rtc: rx8025: protect ctrl1 register update by rtc->ops_lock
[linux-2.6/btrfs-unstable.git] / fs / dax.c
blob4fd6b0c5c6b50d29097e016bcd205ab72b758225
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
35 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
37 struct request_queue *q = bdev->bd_queue;
38 long rc = -EIO;
40 dax->addr = (void __pmem *) ERR_PTR(-EIO);
41 if (blk_queue_enter(q, true) != 0)
42 return rc;
44 rc = bdev_direct_access(bdev, dax);
45 if (rc < 0) {
46 dax->addr = (void __pmem *) ERR_PTR(rc);
47 blk_queue_exit(q);
48 return rc;
50 return rc;
53 static void dax_unmap_atomic(struct block_device *bdev,
54 const struct blk_dax_ctl *dax)
56 if (IS_ERR(dax->addr))
57 return;
58 blk_queue_exit(bdev->bd_queue);
62 * dax_clear_blocks() is called from within transaction context from XFS,
63 * and hence this means the stack from this point must follow GFP_NOFS
64 * semantics for all operations.
66 int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
68 struct block_device *bdev = inode->i_sb->s_bdev;
69 struct blk_dax_ctl dax = {
70 .sector = block << (inode->i_blkbits - 9),
71 .size = _size,
74 might_sleep();
75 do {
76 long count, sz;
78 count = dax_map_atomic(bdev, &dax);
79 if (count < 0)
80 return count;
81 sz = min_t(long, count, SZ_128K);
82 clear_pmem(dax.addr, sz);
83 dax.size -= sz;
84 dax.sector += sz / 512;
85 dax_unmap_atomic(bdev, &dax);
86 cond_resched();
87 } while (dax.size);
89 wmb_pmem();
90 return 0;
92 EXPORT_SYMBOL_GPL(dax_clear_blocks);
94 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
95 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
96 loff_t pos, loff_t end)
98 loff_t final = end - pos + first; /* The final byte of the buffer */
100 if (first > 0)
101 clear_pmem(addr, first);
102 if (final < size)
103 clear_pmem(addr + final, size - final);
106 static bool buffer_written(struct buffer_head *bh)
108 return buffer_mapped(bh) && !buffer_unwritten(bh);
112 * When ext4 encounters a hole, it returns without modifying the buffer_head
113 * which means that we can't trust b_size. To cope with this, we set b_state
114 * to 0 before calling get_block and, if any bit is set, we know we can trust
115 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
116 * and would save us time calling get_block repeatedly.
118 static bool buffer_size_valid(struct buffer_head *bh)
120 return bh->b_state != 0;
124 static sector_t to_sector(const struct buffer_head *bh,
125 const struct inode *inode)
127 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
129 return sector;
132 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
133 loff_t start, loff_t end, get_block_t get_block,
134 struct buffer_head *bh)
136 loff_t pos = start, max = start, bh_max = start;
137 bool hole = false, need_wmb = false;
138 struct block_device *bdev = NULL;
139 int rw = iov_iter_rw(iter), rc;
140 long map_len = 0;
141 struct blk_dax_ctl dax = {
142 .addr = (void __pmem *) ERR_PTR(-EIO),
145 if (rw == READ)
146 end = min(end, i_size_read(inode));
148 while (pos < end) {
149 size_t len;
150 if (pos == max) {
151 unsigned blkbits = inode->i_blkbits;
152 long page = pos >> PAGE_SHIFT;
153 sector_t block = page << (PAGE_SHIFT - blkbits);
154 unsigned first = pos - (block << blkbits);
155 long size;
157 if (pos == bh_max) {
158 bh->b_size = PAGE_ALIGN(end - pos);
159 bh->b_state = 0;
160 rc = get_block(inode, block, bh, rw == WRITE);
161 if (rc)
162 break;
163 if (!buffer_size_valid(bh))
164 bh->b_size = 1 << blkbits;
165 bh_max = pos - first + bh->b_size;
166 bdev = bh->b_bdev;
167 } else {
168 unsigned done = bh->b_size -
169 (bh_max - (pos - first));
170 bh->b_blocknr += done >> blkbits;
171 bh->b_size -= done;
174 hole = rw == READ && !buffer_written(bh);
175 if (hole) {
176 size = bh->b_size - first;
177 } else {
178 dax_unmap_atomic(bdev, &dax);
179 dax.sector = to_sector(bh, inode);
180 dax.size = bh->b_size;
181 map_len = dax_map_atomic(bdev, &dax);
182 if (map_len < 0) {
183 rc = map_len;
184 break;
186 if (buffer_unwritten(bh) || buffer_new(bh)) {
187 dax_new_buf(dax.addr, map_len, first,
188 pos, end);
189 need_wmb = true;
191 dax.addr += first;
192 size = map_len - first;
194 max = min(pos + size, end);
197 if (iov_iter_rw(iter) == WRITE) {
198 len = copy_from_iter_pmem(dax.addr, max - pos, iter);
199 need_wmb = true;
200 } else if (!hole)
201 len = copy_to_iter((void __force *) dax.addr, max - pos,
202 iter);
203 else
204 len = iov_iter_zero(max - pos, iter);
206 if (!len) {
207 rc = -EFAULT;
208 break;
211 pos += len;
212 if (!IS_ERR(dax.addr))
213 dax.addr += len;
216 if (need_wmb)
217 wmb_pmem();
218 dax_unmap_atomic(bdev, &dax);
220 return (pos == start) ? rc : pos - start;
224 * dax_do_io - Perform I/O to a DAX file
225 * @iocb: The control block for this I/O
226 * @inode: The file which the I/O is directed at
227 * @iter: The addresses to do I/O from or to
228 * @pos: The file offset where the I/O starts
229 * @get_block: The filesystem method used to translate file offsets to blocks
230 * @end_io: A filesystem callback for I/O completion
231 * @flags: See below
233 * This function uses the same locking scheme as do_blockdev_direct_IO:
234 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
235 * caller for writes. For reads, we take and release the i_mutex ourselves.
236 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
237 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
238 * is in progress.
240 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
241 struct iov_iter *iter, loff_t pos, get_block_t get_block,
242 dio_iodone_t end_io, int flags)
244 struct buffer_head bh;
245 ssize_t retval = -EINVAL;
246 loff_t end = pos + iov_iter_count(iter);
248 memset(&bh, 0, sizeof(bh));
249 bh.b_bdev = inode->i_sb->s_bdev;
251 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
252 struct address_space *mapping = inode->i_mapping;
253 inode_lock(inode);
254 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
255 if (retval) {
256 inode_unlock(inode);
257 goto out;
261 /* Protects against truncate */
262 if (!(flags & DIO_SKIP_DIO_COUNT))
263 inode_dio_begin(inode);
265 retval = dax_io(inode, iter, pos, end, get_block, &bh);
267 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
268 inode_unlock(inode);
270 if ((retval > 0) && end_io)
271 end_io(iocb, pos, retval, bh.b_private);
273 if (!(flags & DIO_SKIP_DIO_COUNT))
274 inode_dio_end(inode);
275 out:
276 return retval;
278 EXPORT_SYMBOL_GPL(dax_do_io);
281 * The user has performed a load from a hole in the file. Allocating
282 * a new page in the file would cause excessive storage usage for
283 * workloads with sparse files. We allocate a page cache page instead.
284 * We'll kick it out of the page cache if it's ever written to,
285 * otherwise it will simply fall out of the page cache under memory
286 * pressure without ever having been dirtied.
288 static int dax_load_hole(struct address_space *mapping, struct page *page,
289 struct vm_fault *vmf)
291 unsigned long size;
292 struct inode *inode = mapping->host;
293 if (!page)
294 page = find_or_create_page(mapping, vmf->pgoff,
295 GFP_KERNEL | __GFP_ZERO);
296 if (!page)
297 return VM_FAULT_OOM;
298 /* Recheck i_size under page lock to avoid truncate race */
299 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
300 if (vmf->pgoff >= size) {
301 unlock_page(page);
302 page_cache_release(page);
303 return VM_FAULT_SIGBUS;
306 vmf->page = page;
307 return VM_FAULT_LOCKED;
310 static int copy_user_bh(struct page *to, struct inode *inode,
311 struct buffer_head *bh, unsigned long vaddr)
313 struct blk_dax_ctl dax = {
314 .sector = to_sector(bh, inode),
315 .size = bh->b_size,
317 struct block_device *bdev = bh->b_bdev;
318 void *vto;
320 if (dax_map_atomic(bdev, &dax) < 0)
321 return PTR_ERR(dax.addr);
322 vto = kmap_atomic(to);
323 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
324 kunmap_atomic(vto);
325 dax_unmap_atomic(bdev, &dax);
326 return 0;
329 #define NO_SECTOR -1
330 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
332 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
333 sector_t sector, bool pmd_entry, bool dirty)
335 struct radix_tree_root *page_tree = &mapping->page_tree;
336 pgoff_t pmd_index = DAX_PMD_INDEX(index);
337 int type, error = 0;
338 void *entry;
340 WARN_ON_ONCE(pmd_entry && !dirty);
341 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
343 spin_lock_irq(&mapping->tree_lock);
345 entry = radix_tree_lookup(page_tree, pmd_index);
346 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
347 index = pmd_index;
348 goto dirty;
351 entry = radix_tree_lookup(page_tree, index);
352 if (entry) {
353 type = RADIX_DAX_TYPE(entry);
354 if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
355 type != RADIX_DAX_PMD)) {
356 error = -EIO;
357 goto unlock;
360 if (!pmd_entry || type == RADIX_DAX_PMD)
361 goto dirty;
364 * We only insert dirty PMD entries into the radix tree. This
365 * means we don't need to worry about removing a dirty PTE
366 * entry and inserting a clean PMD entry, thus reducing the
367 * range we would flush with a follow-up fsync/msync call.
369 radix_tree_delete(&mapping->page_tree, index);
370 mapping->nrexceptional--;
373 if (sector == NO_SECTOR) {
375 * This can happen during correct operation if our pfn_mkwrite
376 * fault raced against a hole punch operation. If this
377 * happens the pte that was hole punched will have been
378 * unmapped and the radix tree entry will have been removed by
379 * the time we are called, but the call will still happen. We
380 * will return all the way up to wp_pfn_shared(), where the
381 * pte_same() check will fail, eventually causing page fault
382 * to be retried by the CPU.
384 goto unlock;
387 error = radix_tree_insert(page_tree, index,
388 RADIX_DAX_ENTRY(sector, pmd_entry));
389 if (error)
390 goto unlock;
392 mapping->nrexceptional++;
393 dirty:
394 if (dirty)
395 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
396 unlock:
397 spin_unlock_irq(&mapping->tree_lock);
398 return error;
401 static int dax_writeback_one(struct block_device *bdev,
402 struct address_space *mapping, pgoff_t index, void *entry)
404 struct radix_tree_root *page_tree = &mapping->page_tree;
405 int type = RADIX_DAX_TYPE(entry);
406 struct radix_tree_node *node;
407 struct blk_dax_ctl dax;
408 void **slot;
409 int ret = 0;
411 spin_lock_irq(&mapping->tree_lock);
413 * Regular page slots are stabilized by the page lock even
414 * without the tree itself locked. These unlocked entries
415 * need verification under the tree lock.
417 if (!__radix_tree_lookup(page_tree, index, &node, &slot))
418 goto unlock;
419 if (*slot != entry)
420 goto unlock;
422 /* another fsync thread may have already written back this entry */
423 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
424 goto unlock;
426 if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
427 ret = -EIO;
428 goto unlock;
431 dax.sector = RADIX_DAX_SECTOR(entry);
432 dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
433 spin_unlock_irq(&mapping->tree_lock);
436 * We cannot hold tree_lock while calling dax_map_atomic() because it
437 * eventually calls cond_resched().
439 ret = dax_map_atomic(bdev, &dax);
440 if (ret < 0)
441 return ret;
443 if (WARN_ON_ONCE(ret < dax.size)) {
444 ret = -EIO;
445 goto unmap;
448 wb_cache_pmem(dax.addr, dax.size);
450 spin_lock_irq(&mapping->tree_lock);
451 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
452 spin_unlock_irq(&mapping->tree_lock);
453 unmap:
454 dax_unmap_atomic(bdev, &dax);
455 return ret;
457 unlock:
458 spin_unlock_irq(&mapping->tree_lock);
459 return ret;
463 * Flush the mapping to the persistent domain within the byte range of [start,
464 * end]. This is required by data integrity operations to ensure file data is
465 * on persistent storage prior to completion of the operation.
467 int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
468 loff_t end)
470 struct inode *inode = mapping->host;
471 struct block_device *bdev = inode->i_sb->s_bdev;
472 pgoff_t start_index, end_index, pmd_index;
473 pgoff_t indices[PAGEVEC_SIZE];
474 struct pagevec pvec;
475 bool done = false;
476 int i, ret = 0;
477 void *entry;
479 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
480 return -EIO;
482 start_index = start >> PAGE_CACHE_SHIFT;
483 end_index = end >> PAGE_CACHE_SHIFT;
484 pmd_index = DAX_PMD_INDEX(start_index);
486 rcu_read_lock();
487 entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
488 rcu_read_unlock();
490 /* see if the start of our range is covered by a PMD entry */
491 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
492 start_index = pmd_index;
494 tag_pages_for_writeback(mapping, start_index, end_index);
496 pagevec_init(&pvec, 0);
497 while (!done) {
498 pvec.nr = find_get_entries_tag(mapping, start_index,
499 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
500 pvec.pages, indices);
502 if (pvec.nr == 0)
503 break;
505 for (i = 0; i < pvec.nr; i++) {
506 if (indices[i] > end_index) {
507 done = true;
508 break;
511 ret = dax_writeback_one(bdev, mapping, indices[i],
512 pvec.pages[i]);
513 if (ret < 0)
514 return ret;
517 wmb_pmem();
518 return 0;
520 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
522 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
523 struct vm_area_struct *vma, struct vm_fault *vmf)
525 unsigned long vaddr = (unsigned long)vmf->virtual_address;
526 struct address_space *mapping = inode->i_mapping;
527 struct block_device *bdev = bh->b_bdev;
528 struct blk_dax_ctl dax = {
529 .sector = to_sector(bh, inode),
530 .size = bh->b_size,
532 pgoff_t size;
533 int error;
535 i_mmap_lock_read(mapping);
538 * Check truncate didn't happen while we were allocating a block.
539 * If it did, this block may or may not be still allocated to the
540 * file. We can't tell the filesystem to free it because we can't
541 * take i_mutex here. In the worst case, the file still has blocks
542 * allocated past the end of the file.
544 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
545 if (unlikely(vmf->pgoff >= size)) {
546 error = -EIO;
547 goto out;
550 if (dax_map_atomic(bdev, &dax) < 0) {
551 error = PTR_ERR(dax.addr);
552 goto out;
555 if (buffer_unwritten(bh) || buffer_new(bh)) {
556 clear_pmem(dax.addr, PAGE_SIZE);
557 wmb_pmem();
559 dax_unmap_atomic(bdev, &dax);
561 error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
562 vmf->flags & FAULT_FLAG_WRITE);
563 if (error)
564 goto out;
566 error = vm_insert_mixed(vma, vaddr, dax.pfn);
568 out:
569 i_mmap_unlock_read(mapping);
571 return error;
575 * __dax_fault - handle a page fault on a DAX file
576 * @vma: The virtual memory area where the fault occurred
577 * @vmf: The description of the fault
578 * @get_block: The filesystem method used to translate file offsets to blocks
579 * @complete_unwritten: The filesystem method used to convert unwritten blocks
580 * to written so the data written to them is exposed. This is required for
581 * required by write faults for filesystems that will return unwritten
582 * extent mappings from @get_block, but it is optional for reads as
583 * dax_insert_mapping() will always zero unwritten blocks. If the fs does
584 * not support unwritten extents, the it should pass NULL.
586 * When a page fault occurs, filesystems may call this helper in their
587 * fault handler for DAX files. __dax_fault() assumes the caller has done all
588 * the necessary locking for the page fault to proceed successfully.
590 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
591 get_block_t get_block, dax_iodone_t complete_unwritten)
593 struct file *file = vma->vm_file;
594 struct address_space *mapping = file->f_mapping;
595 struct inode *inode = mapping->host;
596 struct page *page;
597 struct buffer_head bh;
598 unsigned long vaddr = (unsigned long)vmf->virtual_address;
599 unsigned blkbits = inode->i_blkbits;
600 sector_t block;
601 pgoff_t size;
602 int error;
603 int major = 0;
605 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
606 if (vmf->pgoff >= size)
607 return VM_FAULT_SIGBUS;
609 memset(&bh, 0, sizeof(bh));
610 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
611 bh.b_bdev = inode->i_sb->s_bdev;
612 bh.b_size = PAGE_SIZE;
614 repeat:
615 page = find_get_page(mapping, vmf->pgoff);
616 if (page) {
617 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
618 page_cache_release(page);
619 return VM_FAULT_RETRY;
621 if (unlikely(page->mapping != mapping)) {
622 unlock_page(page);
623 page_cache_release(page);
624 goto repeat;
626 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
627 if (unlikely(vmf->pgoff >= size)) {
629 * We have a struct page covering a hole in the file
630 * from a read fault and we've raced with a truncate
632 error = -EIO;
633 goto unlock_page;
637 error = get_block(inode, block, &bh, 0);
638 if (!error && (bh.b_size < PAGE_SIZE))
639 error = -EIO; /* fs corruption? */
640 if (error)
641 goto unlock_page;
643 if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
644 if (vmf->flags & FAULT_FLAG_WRITE) {
645 error = get_block(inode, block, &bh, 1);
646 count_vm_event(PGMAJFAULT);
647 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
648 major = VM_FAULT_MAJOR;
649 if (!error && (bh.b_size < PAGE_SIZE))
650 error = -EIO;
651 if (error)
652 goto unlock_page;
653 } else {
654 return dax_load_hole(mapping, page, vmf);
658 if (vmf->cow_page) {
659 struct page *new_page = vmf->cow_page;
660 if (buffer_written(&bh))
661 error = copy_user_bh(new_page, inode, &bh, vaddr);
662 else
663 clear_user_highpage(new_page, vaddr);
664 if (error)
665 goto unlock_page;
666 vmf->page = page;
667 if (!page) {
668 i_mmap_lock_read(mapping);
669 /* Check we didn't race with truncate */
670 size = (i_size_read(inode) + PAGE_SIZE - 1) >>
671 PAGE_SHIFT;
672 if (vmf->pgoff >= size) {
673 i_mmap_unlock_read(mapping);
674 error = -EIO;
675 goto out;
678 return VM_FAULT_LOCKED;
681 /* Check we didn't race with a read fault installing a new page */
682 if (!page && major)
683 page = find_lock_page(mapping, vmf->pgoff);
685 if (page) {
686 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
687 PAGE_CACHE_SIZE, 0);
688 delete_from_page_cache(page);
689 unlock_page(page);
690 page_cache_release(page);
691 page = NULL;
695 * If we successfully insert the new mapping over an unwritten extent,
696 * we need to ensure we convert the unwritten extent. If there is an
697 * error inserting the mapping, the filesystem needs to leave it as
698 * unwritten to prevent exposure of the stale underlying data to
699 * userspace, but we still need to call the completion function so
700 * the private resources on the mapping buffer can be released. We
701 * indicate what the callback should do via the uptodate variable, same
702 * as for normal BH based IO completions.
704 error = dax_insert_mapping(inode, &bh, vma, vmf);
705 if (buffer_unwritten(&bh)) {
706 if (complete_unwritten)
707 complete_unwritten(&bh, !error);
708 else
709 WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
712 out:
713 if (error == -ENOMEM)
714 return VM_FAULT_OOM | major;
715 /* -EBUSY is fine, somebody else faulted on the same PTE */
716 if ((error < 0) && (error != -EBUSY))
717 return VM_FAULT_SIGBUS | major;
718 return VM_FAULT_NOPAGE | major;
720 unlock_page:
721 if (page) {
722 unlock_page(page);
723 page_cache_release(page);
725 goto out;
727 EXPORT_SYMBOL(__dax_fault);
730 * dax_fault - handle a page fault on a DAX file
731 * @vma: The virtual memory area where the fault occurred
732 * @vmf: The description of the fault
733 * @get_block: The filesystem method used to translate file offsets to blocks
735 * When a page fault occurs, filesystems may call this helper in their
736 * fault handler for DAX files.
738 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
739 get_block_t get_block, dax_iodone_t complete_unwritten)
741 int result;
742 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
744 if (vmf->flags & FAULT_FLAG_WRITE) {
745 sb_start_pagefault(sb);
746 file_update_time(vma->vm_file);
748 result = __dax_fault(vma, vmf, get_block, complete_unwritten);
749 if (vmf->flags & FAULT_FLAG_WRITE)
750 sb_end_pagefault(sb);
752 return result;
754 EXPORT_SYMBOL_GPL(dax_fault);
756 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
758 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
759 * more often than one might expect in the below function.
761 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
763 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
764 const char *reason, const char *fn)
766 if (bh) {
767 char bname[BDEVNAME_SIZE];
768 bdevname(bh->b_bdev, bname);
769 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
770 "length %zd fallback: %s\n", fn, current->comm,
771 address, bname, bh->b_state, (u64)bh->b_blocknr,
772 bh->b_size, reason);
773 } else {
774 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
775 current->comm, address, reason);
779 #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
781 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
782 pmd_t *pmd, unsigned int flags, get_block_t get_block,
783 dax_iodone_t complete_unwritten)
785 struct file *file = vma->vm_file;
786 struct address_space *mapping = file->f_mapping;
787 struct inode *inode = mapping->host;
788 struct buffer_head bh;
789 unsigned blkbits = inode->i_blkbits;
790 unsigned long pmd_addr = address & PMD_MASK;
791 bool write = flags & FAULT_FLAG_WRITE;
792 struct block_device *bdev;
793 pgoff_t size, pgoff;
794 sector_t block;
795 int error, result = 0;
796 bool alloc = false;
798 /* dax pmd mappings require pfn_t_devmap() */
799 if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
800 return VM_FAULT_FALLBACK;
802 /* Fall back to PTEs if we're going to COW */
803 if (write && !(vma->vm_flags & VM_SHARED)) {
804 split_huge_pmd(vma, pmd, address);
805 dax_pmd_dbg(NULL, address, "cow write");
806 return VM_FAULT_FALLBACK;
808 /* If the PMD would extend outside the VMA */
809 if (pmd_addr < vma->vm_start) {
810 dax_pmd_dbg(NULL, address, "vma start unaligned");
811 return VM_FAULT_FALLBACK;
813 if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
814 dax_pmd_dbg(NULL, address, "vma end unaligned");
815 return VM_FAULT_FALLBACK;
818 pgoff = linear_page_index(vma, pmd_addr);
819 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
820 if (pgoff >= size)
821 return VM_FAULT_SIGBUS;
822 /* If the PMD would cover blocks out of the file */
823 if ((pgoff | PG_PMD_COLOUR) >= size) {
824 dax_pmd_dbg(NULL, address,
825 "offset + huge page size > file size");
826 return VM_FAULT_FALLBACK;
829 memset(&bh, 0, sizeof(bh));
830 bh.b_bdev = inode->i_sb->s_bdev;
831 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
833 bh.b_size = PMD_SIZE;
835 if (get_block(inode, block, &bh, 0) != 0)
836 return VM_FAULT_SIGBUS;
838 if (!buffer_mapped(&bh) && write) {
839 if (get_block(inode, block, &bh, 1) != 0)
840 return VM_FAULT_SIGBUS;
841 alloc = true;
844 bdev = bh.b_bdev;
847 * If the filesystem isn't willing to tell us the length of a hole,
848 * just fall back to PTEs. Calling get_block 512 times in a loop
849 * would be silly.
851 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
852 dax_pmd_dbg(&bh, address, "allocated block too small");
853 return VM_FAULT_FALLBACK;
857 * If we allocated new storage, make sure no process has any
858 * zero pages covering this hole
860 if (alloc) {
861 loff_t lstart = pgoff << PAGE_SHIFT;
862 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
864 truncate_pagecache_range(inode, lstart, lend);
867 i_mmap_lock_read(mapping);
870 * If a truncate happened while we were allocating blocks, we may
871 * leave blocks allocated to the file that are beyond EOF. We can't
872 * take i_mutex here, so just leave them hanging; they'll be freed
873 * when the file is deleted.
875 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
876 if (pgoff >= size) {
877 result = VM_FAULT_SIGBUS;
878 goto out;
880 if ((pgoff | PG_PMD_COLOUR) >= size) {
881 dax_pmd_dbg(&bh, address,
882 "offset + huge page size > file size");
883 goto fallback;
886 if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
887 spinlock_t *ptl;
888 pmd_t entry;
889 struct page *zero_page = get_huge_zero_page();
891 if (unlikely(!zero_page)) {
892 dax_pmd_dbg(&bh, address, "no zero page");
893 goto fallback;
896 ptl = pmd_lock(vma->vm_mm, pmd);
897 if (!pmd_none(*pmd)) {
898 spin_unlock(ptl);
899 dax_pmd_dbg(&bh, address, "pmd already present");
900 goto fallback;
903 dev_dbg(part_to_dev(bdev->bd_part),
904 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
905 __func__, current->comm, address,
906 (unsigned long long) to_sector(&bh, inode));
908 entry = mk_pmd(zero_page, vma->vm_page_prot);
909 entry = pmd_mkhuge(entry);
910 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
911 result = VM_FAULT_NOPAGE;
912 spin_unlock(ptl);
913 } else {
914 struct blk_dax_ctl dax = {
915 .sector = to_sector(&bh, inode),
916 .size = PMD_SIZE,
918 long length = dax_map_atomic(bdev, &dax);
920 if (length < 0) {
921 result = VM_FAULT_SIGBUS;
922 goto out;
924 if (length < PMD_SIZE) {
925 dax_pmd_dbg(&bh, address, "dax-length too small");
926 dax_unmap_atomic(bdev, &dax);
927 goto fallback;
929 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
930 dax_pmd_dbg(&bh, address, "pfn unaligned");
931 dax_unmap_atomic(bdev, &dax);
932 goto fallback;
935 if (!pfn_t_devmap(dax.pfn)) {
936 dax_unmap_atomic(bdev, &dax);
937 dax_pmd_dbg(&bh, address, "pfn not in memmap");
938 goto fallback;
941 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
942 clear_pmem(dax.addr, PMD_SIZE);
943 wmb_pmem();
944 count_vm_event(PGMAJFAULT);
945 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
946 result |= VM_FAULT_MAJOR;
948 dax_unmap_atomic(bdev, &dax);
951 * For PTE faults we insert a radix tree entry for reads, and
952 * leave it clean. Then on the first write we dirty the radix
953 * tree entry via the dax_pfn_mkwrite() path. This sequence
954 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
955 * call into get_block() to translate the pgoff to a sector in
956 * order to be able to create a new radix tree entry.
958 * The PMD path doesn't have an equivalent to
959 * dax_pfn_mkwrite(), though, so for a read followed by a
960 * write we traverse all the way through __dax_pmd_fault()
961 * twice. This means we can just skip inserting a radix tree
962 * entry completely on the initial read and just wait until
963 * the write to insert a dirty entry.
965 if (write) {
966 error = dax_radix_entry(mapping, pgoff, dax.sector,
967 true, true);
968 if (error) {
969 dax_pmd_dbg(&bh, address,
970 "PMD radix insertion failed");
971 goto fallback;
975 dev_dbg(part_to_dev(bdev->bd_part),
976 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
977 __func__, current->comm, address,
978 pfn_t_to_pfn(dax.pfn),
979 (unsigned long long) dax.sector);
980 result |= vmf_insert_pfn_pmd(vma, address, pmd,
981 dax.pfn, write);
984 out:
985 i_mmap_unlock_read(mapping);
987 if (buffer_unwritten(&bh))
988 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
990 return result;
992 fallback:
993 count_vm_event(THP_FAULT_FALLBACK);
994 result = VM_FAULT_FALLBACK;
995 goto out;
997 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1000 * dax_pmd_fault - handle a PMD fault on a DAX file
1001 * @vma: The virtual memory area where the fault occurred
1002 * @vmf: The description of the fault
1003 * @get_block: The filesystem method used to translate file offsets to blocks
1005 * When a page fault occurs, filesystems may call this helper in their
1006 * pmd_fault handler for DAX files.
1008 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1009 pmd_t *pmd, unsigned int flags, get_block_t get_block,
1010 dax_iodone_t complete_unwritten)
1012 int result;
1013 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1015 if (flags & FAULT_FLAG_WRITE) {
1016 sb_start_pagefault(sb);
1017 file_update_time(vma->vm_file);
1019 result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1020 complete_unwritten);
1021 if (flags & FAULT_FLAG_WRITE)
1022 sb_end_pagefault(sb);
1024 return result;
1026 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1027 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1030 * dax_pfn_mkwrite - handle first write to DAX page
1031 * @vma: The virtual memory area where the fault occurred
1032 * @vmf: The description of the fault
1034 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1036 struct file *file = vma->vm_file;
1039 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1040 * RADIX_DAX_PTE entry already exists in the radix tree from a
1041 * previous call to __dax_fault(). We just want to look up that PTE
1042 * entry using vmf->pgoff and make sure the dirty tag is set. This
1043 * saves us from having to make a call to get_block() here to look
1044 * up the sector.
1046 dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
1047 return VM_FAULT_NOPAGE;
1049 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1052 * dax_zero_page_range - zero a range within a page of a DAX file
1053 * @inode: The file being truncated
1054 * @from: The file offset that is being truncated to
1055 * @length: The number of bytes to zero
1056 * @get_block: The filesystem method used to translate file offsets to blocks
1058 * This function can be called by a filesystem when it is zeroing part of a
1059 * page in a DAX file. This is intended for hole-punch operations. If
1060 * you are truncating a file, the helper function dax_truncate_page() may be
1061 * more convenient.
1063 * We work in terms of PAGE_CACHE_SIZE here for commonality with
1064 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1065 * took care of disposing of the unnecessary blocks. Even if the filesystem
1066 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1067 * since the file might be mmapped.
1069 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1070 get_block_t get_block)
1072 struct buffer_head bh;
1073 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1074 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1075 int err;
1077 /* Block boundary? Nothing to do */
1078 if (!length)
1079 return 0;
1080 BUG_ON((offset + length) > PAGE_CACHE_SIZE);
1082 memset(&bh, 0, sizeof(bh));
1083 bh.b_bdev = inode->i_sb->s_bdev;
1084 bh.b_size = PAGE_CACHE_SIZE;
1085 err = get_block(inode, index, &bh, 0);
1086 if (err < 0)
1087 return err;
1088 if (buffer_written(&bh)) {
1089 struct block_device *bdev = bh.b_bdev;
1090 struct blk_dax_ctl dax = {
1091 .sector = to_sector(&bh, inode),
1092 .size = PAGE_CACHE_SIZE,
1095 if (dax_map_atomic(bdev, &dax) < 0)
1096 return PTR_ERR(dax.addr);
1097 clear_pmem(dax.addr + offset, length);
1098 wmb_pmem();
1099 dax_unmap_atomic(bdev, &dax);
1102 return 0;
1104 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1107 * dax_truncate_page - handle a partial page being truncated in a DAX file
1108 * @inode: The file being truncated
1109 * @from: The file offset that is being truncated to
1110 * @get_block: The filesystem method used to translate file offsets to blocks
1112 * Similar to block_truncate_page(), this function can be called by a
1113 * filesystem when it is truncating a DAX file to handle the partial page.
1115 * We work in terms of PAGE_CACHE_SIZE here for commonality with
1116 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1117 * took care of disposing of the unnecessary blocks. Even if the filesystem
1118 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1119 * since the file might be mmapped.
1121 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1123 unsigned length = PAGE_CACHE_ALIGN(from) - from;
1124 return dax_zero_page_range(inode, from, length, get_block);
1126 EXPORT_SYMBOL_GPL(dax_truncate_page);