
394 u64 min_seq = (u64)-1;
395 u64 seq_putting = elem->seq;
397 if (!seq_putting)
398 return;
400 spin_lock(&fs_info->tree_mod_seq_lock);
401 list_del(&elem->list);
402 elem->seq = 0;
404 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
405 if (cur_elem->seq < min_seq) {
406 if (seq_putting > cur_elem->seq) {
408 * blocker with lower sequence number exists, we
409 * cannot remove anything from the log
411 spin_unlock(&fs_info->tree_mod_seq_lock);
412 return;
414 min_seq = cur_elem->seq;
417 spin_unlock(&fs_info->tree_mod_seq_lock);
420 * anything that's lower than the lowest existing (read: blocked)
421 * sequence number can be removed from the tree.
423 tree_mod_log_write_lock(fs_info);
424 tm_root = &fs_info->tree_mod_log;
425 for (node = rb_first(tm_root); node; node = next) {
426 next = rb_next(node);
427 tm = container_of(node, struct tree_mod_elem, node);
428 if (tm->seq > min_seq)
429 continue;
430 rb_erase(node, tm_root);
431 kfree(tm);
433 tree_mod_log_write_unlock(fs_info);
437 * key order of the log:
438 * index -> sequence
440 * the index is the shifted logical of the *new* root node for root replace
441 * operations, or the shifted logical of the affected block for all other
442 * operations.
444 * Note: must be called with write lock (tree_mod_log_write_lock).
446 static noinline int
447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 struct rb_root *tm_root;
450 struct rb_node **new;
451 struct rb_node *parent = NULL;
452 struct tree_mod_elem *cur;
454 BUG_ON(!tm);
456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
461 cur = container_of(*new, struct tree_mod_elem, node);
462 parent = *new;
463 if (cur->index < tm->index)
464 new = &((*new)->rb_left);
465 else if (cur->index > tm->index)
466 new = &((*new)->rb_right);
467 else if (cur->seq < tm->seq)
468 new = &((*new)->rb_left);
469 else if (cur->seq > tm->seq)
470 new = &((*new)->rb_right);
471 else
472 return -EEXIST;
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
477 return 0;
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
488 smp_mb();
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
490 return 1;
491 if (eb && btrfs_header_level(eb) == 0)
492 return 1;
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
497 return 1;
500 return 0;
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
507 smp_mb();
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
509 return 0;
510 if (eb && btrfs_header_level(eb) == 0)
511 return 0;
513 return 1;
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
520 struct tree_mod_elem *tm;
522 tm = kzalloc(sizeof(*tm), flags);
523 if (!tm)
524 return NULL;
526 tm->index = eb->start >> PAGE_CACHE_SHIFT;
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
531 tm->op = op;
532 tm->slot = slot;
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
534 RB_CLEAR_NODE(&tm->node);
536 return tm;
539 static noinline int
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
544 struct tree_mod_elem *tm;
545 int ret;
547 if (!tree_mod_need_log(fs_info, eb))
548 return 0;
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 if (!tm)
552 return -ENOMEM;
554 if (tree_mod_dont_log(fs_info, eb)) {
555 kfree(tm);
556 return 0;
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
561 if (ret)
562 kfree(tm);
564 return ret;
567 static noinline int
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int dst_slot, int src_slot,
570 int nr_items, gfp_t flags)
572 struct tree_mod_elem *tm = NULL;
573 struct tree_mod_elem **tm_list = NULL;
574 int ret = 0;
575 int i;
576 int locked = 0;
578 if (!tree_mod_need_log(fs_info, eb))
579 return 0;
581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
582 if (!tm_list)
583 return -ENOMEM;
585 tm = kzalloc(sizeof(*tm), flags);
586 if (!tm) {
587 ret = -ENOMEM;
588 goto free_tms;
591 tm->index = eb->start >> PAGE_CACHE_SHIFT;
592 tm->slot = src_slot;
593 tm->move.dst_slot = dst_slot;
594 tm->move.nr_items = nr_items;
595 tm->op = MOD_LOG_MOVE_KEYS;
597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
600 if (!tm_list[i]) {
601 ret = -ENOMEM;
602 goto free_tms;
606 if (tree_mod_dont_log(fs_info, eb))
607 goto free_tms;
608 locked = 1;
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 if (ret)
618 goto free_tms;
621 ret = __tree_mod_log_insert(fs_info, tm);
622 if (ret)
623 goto free_tms;
624 tree_mod_log_write_unlock(fs_info);
625 kfree(tm_list);
627 return 0;
628 free_tms:
629 for (i = 0; i < nr_items; i++) {
630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 kfree(tm_list[i]);
634 if (locked)
635 tree_mod_log_write_unlock(fs_info);
636 kfree(tm_list);
637 kfree(tm);
639 return ret;
642 static inline int
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 struct tree_mod_elem **tm_list,
645 int nritems)
647 int i, j;
648 int ret;
650 for (i = nritems - 1; i >= 0; i--) {
651 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 if (ret) {
653 for (j = nritems - 1; j > i; j--)
654 rb_erase(&tm_list[j]->node,
655 &fs_info->tree_mod_log);
656 return ret;
660 return 0;
663 static noinline int
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 struct extent_buffer *old_root,
666 struct extent_buffer *new_root, gfp_t flags,
667 int log_removal)
669 struct tree_mod_elem *tm = NULL;
670 struct tree_mod_elem **tm_list = NULL;
671 int nritems = 0;
672 int ret = 0;
673 int i;
675 if (!tree_mod_need_log(fs_info, NULL))
676 return 0;
678 if (log_removal && btrfs_header_level(old_root) > 0) {
679 nritems = btrfs_header_nritems(old_root);
680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
681 flags);
682 if (!tm_list) {
683 ret = -ENOMEM;
684 goto free_tms;
686 for (i = 0; i < nritems; i++) {
687 tm_list[i] = alloc_tree_mod_elem(old_root, i,
688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
689 if (!tm_list[i]) {
690 ret = -ENOMEM;
691 goto free_tms;
696 tm = kzalloc(sizeof(*tm), flags);
697 if (!tm) {
698 ret = -ENOMEM;
699 goto free_tms;
702 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
703 tm->old_root.logical = old_root->start;
704 tm->old_root.level = btrfs_header_level(old_root);
705 tm->generation = btrfs_header_generation(old_root);
706 tm->op = MOD_LOG_ROOT_REPLACE;
708 if (tree_mod_dont_log(fs_info, NULL))
709 goto free_tms;
711 if (tm_list)
712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 if (!ret)
714 ret = __tree_mod_log_insert(fs_info, tm);
716 tree_mod_log_write_unlock(fs_info);
717 if (ret)
718 goto free_tms;
719 kfree(tm_list);
721 return ret;
723 free_tms:
724 if (tm_list) {
725 for (i = 0; i < nritems; i++)
726 kfree(tm_list[i]);
727 kfree(tm_list);
729 kfree(tm);
731 return ret;
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 int smallest)
738 struct rb_root *tm_root;
739 struct rb_node *node;
740 struct tree_mod_elem *cur = NULL;
741 struct tree_mod_elem *found = NULL;
742 u64 index = start >> PAGE_CACHE_SHIFT;
744 tree_mod_log_read_lock(fs_info);
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
747 while (node) {
748 cur = container_of(node, struct tree_mod_elem, node);
749 if (cur->index < index) {
750 node = node->rb_left;
751 } else if (cur->index > index) {
752 node = node->rb_right;
753 } else if (cur->seq < min_seq) {
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
757 if (found)
758 BUG_ON(found->seq > cur->seq);
759 found = cur;
760 node = node->rb_left;
761 } else if (cur->seq > min_seq) {
762 /* we want the node with the smallest seq */
763 if (found)
764 BUG_ON(found->seq < cur->seq);
765 found = cur;
766 node = node->rb_right;
767 } else {
768 found = cur;
769 break;
772 tree_mod_log_read_unlock(fs_info);
774 return found;
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 u64 min_seq)
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
803 unsigned long src_offset, int nr_items)
805 int ret = 0;
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 int i;
809 int locked = 0;
811 if (!tree_mod_need_log(fs_info, NULL))
812 return 0;
814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 return 0;
817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 GFP_NOFS);
819 if (!tm_list)
820 return -ENOMEM;
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
824 for (i = 0; i < nr_items; i++) {
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
828 ret = -ENOMEM;
829 goto free_tms;
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
835 ret = -ENOMEM;
836 goto free_tms;
840 if (tree_mod_dont_log(fs_info, NULL))
841 goto free_tms;
842 locked = 1;
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 if (ret)
847 goto free_tms;
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 if (ret)
850 goto free_tms;
853 tree_mod_log_write_unlock(fs_info);
854 kfree(tm_list);
856 return 0;
858 free_tms:
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 kfree(tm_list[i]);
864 if (locked)
865 tree_mod_log_write_unlock(fs_info);
866 kfree(tm_list);
868 return ret;
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
875 int ret;
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 nr_items, GFP_NOFS);
878 BUG_ON(ret < 0);
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 struct extent_buffer *eb, int slot, int atomic)
885 int ret;
887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 MOD_LOG_KEY_REPLACE,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
890 BUG_ON(ret < 0);
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
896 struct tree_mod_elem **tm_list = NULL;
897 int nritems = 0;
898 int i;
899 int ret = 0;
901 if (btrfs_header_level(eb) == 0)
902 return 0;
904 if (!tree_mod_need_log(fs_info, NULL))
905 return 0;
907 nritems = btrfs_header_nritems(eb);
908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 if (!tm_list)
910 return -ENOMEM;
912 for (i = 0; i < nritems; i++) {
913 tm_list[i] = alloc_tree_mod_elem(eb, i,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 if (!tm_list[i]) {
916 ret = -ENOMEM;
917 goto free_tms;
921 if (tree_mod_dont_log(fs_info, eb))
922 goto free_tms;
924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 tree_mod_log_write_unlock(fs_info);
926 if (ret)
927 goto free_tms;
928 kfree(tm_list);
930 return 0;
932 free_tms:
933 for (i = 0; i < nritems; i++)
934 kfree(tm_list[i]);
935 kfree(tm_list);
937 return ret;
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 struct extent_buffer *new_root_node,
943 int log_removal)
945 int ret;
946 ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 new_root_node, GFP_NOFS, log_removal);
948 BUG_ON(ret < 0);
952 * check if the tree block can be shared by multiple trees
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 struct extent_buffer *buf)
958 * Tree blocks not in refernece counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 buf != root->node && buf != root->commit_root &&
965 (btrfs_header_generation(buf) <=
966 btrfs_root_last_snapshot(&root->root_item) ||
967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 return 1;
973 #endif
974 return 0;
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct extent_buffer *buf,
980 struct extent_buffer *cow,
981 int *last_ref)
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
990 * Backrefs update rules:
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
1010 if (ret)
1011 return ret;
1012 if (refs == 0) {
1013 ret = -EROFS;
1014 btrfs_std_error(root->fs_info, ret);
1015 return ret;
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1035 BUG_ON(ret); /* -ENOMEM */
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
1039 ret = btrfs_dec_ref(trans, root, buf, 0);
1040 BUG_ON(ret); /* -ENOMEM */
1041 ret = btrfs_inc_ref(trans, root, cow, 1);
1042 BUG_ON(ret); /* -ENOMEM */
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 } else {
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
1049 ret = btrfs_inc_ref(trans, root, cow, 1);
1050 else
1051 ret = btrfs_inc_ref(trans, root, cow, 0);
1052 BUG_ON(ret); /* -ENOMEM */
1054 if (new_flags != 0) {
1055 int level = btrfs_header_level(buf);
1057 ret = btrfs_set_disk_extent_flags(trans, root,
1058 buf->start,
1059 buf->len,
1060 new_flags, level, 0);
1061 if (ret)
1062 return ret;
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
1068 ret = btrfs_inc_ref(trans, root, cow, 1);
1069 else
1070 ret = btrfs_inc_ref(trans, root, cow, 0);
1071 BUG_ON(ret); /* -ENOMEM */
1072 ret = btrfs_dec_ref(trans, root, buf, 1);
1073 BUG_ON(ret); /* -ENOMEM */
1075 clean_tree_block(trans, root, buf);
1076 *last_ref = 1;
1078 return 0;
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1085 * dirty again.
1087 * search_start -- an allocation hint for the new block
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
1098 u64 search_start, u64 empty_size)
1100 struct btrfs_disk_key disk_key;
1101 struct extent_buffer *cow;
1102 int level, ret;
1103 int last_ref = 0;
1104 int unlock_orig = 0;
1105 u64 parent_start;
1107 if (*cow_ret == buf)
1108 unlock_orig = 1;
1110 btrfs_assert_tree_locked(buf);
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 trans->transid != root->fs_info->running_transaction->transid);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 trans->transid != root->last_trans);
1117 level = btrfs_header_level(buf);
1119 if (level == 0)
1120 btrfs_item_key(buf, &disk_key, 0);
1121 else
1122 btrfs_node_key(buf, &disk_key, 0);
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 if (parent)
1126 parent_start = parent->start;
1127 else
1128 parent_start = 0;
1129 } else
1130 parent_start = 0;
1132 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 root->root_key.objectid, &disk_key, level,
1134 search_start, empty_size);
1135 if (IS_ERR(cow))
1136 return PTR_ERR(cow);
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1140 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 btrfs_set_header_bytenr(cow, cow->start);
1142 btrfs_set_header_generation(cow, trans->transid);
1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 BTRFS_HEADER_FLAG_RELOC);
1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 else
1149 btrfs_set_header_owner(cow, root->root_key.objectid);
1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 BTRFS_FSID_SIZE);
1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 if (ret) {
1156 btrfs_abort_transaction(trans, root, ret);
1157 return ret;
1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 if (ret)
1163 return ret;
1166 if (buf == root->node) {
1167 WARN_ON(parent && parent != buf);
1168 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1169 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1170 parent_start = buf->start;
1171 else
1172 parent_start = 0;
1174 extent_buffer_get(cow);
1175 tree_mod_log_set_root_pointer(root, cow, 1);
1176 rcu_assign_pointer(root->node, cow);
1178 btrfs_free_tree_block(trans, root, buf, parent_start,
1179 last_ref);
1180 free_extent_buffer(buf);
1181 add_root_to_dirty_list(root);
1182 } else {
1183 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1184 parent_start = parent->start;
1185 else
1186 parent_start = 0;
1188 WARN_ON(trans->transid != btrfs_header_generation(parent));
1189 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1190 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1191 btrfs_set_node_blockptr(parent, parent_slot,
1192 cow->start);
1193 btrfs_set_node_ptr_generation(parent, parent_slot,
1194 trans->transid);
1195 btrfs_mark_buffer_dirty(parent);
1196 if (last_ref) {
1197 ret = tree_mod_log_free_eb(root->fs_info, buf);
1198 if (ret) {
1199 btrfs_abort_transaction(trans, root, ret);
1200 return ret;
1203 btrfs_free_tree_block(trans, root, buf, parent_start,
1204 last_ref);
1206 if (unlock_orig)
1207 btrfs_tree_unlock(buf);
1208 free_extent_buffer_stale(buf);
1209 btrfs_mark_buffer_dirty(cow);
1210 *cow_ret = cow;
1211 return 0;
1215 * returns the logical address of the oldest predecessor of the given root.
1216 * entries older than time_seq are ignored.
1218 static struct tree_mod_elem *
1219 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1220 struct extent_buffer *eb_root, u64 time_seq)
1222 struct tree_mod_elem *tm;
1223 struct tree_mod_elem *found = NULL;
1224 u64 root_logical = eb_root->start;
1225 int looped = 0;
1227 if (!time_seq)
1228 return NULL;
1231 * the very last operation that's logged for a root is the replacement
1232 * operation (if it is replaced at all). this has the index of the *new*
1233 * root, making it the very first operation that's logged for this root.
1235 while (1) {
1236 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1237 time_seq);
1238 if (!looped && !tm)
1239 return NULL;
1241 * if there are no tree operation for the oldest root, we simply
1242 * return it. this should only happen if that (old) root is at
1243 * level 0.
1245 if (!tm)
1246 break;
1249 * if there's an operation that's not a root replacement, we
1250 * found the oldest version of our root. normally, we'll find a
1251 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1253 if (tm->op != MOD_LOG_ROOT_REPLACE)
1254 break;
1256 found = tm;
1257 root_logical = tm->old_root.logical;
1258 looped = 1;
1261 /* if there's no old root to return, return what we found instead */
1262 if (!found)
1263 found = tm;
1265 return found;
1269 * tm is a pointer to the first operation to rewind within eb. then, all
1270 * previous operations will be rewinded (until we reach something older than
1271 * time_seq).
1273 static void
1274 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1275 u64 time_seq, struct tree_mod_elem *first_tm)
1277 u32 n;
1278 struct rb_node *next;
1279 struct tree_mod_elem *tm = first_tm;
1280 unsigned long o_dst;
1281 unsigned long o_src;
1282 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1284 n = btrfs_header_nritems(eb);
1285 tree_mod_log_read_lock(fs_info);
1286 while (tm && tm->seq >= time_seq) {
1288 * all the operations are recorded with the operator used for
1289 * the modification. as we're going backwards, we do the
1290 * opposite of each operation here.
1292 switch (tm->op) {
1293 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1294 BUG_ON(tm->slot < n);
1295 /* Fallthrough */
1296 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1297 case MOD_LOG_KEY_REMOVE:
1298 btrfs_set_node_key(eb, &tm->key, tm->slot);
1299 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1300 btrfs_set_node_ptr_generation(eb, tm->slot,
1301 tm->generation);
1302 n++;
1303 break;
1304 case MOD_LOG_KEY_REPLACE:
1305 BUG_ON(tm->slot >= n);
1306 btrfs_set_node_key(eb, &tm->key, tm->slot);
1307 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1308 btrfs_set_node_ptr_generation(eb, tm->slot,
1309 tm->generation);
1310 break;
1311 case MOD_LOG_KEY_ADD:
1312 /* if a move operation is needed it's in the log */
1313 n--;
1314 break;
1315 case MOD_LOG_MOVE_KEYS:
1316 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1317 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1318 memmove_extent_buffer(eb, o_dst, o_src,
1319 tm->move.nr_items * p_size);
1320 break;
1321 case MOD_LOG_ROOT_REPLACE:
1323 * this operation is special. for roots, this must be
1324 * handled explicitly before rewinding.
1325 * for non-roots, this operation may exist if the node
1326 * was a root: root A -> child B; then A gets empty and
1327 * B is promoted to the new root. in the mod log, we'll
1328 * have a root-replace operation for B, a tree block
1329 * that is no root. we simply ignore that operation.
1331 break;
1333 next = rb_next(&tm->node);
1334 if (!next)
1335 break;
1336 tm = container_of(next, struct tree_mod_elem, node);
1337 if (tm->index != first_tm->index)
1338 break;
1340 tree_mod_log_read_unlock(fs_info);
1341 btrfs_set_header_nritems(eb, n);
1345 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1346 * is returned. If rewind operations happen, a fresh buffer is returned. The
1347 * returned buffer is always read-locked. If the returned buffer is not the
1348 * input buffer, the lock on the input buffer is released and the input buffer
1349 * is freed (its refcount is decremented).
1351 static struct extent_buffer *
1352 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1353 struct extent_buffer *eb, u64 time_seq)
1355 struct extent_buffer *eb_rewin;
1356 struct tree_mod_elem *tm;
1358 if (!time_seq)
1359 return eb;
1361 if (btrfs_header_level(eb) == 0)
1362 return eb;
1364 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1365 if (!tm)
1366 return eb;
1368 btrfs_set_path_blocking(path);
1369 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1371 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1372 BUG_ON(tm->slot != 0);
1373 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1374 if (!eb_rewin) {
1375 btrfs_tree_read_unlock_blocking(eb);
1376 free_extent_buffer(eb);
1377 return NULL;
1379 btrfs_set_header_bytenr(eb_rewin, eb->start);
1380 btrfs_set_header_backref_rev(eb_rewin,
1381 btrfs_header_backref_rev(eb));
1382 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1383 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1384 } else {
1385 eb_rewin = btrfs_clone_extent_buffer(eb);
1386 if (!eb_rewin) {
1387 btrfs_tree_read_unlock_blocking(eb);
1388 free_extent_buffer(eb);
1389 return NULL;
1393 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1394 btrfs_tree_read_unlock_blocking(eb);
1395 free_extent_buffer(eb);
1397 extent_buffer_get(eb_rewin);
1398 btrfs_tree_read_lock(eb_rewin);
1399 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1400 WARN_ON(btrfs_header_nritems(eb_rewin) >
1401 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1403 return eb_rewin;
1407 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1408 * value. If there are no changes, the current root->root_node is returned. If
1409 * anything changed in between, there's a fresh buffer allocated on which the
1410 * rewind operations are done. In any case, the returned buffer is read locked.
1411 * Returns NULL on error (with no locks held).
1413 static inline struct extent_buffer *
1414 get_old_root(struct btrfs_root *root, u64 time_seq)
1416 struct tree_mod_elem *tm;
1417 struct extent_buffer *eb = NULL;
1418 struct extent_buffer *eb_root;
1419 struct extent_buffer *old;
1420 struct tree_mod_root *old_root = NULL;
1421 u64 old_generation = 0;
1422 u64 logical;
1424 eb_root = btrfs_read_lock_root_node(root);
1425 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1426 if (!tm)
1427 return eb_root;
1429 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1430 old_root = &tm->old_root;
1431 old_generation = tm->generation;
1432 logical = old_root->logical;
1433 } else {
1434 logical = eb_root->start;
1437 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1438 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1439 btrfs_tree_read_unlock(eb_root);
1440 free_extent_buffer(eb_root);
1441 old = read_tree_block(root, logical, 0);
1442 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1443 free_extent_buffer(old);
1444 btrfs_warn(root->fs_info,
1445 "failed to read tree block %llu from get_old_root", logical);
1446 } else {
1447 eb = btrfs_clone_extent_buffer(old);
1448 free_extent_buffer(old);
1450 } else if (old_root) {
1451 btrfs_tree_read_unlock(eb_root);
1452 free_extent_buffer(eb_root);
1453 eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1454 } else {
1455 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1456 eb = btrfs_clone_extent_buffer(eb_root);
1457 btrfs_tree_read_unlock_blocking(eb_root);
1458 free_extent_buffer(eb_root);
1461 if (!eb)
1462 return NULL;
1463 extent_buffer_get(eb);
1464 btrfs_tree_read_lock(eb);
1465 if (old_root) {
1466 btrfs_set_header_bytenr(eb, eb->start);
1467 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1468 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1469 btrfs_set_header_level(eb, old_root->level);
1470 btrfs_set_header_generation(eb, old_generation);
1472 if (tm)
1473 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1474 else
1475 WARN_ON(btrfs_header_level(eb) != 0);
1476 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1478 return eb;
1481 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1483 struct tree_mod_elem *tm;
1484 int level;
1485 struct extent_buffer *eb_root = btrfs_root_node(root);
1487 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1488 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1489 level = tm->old_root.level;
1490 } else {
1491 level = btrfs_header_level(eb_root);
1493 free_extent_buffer(eb_root);
1495 return level;
1498 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1499 struct btrfs_root *root,
1500 struct extent_buffer *buf)
1502 if (btrfs_test_is_dummy_root(root))
1503 return 0;
1505 /* ensure we can see the force_cow */
1506 smp_rmb();
1509 * We do not need to cow a block if
1510 * 1) this block is not created or changed in this transaction;
1511 * 2) this block does not belong to TREE_RELOC tree;
1512 * 3) the root is not forced COW.
1514 * What is forced COW:
1515 * when we create snapshot during commiting the transaction,
1516 * after we've finished coping src root, we must COW the shared
1517 * block to ensure the metadata consistency.
1519 if (btrfs_header_generation(buf) == trans->transid &&
1520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1524 return 0;
1525 return 1;
1529 * cows a single block, see __btrfs_cow_block for the real work.
1530 * This version of it has extra checks so that a block isn't cow'd more than
1531 * once per transaction, as long as it hasn't been written yet
1533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1534 struct btrfs_root *root, struct extent_buffer *buf,
1535 struct extent_buffer *parent, int parent_slot,
1536 struct extent_buffer **cow_ret)
1538 u64 search_start;
1539 int ret;
1541 if (trans->transaction != root->fs_info->running_transaction)
1542 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1543 trans->transid,
1544 root->fs_info->running_transaction->transid);
1546 if (trans->transid != root->fs_info->generation)
1547 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1548 trans->transid, root->fs_info->generation);
1550 if (!should_cow_block(trans, root, buf)) {
1551 *cow_ret = buf;
1552 return 0;
1555 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1557 if (parent)
1558 btrfs_set_lock_blocking(parent);
1559 btrfs_set_lock_blocking(buf);
1561 ret = __btrfs_cow_block(trans, root, buf, parent,
1562 parent_slot, cow_ret, search_start, 0);
1564 trace_btrfs_cow_block(root, buf, *cow_ret);
1566 return ret;
1570 * helper function for defrag to decide if two blocks pointed to by a
1571 * node are actually close by
1573 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1575 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1576 return 1;
1577 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1578 return 1;
1579 return 0;
1583 * compare two keys in a memcmp fashion
1585 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1587 struct btrfs_key k1;
1589 btrfs_disk_key_to_cpu(&k1, disk);
1591 return btrfs_comp_cpu_keys(&k1, k2);
1595 * same as comp_keys only with two btrfs_key's
1597 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1599 if (k1->objectid > k2->objectid)
1600 return 1;
1601 if (k1->objectid < k2->objectid)
1602 return -1;
1603 if (k1->type > k2->type)
1604 return 1;
1605 if (k1->type < k2->type)
1606 return -1;
1607 if (k1->offset > k2->offset)
1608 return 1;
1609 if (k1->offset < k2->offset)
1610 return -1;
1611 return 0;
1615 * this is used by the defrag code to go through all the
1616 * leaves pointed to by a node and reallocate them so that
1617 * disk order is close to key order
1619 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1620 struct btrfs_root *root, struct extent_buffer *parent,
1621 int start_slot, u64 *last_ret,
1622 struct btrfs_key *progress)
1624 struct extent_buffer *cur;
1625 u64 blocknr;
1626 u64 gen;
1627 u64 search_start = *last_ret;
1628 u64 last_block = 0;
1629 u64 other;
1630 u32 parent_nritems;
1631 int end_slot;
1632 int i;
1633 int err = 0;
1634 int parent_level;
1635 int uptodate;
1636 u32 blocksize;
1637 int progress_passed = 0;
1638 struct btrfs_disk_key disk_key;
1640 parent_level = btrfs_header_level(parent);
1642 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1643 WARN_ON(trans->transid != root->fs_info->generation);
1645 parent_nritems = btrfs_header_nritems(parent);
1646 blocksize = root->nodesize;
1647 end_slot = parent_nritems - 1;
1649 if (parent_nritems <= 1)
1650 return 0;
1652 btrfs_set_lock_blocking(parent);
1654 for (i = start_slot; i <= end_slot; i++) {
1655 int close = 1;
1657 btrfs_node_key(parent, &disk_key, i);
1658 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1659 continue;
1661 progress_passed = 1;
1662 blocknr = btrfs_node_blockptr(parent, i);
1663 gen = btrfs_node_ptr_generation(parent, i);
1664 if (last_block == 0)
1665 last_block = blocknr;
1667 if (i > 0) {
1668 other = btrfs_node_blockptr(parent, i - 1);
1669 close = close_blocks(blocknr, other, blocksize);
1671 if (!close && i < end_slot) {
1672 other = btrfs_node_blockptr(parent, i + 1);
1673 close = close_blocks(blocknr, other, blocksize);
1675 if (close) {
1676 last_block = blocknr;
1677 continue;
1680 cur = btrfs_find_tree_block(root, blocknr);
1681 if (cur)
1682 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1683 else
1684 uptodate = 0;
1685 if (!cur || !uptodate) {
1686 if (!cur) {
1687 cur = read_tree_block(root, blocknr, gen);
1688 if (!cur || !extent_buffer_uptodate(cur)) {
1689 free_extent_buffer(cur);
1690 return -EIO;
1692 } else if (!uptodate) {
1693 err = btrfs_read_buffer(cur, gen);
1694 if (err) {
1695 free_extent_buffer(cur);
1696 return err;
1700 if (search_start == 0)
1701 search_start = last_block;
1703 btrfs_tree_lock(cur);
1704 btrfs_set_lock_blocking(cur);
1705 err = __btrfs_cow_block(trans, root, cur, parent, i,
1706 &cur, search_start,
1707 min(16 * blocksize,
1708 (end_slot - i) * blocksize));
1709 if (err) {
1710 btrfs_tree_unlock(cur);
1711 free_extent_buffer(cur);
1712 break;
1714 search_start = cur->start;
1715 last_block = cur->start;
1716 *last_ret = search_start;
1717 btrfs_tree_unlock(cur);
1718 free_extent_buffer(cur);
1720 return err;
1724 * The leaf data grows from end-to-front in the node.
1725 * this returns the address of the start of the last item,
1726 * which is the stop of the leaf data stack
1728 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1729 struct extent_buffer *leaf)
1731 u32 nr = btrfs_header_nritems(leaf);
1732 if (nr == 0)
1733 return BTRFS_LEAF_DATA_SIZE(root);
1734 return btrfs_item_offset_nr(leaf, nr - 1);
1739 * search for key in the extent_buffer. The items start at offset p,
1740 * and they are item_size apart. There are 'max' items in p.
1742 * the slot in the array is returned via slot, and it points to
1743 * the place where you would insert key if it is not found in
1744 * the array.
1746 * slot may point to max if the key is bigger than all of the keys
1748 static noinline int generic_bin_search(struct extent_buffer *eb,
1749 unsigned long p,
1750 int item_size, struct btrfs_key *key,
1751 int max, int *slot)
1753 int low = 0;
1754 int high = max;
1755 int mid;
1756 int ret;
1757 struct btrfs_disk_key *tmp = NULL;
1758 struct btrfs_disk_key unaligned;
1759 unsigned long offset;
1760 char *kaddr = NULL;
1761 unsigned long map_start = 0;
1762 unsigned long map_len = 0;
1763 int err;
1765 while (low < high) {
1766 mid = (low + high) / 2;
1767 offset = p + mid * item_size;
1769 if (!kaddr || offset < map_start ||
1770 (offset + sizeof(struct btrfs_disk_key)) >
1771 map_start + map_len) {
1773 err = map_private_extent_buffer(eb, offset,
1774 sizeof(struct btrfs_disk_key),
1775 &kaddr, &map_start, &map_len);
1777 if (!err) {
1778 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1779 map_start);
1780 } else {
1781 read_extent_buffer(eb, &unaligned,
1782 offset, sizeof(unaligned));
1783 tmp = &unaligned;
1786 } else {
1787 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1788 map_start);
1790 ret = comp_keys(tmp, key);
1792 if (ret < 0)
1793 low = mid + 1;
1794 else if (ret > 0)
1795 high = mid;
1796 else {
1797 *slot = mid;
1798 return 0;
1801 *slot = low;
1802 return 1;
1806 * simple bin_search frontend that does the right thing for
1807 * leaves vs nodes
1809 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1810 int level, int *slot)
1812 if (level == 0)
1813 return generic_bin_search(eb,
1814 offsetof(struct btrfs_leaf, items),
1815 sizeof(struct btrfs_item),
1816 key, btrfs_header_nritems(eb),
1817 slot);
1818 else
1819 return generic_bin_search(eb,
1820 offsetof(struct btrfs_node, ptrs),
1821 sizeof(struct btrfs_key_ptr),
1822 key, btrfs_header_nritems(eb),
1823 slot);
1826 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1827 int level, int *slot)
1829 return bin_search(eb, key, level, slot);
1832 static void root_add_used(struct btrfs_root *root, u32 size)
1834 spin_lock(&root->accounting_lock);
1835 btrfs_set_root_used(&root->root_item,
1836 btrfs_root_used(&root->root_item) + size);
1837 spin_unlock(&root->accounting_lock);
1840 static void root_sub_used(struct btrfs_root *root, u32 size)
1842 spin_lock(&root->accounting_lock);
1843 btrfs_set_root_used(&root->root_item,
1844 btrfs_root_used(&root->root_item) - size);
1845 spin_unlock(&root->accounting_lock);
1848 /* given a node and slot number, this reads the blocks it points to. The
1849 * extent buffer is returned with a reference taken (but unlocked).
1850 * NULL is returned on error.
1852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1853 struct extent_buffer *parent, int slot)
1855 int level = btrfs_header_level(parent);
1856 struct extent_buffer *eb;
1858 if (slot < 0)
1859 return NULL;
1860 if (slot >= btrfs_header_nritems(parent))
1861 return NULL;
1863 BUG_ON(level == 0);
1865 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1866 btrfs_node_ptr_generation(parent, slot));
1867 if (eb && !extent_buffer_uptodate(eb)) {
1868 free_extent_buffer(eb);
1869 eb = NULL;
1872 return eb;
1876 * node level balancing, used to make sure nodes are in proper order for
1877 * item deletion. We balance from the top down, so we have to make sure
1878 * that a deletion won't leave an node completely empty later on.
1880 static noinline int balance_level(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root,
1882 struct btrfs_path *path, int level)
1884 struct extent_buffer *right = NULL;
1885 struct extent_buffer *mid;
1886 struct extent_buffer *left = NULL;
1887 struct extent_buffer *parent = NULL;
1888 int ret = 0;
1889 int wret;
1890 int pslot;
1891 int orig_slot = path->slots[level];
1892 u64 orig_ptr;
1894 if (level == 0)
1895 return 0;
1897 mid = path->nodes[level];
1899 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1900 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1901 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1903 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1905 if (level < BTRFS_MAX_LEVEL - 1) {
1906 parent = path->nodes[level + 1];
1907 pslot = path->slots[level + 1];
1911 * deal with the case where there is only one pointer in the root
1912 * by promoting the node below to a root
1914 if (!parent) {
1915 struct extent_buffer *child;
1917 if (btrfs_header_nritems(mid) != 1)
1918 return 0;
1920 /* promote the child to a root */
1921 child = read_node_slot(root, mid, 0);
1922 if (!child) {
1923 ret = -EROFS;
1924 btrfs_std_error(root->fs_info, ret);
1925 goto enospc;
1928 btrfs_tree_lock(child);
1929 btrfs_set_lock_blocking(child);
1930 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1931 if (ret) {
1932 btrfs_tree_unlock(child);
1933 free_extent_buffer(child);
1934 goto enospc;
1937 tree_mod_log_set_root_pointer(root, child, 1);
1938 rcu_assign_pointer(root->node, child);
1940 add_root_to_dirty_list(root);
1941 btrfs_tree_unlock(child);
1943 path->locks[level] = 0;
1944 path->nodes[level] = NULL;
1945 clean_tree_block(trans, root, mid);
1946 btrfs_tree_unlock(mid);
1947 /* once for the path */
1948 free_extent_buffer(mid);
1950 root_sub_used(root, mid->len);
1951 btrfs_free_tree_block(trans, root, mid, 0, 1);
1952 /* once for the root ptr */
1953 free_extent_buffer_stale(mid);
1954 return 0;
1956 if (btrfs_header_nritems(mid) >
1957 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1958 return 0;
1960 left = read_node_slot(root, parent, pslot - 1);
1961 if (left) {
1962 btrfs_tree_lock(left);
1963 btrfs_set_lock_blocking(left);
1964 wret = btrfs_cow_block(trans, root, left,
1965 parent, pslot - 1, &left);
1966 if (wret) {
1967 ret = wret;
1968 goto enospc;
1971 right = read_node_slot(root, parent, pslot + 1);
1972 if (right) {
1973 btrfs_tree_lock(right);
1974 btrfs_set_lock_blocking(right);
1975 wret = btrfs_cow_block(trans, root, right,
1976 parent, pslot + 1, &right);
1977 if (wret) {
1978 ret = wret;
1979 goto enospc;
1983 /* first, try to make some room in the middle buffer */
1984 if (left) {
1985 orig_slot += btrfs_header_nritems(left);
1986 wret = push_node_left(trans, root, left, mid, 1);
1987 if (wret < 0)
1988 ret = wret;
1992 * then try to empty the right most buffer into the middle
1994 if (right) {
1995 wret = push_node_left(trans, root, mid, right, 1);
1996 if (wret < 0 && wret != -ENOSPC)
1997 ret = wret;
1998 if (btrfs_header_nritems(right) == 0) {
1999 clean_tree_block(trans, root, right);
2000 btrfs_tree_unlock(right);
2001 del_ptr(root, path, level + 1, pslot + 1);
2002 root_sub_used(root, right->len);
2003 btrfs_free_tree_block(trans, root, right, 0, 1);
2004 free_extent_buffer_stale(right);
2005 right = NULL;
2006 } else {
2007 struct btrfs_disk_key right_key;
2008 btrfs_node_key(right, &right_key, 0);
2009 tree_mod_log_set_node_key(root->fs_info, parent,
2010 pslot + 1, 0);
2011 btrfs_set_node_key(parent, &right_key, pslot + 1);
2012 btrfs_mark_buffer_dirty(parent);
2015 if (btrfs_header_nritems(mid) == 1) {
2017 * we're not allowed to leave a node with one item in the
2018 * tree during a delete. A deletion from lower in the tree
2019 * could try to delete the only pointer in this node.
2020 * So, pull some keys from the left.
2021 * There has to be a left pointer at this point because
2022 * otherwise we would have pulled some pointers from the
2023 * right
2025 if (!left) {
2026 ret = -EROFS;
2027 btrfs_std_error(root->fs_info, ret);
2028 goto enospc;
2030 wret = balance_node_right(trans, root, mid, left);
2031 if (wret < 0) {
2032 ret = wret;
2033 goto enospc;
2035 if (wret == 1) {
2036 wret = push_node_left(trans, root, left, mid, 1);
2037 if (wret < 0)
2038 ret = wret;
2040 BUG_ON(wret == 1);
2042 if (btrfs_header_nritems(mid) == 0) {
2043 clean_tree_block(trans, root, mid);
2044 btrfs_tree_unlock(mid);
2045 del_ptr(root, path, level + 1, pslot);
2046 root_sub_used(root, mid->len);
2047 btrfs_free_tree_block(trans, root, mid, 0, 1);
2048 free_extent_buffer_stale(mid);
2049 mid = NULL;
2050 } else {
2051 /* update the parent key to reflect our changes */
2052 struct btrfs_disk_key mid_key;
2053 btrfs_node_key(mid, &mid_key, 0);
2054 tree_mod_log_set_node_key(root->fs_info, parent,
2055 pslot, 0);
2056 btrfs_set_node_key(parent, &mid_key, pslot);
2057 btrfs_mark_buffer_dirty(parent);
2060 /* update the path */
2061 if (left) {
2062 if (btrfs_header_nritems(left) > orig_slot) {
2063 extent_buffer_get(left);
2064 /* left was locked after cow */
2065 path->nodes[level] = left;
2066 path->slots[level + 1] -= 1;
2067 path->slots[level] = orig_slot;
2068 if (mid) {
2069 btrfs_tree_unlock(mid);
2070 free_extent_buffer(mid);
2072 } else {
2073 orig_slot -= btrfs_header_nritems(left);
2074 path->slots[level] = orig_slot;
2077 /* double check we haven't messed things up */
2078 if (orig_ptr !=
2079 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2080 BUG();
2081 enospc:
2082 if (right) {
2083 btrfs_tree_unlock(right);
2084 free_extent_buffer(right);
2086 if (left) {
2087 if (path->nodes[level] != left)
2088 btrfs_tree_unlock(left);
2089 free_extent_buffer(left);
2091 return ret;
2094 /* Node balancing for insertion. Here we only split or push nodes around
2095 * when they are completely full. This is also done top down, so we
2096 * have to be pessimistic.
2098 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2099 struct btrfs_root *root,
2100 struct btrfs_path *path, int level)
2102 struct extent_buffer *right = NULL;
2103 struct extent_buffer *mid;
2104 struct extent_buffer *left = NULL;
2105 struct extent_buffer *parent = NULL;
2106 int ret = 0;
2107 int wret;
2108 int pslot;
2109 int orig_slot = path->slots[level];
2111 if (level == 0)
2112 return 1;
2114 mid = path->nodes[level];
2115 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2117 if (level < BTRFS_MAX_LEVEL - 1) {
2118 parent = path->nodes[level + 1];
2119 pslot = path->slots[level + 1];
2122 if (!parent)
2123 return 1;
2125 left = read_node_slot(root, parent, pslot - 1);
2127 /* first, try to make some room in the middle buffer */
2128 if (left) {
2129 u32 left_nr;
2131 btrfs_tree_lock(left);
2132 btrfs_set_lock_blocking(left);
2134 left_nr = btrfs_header_nritems(left);
2135 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2136 wret = 1;
2137 } else {
2138 ret = btrfs_cow_block(trans, root, left, parent,
2139 pslot - 1, &left);
2140 if (ret)
2141 wret = 1;
2142 else {
2143 wret = push_node_left(trans, root,
2144 left, mid, 0);
2147 if (wret < 0)
2148 ret = wret;
2149 if (wret == 0) {
2150 struct btrfs_disk_key disk_key;
2151 orig_slot += left_nr;
2152 btrfs_node_key(mid, &disk_key, 0);
2153 tree_mod_log_set_node_key(root->fs_info, parent,
2154 pslot, 0);
2155 btrfs_set_node_key(parent, &disk_key, pslot);
2156 btrfs_mark_buffer_dirty(parent);
2157 if (btrfs_header_nritems(left) > orig_slot) {
2158 path->nodes[level] = left;
2159 path->slots[level + 1] -= 1;
2160 path->slots[level] = orig_slot;
2161 btrfs_tree_unlock(mid);
2162 free_extent_buffer(mid);
2163 } else {
2164 orig_slot -=
2165 btrfs_header_nritems(left);
2166 path->slots[level] = orig_slot;
2167 btrfs_tree_unlock(left);
2168 free_extent_buffer(left);
2170 return 0;
2172 btrfs_tree_unlock(left);
2173 free_extent_buffer(left);
2175 right = read_node_slot(root, parent, pslot + 1);
2178 * then try to empty the right most buffer into the middle
2180 if (right) {
2181 u32 right_nr;
2183 btrfs_tree_lock(right);
2184 btrfs_set_lock_blocking(right);
2186 right_nr = btrfs_header_nritems(right);
2187 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2188 wret = 1;
2189 } else {
2190 ret = btrfs_cow_block(trans, root, right,
2191 parent, pslot + 1,
2192 &right);
2193 if (ret)
2194 wret = 1;
2195 else {
2196 wret = balance_node_right(trans, root,
2197 right, mid);
2200 if (wret < 0)
2201 ret = wret;
2202 if (wret == 0) {
2203 struct btrfs_disk_key disk_key;
2205 btrfs_node_key(right, &disk_key, 0);
2206 tree_mod_log_set_node_key(root->fs_info, parent,
2207 pslot + 1, 0);
2208 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2209 btrfs_mark_buffer_dirty(parent);
2211 if (btrfs_header_nritems(mid) <= orig_slot) {
2212 path->nodes[level] = right;
2213 path->slots[level + 1] += 1;
2214 path->slots[level] = orig_slot -
2215 btrfs_header_nritems(mid);
2216 btrfs_tree_unlock(mid);
2217 free_extent_buffer(mid);
2218 } else {
2219 btrfs_tree_unlock(right);
2220 free_extent_buffer(right);
2222 return 0;
2224 btrfs_tree_unlock(right);
2225 free_extent_buffer(right);
2227 return 1;
2231 * readahead one full node of leaves, finding things that are close
2232 * to the block in 'slot', and triggering ra on them.
2234 static void reada_for_search(struct btrfs_root *root,
2235 struct btrfs_path *path,
2236 int level, int slot, u64 objectid)
2238 struct extent_buffer *node;
2239 struct btrfs_disk_key disk_key;
2240 u32 nritems;
2241 u64 search;
2242 u64 target;
2243 u64 nread = 0;
2244 u64 gen;
2245 int direction = path->reada;
2246 struct extent_buffer *eb;
2247 u32 nr;
2248 u32 blocksize;
2249 u32 nscan = 0;
2251 if (level != 1)
2252 return;
2254 if (!path->nodes[level])
2255 return;
2257 node = path->nodes[level];
2259 search = btrfs_node_blockptr(node, slot);
2260 blocksize = root->nodesize;
2261 eb = btrfs_find_tree_block(root, search);
2262 if (eb) {
2263 free_extent_buffer(eb);
2264 return;
2267 target = search;
2269 nritems = btrfs_header_nritems(node);
2270 nr = slot;
2272 while (1) {
2273 if (direction < 0) {
2274 if (nr == 0)
2275 break;
2276 nr--;
2277 } else if (direction > 0) {
2278 nr++;
2279 if (nr >= nritems)
2280 break;
2282 if (path->reada < 0 && objectid) {
2283 btrfs_node_key(node, &disk_key, nr);
2284 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2285 break;
2287 search = btrfs_node_blockptr(node, nr);
2288 if ((search <= target && target - search <= 65536) ||
2289 (search > target && search - target <= 65536)) {
2290 gen = btrfs_node_ptr_generation(node, nr);
2291 readahead_tree_block(root, search);
2292 nread += blocksize;
2294 nscan++;
2295 if ((nread > 65536 || nscan > 32))
2296 break;
2300 static noinline void reada_for_balance(struct btrfs_root *root,
2301 struct btrfs_path *path, int level)
2303 int slot;
2304 int nritems;
2305 struct extent_buffer *parent;
2306 struct extent_buffer *eb;
2307 u64 gen;
2308 u64 block1 = 0;
2309 u64 block2 = 0;
2311 parent = path->nodes[level + 1];
2312 if (!parent)
2313 return;
2315 nritems = btrfs_header_nritems(parent);
2316 slot = path->slots[level + 1];
2318 if (slot > 0) {
2319 block1 = btrfs_node_blockptr(parent, slot - 1);
2320 gen = btrfs_node_ptr_generation(parent, slot - 1);
2321 eb = btrfs_find_tree_block(root, block1);
2323 * if we get -eagain from btrfs_buffer_uptodate, we
2324 * don't want to return eagain here. That will loop
2325 * forever
2327 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2328 block1 = 0;
2329 free_extent_buffer(eb);
2331 if (slot + 1 < nritems) {
2332 block2 = btrfs_node_blockptr(parent, slot + 1);
2333 gen = btrfs_node_ptr_generation(parent, slot + 1);
2334 eb = btrfs_find_tree_block(root, block2);
2335 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2336 block2 = 0;
2337 free_extent_buffer(eb);
2340 if (block1)
2341 readahead_tree_block(root, block1);
2342 if (block2)
2343 readahead_tree_block(root, block2);
2348 * when we walk down the tree, it is usually safe to unlock the higher layers
2349 * in the tree. The exceptions are when our path goes through slot 0, because
2350 * operations on the tree might require changing key pointers higher up in the
2351 * tree.
2353 * callers might also have set path->keep_locks, which tells this code to keep
2354 * the lock if the path points to the last slot in the block. This is part of
2355 * walking through the tree, and selecting the next slot in the higher block.
2357 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2358 * if lowest_unlock is 1, level 0 won't be unlocked
2360 static noinline void unlock_up(struct btrfs_path *path, int level,
2361 int lowest_unlock, int min_write_lock_level,
2362 int *write_lock_level)
2364 int i;
2365 int skip_level = level;
2366 int no_skips = 0;
2367 struct extent_buffer *t;
2369 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2370 if (!path->nodes[i])
2371 break;
2372 if (!path->locks[i])
2373 break;
2374 if (!no_skips && path->slots[i] == 0) {
2375 skip_level = i + 1;
2376 continue;
2378 if (!no_skips && path->keep_locks) {
2379 u32 nritems;
2380 t = path->nodes[i];
2381 nritems = btrfs_header_nritems(t);
2382 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2383 skip_level = i + 1;
2384 continue;
2387 if (skip_level < i && i >= lowest_unlock)
2388 no_skips = 1;
2390 t = path->nodes[i];
2391 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2392 btrfs_tree_unlock_rw(t, path->locks[i]);
2393 path->locks[i] = 0;
2394 if (write_lock_level &&
2395 i > min_write_lock_level &&
2396 i <= *write_lock_level) {
2397 *write_lock_level = i - 1;
2404 * This releases any locks held in the path starting at level and
2405 * going all the way up to the root.
2407 * btrfs_search_slot will keep the lock held on higher nodes in a few
2408 * corner cases, such as COW of the block at slot zero in the node. This
2409 * ignores those rules, and it should only be called when there are no
2410 * more updates to be done higher up in the tree.
2412 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2414 int i;
2416 if (path->keep_locks)
2417 return;
2419 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2420 if (!path->nodes[i])
2421 continue;
2422 if (!path->locks[i])
2423 continue;
2424 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2425 path->locks[i] = 0;
2430 * helper function for btrfs_search_slot. The goal is to find a block
2431 * in cache without setting the path to blocking. If we find the block
2432 * we return zero and the path is unchanged.
2434 * If we can't find the block, we set the path blocking and do some
2435 * reada. -EAGAIN is returned and the search must be repeated.
2437 static int
2438 read_block_for_search(struct btrfs_trans_handle *trans,
2439 struct btrfs_root *root, struct btrfs_path *p,
2440 struct extent_buffer **eb_ret, int level, int slot,
2441 struct btrfs_key *key, u64 time_seq)
2443 u64 blocknr;
2444 u64 gen;
2445 struct extent_buffer *b = *eb_ret;
2446 struct extent_buffer *tmp;
2447 int ret;
2449 blocknr = btrfs_node_blockptr(b, slot);
2450 gen = btrfs_node_ptr_generation(b, slot);
2452 tmp = btrfs_find_tree_block(root, blocknr);
2453 if (tmp) {
2454 /* first we do an atomic uptodate check */
2455 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2456 *eb_ret = tmp;
2457 return 0;
2460 /* the pages were up to date, but we failed
2461 * the generation number check. Do a full
2462 * read for the generation number that is correct.
2463 * We must do this without dropping locks so
2464 * we can trust our generation number
2466 btrfs_set_path_blocking(p);
2468 /* now we're allowed to do a blocking uptodate check */
2469 ret = btrfs_read_buffer(tmp, gen);
2470 if (!ret) {
2471 *eb_ret = tmp;
2472 return 0;
2474 free_extent_buffer(tmp);
2475 btrfs_release_path(p);
2476 return -EIO;
2480 * reduce lock contention at high levels
2481 * of the btree by dropping locks before
2482 * we read. Don't release the lock on the current
2483 * level because we need to walk this node to figure
2484 * out which blocks to read.
2486 btrfs_unlock_up_safe(p, level + 1);
2487 btrfs_set_path_blocking(p);
2489 free_extent_buffer(tmp);
2490 if (p->reada)
2491 reada_for_search(root, p, level, slot, key->objectid);
2493 btrfs_release_path(p);
2495 ret = -EAGAIN;
2496 tmp = read_tree_block(root, blocknr, 0);
2497 if (tmp) {
2499 * If the read above didn't mark this buffer up to date,
2500 * it will never end up being up to date. Set ret to EIO now
2501 * and give up so that our caller doesn't loop forever
2502 * on our EAGAINs.
2504 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2505 ret = -EIO;
2506 free_extent_buffer(tmp);
2508 return ret;
2512 * helper function for btrfs_search_slot. This does all of the checks
2513 * for node-level blocks and does any balancing required based on
2514 * the ins_len.
2516 * If no extra work was required, zero is returned. If we had to
2517 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2518 * start over
2520 static int
2521 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2522 struct btrfs_root *root, struct btrfs_path *p,
2523 struct extent_buffer *b, int level, int ins_len,
2524 int *write_lock_level)
2526 int ret;
2527 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2528 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2529 int sret;
2531 if (*write_lock_level < level + 1) {
2532 *write_lock_level = level + 1;
2533 btrfs_release_path(p);
2534 goto again;
2537 btrfs_set_path_blocking(p);
2538 reada_for_balance(root, p, level);
2539 sret = split_node(trans, root, p, level);
2540 btrfs_clear_path_blocking(p, NULL, 0);
2542 BUG_ON(sret > 0);
2543 if (sret) {
2544 ret = sret;
2545 goto done;
2547 b = p->nodes[level];
2548 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2549 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2550 int sret;
2552 if (*write_lock_level < level + 1) {
2553 *write_lock_level = level + 1;
2554 btrfs_release_path(p);
2555 goto again;
2558 btrfs_set_path_blocking(p);
2559 reada_for_balance(root, p, level);
2560 sret = balance_level(trans, root, p, level);
2561 btrfs_clear_path_blocking(p, NULL, 0);
2563 if (sret) {
2564 ret = sret;
2565 goto done;
2567 b = p->nodes[level];
2568 if (!b) {
2569 btrfs_release_path(p);
2570 goto again;
2572 BUG_ON(btrfs_header_nritems(b) == 1);
2574 return 0;
2576 again:
2577 ret = -EAGAIN;
2578 done:
2579 return ret;
2582 static void key_search_validate(struct extent_buffer *b,
2583 struct btrfs_key *key,
2584 int level)
2586 #ifdef CONFIG_BTRFS_ASSERT
2587 struct btrfs_disk_key disk_key;
2589 btrfs_cpu_key_to_disk(&disk_key, key);
2591 if (level == 0)
2592 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2593 offsetof(struct btrfs_leaf, items[0].key),
2594 sizeof(disk_key)));
2595 else
2596 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2597 offsetof(struct btrfs_node, ptrs[0].key),
2598 sizeof(disk_key)));
2599 #endif
2602 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2603 int level, int *prev_cmp, int *slot)
2605 if (*prev_cmp != 0) {
2606 *prev_cmp = bin_search(b, key, level, slot);
2607 return *prev_cmp;
2610 key_search_validate(b, key, level);
2611 *slot = 0;
2613 return 0;
2616 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2617 u64 iobjectid, u64 ioff, u8 key_type,
2618 struct btrfs_key *found_key)
2620 int ret;
2621 struct btrfs_key key;
2622 struct extent_buffer *eb;
2624 ASSERT(path);
2625 ASSERT(found_key);
2627 key.type = key_type;
2628 key.objectid = iobjectid;
2629 key.offset = ioff;
2631 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2632 if (ret < 0)
2633 return ret;
2635 eb = path->nodes[0];
2636 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2637 ret = btrfs_next_leaf(fs_root, path);
2638 if (ret)
2639 return ret;
2640 eb = path->nodes[0];
2643 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2644 if (found_key->type != key.type ||
2645 found_key->objectid != key.objectid)
2646 return 1;
2648 return 0;
2652 * look for key in the tree. path is filled in with nodes along the way
2653 * if key is found, we return zero and you can find the item in the leaf
2654 * level of the path (level 0)
2656 * If the key isn't found, the path points to the slot where it should
2657 * be inserted, and 1 is returned. If there are other errors during the
2658 * search a negative error number is returned.
2660 * if ins_len > 0, nodes and leaves will be split as we walk down the
2661 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2662 * possible)
2664 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2665 *root, struct btrfs_key *key, struct btrfs_path *p, int
2666 ins_len, int cow)
2668 struct extent_buffer *b;
2669 int slot;
2670 int ret;
2671 int err;
2672 int level;
2673 int lowest_unlock = 1;
2674 int root_lock;
2675 /* everything at write_lock_level or lower must be write locked */
2676 int write_lock_level = 0;
2677 u8 lowest_level = 0;
2678 int min_write_lock_level;
2679 int prev_cmp;
2681 lowest_level = p->lowest_level;
2682 WARN_ON(lowest_level && ins_len > 0);
2683 WARN_ON(p->nodes[0] != NULL);
2684 BUG_ON(!cow && ins_len);
2686 if (ins_len < 0) {
2687 lowest_unlock = 2;
2689 /* when we are removing items, we might have to go up to level
2690 * two as we update tree pointers Make sure we keep write
2691 * for those levels as well
2693 write_lock_level = 2;
2694 } else if (ins_len > 0) {
2696 * for inserting items, make sure we have a write lock on
2697 * level 1 so we can update keys
2699 write_lock_level = 1;
2702 if (!cow)
2703 write_lock_level = -1;
2705 if (cow && (p->keep_locks || p->lowest_level))
2706 write_lock_level = BTRFS_MAX_LEVEL;
2708 min_write_lock_level = write_lock_level;
2710 again:
2711 prev_cmp = -1;
2713 * we try very hard to do read locks on the root
2715 root_lock = BTRFS_READ_LOCK;
2716 level = 0;
2717 if (p->search_commit_root) {
2719 * the commit roots are read only
2720 * so we always do read locks
2722 if (p->need_commit_sem)
2723 down_read(&root->fs_info->commit_root_sem);
2724 b = root->commit_root;
2725 extent_buffer_get(b);
2726 level = btrfs_header_level(b);
2727 if (p->need_commit_sem)
2728 up_read(&root->fs_info->commit_root_sem);
2729 if (!p->skip_locking)
2730 btrfs_tree_read_lock(b);
2731 } else {
2732 if (p->skip_locking) {
2733 b = btrfs_root_node(root);
2734 level = btrfs_header_level(b);
2735 } else {
2736 /* we don't know the level of the root node
2737 * until we actually have it read locked
2739 b = btrfs_read_lock_root_node(root);
2740 level = btrfs_header_level(b);
2741 if (level <= write_lock_level) {
2742 /* whoops, must trade for write lock */
2743 btrfs_tree_read_unlock(b);
2744 free_extent_buffer(b);
2745 b = btrfs_lock_root_node(root);
2746 root_lock = BTRFS_WRITE_LOCK;
2748 /* the level might have changed, check again */
2749 level = btrfs_header_level(b);
2753 p->nodes[level] = b;
2754 if (!p->skip_locking)
2755 p->locks[level] = root_lock;
2757 while (b) {
2758 level = btrfs_header_level(b);
2761 * setup the path here so we can release it under lock
2762 * contention with the cow code
2764 if (cow) {
2766 * if we don't really need to cow this block
2767 * then we don't want to set the path blocking,
2768 * so we test it here
2770 if (!should_cow_block(trans, root, b))
2771 goto cow_done;
2774 * must have write locks on this node and the
2775 * parent
2777 if (level > write_lock_level ||
2778 (level + 1 > write_lock_level &&
2779 level + 1 < BTRFS_MAX_LEVEL &&
2780 p->nodes[level + 1])) {
2781 write_lock_level = level + 1;
2782 btrfs_release_path(p);
2783 goto again;
2786 btrfs_set_path_blocking(p);
2787 err = btrfs_cow_block(trans, root, b,
2788 p->nodes[level + 1],
2789 p->slots[level + 1], &b);
2790 if (err) {
2791 ret = err;
2792 goto done;
2795 cow_done:
2796 p->nodes[level] = b;
2797 btrfs_clear_path_blocking(p, NULL, 0);
2800 * we have a lock on b and as long as we aren't changing
2801 * the tree, there is no way to for the items in b to change.
2802 * It is safe to drop the lock on our parent before we
2803 * go through the expensive btree search on b.
2805 * If we're inserting or deleting (ins_len != 0), then we might
2806 * be changing slot zero, which may require changing the parent.
2807 * So, we can't drop the lock until after we know which slot
2808 * we're operating on.
2810 if (!ins_len && !p->keep_locks) {
2811 int u = level + 1;
2813 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2814 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2815 p->locks[u] = 0;
2819 ret = key_search(b, key, level, &prev_cmp, &slot);
2821 if (level != 0) {
2822 int dec = 0;
2823 if (ret && slot > 0) {
2824 dec = 1;
2825 slot -= 1;
2827 p->slots[level] = slot;
2828 err = setup_nodes_for_search(trans, root, p, b, level,
2829 ins_len, &write_lock_level);
2830 if (err == -EAGAIN)
2831 goto again;
2832 if (err) {
2833 ret = err;
2834 goto done;
2836 b = p->nodes[level];
2837 slot = p->slots[level];
2840 * slot 0 is special, if we change the key
2841 * we have to update the parent pointer
2842 * which means we must have a write lock
2843 * on the parent
2845 if (slot == 0 && ins_len &&
2846 write_lock_level < level + 1) {
2847 write_lock_level = level + 1;
2848 btrfs_release_path(p);
2849 goto again;
2852 unlock_up(p, level, lowest_unlock,
2853 min_write_lock_level, &write_lock_level);
2855 if (level == lowest_level) {
2856 if (dec)
2857 p->slots[level]++;
2858 goto done;
2861 err = read_block_for_search(trans, root, p,
2862 &b, level, slot, key, 0);
2863 if (err == -EAGAIN)
2864 goto again;
2865 if (err) {
2866 ret = err;
2867 goto done;
2870 if (!p->skip_locking) {
2871 level = btrfs_header_level(b);
2872 if (level <= write_lock_level) {
2873 err = btrfs_try_tree_write_lock(b);
2874 if (!err) {
2875 btrfs_set_path_blocking(p);
2876 btrfs_tree_lock(b);
2877 btrfs_clear_path_blocking(p, b,
2878 BTRFS_WRITE_LOCK);
2880 p->locks[level] = BTRFS_WRITE_LOCK;
2881 } else {
2882 err = btrfs_tree_read_lock_atomic(b);
2883 if (!err) {
2884 btrfs_set_path_blocking(p);
2885 btrfs_tree_read_lock(b);
2886 btrfs_clear_path_blocking(p, b,
2887 BTRFS_READ_LOCK);
2889 p->locks[level] = BTRFS_READ_LOCK;
2891 p->nodes[level] = b;
2893 } else {
2894 p->slots[level] = slot;
2895 if (ins_len > 0 &&
2896 btrfs_leaf_free_space(root, b) < ins_len) {
2897 if (write_lock_level < 1) {
2898 write_lock_level = 1;
2899 btrfs_release_path(p);
2900 goto again;
2903 btrfs_set_path_blocking(p);
2904 err = split_leaf(trans, root, key,
2905 p, ins_len, ret == 0);
2906 btrfs_clear_path_blocking(p, NULL, 0);
2908 BUG_ON(err > 0);
2909 if (err) {
2910 ret = err;
2911 goto done;
2914 if (!p->search_for_split)
2915 unlock_up(p, level, lowest_unlock,
2916 min_write_lock_level, &write_lock_level);
2917 goto done;
2920 ret = 1;
2921 done:
2923 * we don't really know what they plan on doing with the path
2924 * from here on, so for now just mark it as blocking
2926 if (!p->leave_spinning)
2927 btrfs_set_path_blocking(p);
2928 if (ret < 0 && !p->skip_release_on_error)
2929 btrfs_release_path(p);
2930 return ret;
2934 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2935 * current state of the tree together with the operations recorded in the tree
2936 * modification log to search for the key in a previous version of this tree, as
2937 * denoted by the time_seq parameter.
2939 * Naturally, there is no support for insert, delete or cow operations.
2941 * The resulting path and return value will be set up as if we called
2942 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2944 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2945 struct btrfs_path *p, u64 time_seq)
2947 struct extent_buffer *b;
2948 int slot;
2949 int ret;
2950 int err;
2951 int level;
2952 int lowest_unlock = 1;
2953 u8 lowest_level = 0;
2954 int prev_cmp = -1;
2956 lowest_level = p->lowest_level;
2957 WARN_ON(p->nodes[0] != NULL);
2959 if (p->search_commit_root) {
2960 BUG_ON(time_seq);
2961 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2964 again:
2965 b = get_old_root(root, time_seq);
2966 level = btrfs_header_level(b);
2967 p->locks[level] = BTRFS_READ_LOCK;
2969 while (b) {
2970 level = btrfs_header_level(b);
2971 p->nodes[level] = b;
2972 btrfs_clear_path_blocking(p, NULL, 0);
2975 * we have a lock on b and as long as we aren't changing
2976 * the tree, there is no way to for the items in b to change.
2977 * It is safe to drop the lock on our parent before we
2978 * go through the expensive btree search on b.
2980 btrfs_unlock_up_safe(p, level + 1);
2983 * Since we can unwind eb's we want to do a real search every
2984 * time.
2986 prev_cmp = -1;
2987 ret = key_search(b, key, level, &prev_cmp, &slot);
2989 if (level != 0) {
2990 int dec = 0;
2991 if (ret && slot > 0) {
2992 dec = 1;
2993 slot -= 1;
2995 p->slots[level] = slot;
2996 unlock_up(p, level, lowest_unlock, 0, NULL);
2998 if (level == lowest_level) {
2999 if (dec)
3000 p->slots[level]++;
3001 goto done;
3004 err = read_block_for_search(NULL, root, p, &b, level,
3005 slot, key, time_seq);
3006 if (err == -EAGAIN)
3007 goto again;
3008 if (err) {
3009 ret = err;
3010 goto done;
3013 level = btrfs_header_level(b);
3014 err = btrfs_tree_read_lock_atomic(b);
3015 if (!err) {
3016 btrfs_set_path_blocking(p);
3017 btrfs_tree_read_lock(b);
3018 btrfs_clear_path_blocking(p, b,
3019 BTRFS_READ_LOCK);
3021 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3022 if (!b) {
3023 ret = -ENOMEM;
3024 goto done;
3026 p->locks[level] = BTRFS_READ_LOCK;
3027 p->nodes[level] = b;
3028 } else {
3029 p->slots[level] = slot;
3030 unlock_up(p, level, lowest_unlock, 0, NULL);
3031 goto done;
3034 ret = 1;
3035 done:
3036 if (!p->leave_spinning)
3037 btrfs_set_path_blocking(p);
3038 if (ret < 0)
3039 btrfs_release_path(p);
3041 return ret;
3045 * helper to use instead of search slot if no exact match is needed but
3046 * instead the next or previous item should be returned.
3047 * When find_higher is true, the next higher item is returned, the next lower
3048 * otherwise.
3049 * When return_any and find_higher are both true, and no higher item is found,
3050 * return the next lower instead.
3051 * When return_any is true and find_higher is false, and no lower item is found,
3052 * return the next higher instead.
3053 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3054 * < 0 on error
3056 int btrfs_search_slot_for_read(struct btrfs_root *root,
3057 struct btrfs_key *key, struct btrfs_path *p,
3058 int find_higher, int return_any)
3060 int ret;
3061 struct extent_buffer *leaf;
3063 again:
3064 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3065 if (ret <= 0)
3066 return ret;
3068 * a return value of 1 means the path is at the position where the
3069 * item should be inserted. Normally this is the next bigger item,
3070 * but in case the previous item is the last in a leaf, path points
3071 * to the first free slot in the previous leaf, i.e. at an invalid
3072 * item.
3074 leaf = p->nodes[0];
3076 if (find_higher) {
3077 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3078 ret = btrfs_next_leaf(root, p);
3079 if (ret <= 0)
3080 return ret;
3081 if (!return_any)
3082 return 1;
3084 * no higher item found, return the next
3085 * lower instead
3087 return_any = 0;
3088 find_higher = 0;
3089 btrfs_release_path(p);
3090 goto again;
3092 } else {
3093 if (p->slots[0] == 0) {
3094 ret = btrfs_prev_leaf(root, p);
3095 if (ret < 0)
3096 return ret;
3097 if (!ret) {
3098 leaf = p->nodes[0];
3099 if (p->slots[0] == btrfs_header_nritems(leaf))
3100 p->slots[0]--;
3101 return 0;
3103 if (!return_any)
3104 return 1;
3106 * no lower item found, return the next
3107 * higher instead
3109 return_any = 0;
3110 find_higher = 1;
3111 btrfs_release_path(p);
3112 goto again;
3113 } else {
3114 --p->slots[0];
3117 return 0;
3121 * adjust the pointers going up the tree, starting at level
3122 * making sure the right key of each node is points to 'key'.
3123 * This is used after shifting pointers to the left, so it stops
3124 * fixing up pointers when a given leaf/node is not in slot 0 of the
3125 * higher levels
3128 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3129 struct btrfs_disk_key *key, int level)
3131 int i;
3132 struct extent_buffer *t;
3134 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3135 int tslot = path->slots[i];
3136 if (!path->nodes[i])
3137 break;
3138 t = path->nodes[i];
3139 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3140 btrfs_set_node_key(t, key, tslot);
3141 btrfs_mark_buffer_dirty(path->nodes[i]);
3142 if (tslot != 0)
3143 break;
3148 * update item key.
3150 * This function isn't completely safe. It's the caller's responsibility
3151 * that the new key won't break the order
3153 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3154 struct btrfs_key *new_key)
3156 struct btrfs_disk_key disk_key;
3157 struct extent_buffer *eb;
3158 int slot;
3160 eb = path->nodes[0];
3161 slot = path->slots[0];
3162 if (slot > 0) {
3163 btrfs_item_key(eb, &disk_key, slot - 1);
3164 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3166 if (slot < btrfs_header_nritems(eb) - 1) {
3167 btrfs_item_key(eb, &disk_key, slot + 1);
3168 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3171 btrfs_cpu_key_to_disk(&disk_key, new_key);
3172 btrfs_set_item_key(eb, &disk_key, slot);
3173 btrfs_mark_buffer_dirty(eb);
3174 if (slot == 0)
3175 fixup_low_keys(root, path, &disk_key, 1);
3179 * try to push data from one node into the next node left in the
3180 * tree.
3182 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3183 * error, and > 0 if there was no room in the left hand block.
3185 static int push_node_left(struct btrfs_trans_handle *trans,
3186 struct btrfs_root *root, struct extent_buffer *dst,
3187 struct extent_buffer *src, int empty)
3189 int push_items = 0;
3190 int src_nritems;
3191 int dst_nritems;
3192 int ret = 0;
3194 src_nritems = btrfs_header_nritems(src);
3195 dst_nritems = btrfs_header_nritems(dst);
3196 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3197 WARN_ON(btrfs_header_generation(src) != trans->transid);
3198 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3200 if (!empty && src_nritems <= 8)
3201 return 1;
3203 if (push_items <= 0)
3204 return 1;
3206 if (empty) {
3207 push_items = min(src_nritems, push_items);
3208 if (push_items < src_nritems) {
3209 /* leave at least 8 pointers in the node if
3210 * we aren't going to empty it
3212 if (src_nritems - push_items < 8) {
3213 if (push_items <= 8)
3214 return 1;
3215 push_items -= 8;
3218 } else
3219 push_items = min(src_nritems - 8, push_items);
3221 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3222 push_items);
3223 if (ret) {
3224 btrfs_abort_transaction(trans, root, ret);
3225 return ret;
3227 copy_extent_buffer(dst, src,
3228 btrfs_node_key_ptr_offset(dst_nritems),
3229 btrfs_node_key_ptr_offset(0),
3230 push_items * sizeof(struct btrfs_key_ptr));
3232 if (push_items < src_nritems) {
3234 * don't call tree_mod_log_eb_move here, key removal was already
3235 * fully logged by tree_mod_log_eb_copy above.
3237 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3238 btrfs_node_key_ptr_offset(push_items),
3239 (src_nritems - push_items) *
3240 sizeof(struct btrfs_key_ptr));
3242 btrfs_set_header_nritems(src, src_nritems - push_items);
3243 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3244 btrfs_mark_buffer_dirty(src);
3245 btrfs_mark_buffer_dirty(dst);
3247 return ret;
3251 * try to push data from one node into the next node right in the
3252 * tree.
3254 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3255 * error, and > 0 if there was no room in the right hand block.
3257 * this will only push up to 1/2 the contents of the left node over
3259 static int balance_node_right(struct btrfs_trans_handle *trans,
3260 struct btrfs_root *root,
3261 struct extent_buffer *dst,
3262 struct extent_buffer *src)
3264 int push_items = 0;
3265 int max_push;
3266 int src_nritems;
3267 int dst_nritems;
3268 int ret = 0;
3270 WARN_ON(btrfs_header_generation(src) != trans->transid);
3271 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3273 src_nritems = btrfs_header_nritems(src);
3274 dst_nritems = btrfs_header_nritems(dst);
3275 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3276 if (push_items <= 0)
3277 return 1;
3279 if (src_nritems < 4)
3280 return 1;
3282 max_push = src_nritems / 2 + 1;
3283 /* don't try to empty the node */
3284 if (max_push >= src_nritems)
3285 return 1;
3287 if (max_push < push_items)
3288 push_items = max_push;
3290 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3291 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3292 btrfs_node_key_ptr_offset(0),
3293 (dst_nritems) *
3294 sizeof(struct btrfs_key_ptr));
3296 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3297 src_nritems - push_items, push_items);
3298 if (ret) {
3299 btrfs_abort_transaction(trans, root, ret);
3300 return ret;
3302 copy_extent_buffer(dst, src,
3303 btrfs_node_key_ptr_offset(0),
3304 btrfs_node_key_ptr_offset(src_nritems - push_items),
3305 push_items * sizeof(struct btrfs_key_ptr));
3307 btrfs_set_header_nritems(src, src_nritems - push_items);
3308 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3310 btrfs_mark_buffer_dirty(src);
3311 btrfs_mark_buffer_dirty(dst);
3313 return ret;
3317 * helper function to insert a new root level in the tree.
3318 * A new node is allocated, and a single item is inserted to
3319 * point to the existing root
3321 * returns zero on success or < 0 on failure.
3323 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3324 struct btrfs_root *root,
3325 struct btrfs_path *path, int level)
3327 u64 lower_gen;
3328 struct extent_buffer *lower;
3329 struct extent_buffer *c;
3330 struct extent_buffer *old;
3331 struct btrfs_disk_key lower_key;
3333 BUG_ON(path->nodes[level]);
3334 BUG_ON(path->nodes[level-1] != root->node);
3336 lower = path->nodes[level-1];
3337 if (level == 1)
3338 btrfs_item_key(lower, &lower_key, 0);
3339 else
3340 btrfs_node_key(lower, &lower_key, 0);
3342 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3343 &lower_key, level, root->node->start, 0);
3344 if (IS_ERR(c))
3345 return PTR_ERR(c);
3347 root_add_used(root, root->nodesize);
3349 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3350 btrfs_set_header_nritems(c, 1);
3351 btrfs_set_header_level(c, level);
3352 btrfs_set_header_bytenr(c, c->start);
3353 btrfs_set_header_generation(c, trans->transid);
3354 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3355 btrfs_set_header_owner(c, root->root_key.objectid);
3357 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3358 BTRFS_FSID_SIZE);
3360 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3361 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3363 btrfs_set_node_key(c, &lower_key, 0);
3364 btrfs_set_node_blockptr(c, 0, lower->start);
3365 lower_gen = btrfs_header_generation(lower);
3366 WARN_ON(lower_gen != trans->transid);
3368 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3370 btrfs_mark_buffer_dirty(c);
3372 old = root->node;
3373 tree_mod_log_set_root_pointer(root, c, 0);
3374 rcu_assign_pointer(root->node, c);
3376 /* the super has an extra ref to root->node */
3377 free_extent_buffer(old);
3379 add_root_to_dirty_list(root);
3380 extent_buffer_get(c);
3381 path->nodes[level] = c;
3382 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3383 path->slots[level] = 0;
3384 return 0;
3388 * worker function to insert a single pointer in a node.
3389 * the node should have enough room for the pointer already
3391 * slot and level indicate where you want the key to go, and
3392 * blocknr is the block the key points to.
3394 static void insert_ptr(struct btrfs_trans_handle *trans,
3395 struct btrfs_root *root, struct btrfs_path *path,
3396 struct btrfs_disk_key *key, u64 bytenr,
3397 int slot, int level)
3399 struct extent_buffer *lower;
3400 int nritems;
3401 int ret;
3403 BUG_ON(!path->nodes[level]);
3404 btrfs_assert_tree_locked(path->nodes[level]);
3405 lower = path->nodes[level];
3406 nritems = btrfs_header_nritems(lower);
3407 BUG_ON(slot > nritems);
3408 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3409 if (slot != nritems) {
3410 if (level)
3411 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3412 slot, nritems - slot);
3413 memmove_extent_buffer(lower,
3414 btrfs_node_key_ptr_offset(slot + 1),
3415 btrfs_node_key_ptr_offset(slot),
3416 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3418 if (level) {
3419 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3420 MOD_LOG_KEY_ADD, GFP_NOFS);
3421 BUG_ON(ret < 0);
3423 btrfs_set_node_key(lower, key, slot);
3424 btrfs_set_node_blockptr(lower, slot, bytenr);
3425 WARN_ON(trans->transid == 0);
3426 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3427 btrfs_set_header_nritems(lower, nritems + 1);
3428 btrfs_mark_buffer_dirty(lower);
3432 * split the node at the specified level in path in two.
3433 * The path is corrected to point to the appropriate node after the split
3435 * Before splitting this tries to make some room in the node by pushing
3436 * left and right, if either one works, it returns right away.
3438 * returns 0 on success and < 0 on failure
3440 static noinline int split_node(struct btrfs_trans_handle *trans,
3441 struct btrfs_root *root,
3442 struct btrfs_path *path, int level)
3444 struct extent_buffer *c;
3445 struct extent_buffer *split;
3446 struct btrfs_disk_key disk_key;
3447 int mid;
3448 int ret;
3449 u32 c_nritems;
3451 c = path->nodes[level];
3452 WARN_ON(btrfs_header_generation(c) != trans->transid);
3453 if (c == root->node) {
3455 * trying to split the root, lets make a new one
3457 * tree mod log: We don't log_removal old root in
3458 * insert_new_root, because that root buffer will be kept as a
3459 * normal node. We are going to log removal of half of the
3460 * elements below with tree_mod_log_eb_copy. We're holding a
3461 * tree lock on the buffer, which is why we cannot race with
3462 * other tree_mod_log users.
3464 ret = insert_new_root(trans, root, path, level + 1);
3465 if (ret)
3466 return ret;
3467 } else {
3468 ret = push_nodes_for_insert(trans, root, path, level);
3469 c = path->nodes[level];
3470 if (!ret && btrfs_header_nritems(c) <
3471 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3472 return 0;
3473 if (ret < 0)
3474 return ret;
3477 c_nritems = btrfs_header_nritems(c);
3478 mid = (c_nritems + 1) / 2;
3479 btrfs_node_key(c, &disk_key, mid);
3481 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3482 &disk_key, level, c->start, 0);
3483 if (IS_ERR(split))
3484 return PTR_ERR(split);
3486 root_add_used(root, root->nodesize);
3488 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3489 btrfs_set_header_level(split, btrfs_header_level(c));
3490 btrfs_set_header_bytenr(split, split->start);
3491 btrfs_set_header_generation(split, trans->transid);
3492 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3493 btrfs_set_header_owner(split, root->root_key.objectid);
3494 write_extent_buffer(split, root->fs_info->fsid,
3495 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3496 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3497 btrfs_header_chunk_tree_uuid(split),
3498 BTRFS_UUID_SIZE);
3500 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3501 mid, c_nritems - mid);
3502 if (ret) {
3503 btrfs_abort_transaction(trans, root, ret);
3504 return ret;
3506 copy_extent_buffer(split, c,
3507 btrfs_node_key_ptr_offset(0),
3508 btrfs_node_key_ptr_offset(mid),
3509 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3510 btrfs_set_header_nritems(split, c_nritems - mid);
3511 btrfs_set_header_nritems(c, mid);
3512 ret = 0;
3514 btrfs_mark_buffer_dirty(c);
3515 btrfs_mark_buffer_dirty(split);
3517 insert_ptr(trans, root, path, &disk_key, split->start,
3518 path->slots[level + 1] + 1, level + 1);
3520 if (path->slots[level] >= mid) {
3521 path->slots[level] -= mid;
3522 btrfs_tree_unlock(c);
3523 free_extent_buffer(c);
3524 path->nodes[level] = split;
3525 path->slots[level + 1] += 1;
3526 } else {
3527 btrfs_tree_unlock(split);
3528 free_extent_buffer(split);
3530 return ret;
3534 * how many bytes are required to store the items in a leaf. start
3535 * and nr indicate which items in the leaf to check. This totals up the
3536 * space used both by the item structs and the item data
3538 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3540 struct btrfs_item *start_item;
3541 struct btrfs_item *end_item;
3542 struct btrfs_map_token token;
3543 int data_len;
3544 int nritems = btrfs_header_nritems(l);
3545 int end = min(nritems, start + nr) - 1;
3547 if (!nr)
3548 return 0;
3549 btrfs_init_map_token(&token);
3550 start_item = btrfs_item_nr(start);
3551 end_item = btrfs_item_nr(end);
3552 data_len = btrfs_token_item_offset(l, start_item, &token) +
3553 btrfs_token_item_size(l, start_item, &token);
3554 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3555 data_len += sizeof(struct btrfs_item) * nr;
3556 WARN_ON(data_len < 0);
3557 return data_len;
3561 * The space between the end of the leaf items and
3562 * the start of the leaf data. IOW, how much room
3563 * the leaf has left for both items and data
3565 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3566 struct extent_buffer *leaf)
3568 int nritems = btrfs_header_nritems(leaf);
3569 int ret;
3570 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3571 if (ret < 0) {
3572 btrfs_crit(root->fs_info,
3573 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3574 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3575 leaf_space_used(leaf, 0, nritems), nritems);
3577 return ret;
3581 * min slot controls the lowest index we're willing to push to the
3582 * right. We'll push up to and including min_slot, but no lower
3584 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3585 struct btrfs_root *root,
3586 struct btrfs_path *path,
3587 int data_size, int empty,
3588 struct extent_buffer *right,
3589 int free_space, u32 left_nritems,
3590 u32 min_slot)
3592 struct extent_buffer *left = path->nodes[0];
3593 struct extent_buffer *upper = path->nodes[1];
3594 struct btrfs_map_token token;
3595 struct btrfs_disk_key disk_key;
3596 int slot;
3597 u32 i;
3598 int push_space = 0;
3599 int push_items = 0;
3600 struct btrfs_item *item;
3601 u32 nr;
3602 u32 right_nritems;
3603 u32 data_end;
3604 u32 this_item_size;
3606 btrfs_init_map_token(&token);
3608 if (empty)
3609 nr = 0;
3610 else
3611 nr = max_t(u32, 1, min_slot);
3613 if (path->slots[0] >= left_nritems)
3614 push_space += data_size;
3616 slot = path->slots[1];
3617 i = left_nritems - 1;
3618 while (i >= nr) {
3619 item = btrfs_item_nr(i);
3621 if (!empty && push_items > 0) {
3622 if (path->slots[0] > i)
3623 break;
3624 if (path->slots[0] == i) {
3625 int space = btrfs_leaf_free_space(root, left);
3626 if (space + push_space * 2 > free_space)
3627 break;
3631 if (path->slots[0] == i)
3632 push_space += data_size;
3634 this_item_size = btrfs_item_size(left, item);
3635 if (this_item_size + sizeof(*item) + push_space > free_space)
3636 break;
3638 push_items++;
3639 push_space += this_item_size + sizeof(*item);
3640 if (i == 0)
3641 break;
3642 i--;
3645 if (push_items == 0)
3646 goto out_unlock;
3648 WARN_ON(!empty && push_items == left_nritems);
3650 /* push left to right */
3651 right_nritems = btrfs_header_nritems(right);
3653 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3654 push_space -= leaf_data_end(root, left);
3656 /* make room in the right data area */
3657 data_end = leaf_data_end(root, right);
3658 memmove_extent_buffer(right,
3659 btrfs_leaf_data(right) + data_end - push_space,
3660 btrfs_leaf_data(right) + data_end,
3661 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3663 /* copy from the left data area */
3664 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3665 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3666 btrfs_leaf_data(left) + leaf_data_end(root, left),
3667 push_space);
3669 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3670 btrfs_item_nr_offset(0),
3671 right_nritems * sizeof(struct btrfs_item));
3673 /* copy the items from left to right */
3674 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3675 btrfs_item_nr_offset(left_nritems - push_items),
3676 push_items * sizeof(struct btrfs_item));
3678 /* update the item pointers */
3679 right_nritems += push_items;
3680 btrfs_set_header_nritems(right, right_nritems);
3681 push_space = BTRFS_LEAF_DATA_SIZE(root);
3682 for (i = 0; i < right_nritems; i++) {
3683 item = btrfs_item_nr(i);
3684 push_space -= btrfs_token_item_size(right, item, &token);
3685 btrfs_set_token_item_offset(right, item, push_space, &token);
3688 left_nritems -= push_items;
3689 btrfs_set_header_nritems(left, left_nritems);
3691 if (left_nritems)
3692 btrfs_mark_buffer_dirty(left);
3693 else
3694 clean_tree_block(trans, root, left);
3696 btrfs_mark_buffer_dirty(right);
3698 btrfs_item_key(right, &disk_key, 0);
3699 btrfs_set_node_key(upper, &disk_key, slot + 1);
3700 btrfs_mark_buffer_dirty(upper);
3702 /* then fixup the leaf pointer in the path */
3703 if (path->slots[0] >= left_nritems) {
3704 path->slots[0] -= left_nritems;
3705 if (btrfs_header_nritems(path->nodes[0]) == 0)
3706 clean_tree_block(trans, root, path->nodes[0]);
3707 btrfs_tree_unlock(path->nodes[0]);
3708 free_extent_buffer(path->nodes[0]);
3709 path->nodes[0] = right;
3710 path->slots[1] += 1;
3711 } else {
3712 btrfs_tree_unlock(right);
3713 free_extent_buffer(right);
3715 return 0;
3717 out_unlock:
3718 btrfs_tree_unlock(right);
3719 free_extent_buffer(right);
3720 return 1;
3724 * push some data in the path leaf to the right, trying to free up at
3725 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3727 * returns 1 if the push failed because the other node didn't have enough
3728 * room, 0 if everything worked out and < 0 if there were major errors.
3730 * this will push starting from min_slot to the end of the leaf. It won't
3731 * push any slot lower than min_slot
3733 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3734 *root, struct btrfs_path *path,
3735 int min_data_size, int data_size,
3736 int empty, u32 min_slot)
3738 struct extent_buffer *left = path->nodes[0];
3739 struct extent_buffer *right;
3740 struct extent_buffer *upper;
3741 int slot;
3742 int free_space;
3743 u32 left_nritems;
3744 int ret;
3746 if (!path->nodes[1])
3747 return 1;
3749 slot = path->slots[1];
3750 upper = path->nodes[1];
3751 if (slot >= btrfs_header_nritems(upper) - 1)
3752 return 1;
3754 btrfs_assert_tree_locked(path->nodes[1]);
3756 right = read_node_slot(root, upper, slot + 1);
3757 if (right == NULL)
3758 return 1;
3760 btrfs_tree_lock(right);
3761 btrfs_set_lock_blocking(right);
3763 free_space = btrfs_leaf_free_space(root, right);
3764 if (free_space < data_size)
3765 goto out_unlock;
3767 /* cow and double check */
3768 ret = btrfs_cow_block(trans, root, right, upper,
3769 slot + 1, &right);
3770 if (ret)
3771 goto out_unlock;
3773 free_space = btrfs_leaf_free_space(root, right);
3774 if (free_space < data_size)
3775 goto out_unlock;
3777 left_nritems = btrfs_header_nritems(left);
3778 if (left_nritems == 0)
3779 goto out_unlock;
3781 if (path->slots[0] == left_nritems && !empty) {
3782 /* Key greater than all keys in the leaf, right neighbor has
3783 * enough room for it and we're not emptying our leaf to delete
3784 * it, therefore use right neighbor to insert the new item and
3785 * no need to touch/dirty our left leaft. */
3786 btrfs_tree_unlock(left);
3787 free_extent_buffer(left);
3788 path->nodes[0] = right;
3789 path->slots[0] = 0;
3790 path->slots[1]++;
3791 return 0;
3794 return __push_leaf_right(trans, root, path, min_data_size, empty,
3795 right, free_space, left_nritems, min_slot);
3796 out_unlock:
3797 btrfs_tree_unlock(right);
3798 free_extent_buffer(right);
3799 return 1;
3803 * push some data in the path leaf to the left, trying to free up at
3804 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3806 * max_slot can put a limit on how far into the leaf we'll push items. The
3807 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3808 * items
3810 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3811 struct btrfs_root *root,
3812 struct btrfs_path *path, int data_size,
3813 int empty, struct extent_buffer *left,
3814 int free_space, u32 right_nritems,
3815 u32 max_slot)
3817 struct btrfs_disk_key disk_key;
3818 struct extent_buffer *right = path->nodes[0];
3819 int i;
3820 int push_space = 0;
3821 int push_items = 0;
3822 struct btrfs_item *item;
3823 u32 old_left_nritems;
3824 u32 nr;
3825 int ret = 0;
3826 u32 this_item_size;
3827 u32 old_left_item_size;
3828 struct btrfs_map_token token;
3830 btrfs_init_map_token(&token);
3832 if (empty)
3833 nr = min(right_nritems, max_slot);
3834 else
3835 nr = min(right_nritems - 1, max_slot);
3837 for (i = 0; i < nr; i++) {
3838 item = btrfs_item_nr(i);
3840 if (!empty && push_items > 0) {
3841 if (path->slots[0] < i)
3842 break;
3843 if (path->slots[0] == i) {
3844 int space = btrfs_leaf_free_space(root, right);
3845 if (space + push_space * 2 > free_space)
3846 break;
3850 if (path->slots[0] == i)
3851 push_space += data_size;
3853 this_item_size = btrfs_item_size(right, item);
3854 if (this_item_size + sizeof(*item) + push_space > free_space)
3855 break;
3857 push_items++;
3858 push_space += this_item_size + sizeof(*item);
3861 if (push_items == 0) {
3862 ret = 1;
3863 goto out;
3865 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3867 /* push data from right to left */
3868 copy_extent_buffer(left, right,
3869 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3870 btrfs_item_nr_offset(0),
3871 push_items * sizeof(struct btrfs_item));
3873 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3874 btrfs_item_offset_nr(right, push_items - 1);
3876 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3877 leaf_data_end(root, left) - push_space,
3878 btrfs_leaf_data(right) +
3879 btrfs_item_offset_nr(right, push_items - 1),
3880 push_space);
3881 old_left_nritems = btrfs_header_nritems(left);
3882 BUG_ON(old_left_nritems <= 0);
3884 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3885 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3886 u32 ioff;
3888 item = btrfs_item_nr(i);
3890 ioff = btrfs_token_item_offset(left, item, &token);
3891 btrfs_set_token_item_offset(left, item,
3892 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3893 &token);
3895 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3897 /* fixup right node */
3898 if (push_items > right_nritems)
3899 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3900 right_nritems);
3902 if (push_items < right_nritems) {
3903 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3904 leaf_data_end(root, right);
3905 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3906 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3907 btrfs_leaf_data(right) +
3908 leaf_data_end(root, right), push_space);
3910 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3911 btrfs_item_nr_offset(push_items),
3912 (btrfs_header_nritems(right) - push_items) *
3913 sizeof(struct btrfs_item));
3915 right_nritems -= push_items;
3916 btrfs_set_header_nritems(right, right_nritems);
3917 push_space = BTRFS_LEAF_DATA_SIZE(root);
3918 for (i = 0; i < right_nritems; i++) {
3919 item = btrfs_item_nr(i);
3921 push_space = push_space - btrfs_token_item_size(right,
3922 item, &token);
3923 btrfs_set_token_item_offset(right, item, push_space, &token);
3926 btrfs_mark_buffer_dirty(left);
3927 if (right_nritems)
3928 btrfs_mark_buffer_dirty(right);
3929 else
3930 clean_tree_block(trans, root, right);
3932 btrfs_item_key(right, &disk_key, 0);
3933 fixup_low_keys(root, path, &disk_key, 1);
3935 /* then fixup the leaf pointer in the path */
3936 if (path->slots[0] < push_items) {
3937 path->slots[0] += old_left_nritems;
3938 btrfs_tree_unlock(path->nodes[0]);
3939 free_extent_buffer(path->nodes[0]);
3940 path->nodes[0] = left;
3941 path->slots[1] -= 1;
3942 } else {
3943 btrfs_tree_unlock(left);
3944 free_extent_buffer(left);
3945 path->slots[0] -= push_items;
3947 BUG_ON(path->slots[0] < 0);
3948 return ret;
3949 out:
3950 btrfs_tree_unlock(left);
3951 free_extent_buffer(left);
3952 return ret;
3956 * push some data in the path leaf to the left, trying to free up at
3957 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3959 * max_slot can put a limit on how far into the leaf we'll push items. The
3960 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3961 * items
3963 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3964 *root, struct btrfs_path *path, int min_data_size,
3965 int data_size, int empty, u32 max_slot)
3967 struct extent_buffer *right = path->nodes[0];
3968 struct extent_buffer *left;
3969 int slot;
3970 int free_space;
3971 u32 right_nritems;
3972 int ret = 0;
3974 slot = path->slots[1];
3975 if (slot == 0)
3976 return 1;
3977 if (!path->nodes[1])
3978 return 1;
3980 right_nritems = btrfs_header_nritems(right);
3981 if (right_nritems == 0)
3982 return 1;
3984 btrfs_assert_tree_locked(path->nodes[1]);
3986 left = read_node_slot(root, path->nodes[1], slot - 1);
3987 if (left == NULL)
3988 return 1;
3990 btrfs_tree_lock(left);
3991 btrfs_set_lock_blocking(left);
3993 free_space = btrfs_leaf_free_space(root, left);
3994 if (free_space < data_size) {
3995 ret = 1;
3996 goto out;
3999 /* cow and double check */
4000 ret = btrfs_cow_block(trans, root, left,
4001 path->nodes[1], slot - 1, &left);
4002 if (ret) {
4003 /* we hit -ENOSPC, but it isn't fatal here */
4004 if (ret == -ENOSPC)
4005 ret = 1;
4006 goto out;
4009 free_space = btrfs_leaf_free_space(root, left);
4010 if (free_space < data_size) {
4011 ret = 1;
4012 goto out;
4015 return __push_leaf_left(trans, root, path, min_data_size,
4016 empty, left, free_space, right_nritems,
4017 max_slot);
4018 out:
4019 btrfs_tree_unlock(left);
4020 free_extent_buffer(left);
4021 return ret;
4025 * split the path's leaf in two, making sure there is at least data_size
4026 * available for the resulting leaf level of the path.
4028 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4029 struct btrfs_root *root,
4030 struct btrfs_path *path,
4031 struct extent_buffer *l,
4032 struct extent_buffer *right,
4033 int slot, int mid, int nritems)
4035 int data_copy_size;
4036 int rt_data_off;
4037 int i;
4038 struct btrfs_disk_key disk_key;
4039 struct btrfs_map_token token;
4041 btrfs_init_map_token(&token);
4043 nritems = nritems - mid;
4044 btrfs_set_header_nritems(right, nritems);
4045 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4047 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4048 btrfs_item_nr_offset(mid),
4049 nritems * sizeof(struct btrfs_item));
4051 copy_extent_buffer(right, l,
4052 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4053 data_copy_size, btrfs_leaf_data(l) +
4054 leaf_data_end(root, l), data_copy_size);
4056 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4057 btrfs_item_end_nr(l, mid);
4059 for (i = 0; i < nritems; i++) {
4060 struct btrfs_item *item = btrfs_item_nr(i);
4061 u32 ioff;
4063 ioff = btrfs_token_item_offset(right, item, &token);
4064 btrfs_set_token_item_offset(right, item,
4065 ioff + rt_data_off, &token);
4068 btrfs_set_header_nritems(l, mid);
4069 btrfs_item_key(right, &disk_key, 0);
4070 insert_ptr(trans, root, path, &disk_key, right->start,
4071 path->slots[1] + 1, 1);
4073 btrfs_mark_buffer_dirty(right);
4074 btrfs_mark_buffer_dirty(l);
4075 BUG_ON(path->slots[0] != slot);
4077 if (mid <= slot) {
4078 btrfs_tree_unlock(path->nodes[0]);
4079 free_extent_buffer(path->nodes[0]);
4080 path->nodes[0] = right;
4081 path->slots[0] -= mid;
4082 path->slots[1] += 1;
4083 } else {
4084 btrfs_tree_unlock(right);
4085 free_extent_buffer(right);
4088 BUG_ON(path->slots[0] < 0);
4092 * double splits happen when we need to insert a big item in the middle
4093 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4094 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4095 * A B C
4097 * We avoid this by trying to push the items on either side of our target
4098 * into the adjacent leaves. If all goes well we can avoid the double split
4099 * completely.
4101 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4102 struct btrfs_root *root,
4103 struct btrfs_path *path,
4104 int data_size)
4106 int ret;
4107 int progress = 0;
4108 int slot;
4109 u32 nritems;
4110 int space_needed = data_size;
4112 slot = path->slots[0];
4113 if (slot < btrfs_header_nritems(path->nodes[0]))
4114 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4117 * try to push all the items after our slot into the
4118 * right leaf
4120 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4121 if (ret < 0)
4122 return ret;
4124 if (ret == 0)
4125 progress++;
4127 nritems = btrfs_header_nritems(path->nodes[0]);
4129 * our goal is to get our slot at the start or end of a leaf. If
4130 * we've done so we're done
4132 if (path->slots[0] == 0 || path->slots[0] == nritems)
4133 return 0;
4135 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4136 return 0;
4138 /* try to push all the items before our slot into the next leaf */
4139 slot = path->slots[0];
4140 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4141 if (ret < 0)
4142 return ret;
4144 if (ret == 0)
4145 progress++;
4147 if (progress)
4148 return 0;
4149 return 1;
4153 * split the path's leaf in two, making sure there is at least data_size
4154 * available for the resulting leaf level of the path.
4156 * returns 0 if all went well and < 0 on failure.
4158 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4159 struct btrfs_root *root,
4160 struct btrfs_key *ins_key,
4161 struct btrfs_path *path, int data_size,
4162 int extend)
4164 struct btrfs_disk_key disk_key;
4165 struct extent_buffer *l;
4166 u32 nritems;
4167 int mid;
4168 int slot;
4169 struct extent_buffer *right;
4170 int ret = 0;
4171 int wret;
4172 int split;
4173 int num_doubles = 0;
4174 int tried_avoid_double = 0;
4176 l = path->nodes[0];
4177 slot = path->slots[0];
4178 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4179 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4180 return -EOVERFLOW;
4182 /* first try to make some room by pushing left and right */
4183 if (data_size && path->nodes[1]) {
4184 int space_needed = data_size;
4186 if (slot < btrfs_header_nritems(l))
4187 space_needed -= btrfs_leaf_free_space(root, l);
4189 wret = push_leaf_right(trans, root, path, space_needed,
4190 space_needed, 0, 0);
4191 if (wret < 0)
4192 return wret;
4193 if (wret) {
4194 wret = push_leaf_left(trans, root, path, space_needed,
4195 space_needed, 0, (u32)-1);
4196 if (wret < 0)
4197 return wret;
4199 l = path->nodes[0];
4201 /* did the pushes work? */
4202 if (btrfs_leaf_free_space(root, l) >= data_size)
4203 return 0;
4206 if (!path->nodes[1]) {
4207 ret = insert_new_root(trans, root, path, 1);
4208 if (ret)
4209 return ret;
4211 again:
4212 split = 1;
4213 l = path->nodes[0];
4214 slot = path->slots[0];
4215 nritems = btrfs_header_nritems(l);
4216 mid = (nritems + 1) / 2;
4218 if (mid <= slot) {
4219 if (nritems == 1 ||
4220 leaf_space_used(l, mid, nritems - mid) + data_size >
4221 BTRFS_LEAF_DATA_SIZE(root)) {
4222 if (slot >= nritems) {
4223 split = 0;
4224 } else {
4225 mid = slot;
4226 if (mid != nritems &&
4227 leaf_space_used(l, mid, nritems - mid) +
4228 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4229 if (data_size && !tried_avoid_double)
4230 goto push_for_double;
4231 split = 2;
4235 } else {
4236 if (leaf_space_used(l, 0, mid) + data_size >
4237 BTRFS_LEAF_DATA_SIZE(root)) {
4238 if (!extend && data_size && slot == 0) {
4239 split = 0;
4240 } else if ((extend || !data_size) && slot == 0) {
4241 mid = 1;
4242 } else {
4243 mid = slot;
4244 if (mid != nritems &&
4245 leaf_space_used(l, mid, nritems - mid) +
4246 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4247 if (data_size && !tried_avoid_double)
4248 goto push_for_double;
4249 split = 2;
4255 if (split == 0)
4256 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4257 else
4258 btrfs_item_key(l, &disk_key, mid);
4260 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4261 &disk_key, 0, l->start, 0);
4262 if (IS_ERR(right))
4263 return PTR_ERR(right);
4265 root_add_used(root, root->nodesize);
4267 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4268 btrfs_set_header_bytenr(right, right->start);
4269 btrfs_set_header_generation(right, trans->transid);
4270 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4271 btrfs_set_header_owner(right, root->root_key.objectid);
4272 btrfs_set_header_level(right, 0);
4273 write_extent_buffer(right, root->fs_info->fsid,
4274 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4276 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4277 btrfs_header_chunk_tree_uuid(right),
4278 BTRFS_UUID_SIZE);
4280 if (split == 0) {
4281 if (mid <= slot) {
4282 btrfs_set_header_nritems(right, 0);
4283 insert_ptr(trans, root, path, &disk_key, right->start,
4284 path->slots[1] + 1, 1);
4285 btrfs_tree_unlock(path->nodes[0]);
4286 free_extent_buffer(path->nodes[0]);
4287 path->nodes[0] = right;
4288 path->slots[0] = 0;
4289 path->slots[1] += 1;
4290 } else {
4291 btrfs_set_header_nritems(right, 0);
4292 insert_ptr(trans, root, path, &disk_key, right->start,
4293 path->slots[1], 1);
4294 btrfs_tree_unlock(path->nodes[0]);
4295 free_extent_buffer(path->nodes[0]);
4296 path->nodes[0] = right;
4297 path->slots[0] = 0;
4298 if (path->slots[1] == 0)
4299 fixup_low_keys(root, path, &disk_key, 1);
4301 btrfs_mark_buffer_dirty(right);
4302 return ret;
4305 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4307 if (split == 2) {
4308 BUG_ON(num_doubles != 0);
4309 num_doubles++;
4310 goto again;
4313 return 0;
4315 push_for_double:
4316 push_for_double_split(trans, root, path, data_size);
4317 tried_avoid_double = 1;
4318 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4319 return 0;
4320 goto again;
4323 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4324 struct btrfs_root *root,
4325 struct btrfs_path *path, int ins_len)
4327 struct btrfs_key key;
4328 struct extent_buffer *leaf;
4329 struct btrfs_file_extent_item *fi;
4330 u64 extent_len = 0;
4331 u32 item_size;
4332 int ret;
4334 leaf = path->nodes[0];
4335 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4337 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4338 key.type != BTRFS_EXTENT_CSUM_KEY);
4340 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4341 return 0;
4343 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4344 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4345 fi = btrfs_item_ptr(leaf, path->slots[0],
4346 struct btrfs_file_extent_item);
4347 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4349 btrfs_release_path(path);
4351 path->keep_locks = 1;
4352 path->search_for_split = 1;
4353 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4354 path->search_for_split = 0;
4355 if (ret > 0)
4356 ret = -EAGAIN;
4357 if (ret < 0)
4358 goto err;
4360 ret = -EAGAIN;
4361 leaf = path->nodes[0];
4362 /* if our item isn't there, return now */
4363 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4364 goto err;
4366 /* the leaf has changed, it now has room. return now */
4367 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4368 goto err;
4370 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4371 fi = btrfs_item_ptr(leaf, path->slots[0],
4372 struct btrfs_file_extent_item);
4373 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4374 goto err;
4377 btrfs_set_path_blocking(path);
4378 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4379 if (ret)
4380 goto err;
4382 path->keep_locks = 0;
4383 btrfs_unlock_up_safe(path, 1);
4384 return 0;
4385 err:
4386 path->keep_locks = 0;
4387 return ret;
4390 static noinline int split_item(struct btrfs_trans_handle *trans,
4391 struct btrfs_root *root,
4392 struct btrfs_path *path,
4393 struct btrfs_key *new_key,
4394 unsigned long split_offset)
4396 struct extent_buffer *leaf;
4397 struct btrfs_item *item;
4398 struct btrfs_item *new_item;
4399 int slot;
4400 char *buf;
4401 u32 nritems;
4402 u32 item_size;
4403 u32 orig_offset;
4404 struct btrfs_disk_key disk_key;
4406 leaf = path->nodes[0];
4407 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4409 btrfs_set_path_blocking(path);
4411 item = btrfs_item_nr(path->slots[0]);
4412 orig_offset = btrfs_item_offset(leaf, item);
4413 item_size = btrfs_item_size(leaf, item);
4415 buf = kmalloc(item_size, GFP_NOFS);
4416 if (!buf)
4417 return -ENOMEM;
4419 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4420 path->slots[0]), item_size);
4422 slot = path->slots[0] + 1;
4423 nritems = btrfs_header_nritems(leaf);
4424 if (slot != nritems) {
4425 /* shift the items */
4426 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4427 btrfs_item_nr_offset(slot),
4428 (nritems - slot) * sizeof(struct btrfs_item));
4431 btrfs_cpu_key_to_disk(&disk_key, new_key);
4432 btrfs_set_item_key(leaf, &disk_key, slot);
4434 new_item = btrfs_item_nr(slot);
4436 btrfs_set_item_offset(leaf, new_item, orig_offset);
4437 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4439 btrfs_set_item_offset(leaf, item,
4440 orig_offset + item_size - split_offset);
4441 btrfs_set_item_size(leaf, item, split_offset);
4443 btrfs_set_header_nritems(leaf, nritems + 1);
4445 /* write the data for the start of the original item */
4446 write_extent_buffer(leaf, buf,
4447 btrfs_item_ptr_offset(leaf, path->slots[0]),
4448 split_offset);
4450 /* write the data for the new item */
4451 write_extent_buffer(leaf, buf + split_offset,
4452 btrfs_item_ptr_offset(leaf, slot),
4453 item_size - split_offset);
4454 btrfs_mark_buffer_dirty(leaf);
4456 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4457 kfree(buf);
4458 return 0;
4462 * This function splits a single item into two items,
4463 * giving 'new_key' to the new item and splitting the
4464 * old one at split_offset (from the start of the item).
4466 * The path may be released by this operation. After
4467 * the split, the path is pointing to the old item. The
4468 * new item is going to be in the same node as the old one.
4470 * Note, the item being split must be smaller enough to live alone on
4471 * a tree block with room for one extra struct btrfs_item
4473 * This allows us to split the item in place, keeping a lock on the
4474 * leaf the entire time.
4476 int btrfs_split_item(struct btrfs_trans_handle *trans,
4477 struct btrfs_root *root,
4478 struct btrfs_path *path,
4479 struct btrfs_key *new_key,
4480 unsigned long split_offset)
4482 int ret;
4483 ret = setup_leaf_for_split(trans, root, path,
4484 sizeof(struct btrfs_item));
4485 if (ret)
4486 return ret;
4488 ret = split_item(trans, root, path, new_key, split_offset);
4489 return ret;
4493 * This function duplicate a item, giving 'new_key' to the new item.
4494 * It guarantees both items live in the same tree leaf and the new item
4495 * is contiguous with the original item.
4497 * This allows us to split file extent in place, keeping a lock on the
4498 * leaf the entire time.
4500 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4501 struct btrfs_root *root,
4502 struct btrfs_path *path,
4503 struct btrfs_key *new_key)
4505 struct extent_buffer *leaf;
4506 int ret;
4507 u32 item_size;
4509 leaf = path->nodes[0];
4510 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4511 ret = setup_leaf_for_split(trans, root, path,
4512 item_size + sizeof(struct btrfs_item));
4513 if (ret)
4514 return ret;
4516 path->slots[0]++;
4517 setup_items_for_insert(root, path, new_key, &item_size,
4518 item_size, item_size +
4519 sizeof(struct btrfs_item), 1);
4520 leaf = path->nodes[0];
4521 memcpy_extent_buffer(leaf,
4522 btrfs_item_ptr_offset(leaf, path->slots[0]),
4523 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4524 item_size);
4525 return 0;
4529 * make the item pointed to by the path smaller. new_size indicates
4530 * how small to make it, and from_end tells us if we just chop bytes
4531 * off the end of the item or if we shift the item to chop bytes off
4532 * the front.
4534 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4535 u32 new_size, int from_end)
4537 int slot;
4538 struct extent_buffer *leaf;
4539 struct btrfs_item *item;
4540 u32 nritems;
4541 unsigned int data_end;
4542 unsigned int old_data_start;
4543 unsigned int old_size;
4544 unsigned int size_diff;
4545 int i;
4546 struct btrfs_map_token token;
4548 btrfs_init_map_token(&token);
4550 leaf = path->nodes[0];
4551 slot = path->slots[0];
4553 old_size = btrfs_item_size_nr(leaf, slot);
4554 if (old_size == new_size)
4555 return;
4557 nritems = btrfs_header_nritems(leaf);
4558 data_end = leaf_data_end(root, leaf);
4560 old_data_start = btrfs_item_offset_nr(leaf, slot);
4562 size_diff = old_size - new_size;
4564 BUG_ON(slot < 0);
4565 BUG_ON(slot >= nritems);
4568 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4570 /* first correct the data pointers */
4571 for (i = slot; i < nritems; i++) {
4572 u32 ioff;
4573 item = btrfs_item_nr(i);
4575 ioff = btrfs_token_item_offset(leaf, item, &token);
4576 btrfs_set_token_item_offset(leaf, item,
4577 ioff + size_diff, &token);
4580 /* shift the data */
4581 if (from_end) {
4582 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4583 data_end + size_diff, btrfs_leaf_data(leaf) +
4584 data_end, old_data_start + new_size - data_end);
4585 } else {
4586 struct btrfs_disk_key disk_key;
4587 u64 offset;
4589 btrfs_item_key(leaf, &disk_key, slot);
4591 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4592 unsigned long ptr;
4593 struct btrfs_file_extent_item *fi;
4595 fi = btrfs_item_ptr(leaf, slot,
4596 struct btrfs_file_extent_item);
4597 fi = (struct btrfs_file_extent_item *)(
4598 (unsigned long)fi - size_diff);
4600 if (btrfs_file_extent_type(leaf, fi) ==
4601 BTRFS_FILE_EXTENT_INLINE) {
4602 ptr = btrfs_item_ptr_offset(leaf, slot);
4603 memmove_extent_buffer(leaf, ptr,
4604 (unsigned long)fi,
4605 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4609 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4610 data_end + size_diff, btrfs_leaf_data(leaf) +
4611 data_end, old_data_start - data_end);
4613 offset = btrfs_disk_key_offset(&disk_key);
4614 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4615 btrfs_set_item_key(leaf, &disk_key, slot);
4616 if (slot == 0)
4617 fixup_low_keys(root, path, &disk_key, 1);
4620 item = btrfs_item_nr(slot);
4621 btrfs_set_item_size(leaf, item, new_size);
4622 btrfs_mark_buffer_dirty(leaf);
4624 if (btrfs_leaf_free_space(root, leaf) < 0) {
4625 btrfs_print_leaf(root, leaf);
4626 BUG();
4631 * make the item pointed to by the path bigger, data_size is the added size.
4633 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4634 u32 data_size)
4636 int slot;
4637 struct extent_buffer *leaf;
4638 struct btrfs_item *item;
4639 u32 nritems;
4640 unsigned int data_end;
4641 unsigned int old_data;
4642 unsigned int old_size;
4643 int i;
4644 struct btrfs_map_token token;
4646 btrfs_init_map_token(&token);
4648 leaf = path->nodes[0];
4650 nritems = btrfs_header_nritems(leaf);
4651 data_end = leaf_data_end(root, leaf);
4653 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4654 btrfs_print_leaf(root, leaf);
4655 BUG();
4657 slot = path->slots[0];
4658 old_data = btrfs_item_end_nr(leaf, slot);
4660 BUG_ON(slot < 0);
4661 if (slot >= nritems) {
4662 btrfs_print_leaf(root, leaf);
4663 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4664 slot, nritems);
4665 BUG_ON(1);
4669 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4671 /* first correct the data pointers */
4672 for (i = slot; i < nritems; i++) {
4673 u32 ioff;
4674 item = btrfs_item_nr(i);
4676 ioff = btrfs_token_item_offset(leaf, item, &token);
4677 btrfs_set_token_item_offset(leaf, item,
4678 ioff - data_size, &token);
4681 /* shift the data */
4682 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4683 data_end - data_size, btrfs_leaf_data(leaf) +
4684 data_end, old_data - data_end);
4686 data_end = old_data;
4687 old_size = btrfs_item_size_nr(leaf, slot);
4688 item = btrfs_item_nr(slot);
4689 btrfs_set_item_size(leaf, item, old_size + data_size);
4690 btrfs_mark_buffer_dirty(leaf);
4692 if (btrfs_leaf_free_space(root, leaf) < 0) {
4693 btrfs_print_leaf(root, leaf);
4694 BUG();
4699 * this is a helper for btrfs_insert_empty_items, the main goal here is
4700 * to save stack depth by doing the bulk of the work in a function
4701 * that doesn't call btrfs_search_slot
4703 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4704 struct btrfs_key *cpu_key, u32 *data_size,
4705 u32 total_data, u32 total_size, int nr)
4707 struct btrfs_item *item;
4708 int i;
4709 u32 nritems;
4710 unsigned int data_end;
4711 struct btrfs_disk_key disk_key;
4712 struct extent_buffer *leaf;
4713 int slot;
4714 struct btrfs_map_token token;
4716 if (path->slots[0] == 0) {
4717 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4718 fixup_low_keys(root, path, &disk_key, 1);
4720 btrfs_unlock_up_safe(path, 1);
4722 btrfs_init_map_token(&token);
4724 leaf = path->nodes[0];
4725 slot = path->slots[0];
4727 nritems = btrfs_header_nritems(leaf);
4728 data_end = leaf_data_end(root, leaf);
4730 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4731 btrfs_print_leaf(root, leaf);
4732 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4733 total_size, btrfs_leaf_free_space(root, leaf));
4734 BUG();
4737 if (slot != nritems) {
4738 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4740 if (old_data < data_end) {
4741 btrfs_print_leaf(root, leaf);
4742 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4743 slot, old_data, data_end);
4744 BUG_ON(1);
4747 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4749 /* first correct the data pointers */
4750 for (i = slot; i < nritems; i++) {
4751 u32 ioff;
4753 item = btrfs_item_nr( i);
4754 ioff = btrfs_token_item_offset(leaf, item, &token);
4755 btrfs_set_token_item_offset(leaf, item,
4756 ioff - total_data, &token);
4758 /* shift the items */
4759 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4760 btrfs_item_nr_offset(slot),
4761 (nritems - slot) * sizeof(struct btrfs_item));
4763 /* shift the data */
4764 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4765 data_end - total_data, btrfs_leaf_data(leaf) +
4766 data_end, old_data - data_end);
4767 data_end = old_data;
4770 /* setup the item for the new data */
4771 for (i = 0; i < nr; i++) {
4772 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4773 btrfs_set_item_key(leaf, &disk_key, slot + i);
4774 item = btrfs_item_nr(slot + i);
4775 btrfs_set_token_item_offset(leaf, item,
4776 data_end - data_size[i], &token);
4777 data_end -= data_size[i];
4778 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4781 btrfs_set_header_nritems(leaf, nritems + nr);
4782 btrfs_mark_buffer_dirty(leaf);
4784 if (btrfs_leaf_free_space(root, leaf) < 0) {
4785 btrfs_print_leaf(root, leaf);
4786 BUG();
4791 * Given a key and some data, insert items into the tree.
4792 * This does all the path init required, making room in the tree if needed.
4794 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4795 struct btrfs_root *root,
4796 struct btrfs_path *path,
4797 struct btrfs_key *cpu_key, u32 *data_size,
4798 int nr)
4800 int ret = 0;
4801 int slot;
4802 int i;
4803 u32 total_size = 0;
4804 u32 total_data = 0;
4806 for (i = 0; i < nr; i++)
4807 total_data += data_size[i];
4809 total_size = total_data + (nr * sizeof(struct btrfs_item));
4810 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4811 if (ret == 0)
4812 return -EEXIST;
4813 if (ret < 0)
4814 return ret;
4816 slot = path->slots[0];
4817 BUG_ON(slot < 0);
4819 setup_items_for_insert(root, path, cpu_key, data_size,
4820 total_data, total_size, nr);
4821 return 0;
4825 * Given a key and some data, insert an item into the tree.
4826 * This does all the path init required, making room in the tree if needed.
4828 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4829 *root, struct btrfs_key *cpu_key, void *data, u32
4830 data_size)
4832 int ret = 0;
4833 struct btrfs_path *path;
4834 struct extent_buffer *leaf;
4835 unsigned long ptr;
4837 path = btrfs_alloc_path();
4838 if (!path)
4839 return -ENOMEM;
4840 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4841 if (!ret) {
4842 leaf = path->nodes[0];
4843 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4844 write_extent_buffer(leaf, data, ptr, data_size);
4845 btrfs_mark_buffer_dirty(leaf);
4847 btrfs_free_path(path);
4848 return ret;
4852 * delete the pointer from a given node.
4854 * the tree should have been previously balanced so the deletion does not
4855 * empty a node.
4857 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4858 int level, int slot)
4860 struct extent_buffer *parent = path->nodes[level];
4861 u32 nritems;
4862 int ret;
4864 nritems = btrfs_header_nritems(parent);
4865 if (slot != nritems - 1) {
4866 if (level)
4867 tree_mod_log_eb_move(root->fs_info, parent, slot,
4868 slot + 1, nritems - slot - 1);
4869 memmove_extent_buffer(parent,
4870 btrfs_node_key_ptr_offset(slot),
4871 btrfs_node_key_ptr_offset(slot + 1),
4872 sizeof(struct btrfs_key_ptr) *
4873 (nritems - slot - 1));
4874 } else if (level) {
4875 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4876 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4877 BUG_ON(ret < 0);
4880 nritems--;
4881 btrfs_set_header_nritems(parent, nritems);
4882 if (nritems == 0 && parent == root->node) {
4883 BUG_ON(btrfs_header_level(root->node) != 1);
4884 /* just turn the root into a leaf and break */
4885 btrfs_set_header_level(root->node, 0);
4886 } else if (slot == 0) {
4887 struct btrfs_disk_key disk_key;
4889 btrfs_node_key(parent, &disk_key, 0);
4890 fixup_low_keys(root, path, &disk_key, level + 1);
4892 btrfs_mark_buffer_dirty(parent);
4896 * a helper function to delete the leaf pointed to by path->slots[1] and
4897 * path->nodes[1].
4899 * This deletes the pointer in path->nodes[1] and frees the leaf
4900 * block extent. zero is returned if it all worked out, < 0 otherwise.
4902 * The path must have already been setup for deleting the leaf, including
4903 * all the proper balancing. path->nodes[1] must be locked.
4905 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4906 struct btrfs_root *root,
4907 struct btrfs_path *path,
4908 struct extent_buffer *leaf)
4910 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4911 del_ptr(root, path, 1, path->slots[1]);
4914 * btrfs_free_extent is expensive, we want to make sure we
4915 * aren't holding any locks when we call it
4917 btrfs_unlock_up_safe(path, 0);
4919 root_sub_used(root, leaf->len);
4921 extent_buffer_get(leaf);
4922 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4923 free_extent_buffer_stale(leaf);
4926 * delete the item at the leaf level in path. If that empties
4927 * the leaf, remove it from the tree
4929 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4930 struct btrfs_path *path, int slot, int nr)
4932 struct extent_buffer *leaf;
4933 struct btrfs_item *item;
4934 int last_off;
4935 int dsize = 0;
4936 int ret = 0;
4937 int wret;
4938 int i;
4939 u32 nritems;
4940 struct btrfs_map_token token;
4942 btrfs_init_map_token(&token);
4944 leaf = path->nodes[0];
4945 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4947 for (i = 0; i < nr; i++)
4948 dsize += btrfs_item_size_nr(leaf, slot + i);
4950 nritems = btrfs_header_nritems(leaf);
4952 if (slot + nr != nritems) {
4953 int data_end = leaf_data_end(root, leaf);
4955 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4956 data_end + dsize,
4957 btrfs_leaf_data(leaf) + data_end,
4958 last_off - data_end);
4960 for (i = slot + nr; i < nritems; i++) {
4961 u32 ioff;
4963 item = btrfs_item_nr(i);
4964 ioff = btrfs_token_item_offset(leaf, item, &token);
4965 btrfs_set_token_item_offset(leaf, item,
4966 ioff + dsize, &token);
4969 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4970 btrfs_item_nr_offset(slot + nr),
4971 sizeof(struct btrfs_item) *
4972 (nritems - slot - nr));
4974 btrfs_set_header_nritems(leaf, nritems - nr);
4975 nritems -= nr;
4977 /* delete the leaf if we've emptied it */
4978 if (nritems == 0) {
4979 if (leaf == root->node) {
4980 btrfs_set_header_level(leaf, 0);
4981 } else {
4982 btrfs_set_path_blocking(path);
4983 clean_tree_block(trans, root, leaf);
4984 btrfs_del_leaf(trans, root, path, leaf);
4986 } else {
4987 int used = leaf_space_used(leaf, 0, nritems);
4988 if (slot == 0) {
4989 struct btrfs_disk_key disk_key;
4991 btrfs_item_key(leaf, &disk_key, 0);
4992 fixup_low_keys(root, path, &disk_key, 1);
4995 /* delete the leaf if it is mostly empty */
4996 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4997 /* push_leaf_left fixes the path.
4998 * make sure the path still points to our leaf
4999 * for possible call to del_ptr below
5001 slot = path->slots[1];
5002 extent_buffer_get(leaf);
5004 btrfs_set_path_blocking(path);
5005 wret = push_leaf_left(trans, root, path, 1, 1,
5006 1, (u32)-1);
5007 if (wret < 0 && wret != -ENOSPC)
5008 ret = wret;
5010 if (path->nodes[0] == leaf &&
5011 btrfs_header_nritems(leaf)) {
5012 wret = push_leaf_right(trans, root, path, 1,
5013 1, 1, 0);
5014 if (wret < 0 && wret != -ENOSPC)
5015 ret = wret;
5018 if (btrfs_header_nritems(leaf) == 0) {
5019 path->slots[1] = slot;
5020 btrfs_del_leaf(trans, root, path, leaf);
5021 free_extent_buffer(leaf);
5022 ret = 0;
5023 } else {
5024 /* if we're still in the path, make sure
5025 * we're dirty. Otherwise, one of the
5026 * push_leaf functions must have already
5027 * dirtied this buffer
5029 if (path->nodes[0] == leaf)
5030 btrfs_mark_buffer_dirty(leaf);
5031 free_extent_buffer(leaf);
5033 } else {
5034 btrfs_mark_buffer_dirty(leaf);
5037 return ret;
5041 * search the tree again to find a leaf with lesser keys
5042 * returns 0 if it found something or 1 if there are no lesser leaves.
5043 * returns < 0 on io errors.
5045 * This may release the path, and so you may lose any locks held at the
5046 * time you call it.
5048 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5050 struct btrfs_key key;
5051 struct btrfs_disk_key found_key;
5052 int ret;
5054 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5056 if (key.offset > 0) {
5057 key.offset--;
5058 } else if (key.type > 0) {
5059 key.type--;
5060 key.offset = (u64)-1;
5061 } else if (key.objectid > 0) {
5062 key.objectid--;
5063 key.type = (u8)-1;
5064 key.offset = (u64)-1;
5065 } else {
5066 return 1;
5069 btrfs_release_path(path);
5070 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5071 if (ret < 0)
5072 return ret;
5073 btrfs_item_key(path->nodes[0], &found_key, 0);
5074 ret = comp_keys(&found_key, &key);
5076 * We might have had an item with the previous key in the tree right
5077 * before we released our path. And after we released our path, that
5078 * item might have been pushed to the first slot (0) of the leaf we
5079 * were holding due to a tree balance. Alternatively, an item with the
5080 * previous key can exist as the only element of a leaf (big fat item).
5081 * Therefore account for these 2 cases, so that our callers (like
5082 * btrfs_previous_item) don't miss an existing item with a key matching
5083 * the previous key we computed above.
5085 if (ret <= 0)
5086 return 0;
5087 return 1;
5091 * A helper function to walk down the tree starting at min_key, and looking
5092 * for nodes or leaves that are have a minimum transaction id.
5093 * This is used by the btree defrag code, and tree logging
5095 * This does not cow, but it does stuff the starting key it finds back
5096 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5097 * key and get a writable path.
5099 * This does lock as it descends, and path->keep_locks should be set
5100 * to 1 by the caller.
5102 * This honors path->lowest_level to prevent descent past a given level
5103 * of the tree.
5105 * min_trans indicates the oldest transaction that you are interested
5106 * in walking through. Any nodes or leaves older than min_trans are
5107 * skipped over (without reading them).
5109 * returns zero if something useful was found, < 0 on error and 1 if there
5110 * was nothing in the tree that matched the search criteria.
5112 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5113 struct btrfs_path *path,
5114 u64 min_trans)
5116 struct extent_buffer *cur;
5117 struct btrfs_key found_key;
5118 int slot;
5119 int sret;
5120 u32 nritems;
5121 int level;
5122 int ret = 1;
5123 int keep_locks = path->keep_locks;
5125 path->keep_locks = 1;
5126 again:
5127 cur = btrfs_read_lock_root_node(root);
5128 level = btrfs_header_level(cur);
5129 WARN_ON(path->nodes[level]);
5130 path->nodes[level] = cur;
5131 path->locks[level] = BTRFS_READ_LOCK;
5133 if (btrfs_header_generation(cur) < min_trans) {
5134 ret = 1;
5135 goto out;
5137 while (1) {
5138 nritems = btrfs_header_nritems(cur);
5139 level = btrfs_header_level(cur);
5140 sret = bin_search(cur, min_key, level, &slot);
5142 /* at the lowest level, we're done, setup the path and exit */
5143 if (level == path->lowest_level) {
5144 if (slot >= nritems)
5145 goto find_next_key;
5146 ret = 0;
5147 path->slots[level] = slot;
5148 btrfs_item_key_to_cpu(cur, &found_key, slot);
5149 goto out;
5151 if (sret && slot > 0)
5152 slot--;
5154 * check this node pointer against the min_trans parameters.
5155 * If it is too old, old, skip to the next one.
5157 while (slot < nritems) {
5158 u64 gen;
5160 gen = btrfs_node_ptr_generation(cur, slot);
5161 if (gen < min_trans) {
5162 slot++;
5163 continue;
5165 break;
5167 find_next_key:
5169 * we didn't find a candidate key in this node, walk forward
5170 * and find another one
5172 if (slot >= nritems) {
5173 path->slots[level] = slot;
5174 btrfs_set_path_blocking(path);
5175 sret = btrfs_find_next_key(root, path, min_key, level,
5176 min_trans);
5177 if (sret == 0) {
5178 btrfs_release_path(path);
5179 goto again;
5180 } else {
5181 goto out;
5184 /* save our key for returning back */
5185 btrfs_node_key_to_cpu(cur, &found_key, slot);
5186 path->slots[level] = slot;
5187 if (level == path->lowest_level) {
5188 ret = 0;
5189 goto out;
5191 btrfs_set_path_blocking(path);
5192 cur = read_node_slot(root, cur, slot);
5193 BUG_ON(!cur); /* -ENOMEM */
5195 btrfs_tree_read_lock(cur);
5197 path->locks[level - 1] = BTRFS_READ_LOCK;
5198 path->nodes[level - 1] = cur;
5199 unlock_up(path, level, 1, 0, NULL);
5200 btrfs_clear_path_blocking(path, NULL, 0);
5202 out:
5203 path->keep_locks = keep_locks;
5204 if (ret == 0) {
5205 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5206 btrfs_set_path_blocking(path);
5207 memcpy(min_key, &found_key, sizeof(found_key));
5209 return ret;
5212 static void tree_move_down(struct btrfs_root *root,
5213 struct btrfs_path *path,
5214 int *level, int root_level)
5216 BUG_ON(*level == 0);
5217 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5218 path->slots[*level]);
5219 path->slots[*level - 1] = 0;
5220 (*level)--;
5223 static int tree_move_next_or_upnext(struct btrfs_root *root,
5224 struct btrfs_path *path,
5225 int *level, int root_level)
5227 int ret = 0;
5228 int nritems;
5229 nritems = btrfs_header_nritems(path->nodes[*level]);
5231 path->slots[*level]++;
5233 while (path->slots[*level] >= nritems) {
5234 if (*level == root_level)
5235 return -1;
5237 /* move upnext */
5238 path->slots[*level] = 0;
5239 free_extent_buffer(path->nodes[*level]);
5240 path->nodes[*level] = NULL;
5241 (*level)++;
5242 path->slots[*level]++;
5244 nritems = btrfs_header_nritems(path->nodes[*level]);
5245 ret = 1;
5247 return ret;
5251 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5252 * or down.
5254 static int tree_advance(struct btrfs_root *root,
5255 struct btrfs_path *path,
5256 int *level, int root_level,
5257 int allow_down,
5258 struct btrfs_key *key)
5260 int ret;
5262 if (*level == 0 || !allow_down) {
5263 ret = tree_move_next_or_upnext(root, path, level, root_level);
5264 } else {
5265 tree_move_down(root, path, level, root_level);
5266 ret = 0;
5268 if (ret >= 0) {
5269 if (*level == 0)
5270 btrfs_item_key_to_cpu(path->nodes[*level], key,
5271 path->slots[*level]);
5272 else
5273 btrfs_node_key_to_cpu(path->nodes[*level], key,
5274 path->slots[*level]);
5276 return ret;
5279 static int tree_compare_item(struct btrfs_root *left_root,
5280 struct btrfs_path *left_path,
5281 struct btrfs_path *right_path,
5282 char *tmp_buf)
5284 int cmp;
5285 int len1, len2;
5286 unsigned long off1, off2;
5288 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5289 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5290 if (len1 != len2)
5291 return 1;
5293 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5294 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5295 right_path->slots[0]);
5297 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5299 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5300 if (cmp)
5301 return 1;
5302 return 0;
5305 #define ADVANCE 1
5306 #define ADVANCE_ONLY_NEXT -1
5309 * This function compares two trees and calls the provided callback for
5310 * every changed/new/deleted item it finds.
5311 * If shared tree blocks are encountered, whole subtrees are skipped, making
5312 * the compare pretty fast on snapshotted subvolumes.
5314 * This currently works on commit roots only. As commit roots are read only,
5315 * we don't do any locking. The commit roots are protected with transactions.
5316 * Transactions are ended and rejoined when a commit is tried in between.
5318 * This function checks for modifications done to the trees while comparing.
5319 * If it detects a change, it aborts immediately.
5321 int btrfs_compare_trees(struct btrfs_root *left_root,
5322 struct btrfs_root *right_root,
5323 btrfs_changed_cb_t changed_cb, void *ctx)
5325 int ret;
5326 int cmp;
5327 struct btrfs_path *left_path = NULL;
5328 struct btrfs_path *right_path = NULL;
5329 struct btrfs_key left_key;
5330 struct btrfs_key right_key;
5331 char *tmp_buf = NULL;
5332 int left_root_level;
5333 int right_root_level;
5334 int left_level;
5335 int right_level;
5336 int left_end_reached;
5337 int right_end_reached;
5338 int advance_left;
5339 int advance_right;
5340 u64 left_blockptr;
5341 u64 right_blockptr;
5342 u64 left_gen;
5343 u64 right_gen;
5345 left_path = btrfs_alloc_path();
5346 if (!left_path) {
5347 ret = -ENOMEM;
5348 goto out;
5350 right_path = btrfs_alloc_path();
5351 if (!right_path) {
5352 ret = -ENOMEM;
5353 goto out;
5356 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5357 if (!tmp_buf) {
5358 ret = -ENOMEM;
5359 goto out;
5362 left_path->search_commit_root = 1;
5363 left_path->skip_locking = 1;
5364 right_path->search_commit_root = 1;
5365 right_path->skip_locking = 1;
5368 * Strategy: Go to the first items of both trees. Then do
5370 * If both trees are at level 0
5371 * Compare keys of current items
5372 * If left < right treat left item as new, advance left tree
5373 * and repeat
5374 * If left > right treat right item as deleted, advance right tree
5375 * and repeat
5376 * If left == right do deep compare of items, treat as changed if
5377 * needed, advance both trees and repeat
5378 * If both trees are at the same level but not at level 0
5379 * Compare keys of current nodes/leafs
5380 * If left < right advance left tree and repeat
5381 * If left > right advance right tree and repeat
5382 * If left == right compare blockptrs of the next nodes/leafs
5383 * If they match advance both trees but stay at the same level
5384 * and repeat
5385 * If they don't match advance both trees while allowing to go
5386 * deeper and repeat
5387 * If tree levels are different
5388 * Advance the tree that needs it and repeat
5390 * Advancing a tree means:
5391 * If we are at level 0, try to go to the next slot. If that's not
5392 * possible, go one level up and repeat. Stop when we found a level
5393 * where we could go to the next slot. We may at this point be on a
5394 * node or a leaf.
5396 * If we are not at level 0 and not on shared tree blocks, go one
5397 * level deeper.
5399 * If we are not at level 0 and on shared tree blocks, go one slot to
5400 * the right if possible or go up and right.
5403 down_read(&left_root->fs_info->commit_root_sem);
5404 left_level = btrfs_header_level(left_root->commit_root);
5405 left_root_level = left_level;
5406 left_path->nodes[left_level] = left_root->commit_root;
5407 extent_buffer_get(left_path->nodes[left_level]);
5409 right_level = btrfs_header_level(right_root->commit_root);
5410 right_root_level = right_level;
5411 right_path->nodes[right_level] = right_root->commit_root;
5412 extent_buffer_get(right_path->nodes[right_level]);
5413 up_read(&left_root->fs_info->commit_root_sem);
5415 if (left_level == 0)
5416 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5417 &left_key, left_path->slots[left_level]);
5418 else
5419 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5420 &left_key, left_path->slots[left_level]);
5421 if (right_level == 0)
5422 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5423 &right_key, right_path->slots[right_level]);
5424 else
5425 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5426 &right_key, right_path->slots[right_level]);
5428 left_end_reached = right_end_reached = 0;
5429 advance_left = advance_right = 0;
5431 while (1) {
5432 if (advance_left && !left_end_reached) {
5433 ret = tree_advance(left_root, left_path, &left_level,
5434 left_root_level,
5435 advance_left != ADVANCE_ONLY_NEXT,
5436 &left_key);
5437 if (ret < 0)
5438 left_end_reached = ADVANCE;
5439 advance_left = 0;
5441 if (advance_right && !right_end_reached) {
5442 ret = tree_advance(right_root, right_path, &right_level,
5443 right_root_level,
5444 advance_right != ADVANCE_ONLY_NEXT,
5445 &right_key);
5446 if (ret < 0)
5447 right_end_reached = ADVANCE;
5448 advance_right = 0;
5451 if (left_end_reached && right_end_reached) {
5452 ret = 0;
5453 goto out;
5454 } else if (left_end_reached) {
5455 if (right_level == 0) {
5456 ret = changed_cb(left_root, right_root,
5457 left_path, right_path,
5458 &right_key,
5459 BTRFS_COMPARE_TREE_DELETED,
5460 ctx);
5461 if (ret < 0)
5462 goto out;
5464 advance_right = ADVANCE;
5465 continue;
5466 } else if (right_end_reached) {
5467 if (left_level == 0) {
5468 ret = changed_cb(left_root, right_root,
5469 left_path, right_path,
5470 &left_key,
5471 BTRFS_COMPARE_TREE_NEW,
5472 ctx);
5473 if (ret < 0)
5474 goto out;
5476 advance_left = ADVANCE;
5477 continue;
5480 if (left_level == 0 && right_level == 0) {
5481 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5482 if (cmp < 0) {
5483 ret = changed_cb(left_root, right_root,
5484 left_path, right_path,
5485 &left_key,
5486 BTRFS_COMPARE_TREE_NEW,
5487 ctx);
5488 if (ret < 0)
5489 goto out;
5490 advance_left = ADVANCE;
5491 } else if (cmp > 0) {
5492 ret = changed_cb(left_root, right_root,
5493 left_path, right_path,
5494 &right_key,
5495 BTRFS_COMPARE_TREE_DELETED,
5496 ctx);
5497 if (ret < 0)
5498 goto out;
5499 advance_right = ADVANCE;
5500 } else {
5501 enum btrfs_compare_tree_result result;
5503 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5504 ret = tree_compare_item(left_root, left_path,
5505 right_path, tmp_buf);
5506 if (ret)
5507 result = BTRFS_COMPARE_TREE_CHANGED;
5508 else
5509 result = BTRFS_COMPARE_TREE_SAME;
5510 ret = changed_cb(left_root, right_root,
5511 left_path, right_path,
5512 &left_key, result, ctx);
5513 if (ret < 0)
5514 goto out;
5515 advance_left = ADVANCE;
5516 advance_right = ADVANCE;
5518 } else if (left_level == right_level) {
5519 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5520 if (cmp < 0) {
5521 advance_left = ADVANCE;
5522 } else if (cmp > 0) {
5523 advance_right = ADVANCE;
5524 } else {
5525 left_blockptr = btrfs_node_blockptr(
5526 left_path->nodes[left_level],
5527 left_path->slots[left_level]);
5528 right_blockptr = btrfs_node_blockptr(
5529 right_path->nodes[right_level],
5530 right_path->slots[right_level]);
5531 left_gen = btrfs_node_ptr_generation(
5532 left_path->nodes[left_level],
5533 left_path->slots[left_level]);
5534 right_gen = btrfs_node_ptr_generation(
5535 right_path->nodes[right_level],
5536 right_path->slots[right_level]);
5537 if (left_blockptr == right_blockptr &&
5538 left_gen == right_gen) {
5540 * As we're on a shared block, don't
5541 * allow to go deeper.
5543 advance_left = ADVANCE_ONLY_NEXT;
5544 advance_right = ADVANCE_ONLY_NEXT;
5545 } else {
5546 advance_left = ADVANCE;
5547 advance_right = ADVANCE;
5550 } else if (left_level < right_level) {
5551 advance_right = ADVANCE;
5552 } else {
5553 advance_left = ADVANCE;
5557 out:
5558 btrfs_free_path(left_path);
5559 btrfs_free_path(right_path);
5560 kfree(tmp_buf);
5561 return ret;
5565 * this is similar to btrfs_next_leaf, but does not try to preserve
5566 * and fixup the path. It looks for and returns the next key in the
5567 * tree based on the current path and the min_trans parameters.
5569 * 0 is returned if another key is found, < 0 if there are any errors
5570 * and 1 is returned if there are no higher keys in the tree
5572 * path->keep_locks should be set to 1 on the search made before
5573 * calling this function.
5575 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5576 struct btrfs_key *key, int level, u64 min_trans)
5578 int slot;
5579 struct extent_buffer *c;
5581 WARN_ON(!path->keep_locks);
5582 while (level < BTRFS_MAX_LEVEL) {
5583 if (!path->nodes[level])
5584 return 1;
5586 slot = path->slots[level] + 1;
5587 c = path->nodes[level];
5588 next:
5589 if (slot >= btrfs_header_nritems(c)) {
5590 int ret;
5591 int orig_lowest;
5592 struct btrfs_key cur_key;
5593 if (level + 1 >= BTRFS_MAX_LEVEL ||
5594 !path->nodes[level + 1])
5595 return 1;
5597 if (path->locks[level + 1]) {
5598 level++;
5599 continue;
5602 slot = btrfs_header_nritems(c) - 1;
5603 if (level == 0)
5604 btrfs_item_key_to_cpu(c, &cur_key, slot);
5605 else
5606 btrfs_node_key_to_cpu(c, &cur_key, slot);
5608 orig_lowest = path->lowest_level;
5609 btrfs_release_path(path);
5610 path->lowest_level = level;
5611 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5612 0, 0);
5613 path->lowest_level = orig_lowest;
5614 if (ret < 0)
5615 return ret;
5617 c = path->nodes[level];
5618 slot = path->slots[level];
5619 if (ret == 0)
5620 slot++;
5621 goto next;
5624 if (level == 0)
5625 btrfs_item_key_to_cpu(c, key, slot);
5626 else {
5627 u64 gen = btrfs_node_ptr_generation(c, slot);
5629 if (gen < min_trans) {
5630 slot++;
5631 goto next;
5633 btrfs_node_key_to_cpu(c, key, slot);
5635 return 0;
5637 return 1;
5641 * search the tree again to find a leaf with greater keys
5642 * returns 0 if it found something or 1 if there are no greater leaves.
5643 * returns < 0 on io errors.
5645 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5647 return btrfs_next_old_leaf(root, path, 0);
5650 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5651 u64 time_seq)
5653 int slot;
5654 int level;
5655 struct extent_buffer *c;
5656 struct extent_buffer *next;
5657 struct btrfs_key key;
5658 u32 nritems;
5659 int ret;
5660 int old_spinning = path->leave_spinning;
5661 int next_rw_lock = 0;
5663 nritems = btrfs_header_nritems(path->nodes[0]);
5664 if (nritems == 0)
5665 return 1;
5667 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5668 again:
5669 level = 1;
5670 next = NULL;
5671 next_rw_lock = 0;
5672 btrfs_release_path(path);
5674 path->keep_locks = 1;
5675 path->leave_spinning = 1;
5677 if (time_seq)
5678 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5679 else
5680 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5681 path->keep_locks = 0;
5683 if (ret < 0)
5684 return ret;
5686 nritems = btrfs_header_nritems(path->nodes[0]);
5688 * by releasing the path above we dropped all our locks. A balance
5689 * could have added more items next to the key that used to be
5690 * at the very end of the block. So, check again here and
5691 * advance the path if there are now more items available.
5693 if (nritems > 0 && path->slots[0] < nritems - 1) {
5694 if (ret == 0)
5695 path->slots[0]++;
5696 ret = 0;
5697 goto done;
5700 * So the above check misses one case:
5701 * - after releasing the path above, someone has removed the item that
5702 * used to be at the very end of the block, and balance between leafs
5703 * gets another one with bigger key.offset to replace it.
5705 * This one should be returned as well, or we can get leaf corruption
5706 * later(esp. in __btrfs_drop_extents()).
5708 * And a bit more explanation about this check,
5709 * with ret > 0, the key isn't found, the path points to the slot
5710 * where it should be inserted, so the path->slots[0] item must be the
5711 * bigger one.
5713 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5714 ret = 0;
5715 goto done;
5718 while (level < BTRFS_MAX_LEVEL) {
5719 if (!path->nodes[level]) {
5720 ret = 1;
5721 goto done;
5724 slot = path->slots[level] + 1;
5725 c = path->nodes[level];
5726 if (slot >= btrfs_header_nritems(c)) {
5727 level++;
5728 if (level == BTRFS_MAX_LEVEL) {
5729 ret = 1;
5730 goto done;
5732 continue;
5735 if (next) {
5736 btrfs_tree_unlock_rw(next, next_rw_lock);
5737 free_extent_buffer(next);
5740 next = c;
5741 next_rw_lock = path->locks[level];
5742 ret = read_block_for_search(NULL, root, path, &next, level,
5743 slot, &key, 0);
5744 if (ret == -EAGAIN)
5745 goto again;
5747 if (ret < 0) {
5748 btrfs_release_path(path);
5749 goto done;
5752 if (!path->skip_locking) {
5753 ret = btrfs_try_tree_read_lock(next);
5754 if (!ret && time_seq) {
5756 * If we don't get the lock, we may be racing
5757 * with push_leaf_left, holding that lock while
5758 * itself waiting for the leaf we've currently
5759 * locked. To solve this situation, we give up
5760 * on our lock and cycle.
5762 free_extent_buffer(next);
5763 btrfs_release_path(path);
5764 cond_resched();
5765 goto again;
5767 if (!ret) {
5768 btrfs_set_path_blocking(path);
5769 btrfs_tree_read_lock(next);
5770 btrfs_clear_path_blocking(path, next,
5771 BTRFS_READ_LOCK);
5773 next_rw_lock = BTRFS_READ_LOCK;
5775 break;
5777 path->slots[level] = slot;
5778 while (1) {
5779 level--;
5780 c = path->nodes[level];
5781 if (path->locks[level])
5782 btrfs_tree_unlock_rw(c, path->locks[level]);
5784 free_extent_buffer(c);
5785 path->nodes[level] = next;
5786 path->slots[level] = 0;
5787 if (!path->skip_locking)
5788 path->locks[level] = next_rw_lock;
5789 if (!level)
5790 break;
5792 ret = read_block_for_search(NULL, root, path, &next, level,
5793 0, &key, 0);
5794 if (ret == -EAGAIN)
5795 goto again;
5797 if (ret < 0) {
5798 btrfs_release_path(path);
5799 goto done;
5802 if (!path->skip_locking) {
5803 ret = btrfs_try_tree_read_lock(next);
5804 if (!ret) {
5805 btrfs_set_path_blocking(path);
5806 btrfs_tree_read_lock(next);
5807 btrfs_clear_path_blocking(path, next,
5808 BTRFS_READ_LOCK);
5810 next_rw_lock = BTRFS_READ_LOCK;
5813 ret = 0;
5814 done:
5815 unlock_up(path, 0, 1, 0, NULL);
5816 path->leave_spinning = old_spinning;
5817 if (!old_spinning)
5818 btrfs_set_path_blocking(path);
5820 return ret;
5824 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5825 * searching until it gets past min_objectid or finds an item of 'type'
5827 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5829 int btrfs_previous_item(struct btrfs_root *root,
5830 struct btrfs_path *path, u64 min_objectid,
5831 int type)
5833 struct btrfs_key found_key;
5834 struct extent_buffer *leaf;
5835 u32 nritems;
5836 int ret;
5838 while (1) {
5839 if (path->slots[0] == 0) {
5840 btrfs_set_path_blocking(path);
5841 ret = btrfs_prev_leaf(root, path);
5842 if (ret != 0)
5843 return ret;
5844 } else {
5845 path->slots[0]--;
5847 leaf = path->nodes[0];
5848 nritems = btrfs_header_nritems(leaf);
5849 if (nritems == 0)
5850 return 1;
5851 if (path->slots[0] == nritems)
5852 path->slots[0]--;
5854 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5855 if (found_key.objectid < min_objectid)
5856 break;
5857 if (found_key.type == type)
5858 return 0;
5859 if (found_key.objectid == min_objectid &&
5860 found_key.type < type)
5861 break;
5863 return 1;
5867 * search in extent tree to find a previous Metadata/Data extent item with
5868 * min objecitd.
5870 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5872 int btrfs_previous_extent_item(struct btrfs_root *root,
5873 struct btrfs_path *path, u64 min_objectid)
5875 struct btrfs_key found_key;
5876 struct extent_buffer *leaf;
5877 u32 nritems;
5878 int ret;
5880 while (1) {
5881 if (path->slots[0] == 0) {
5882 btrfs_set_path_blocking(path);
5883 ret = btrfs_prev_leaf(root, path);
5884 if (ret != 0)
5885 return ret;
5886 } else {
5887 path->slots[0]--;
5889 leaf = path->nodes[0];
5890 nritems = btrfs_header_nritems(leaf);
5891 if (nritems == 0)
5892 return 1;
5893 if (path->slots[0] == nritems)
5894 path->slots[0]--;
5896 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5897 if (found_key.objectid < min_objectid)
5898 break;
5899 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5900 found_key.type == BTRFS_METADATA_ITEM_KEY)
5901 return 0;
5902 if (found_key.objectid == min_objectid &&
5903 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5904 break;
5906 return 1;