net: Move functions for configuring traffic classes out of inline headers
[linux-2.6/btrfs-unstable.git] / net / core / dev.c
blob2d54be912136fefe17fa9f42519734aca4929d60
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
144 #include "net-sysfs.h"
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly; /* Taps */
156 static struct list_head offload_base __read_mostly;
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165 * semaphore.
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191 static seqcount_t devnet_rename_seq;
193 static inline void dev_base_seq_inc(struct net *net)
195 while (++net->dev_base_seq == 0);
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 static inline void rps_lock(struct softnet_data *sd)
212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif
217 static inline void rps_unlock(struct softnet_data *sd)
219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
227 struct net *net = dev_net(dev);
229 ASSERT_RTNL();
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
238 dev_base_seq_inc(net);
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
244 static void unlist_netdevice(struct net_device *dev)
246 ASSERT_RTNL();
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
255 dev_base_seq_inc(dev_net(dev));
259 * Our notifier list
262 static RAW_NOTIFIER_HEAD(netdev_chain);
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
272 #ifdef CONFIG_LOCKDEP
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 int i;
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
328 int i;
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 int i;
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 #endif
354 /*******************************************************************************
356 Protocol management and registration routines
358 *******************************************************************************/
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 if (pt->type == htons(ETH_P_ALL))
379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380 else
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
398 void dev_add_pack(struct packet_type *pt)
400 struct list_head *head = ptype_head(pt);
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
406 EXPORT_SYMBOL(dev_add_pack);
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
421 void __dev_remove_pack(struct packet_type *pt)
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
426 spin_lock(&ptype_lock);
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
435 pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
439 EXPORT_SYMBOL(__dev_remove_pack);
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
453 void dev_remove_pack(struct packet_type *pt)
455 __dev_remove_pack(pt);
457 synchronize_net();
459 EXPORT_SYMBOL(dev_remove_pack);
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
474 void dev_add_offload(struct packet_offload *po)
476 struct packet_offload *elem;
478 spin_lock(&offload_lock);
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
483 list_add_rcu(&po->list, elem->list.prev);
484 spin_unlock(&offload_lock);
486 EXPORT_SYMBOL(dev_add_offload);
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
501 static void __dev_remove_offload(struct packet_offload *po)
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
506 spin_lock(&offload_lock);
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
515 pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517 spin_unlock(&offload_lock);
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
532 void dev_remove_offload(struct packet_offload *po)
534 __dev_remove_offload(po);
536 synchronize_net();
538 EXPORT_SYMBOL(dev_remove_offload);
540 /******************************************************************************
542 Device Boot-time Settings Routines
544 *******************************************************************************/
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 struct netdev_boot_setup *s;
561 int i;
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
567 strlcpy(s[i].name, name, IFNAMSIZ);
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
585 int netdev_boot_setup_check(struct net_device *dev)
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 !strcmp(dev->name, s[i].name)) {
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
600 return 0;
602 EXPORT_SYMBOL(netdev_boot_setup_check);
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
615 unsigned long netdev_boot_base(const char *prefix, int unit)
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
621 sprintf(name, "%s%d", prefix, unit);
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
627 if (__dev_get_by_name(&init_net, name))
628 return 1;
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
637 * Saves at boot time configured settings for any netdevice.
639 int __init netdev_boot_setup(char *str)
641 int ints[5];
642 struct ifmap map;
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
663 __setup("netdev=", netdev_boot_setup);
665 /*******************************************************************************
667 Device Interface Subroutines
669 *******************************************************************************/
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
679 int dev_get_iflink(const struct net_device *dev)
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
684 return dev->ifindex;
686 EXPORT_SYMBOL(dev_get_iflink);
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 struct ip_tunnel_info *info;
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715 * __dev_get_by_name - find a device by its name
716 * @net: the applicable net namespace
717 * @name: name to find
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
731 hlist_for_each_entry(dev, head, name_hlist)
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
735 return NULL;
737 EXPORT_SYMBOL(__dev_get_by_name);
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
756 hlist_for_each_entry_rcu(dev, head, name_hlist)
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
760 return NULL;
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
765 * dev_get_by_name - find a device by its name
766 * @net: the applicable net namespace
767 * @name: name to find
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 struct net_device *dev;
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
782 if (dev)
783 dev_hold(dev);
784 rcu_read_unlock();
785 return dev;
787 EXPORT_SYMBOL(dev_get_by_name);
790 * __dev_get_by_index - find a device by its ifindex
791 * @net: the applicable net namespace
792 * @ifindex: index of device
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
806 hlist_for_each_entry(dev, head, index_hlist)
807 if (dev->ifindex == ifindex)
808 return dev;
810 return NULL;
812 EXPORT_SYMBOL(__dev_get_by_index);
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
830 hlist_for_each_entry_rcu(dev, head, index_hlist)
831 if (dev->ifindex == ifindex)
832 return dev;
834 return NULL;
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
840 * dev_get_by_index - find a device by its ifindex
841 * @net: the applicable net namespace
842 * @ifindex: index of device
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 struct net_device *dev;
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
856 if (dev)
857 dev_hold(dev);
858 rcu_read_unlock();
859 return dev;
861 EXPORT_SYMBOL(dev_get_by_index);
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
873 int netdev_get_name(struct net *net, char *name, int ifindex)
875 struct net_device *dev;
876 unsigned int seq;
878 retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
894 return 0;
898 * dev_getbyhwaddr_rcu - find a device by its hardware address
899 * @net: the applicable net namespace
900 * @type: media type of device
901 * @ha: hardware address
903 * Search for an interface by MAC address. Returns NULL if the device
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
906 * The returned device has not had its ref count increased
907 * and the caller must therefore be careful about locking
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
914 struct net_device *dev;
916 for_each_netdev_rcu(net, dev)
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
919 return dev;
921 return NULL;
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 struct net_device *dev;
929 ASSERT_RTNL();
930 for_each_netdev(net, dev)
931 if (dev->type == type)
932 return dev;
934 return NULL;
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 struct net_device *dev, *ret = NULL;
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
949 rcu_read_unlock();
950 return ret;
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955 * __dev_get_by_flags - find any device with given flags
956 * @net: the applicable net namespace
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
960 * Search for any interface with the given flags. Returns NULL if a device
961 * is not found or a pointer to the device. Must be called inside
962 * rtnl_lock(), and result refcount is unchanged.
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
968 struct net_device *dev, *ret;
970 ASSERT_RTNL();
972 ret = NULL;
973 for_each_netdev(net, dev) {
974 if (((dev->flags ^ if_flags) & mask) == 0) {
975 ret = dev;
976 break;
979 return ret;
981 EXPORT_SYMBOL(__dev_get_by_flags);
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
987 * Network device names need to be valid file names to
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
991 bool dev_valid_name(const char *name)
993 if (*name == '\0')
994 return false;
995 if (strlen(name) >= IFNAMSIZ)
996 return false;
997 if (!strcmp(name, ".") || !strcmp(name, ".."))
998 return false;
1000 while (*name) {
1001 if (*name == '/' || *name == ':' || isspace(*name))
1002 return false;
1003 name++;
1005 return true;
1007 EXPORT_SYMBOL(dev_valid_name);
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1012 * @name: name format string
1013 * @buf: scratch buffer and result name string
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 int i = 0;
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
1029 unsigned long *inuse;
1030 struct net_device *d;
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1042 /* Use one page as a bit array of possible slots */
1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 if (!inuse)
1045 return -ENOMEM;
1047 for_each_netdev(net, d) {
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1053 /* avoid cases where sscanf is not exact inverse of printf */
1054 snprintf(buf, IFNAMSIZ, name, i);
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
1065 if (!__dev_get_by_name(net, buf))
1066 return i;
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1072 return -ENFILE;
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1102 EXPORT_SYMBOL(dev_alloc_name);
1104 static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
1108 char buf[IFNAMSIZ];
1109 int ret;
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1117 static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1121 BUG_ON(!net);
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1126 if (strchr(name, '%'))
1127 return dev_alloc_name_ns(net, dev, name);
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
1133 return 0;
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1144 int dev_change_name(struct net_device *dev, const char *newname)
1146 unsigned char old_assign_type;
1147 char oldname[IFNAMSIZ];
1148 int err = 0;
1149 int ret;
1150 struct net *net;
1152 ASSERT_RTNL();
1153 BUG_ON(!dev_net(dev));
1155 net = dev_net(dev);
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1159 write_seqcount_begin(&devnet_rename_seq);
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 write_seqcount_end(&devnet_rename_seq);
1163 return 0;
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1168 err = dev_get_valid_name(net, dev, newname);
1169 if (err < 0) {
1170 write_seqcount_end(&devnet_rename_seq);
1171 return err;
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1180 rollback:
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
1184 dev->name_assign_type = old_assign_type;
1185 write_seqcount_end(&devnet_rename_seq);
1186 return ret;
1189 write_seqcount_end(&devnet_rename_seq);
1191 netdev_adjacent_rename_links(dev, oldname);
1193 write_lock_bh(&dev_base_lock);
1194 hlist_del_rcu(&dev->name_hlist);
1195 write_unlock_bh(&dev_base_lock);
1197 synchronize_rcu();
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 write_unlock_bh(&dev_base_lock);
1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 ret = notifier_to_errno(ret);
1206 if (ret) {
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
1209 err = ret;
1210 write_seqcount_begin(&devnet_rename_seq);
1211 memcpy(dev->name, oldname, IFNAMSIZ);
1212 memcpy(oldname, newname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
1215 goto rollback;
1216 } else {
1217 pr_err("%s: name change rollback failed: %d\n",
1218 dev->name, ret);
1222 return err;
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
1229 * @len: limit of bytes to copy from info
1231 * Set ifalias for a device,
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 char *new_ifalias;
1237 ASSERT_RTNL();
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1242 if (!len) {
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
1245 return 0;
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
1250 return -ENOMEM;
1251 dev->ifalias = new_ifalias;
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1259 * netdev_features_change - device changes features
1260 * @dev: device to cause notification
1262 * Called to indicate a device has changed features.
1264 void netdev_features_change(struct net_device *dev)
1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 EXPORT_SYMBOL(netdev_features_change);
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1278 void netdev_state_change(struct net_device *dev)
1280 if (dev->flags & IFF_UP) {
1281 struct netdev_notifier_change_info change_info;
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289 EXPORT_SYMBOL(netdev_state_change);
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1301 void netdev_notify_peers(struct net_device *dev)
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
1307 EXPORT_SYMBOL(netdev_notify_peers);
1309 static int __dev_open(struct net_device *dev)
1311 const struct net_device_ops *ops = dev->netdev_ops;
1312 int ret;
1314 ASSERT_RTNL();
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1323 netpoll_poll_disable(dev);
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1330 set_bit(__LINK_STATE_START, &dev->state);
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1338 netpoll_poll_enable(dev);
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1343 dev->flags |= IFF_UP;
1344 dev_set_rx_mode(dev);
1345 dev_activate(dev);
1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1349 return ret;
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1364 int dev_open(struct net_device *dev)
1366 int ret;
1368 if (dev->flags & IFF_UP)
1369 return 0;
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1378 return ret;
1380 EXPORT_SYMBOL(dev_open);
1382 static int __dev_close_many(struct list_head *head)
1384 struct net_device *dev;
1386 ASSERT_RTNL();
1387 might_sleep();
1389 list_for_each_entry(dev, head, close_list) {
1390 /* Temporarily disable netpoll until the interface is down */
1391 netpoll_poll_disable(dev);
1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395 clear_bit(__LINK_STATE_START, &dev->state);
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1403 smp_mb__after_atomic(); /* Commit netif_running(). */
1406 dev_deactivate_many(head);
1408 list_for_each_entry(dev, head, close_list) {
1409 const struct net_device_ops *ops = dev->netdev_ops;
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1421 dev->flags &= ~IFF_UP;
1422 netpoll_poll_enable(dev);
1425 return 0;
1428 static int __dev_close(struct net_device *dev)
1430 int retval;
1431 LIST_HEAD(single);
1433 list_add(&dev->close_list, &single);
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
1437 return retval;
1440 int dev_close_many(struct list_head *head, bool unlink)
1442 struct net_device *dev, *tmp;
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
1446 if (!(dev->flags & IFF_UP))
1447 list_del_init(&dev->close_list);
1449 __dev_close_many(head);
1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454 if (unlink)
1455 list_del_init(&dev->close_list);
1458 return 0;
1460 EXPORT_SYMBOL(dev_close_many);
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1471 int dev_close(struct net_device *dev)
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1476 list_add(&dev->close_list, &single);
1477 dev_close_many(&single, true);
1478 list_del(&single);
1480 return 0;
1482 EXPORT_SYMBOL(dev_close);
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1493 void dev_disable_lro(struct net_device *dev)
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
1507 EXPORT_SYMBOL(dev_disable_lro);
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1512 struct netdev_notifier_info info;
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1518 static int dev_boot_phase = 1;
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1529 * When registered all registration and up events are replayed
1530 * to the new notifier to allow device to have a race free
1531 * view of the network device list.
1534 int register_netdevice_notifier(struct notifier_block *nb)
1536 struct net_device *dev;
1537 struct net_device *last;
1538 struct net *net;
1539 int err;
1541 rtnl_lock();
1542 err = raw_notifier_chain_register(&netdev_chain, nb);
1543 if (err)
1544 goto unlock;
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
1561 unlock:
1562 rtnl_unlock();
1563 return err;
1565 rollback:
1566 last = dev;
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
1570 goto outroll;
1572 if (dev->flags & IFF_UP) {
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1581 outroll:
1582 raw_notifier_chain_unregister(&netdev_chain, nb);
1583 goto unlock;
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 struct net_device *dev;
1604 struct net *net;
1605 int err;
1607 rtnl_lock();
1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609 if (err)
1610 goto unlock;
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1622 unlock:
1623 rtnl_unlock();
1624 return err;
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
1650 * @dev: net_device pointer passed unmodified to notifier function
1652 * Call all network notifier blocks. Parameters and return value
1653 * are as for raw_notifier_call_chain().
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 struct netdev_notifier_info info;
1660 return call_netdevice_notifiers_info(val, dev, &info);
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1667 void net_inc_ingress_queue(void)
1669 static_key_slow_inc(&ingress_needed);
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673 void net_dec_ingress_queue(void)
1675 static_key_slow_dec(&ingress_needed);
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1683 void net_inc_egress_queue(void)
1685 static_key_slow_inc(&egress_needed);
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689 void net_dec_egress_queue(void)
1691 static_key_slow_dec(&egress_needed);
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699 * If net_disable_timestamp() is called from irq context, defer the
1700 * static_key_slow_dec() calls.
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1705 void net_enable_timestamp(void)
1707 #ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710 if (deferred) {
1711 while (--deferred)
1712 static_key_slow_dec(&netstamp_needed);
1713 return;
1715 #endif
1716 static_key_slow_inc(&netstamp_needed);
1718 EXPORT_SYMBOL(net_enable_timestamp);
1720 void net_disable_timestamp(void)
1722 #ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1727 #endif
1728 static_key_slow_dec(&netstamp_needed);
1730 EXPORT_SYMBOL(net_disable_timestamp);
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1734 skb->tstamp.tv64 = 0;
1735 if (static_key_false(&netstamp_needed))
1736 __net_timestamp(skb);
1739 #define net_timestamp_check(COND, SKB) \
1740 if (static_key_false(&netstamp_needed)) { \
1741 if ((COND) && !(SKB)->tstamp.tv64) \
1742 __net_timestamp(SKB); \
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 unsigned int len;
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1759 if (skb_is_gso(skb))
1760 return true;
1762 return false;
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1769 unlikely(!is_skb_forwardable(dev, skb))) {
1770 atomic_long_inc(&dev->rx_dropped);
1771 kfree_skb(skb);
1772 return NET_RX_DROP;
1775 skb_scrub_packet(skb, true);
1776 skb->priority = 0;
1777 skb->protocol = eth_type_trans(skb, dev);
1778 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780 return 0;
1782 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1785 * dev_forward_skb - loopback an skb to another netif
1787 * @dev: destination network device
1788 * @skb: buffer to forward
1790 * return values:
1791 * NET_RX_SUCCESS (no congestion)
1792 * NET_RX_DROP (packet was dropped, but freed)
1794 * dev_forward_skb can be used for injecting an skb from the
1795 * start_xmit function of one device into the receive queue
1796 * of another device.
1798 * The receiving device may be in another namespace, so
1799 * we have to clear all information in the skb that could
1800 * impact namespace isolation.
1802 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808 static inline int deliver_skb(struct sk_buff *skb,
1809 struct packet_type *pt_prev,
1810 struct net_device *orig_dev)
1812 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1813 return -ENOMEM;
1814 atomic_inc(&skb->users);
1815 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1818 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1819 struct packet_type **pt,
1820 struct net_device *orig_dev,
1821 __be16 type,
1822 struct list_head *ptype_list)
1824 struct packet_type *ptype, *pt_prev = *pt;
1826 list_for_each_entry_rcu(ptype, ptype_list, list) {
1827 if (ptype->type != type)
1828 continue;
1829 if (pt_prev)
1830 deliver_skb(skb, pt_prev, orig_dev);
1831 pt_prev = ptype;
1833 *pt = pt_prev;
1836 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 if (!ptype->af_packet_priv || !skb->sk)
1839 return false;
1841 if (ptype->id_match)
1842 return ptype->id_match(ptype, skb->sk);
1843 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1844 return true;
1846 return false;
1850 * Support routine. Sends outgoing frames to any network
1851 * taps currently in use.
1854 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 struct packet_type *ptype;
1857 struct sk_buff *skb2 = NULL;
1858 struct packet_type *pt_prev = NULL;
1859 struct list_head *ptype_list = &ptype_all;
1861 rcu_read_lock();
1862 again:
1863 list_for_each_entry_rcu(ptype, ptype_list, list) {
1864 /* Never send packets back to the socket
1865 * they originated from - MvS (miquels@drinkel.ow.org)
1867 if (skb_loop_sk(ptype, skb))
1868 continue;
1870 if (pt_prev) {
1871 deliver_skb(skb2, pt_prev, skb->dev);
1872 pt_prev = ptype;
1873 continue;
1876 /* need to clone skb, done only once */
1877 skb2 = skb_clone(skb, GFP_ATOMIC);
1878 if (!skb2)
1879 goto out_unlock;
1881 net_timestamp_set(skb2);
1883 /* skb->nh should be correctly
1884 * set by sender, so that the second statement is
1885 * just protection against buggy protocols.
1887 skb_reset_mac_header(skb2);
1889 if (skb_network_header(skb2) < skb2->data ||
1890 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1891 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1892 ntohs(skb2->protocol),
1893 dev->name);
1894 skb_reset_network_header(skb2);
1897 skb2->transport_header = skb2->network_header;
1898 skb2->pkt_type = PACKET_OUTGOING;
1899 pt_prev = ptype;
1902 if (ptype_list == &ptype_all) {
1903 ptype_list = &dev->ptype_all;
1904 goto again;
1906 out_unlock:
1907 if (pt_prev)
1908 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1909 rcu_read_unlock();
1911 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1914 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1915 * @dev: Network device
1916 * @txq: number of queues available
1918 * If real_num_tx_queues is changed the tc mappings may no longer be
1919 * valid. To resolve this verify the tc mapping remains valid and if
1920 * not NULL the mapping. With no priorities mapping to this
1921 * offset/count pair it will no longer be used. In the worst case TC0
1922 * is invalid nothing can be done so disable priority mappings. If is
1923 * expected that drivers will fix this mapping if they can before
1924 * calling netif_set_real_num_tx_queues.
1926 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 int i;
1929 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931 /* If TC0 is invalidated disable TC mapping */
1932 if (tc->offset + tc->count > txq) {
1933 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1934 dev->num_tc = 0;
1935 return;
1938 /* Invalidated prio to tc mappings set to TC0 */
1939 for (i = 1; i < TC_BITMASK + 1; i++) {
1940 int q = netdev_get_prio_tc_map(dev, i);
1942 tc = &dev->tc_to_txq[q];
1943 if (tc->offset + tc->count > txq) {
1944 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1945 i, q);
1946 netdev_set_prio_tc_map(dev, i, 0);
1951 #ifdef CONFIG_XPS
1952 static DEFINE_MUTEX(xps_map_mutex);
1953 #define xmap_dereference(P) \
1954 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1957 int cpu, u16 index)
1959 struct xps_map *map = NULL;
1960 int pos;
1962 if (dev_maps)
1963 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965 for (pos = 0; map && pos < map->len; pos++) {
1966 if (map->queues[pos] == index) {
1967 if (map->len > 1) {
1968 map->queues[pos] = map->queues[--map->len];
1969 } else {
1970 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1971 kfree_rcu(map, rcu);
1972 map = NULL;
1974 break;
1978 return map;
1981 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 struct xps_dev_maps *dev_maps;
1984 int cpu, i;
1985 bool active = false;
1987 mutex_lock(&xps_map_mutex);
1988 dev_maps = xmap_dereference(dev->xps_maps);
1990 if (!dev_maps)
1991 goto out_no_maps;
1993 for_each_possible_cpu(cpu) {
1994 for (i = index; i < dev->num_tx_queues; i++) {
1995 if (!remove_xps_queue(dev_maps, cpu, i))
1996 break;
1998 if (i == dev->num_tx_queues)
1999 active = true;
2002 if (!active) {
2003 RCU_INIT_POINTER(dev->xps_maps, NULL);
2004 kfree_rcu(dev_maps, rcu);
2007 for (i = index; i < dev->num_tx_queues; i++)
2008 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2009 NUMA_NO_NODE);
2011 out_no_maps:
2012 mutex_unlock(&xps_map_mutex);
2015 static struct xps_map *expand_xps_map(struct xps_map *map,
2016 int cpu, u16 index)
2018 struct xps_map *new_map;
2019 int alloc_len = XPS_MIN_MAP_ALLOC;
2020 int i, pos;
2022 for (pos = 0; map && pos < map->len; pos++) {
2023 if (map->queues[pos] != index)
2024 continue;
2025 return map;
2028 /* Need to add queue to this CPU's existing map */
2029 if (map) {
2030 if (pos < map->alloc_len)
2031 return map;
2033 alloc_len = map->alloc_len * 2;
2036 /* Need to allocate new map to store queue on this CPU's map */
2037 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2038 cpu_to_node(cpu));
2039 if (!new_map)
2040 return NULL;
2042 for (i = 0; i < pos; i++)
2043 new_map->queues[i] = map->queues[i];
2044 new_map->alloc_len = alloc_len;
2045 new_map->len = pos;
2047 return new_map;
2050 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2051 u16 index)
2053 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2054 struct xps_map *map, *new_map;
2055 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2056 int cpu, numa_node_id = -2;
2057 bool active = false;
2059 mutex_lock(&xps_map_mutex);
2061 dev_maps = xmap_dereference(dev->xps_maps);
2063 /* allocate memory for queue storage */
2064 for_each_online_cpu(cpu) {
2065 if (!cpumask_test_cpu(cpu, mask))
2066 continue;
2068 if (!new_dev_maps)
2069 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2070 if (!new_dev_maps) {
2071 mutex_unlock(&xps_map_mutex);
2072 return -ENOMEM;
2075 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2076 NULL;
2078 map = expand_xps_map(map, cpu, index);
2079 if (!map)
2080 goto error;
2082 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2085 if (!new_dev_maps)
2086 goto out_no_new_maps;
2088 for_each_possible_cpu(cpu) {
2089 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2090 /* add queue to CPU maps */
2091 int pos = 0;
2093 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2094 while ((pos < map->len) && (map->queues[pos] != index))
2095 pos++;
2097 if (pos == map->len)
2098 map->queues[map->len++] = index;
2099 #ifdef CONFIG_NUMA
2100 if (numa_node_id == -2)
2101 numa_node_id = cpu_to_node(cpu);
2102 else if (numa_node_id != cpu_to_node(cpu))
2103 numa_node_id = -1;
2104 #endif
2105 } else if (dev_maps) {
2106 /* fill in the new device map from the old device map */
2107 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2108 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2113 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115 /* Cleanup old maps */
2116 if (dev_maps) {
2117 for_each_possible_cpu(cpu) {
2118 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2119 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2120 if (map && map != new_map)
2121 kfree_rcu(map, rcu);
2124 kfree_rcu(dev_maps, rcu);
2127 dev_maps = new_dev_maps;
2128 active = true;
2130 out_no_new_maps:
2131 /* update Tx queue numa node */
2132 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2133 (numa_node_id >= 0) ? numa_node_id :
2134 NUMA_NO_NODE);
2136 if (!dev_maps)
2137 goto out_no_maps;
2139 /* removes queue from unused CPUs */
2140 for_each_possible_cpu(cpu) {
2141 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2142 continue;
2144 if (remove_xps_queue(dev_maps, cpu, index))
2145 active = true;
2148 /* free map if not active */
2149 if (!active) {
2150 RCU_INIT_POINTER(dev->xps_maps, NULL);
2151 kfree_rcu(dev_maps, rcu);
2154 out_no_maps:
2155 mutex_unlock(&xps_map_mutex);
2157 return 0;
2158 error:
2159 /* remove any maps that we added */
2160 for_each_possible_cpu(cpu) {
2161 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2162 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2163 NULL;
2164 if (new_map && new_map != map)
2165 kfree(new_map);
2168 mutex_unlock(&xps_map_mutex);
2170 kfree(new_dev_maps);
2171 return -ENOMEM;
2173 EXPORT_SYMBOL(netif_set_xps_queue);
2175 #endif
2176 void netdev_reset_tc(struct net_device *dev)
2178 dev->num_tc = 0;
2179 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2180 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2182 EXPORT_SYMBOL(netdev_reset_tc);
2184 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2186 if (tc >= dev->num_tc)
2187 return -EINVAL;
2189 dev->tc_to_txq[tc].count = count;
2190 dev->tc_to_txq[tc].offset = offset;
2191 return 0;
2193 EXPORT_SYMBOL(netdev_set_tc_queue);
2195 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2197 if (num_tc > TC_MAX_QUEUE)
2198 return -EINVAL;
2200 dev->num_tc = num_tc;
2201 return 0;
2203 EXPORT_SYMBOL(netdev_set_num_tc);
2206 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2207 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2209 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2211 int rc;
2213 if (txq < 1 || txq > dev->num_tx_queues)
2214 return -EINVAL;
2216 if (dev->reg_state == NETREG_REGISTERED ||
2217 dev->reg_state == NETREG_UNREGISTERING) {
2218 ASSERT_RTNL();
2220 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2221 txq);
2222 if (rc)
2223 return rc;
2225 if (dev->num_tc)
2226 netif_setup_tc(dev, txq);
2228 if (txq < dev->real_num_tx_queues) {
2229 qdisc_reset_all_tx_gt(dev, txq);
2230 #ifdef CONFIG_XPS
2231 netif_reset_xps_queues_gt(dev, txq);
2232 #endif
2236 dev->real_num_tx_queues = txq;
2237 return 0;
2239 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2241 #ifdef CONFIG_SYSFS
2243 * netif_set_real_num_rx_queues - set actual number of RX queues used
2244 * @dev: Network device
2245 * @rxq: Actual number of RX queues
2247 * This must be called either with the rtnl_lock held or before
2248 * registration of the net device. Returns 0 on success, or a
2249 * negative error code. If called before registration, it always
2250 * succeeds.
2252 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2254 int rc;
2256 if (rxq < 1 || rxq > dev->num_rx_queues)
2257 return -EINVAL;
2259 if (dev->reg_state == NETREG_REGISTERED) {
2260 ASSERT_RTNL();
2262 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2263 rxq);
2264 if (rc)
2265 return rc;
2268 dev->real_num_rx_queues = rxq;
2269 return 0;
2271 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2272 #endif
2275 * netif_get_num_default_rss_queues - default number of RSS queues
2277 * This routine should set an upper limit on the number of RSS queues
2278 * used by default by multiqueue devices.
2280 int netif_get_num_default_rss_queues(void)
2282 return is_kdump_kernel() ?
2283 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2285 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2287 static void __netif_reschedule(struct Qdisc *q)
2289 struct softnet_data *sd;
2290 unsigned long flags;
2292 local_irq_save(flags);
2293 sd = this_cpu_ptr(&softnet_data);
2294 q->next_sched = NULL;
2295 *sd->output_queue_tailp = q;
2296 sd->output_queue_tailp = &q->next_sched;
2297 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2298 local_irq_restore(flags);
2301 void __netif_schedule(struct Qdisc *q)
2303 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2304 __netif_reschedule(q);
2306 EXPORT_SYMBOL(__netif_schedule);
2308 struct dev_kfree_skb_cb {
2309 enum skb_free_reason reason;
2312 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2314 return (struct dev_kfree_skb_cb *)skb->cb;
2317 void netif_schedule_queue(struct netdev_queue *txq)
2319 rcu_read_lock();
2320 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2321 struct Qdisc *q = rcu_dereference(txq->qdisc);
2323 __netif_schedule(q);
2325 rcu_read_unlock();
2327 EXPORT_SYMBOL(netif_schedule_queue);
2330 * netif_wake_subqueue - allow sending packets on subqueue
2331 * @dev: network device
2332 * @queue_index: sub queue index
2334 * Resume individual transmit queue of a device with multiple transmit queues.
2336 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2338 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2340 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2341 struct Qdisc *q;
2343 rcu_read_lock();
2344 q = rcu_dereference(txq->qdisc);
2345 __netif_schedule(q);
2346 rcu_read_unlock();
2349 EXPORT_SYMBOL(netif_wake_subqueue);
2351 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2353 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2354 struct Qdisc *q;
2356 rcu_read_lock();
2357 q = rcu_dereference(dev_queue->qdisc);
2358 __netif_schedule(q);
2359 rcu_read_unlock();
2362 EXPORT_SYMBOL(netif_tx_wake_queue);
2364 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2366 unsigned long flags;
2368 if (likely(atomic_read(&skb->users) == 1)) {
2369 smp_rmb();
2370 atomic_set(&skb->users, 0);
2371 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2372 return;
2374 get_kfree_skb_cb(skb)->reason = reason;
2375 local_irq_save(flags);
2376 skb->next = __this_cpu_read(softnet_data.completion_queue);
2377 __this_cpu_write(softnet_data.completion_queue, skb);
2378 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2379 local_irq_restore(flags);
2381 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2383 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2385 if (in_irq() || irqs_disabled())
2386 __dev_kfree_skb_irq(skb, reason);
2387 else
2388 dev_kfree_skb(skb);
2390 EXPORT_SYMBOL(__dev_kfree_skb_any);
2394 * netif_device_detach - mark device as removed
2395 * @dev: network device
2397 * Mark device as removed from system and therefore no longer available.
2399 void netif_device_detach(struct net_device *dev)
2401 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2402 netif_running(dev)) {
2403 netif_tx_stop_all_queues(dev);
2406 EXPORT_SYMBOL(netif_device_detach);
2409 * netif_device_attach - mark device as attached
2410 * @dev: network device
2412 * Mark device as attached from system and restart if needed.
2414 void netif_device_attach(struct net_device *dev)
2416 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2417 netif_running(dev)) {
2418 netif_tx_wake_all_queues(dev);
2419 __netdev_watchdog_up(dev);
2422 EXPORT_SYMBOL(netif_device_attach);
2425 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2426 * to be used as a distribution range.
2428 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2429 unsigned int num_tx_queues)
2431 u32 hash;
2432 u16 qoffset = 0;
2433 u16 qcount = num_tx_queues;
2435 if (skb_rx_queue_recorded(skb)) {
2436 hash = skb_get_rx_queue(skb);
2437 while (unlikely(hash >= num_tx_queues))
2438 hash -= num_tx_queues;
2439 return hash;
2442 if (dev->num_tc) {
2443 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2444 qoffset = dev->tc_to_txq[tc].offset;
2445 qcount = dev->tc_to_txq[tc].count;
2448 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2450 EXPORT_SYMBOL(__skb_tx_hash);
2452 static void skb_warn_bad_offload(const struct sk_buff *skb)
2454 static const netdev_features_t null_features;
2455 struct net_device *dev = skb->dev;
2456 const char *name = "";
2458 if (!net_ratelimit())
2459 return;
2461 if (dev) {
2462 if (dev->dev.parent)
2463 name = dev_driver_string(dev->dev.parent);
2464 else
2465 name = netdev_name(dev);
2467 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2468 "gso_type=%d ip_summed=%d\n",
2469 name, dev ? &dev->features : &null_features,
2470 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2471 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2472 skb_shinfo(skb)->gso_type, skb->ip_summed);
2476 * Invalidate hardware checksum when packet is to be mangled, and
2477 * complete checksum manually on outgoing path.
2479 int skb_checksum_help(struct sk_buff *skb)
2481 __wsum csum;
2482 int ret = 0, offset;
2484 if (skb->ip_summed == CHECKSUM_COMPLETE)
2485 goto out_set_summed;
2487 if (unlikely(skb_shinfo(skb)->gso_size)) {
2488 skb_warn_bad_offload(skb);
2489 return -EINVAL;
2492 /* Before computing a checksum, we should make sure no frag could
2493 * be modified by an external entity : checksum could be wrong.
2495 if (skb_has_shared_frag(skb)) {
2496 ret = __skb_linearize(skb);
2497 if (ret)
2498 goto out;
2501 offset = skb_checksum_start_offset(skb);
2502 BUG_ON(offset >= skb_headlen(skb));
2503 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2505 offset += skb->csum_offset;
2506 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2508 if (skb_cloned(skb) &&
2509 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2510 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2511 if (ret)
2512 goto out;
2515 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2516 out_set_summed:
2517 skb->ip_summed = CHECKSUM_NONE;
2518 out:
2519 return ret;
2521 EXPORT_SYMBOL(skb_checksum_help);
2523 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2525 __be16 type = skb->protocol;
2527 /* Tunnel gso handlers can set protocol to ethernet. */
2528 if (type == htons(ETH_P_TEB)) {
2529 struct ethhdr *eth;
2531 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2532 return 0;
2534 eth = (struct ethhdr *)skb_mac_header(skb);
2535 type = eth->h_proto;
2538 return __vlan_get_protocol(skb, type, depth);
2542 * skb_mac_gso_segment - mac layer segmentation handler.
2543 * @skb: buffer to segment
2544 * @features: features for the output path (see dev->features)
2546 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2547 netdev_features_t features)
2549 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2550 struct packet_offload *ptype;
2551 int vlan_depth = skb->mac_len;
2552 __be16 type = skb_network_protocol(skb, &vlan_depth);
2554 if (unlikely(!type))
2555 return ERR_PTR(-EINVAL);
2557 __skb_pull(skb, vlan_depth);
2559 rcu_read_lock();
2560 list_for_each_entry_rcu(ptype, &offload_base, list) {
2561 if (ptype->type == type && ptype->callbacks.gso_segment) {
2562 segs = ptype->callbacks.gso_segment(skb, features);
2563 break;
2566 rcu_read_unlock();
2568 __skb_push(skb, skb->data - skb_mac_header(skb));
2570 return segs;
2572 EXPORT_SYMBOL(skb_mac_gso_segment);
2575 /* openvswitch calls this on rx path, so we need a different check.
2577 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2579 if (tx_path)
2580 return skb->ip_summed != CHECKSUM_PARTIAL;
2581 else
2582 return skb->ip_summed == CHECKSUM_NONE;
2586 * __skb_gso_segment - Perform segmentation on skb.
2587 * @skb: buffer to segment
2588 * @features: features for the output path (see dev->features)
2589 * @tx_path: whether it is called in TX path
2591 * This function segments the given skb and returns a list of segments.
2593 * It may return NULL if the skb requires no segmentation. This is
2594 * only possible when GSO is used for verifying header integrity.
2596 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2598 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2599 netdev_features_t features, bool tx_path)
2601 if (unlikely(skb_needs_check(skb, tx_path))) {
2602 int err;
2604 skb_warn_bad_offload(skb);
2606 err = skb_cow_head(skb, 0);
2607 if (err < 0)
2608 return ERR_PTR(err);
2611 /* Only report GSO partial support if it will enable us to
2612 * support segmentation on this frame without needing additional
2613 * work.
2615 if (features & NETIF_F_GSO_PARTIAL) {
2616 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2617 struct net_device *dev = skb->dev;
2619 partial_features |= dev->features & dev->gso_partial_features;
2620 if (!skb_gso_ok(skb, features | partial_features))
2621 features &= ~NETIF_F_GSO_PARTIAL;
2624 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2625 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2627 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2628 SKB_GSO_CB(skb)->encap_level = 0;
2630 skb_reset_mac_header(skb);
2631 skb_reset_mac_len(skb);
2633 return skb_mac_gso_segment(skb, features);
2635 EXPORT_SYMBOL(__skb_gso_segment);
2637 /* Take action when hardware reception checksum errors are detected. */
2638 #ifdef CONFIG_BUG
2639 void netdev_rx_csum_fault(struct net_device *dev)
2641 if (net_ratelimit()) {
2642 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2643 dump_stack();
2646 EXPORT_SYMBOL(netdev_rx_csum_fault);
2647 #endif
2649 /* Actually, we should eliminate this check as soon as we know, that:
2650 * 1. IOMMU is present and allows to map all the memory.
2651 * 2. No high memory really exists on this machine.
2654 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2656 #ifdef CONFIG_HIGHMEM
2657 int i;
2658 if (!(dev->features & NETIF_F_HIGHDMA)) {
2659 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2660 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2661 if (PageHighMem(skb_frag_page(frag)))
2662 return 1;
2666 if (PCI_DMA_BUS_IS_PHYS) {
2667 struct device *pdev = dev->dev.parent;
2669 if (!pdev)
2670 return 0;
2671 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2672 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2673 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2674 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2675 return 1;
2678 #endif
2679 return 0;
2682 /* If MPLS offload request, verify we are testing hardware MPLS features
2683 * instead of standard features for the netdev.
2685 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2686 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2687 netdev_features_t features,
2688 __be16 type)
2690 if (eth_p_mpls(type))
2691 features &= skb->dev->mpls_features;
2693 return features;
2695 #else
2696 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2697 netdev_features_t features,
2698 __be16 type)
2700 return features;
2702 #endif
2704 static netdev_features_t harmonize_features(struct sk_buff *skb,
2705 netdev_features_t features)
2707 int tmp;
2708 __be16 type;
2710 type = skb_network_protocol(skb, &tmp);
2711 features = net_mpls_features(skb, features, type);
2713 if (skb->ip_summed != CHECKSUM_NONE &&
2714 !can_checksum_protocol(features, type)) {
2715 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2716 } else if (illegal_highdma(skb->dev, skb)) {
2717 features &= ~NETIF_F_SG;
2720 return features;
2723 netdev_features_t passthru_features_check(struct sk_buff *skb,
2724 struct net_device *dev,
2725 netdev_features_t features)
2727 return features;
2729 EXPORT_SYMBOL(passthru_features_check);
2731 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2732 struct net_device *dev,
2733 netdev_features_t features)
2735 return vlan_features_check(skb, features);
2738 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2739 struct net_device *dev,
2740 netdev_features_t features)
2742 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2744 if (gso_segs > dev->gso_max_segs)
2745 return features & ~NETIF_F_GSO_MASK;
2747 /* Support for GSO partial features requires software
2748 * intervention before we can actually process the packets
2749 * so we need to strip support for any partial features now
2750 * and we can pull them back in after we have partially
2751 * segmented the frame.
2753 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2754 features &= ~dev->gso_partial_features;
2756 /* Make sure to clear the IPv4 ID mangling feature if the
2757 * IPv4 header has the potential to be fragmented.
2759 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2760 struct iphdr *iph = skb->encapsulation ?
2761 inner_ip_hdr(skb) : ip_hdr(skb);
2763 if (!(iph->frag_off & htons(IP_DF)))
2764 features &= ~NETIF_F_TSO_MANGLEID;
2767 return features;
2770 netdev_features_t netif_skb_features(struct sk_buff *skb)
2772 struct net_device *dev = skb->dev;
2773 netdev_features_t features = dev->features;
2775 if (skb_is_gso(skb))
2776 features = gso_features_check(skb, dev, features);
2778 /* If encapsulation offload request, verify we are testing
2779 * hardware encapsulation features instead of standard
2780 * features for the netdev
2782 if (skb->encapsulation)
2783 features &= dev->hw_enc_features;
2785 if (skb_vlan_tagged(skb))
2786 features = netdev_intersect_features(features,
2787 dev->vlan_features |
2788 NETIF_F_HW_VLAN_CTAG_TX |
2789 NETIF_F_HW_VLAN_STAG_TX);
2791 if (dev->netdev_ops->ndo_features_check)
2792 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2793 features);
2794 else
2795 features &= dflt_features_check(skb, dev, features);
2797 return harmonize_features(skb, features);
2799 EXPORT_SYMBOL(netif_skb_features);
2801 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2802 struct netdev_queue *txq, bool more)
2804 unsigned int len;
2805 int rc;
2807 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2808 dev_queue_xmit_nit(skb, dev);
2810 len = skb->len;
2811 trace_net_dev_start_xmit(skb, dev);
2812 rc = netdev_start_xmit(skb, dev, txq, more);
2813 trace_net_dev_xmit(skb, rc, dev, len);
2815 return rc;
2818 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2819 struct netdev_queue *txq, int *ret)
2821 struct sk_buff *skb = first;
2822 int rc = NETDEV_TX_OK;
2824 while (skb) {
2825 struct sk_buff *next = skb->next;
2827 skb->next = NULL;
2828 rc = xmit_one(skb, dev, txq, next != NULL);
2829 if (unlikely(!dev_xmit_complete(rc))) {
2830 skb->next = next;
2831 goto out;
2834 skb = next;
2835 if (netif_xmit_stopped(txq) && skb) {
2836 rc = NETDEV_TX_BUSY;
2837 break;
2841 out:
2842 *ret = rc;
2843 return skb;
2846 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2847 netdev_features_t features)
2849 if (skb_vlan_tag_present(skb) &&
2850 !vlan_hw_offload_capable(features, skb->vlan_proto))
2851 skb = __vlan_hwaccel_push_inside(skb);
2852 return skb;
2855 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2857 netdev_features_t features;
2859 features = netif_skb_features(skb);
2860 skb = validate_xmit_vlan(skb, features);
2861 if (unlikely(!skb))
2862 goto out_null;
2864 if (netif_needs_gso(skb, features)) {
2865 struct sk_buff *segs;
2867 segs = skb_gso_segment(skb, features);
2868 if (IS_ERR(segs)) {
2869 goto out_kfree_skb;
2870 } else if (segs) {
2871 consume_skb(skb);
2872 skb = segs;
2874 } else {
2875 if (skb_needs_linearize(skb, features) &&
2876 __skb_linearize(skb))
2877 goto out_kfree_skb;
2879 /* If packet is not checksummed and device does not
2880 * support checksumming for this protocol, complete
2881 * checksumming here.
2883 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2884 if (skb->encapsulation)
2885 skb_set_inner_transport_header(skb,
2886 skb_checksum_start_offset(skb));
2887 else
2888 skb_set_transport_header(skb,
2889 skb_checksum_start_offset(skb));
2890 if (!(features & NETIF_F_CSUM_MASK) &&
2891 skb_checksum_help(skb))
2892 goto out_kfree_skb;
2896 return skb;
2898 out_kfree_skb:
2899 kfree_skb(skb);
2900 out_null:
2901 atomic_long_inc(&dev->tx_dropped);
2902 return NULL;
2905 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2907 struct sk_buff *next, *head = NULL, *tail;
2909 for (; skb != NULL; skb = next) {
2910 next = skb->next;
2911 skb->next = NULL;
2913 /* in case skb wont be segmented, point to itself */
2914 skb->prev = skb;
2916 skb = validate_xmit_skb(skb, dev);
2917 if (!skb)
2918 continue;
2920 if (!head)
2921 head = skb;
2922 else
2923 tail->next = skb;
2924 /* If skb was segmented, skb->prev points to
2925 * the last segment. If not, it still contains skb.
2927 tail = skb->prev;
2929 return head;
2931 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
2933 static void qdisc_pkt_len_init(struct sk_buff *skb)
2935 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2937 qdisc_skb_cb(skb)->pkt_len = skb->len;
2939 /* To get more precise estimation of bytes sent on wire,
2940 * we add to pkt_len the headers size of all segments
2942 if (shinfo->gso_size) {
2943 unsigned int hdr_len;
2944 u16 gso_segs = shinfo->gso_segs;
2946 /* mac layer + network layer */
2947 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2949 /* + transport layer */
2950 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2951 hdr_len += tcp_hdrlen(skb);
2952 else
2953 hdr_len += sizeof(struct udphdr);
2955 if (shinfo->gso_type & SKB_GSO_DODGY)
2956 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2957 shinfo->gso_size);
2959 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2963 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2964 struct net_device *dev,
2965 struct netdev_queue *txq)
2967 spinlock_t *root_lock = qdisc_lock(q);
2968 struct sk_buff *to_free = NULL;
2969 bool contended;
2970 int rc;
2972 qdisc_calculate_pkt_len(skb, q);
2974 * Heuristic to force contended enqueues to serialize on a
2975 * separate lock before trying to get qdisc main lock.
2976 * This permits qdisc->running owner to get the lock more
2977 * often and dequeue packets faster.
2979 contended = qdisc_is_running(q);
2980 if (unlikely(contended))
2981 spin_lock(&q->busylock);
2983 spin_lock(root_lock);
2984 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2985 __qdisc_drop(skb, &to_free);
2986 rc = NET_XMIT_DROP;
2987 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2988 qdisc_run_begin(q)) {
2990 * This is a work-conserving queue; there are no old skbs
2991 * waiting to be sent out; and the qdisc is not running -
2992 * xmit the skb directly.
2995 qdisc_bstats_update(q, skb);
2997 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2998 if (unlikely(contended)) {
2999 spin_unlock(&q->busylock);
3000 contended = false;
3002 __qdisc_run(q);
3003 } else
3004 qdisc_run_end(q);
3006 rc = NET_XMIT_SUCCESS;
3007 } else {
3008 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3009 if (qdisc_run_begin(q)) {
3010 if (unlikely(contended)) {
3011 spin_unlock(&q->busylock);
3012 contended = false;
3014 __qdisc_run(q);
3017 spin_unlock(root_lock);
3018 if (unlikely(to_free))
3019 kfree_skb_list(to_free);
3020 if (unlikely(contended))
3021 spin_unlock(&q->busylock);
3022 return rc;
3025 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3026 static void skb_update_prio(struct sk_buff *skb)
3028 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3030 if (!skb->priority && skb->sk && map) {
3031 unsigned int prioidx =
3032 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3034 if (prioidx < map->priomap_len)
3035 skb->priority = map->priomap[prioidx];
3038 #else
3039 #define skb_update_prio(skb)
3040 #endif
3042 DEFINE_PER_CPU(int, xmit_recursion);
3043 EXPORT_SYMBOL(xmit_recursion);
3046 * dev_loopback_xmit - loop back @skb
3047 * @net: network namespace this loopback is happening in
3048 * @sk: sk needed to be a netfilter okfn
3049 * @skb: buffer to transmit
3051 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3053 skb_reset_mac_header(skb);
3054 __skb_pull(skb, skb_network_offset(skb));
3055 skb->pkt_type = PACKET_LOOPBACK;
3056 skb->ip_summed = CHECKSUM_UNNECESSARY;
3057 WARN_ON(!skb_dst(skb));
3058 skb_dst_force(skb);
3059 netif_rx_ni(skb);
3060 return 0;
3062 EXPORT_SYMBOL(dev_loopback_xmit);
3064 #ifdef CONFIG_NET_EGRESS
3065 static struct sk_buff *
3066 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3068 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3069 struct tcf_result cl_res;
3071 if (!cl)
3072 return skb;
3074 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3075 * earlier by the caller.
3077 qdisc_bstats_cpu_update(cl->q, skb);
3079 switch (tc_classify(skb, cl, &cl_res, false)) {
3080 case TC_ACT_OK:
3081 case TC_ACT_RECLASSIFY:
3082 skb->tc_index = TC_H_MIN(cl_res.classid);
3083 break;
3084 case TC_ACT_SHOT:
3085 qdisc_qstats_cpu_drop(cl->q);
3086 *ret = NET_XMIT_DROP;
3087 kfree_skb(skb);
3088 return NULL;
3089 case TC_ACT_STOLEN:
3090 case TC_ACT_QUEUED:
3091 *ret = NET_XMIT_SUCCESS;
3092 consume_skb(skb);
3093 return NULL;
3094 case TC_ACT_REDIRECT:
3095 /* No need to push/pop skb's mac_header here on egress! */
3096 skb_do_redirect(skb);
3097 *ret = NET_XMIT_SUCCESS;
3098 return NULL;
3099 default:
3100 break;
3103 return skb;
3105 #endif /* CONFIG_NET_EGRESS */
3107 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3109 #ifdef CONFIG_XPS
3110 struct xps_dev_maps *dev_maps;
3111 struct xps_map *map;
3112 int queue_index = -1;
3114 rcu_read_lock();
3115 dev_maps = rcu_dereference(dev->xps_maps);
3116 if (dev_maps) {
3117 map = rcu_dereference(
3118 dev_maps->cpu_map[skb->sender_cpu - 1]);
3119 if (map) {
3120 if (map->len == 1)
3121 queue_index = map->queues[0];
3122 else
3123 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3124 map->len)];
3125 if (unlikely(queue_index >= dev->real_num_tx_queues))
3126 queue_index = -1;
3129 rcu_read_unlock();
3131 return queue_index;
3132 #else
3133 return -1;
3134 #endif
3137 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3139 struct sock *sk = skb->sk;
3140 int queue_index = sk_tx_queue_get(sk);
3142 if (queue_index < 0 || skb->ooo_okay ||
3143 queue_index >= dev->real_num_tx_queues) {
3144 int new_index = get_xps_queue(dev, skb);
3145 if (new_index < 0)
3146 new_index = skb_tx_hash(dev, skb);
3148 if (queue_index != new_index && sk &&
3149 sk_fullsock(sk) &&
3150 rcu_access_pointer(sk->sk_dst_cache))
3151 sk_tx_queue_set(sk, new_index);
3153 queue_index = new_index;
3156 return queue_index;
3159 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3160 struct sk_buff *skb,
3161 void *accel_priv)
3163 int queue_index = 0;
3165 #ifdef CONFIG_XPS
3166 u32 sender_cpu = skb->sender_cpu - 1;
3168 if (sender_cpu >= (u32)NR_CPUS)
3169 skb->sender_cpu = raw_smp_processor_id() + 1;
3170 #endif
3172 if (dev->real_num_tx_queues != 1) {
3173 const struct net_device_ops *ops = dev->netdev_ops;
3174 if (ops->ndo_select_queue)
3175 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3176 __netdev_pick_tx);
3177 else
3178 queue_index = __netdev_pick_tx(dev, skb);
3180 if (!accel_priv)
3181 queue_index = netdev_cap_txqueue(dev, queue_index);
3184 skb_set_queue_mapping(skb, queue_index);
3185 return netdev_get_tx_queue(dev, queue_index);
3189 * __dev_queue_xmit - transmit a buffer
3190 * @skb: buffer to transmit
3191 * @accel_priv: private data used for L2 forwarding offload
3193 * Queue a buffer for transmission to a network device. The caller must
3194 * have set the device and priority and built the buffer before calling
3195 * this function. The function can be called from an interrupt.
3197 * A negative errno code is returned on a failure. A success does not
3198 * guarantee the frame will be transmitted as it may be dropped due
3199 * to congestion or traffic shaping.
3201 * -----------------------------------------------------------------------------------
3202 * I notice this method can also return errors from the queue disciplines,
3203 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3204 * be positive.
3206 * Regardless of the return value, the skb is consumed, so it is currently
3207 * difficult to retry a send to this method. (You can bump the ref count
3208 * before sending to hold a reference for retry if you are careful.)
3210 * When calling this method, interrupts MUST be enabled. This is because
3211 * the BH enable code must have IRQs enabled so that it will not deadlock.
3212 * --BLG
3214 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3216 struct net_device *dev = skb->dev;
3217 struct netdev_queue *txq;
3218 struct Qdisc *q;
3219 int rc = -ENOMEM;
3221 skb_reset_mac_header(skb);
3223 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3224 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3226 /* Disable soft irqs for various locks below. Also
3227 * stops preemption for RCU.
3229 rcu_read_lock_bh();
3231 skb_update_prio(skb);
3233 qdisc_pkt_len_init(skb);
3234 #ifdef CONFIG_NET_CLS_ACT
3235 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3236 # ifdef CONFIG_NET_EGRESS
3237 if (static_key_false(&egress_needed)) {
3238 skb = sch_handle_egress(skb, &rc, dev);
3239 if (!skb)
3240 goto out;
3242 # endif
3243 #endif
3244 /* If device/qdisc don't need skb->dst, release it right now while
3245 * its hot in this cpu cache.
3247 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3248 skb_dst_drop(skb);
3249 else
3250 skb_dst_force(skb);
3252 txq = netdev_pick_tx(dev, skb, accel_priv);
3253 q = rcu_dereference_bh(txq->qdisc);
3255 trace_net_dev_queue(skb);
3256 if (q->enqueue) {
3257 rc = __dev_xmit_skb(skb, q, dev, txq);
3258 goto out;
3261 /* The device has no queue. Common case for software devices:
3262 loopback, all the sorts of tunnels...
3264 Really, it is unlikely that netif_tx_lock protection is necessary
3265 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3266 counters.)
3267 However, it is possible, that they rely on protection
3268 made by us here.
3270 Check this and shot the lock. It is not prone from deadlocks.
3271 Either shot noqueue qdisc, it is even simpler 8)
3273 if (dev->flags & IFF_UP) {
3274 int cpu = smp_processor_id(); /* ok because BHs are off */
3276 if (txq->xmit_lock_owner != cpu) {
3277 if (unlikely(__this_cpu_read(xmit_recursion) >
3278 XMIT_RECURSION_LIMIT))
3279 goto recursion_alert;
3281 skb = validate_xmit_skb(skb, dev);
3282 if (!skb)
3283 goto out;
3285 HARD_TX_LOCK(dev, txq, cpu);
3287 if (!netif_xmit_stopped(txq)) {
3288 __this_cpu_inc(xmit_recursion);
3289 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3290 __this_cpu_dec(xmit_recursion);
3291 if (dev_xmit_complete(rc)) {
3292 HARD_TX_UNLOCK(dev, txq);
3293 goto out;
3296 HARD_TX_UNLOCK(dev, txq);
3297 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3298 dev->name);
3299 } else {
3300 /* Recursion is detected! It is possible,
3301 * unfortunately
3303 recursion_alert:
3304 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3305 dev->name);
3309 rc = -ENETDOWN;
3310 rcu_read_unlock_bh();
3312 atomic_long_inc(&dev->tx_dropped);
3313 kfree_skb_list(skb);
3314 return rc;
3315 out:
3316 rcu_read_unlock_bh();
3317 return rc;
3320 int dev_queue_xmit(struct sk_buff *skb)
3322 return __dev_queue_xmit(skb, NULL);
3324 EXPORT_SYMBOL(dev_queue_xmit);
3326 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3328 return __dev_queue_xmit(skb, accel_priv);
3330 EXPORT_SYMBOL(dev_queue_xmit_accel);
3333 /*=======================================================================
3334 Receiver routines
3335 =======================================================================*/
3337 int netdev_max_backlog __read_mostly = 1000;
3338 EXPORT_SYMBOL(netdev_max_backlog);
3340 int netdev_tstamp_prequeue __read_mostly = 1;
3341 int netdev_budget __read_mostly = 300;
3342 int weight_p __read_mostly = 64; /* old backlog weight */
3344 /* Called with irq disabled */
3345 static inline void ____napi_schedule(struct softnet_data *sd,
3346 struct napi_struct *napi)
3348 list_add_tail(&napi->poll_list, &sd->poll_list);
3349 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3352 #ifdef CONFIG_RPS
3354 /* One global table that all flow-based protocols share. */
3355 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3356 EXPORT_SYMBOL(rps_sock_flow_table);
3357 u32 rps_cpu_mask __read_mostly;
3358 EXPORT_SYMBOL(rps_cpu_mask);
3360 struct static_key rps_needed __read_mostly;
3361 EXPORT_SYMBOL(rps_needed);
3363 static struct rps_dev_flow *
3364 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3365 struct rps_dev_flow *rflow, u16 next_cpu)
3367 if (next_cpu < nr_cpu_ids) {
3368 #ifdef CONFIG_RFS_ACCEL
3369 struct netdev_rx_queue *rxqueue;
3370 struct rps_dev_flow_table *flow_table;
3371 struct rps_dev_flow *old_rflow;
3372 u32 flow_id;
3373 u16 rxq_index;
3374 int rc;
3376 /* Should we steer this flow to a different hardware queue? */
3377 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3378 !(dev->features & NETIF_F_NTUPLE))
3379 goto out;
3380 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3381 if (rxq_index == skb_get_rx_queue(skb))
3382 goto out;
3384 rxqueue = dev->_rx + rxq_index;
3385 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3386 if (!flow_table)
3387 goto out;
3388 flow_id = skb_get_hash(skb) & flow_table->mask;
3389 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3390 rxq_index, flow_id);
3391 if (rc < 0)
3392 goto out;
3393 old_rflow = rflow;
3394 rflow = &flow_table->flows[flow_id];
3395 rflow->filter = rc;
3396 if (old_rflow->filter == rflow->filter)
3397 old_rflow->filter = RPS_NO_FILTER;
3398 out:
3399 #endif
3400 rflow->last_qtail =
3401 per_cpu(softnet_data, next_cpu).input_queue_head;
3404 rflow->cpu = next_cpu;
3405 return rflow;
3409 * get_rps_cpu is called from netif_receive_skb and returns the target
3410 * CPU from the RPS map of the receiving queue for a given skb.
3411 * rcu_read_lock must be held on entry.
3413 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3414 struct rps_dev_flow **rflowp)
3416 const struct rps_sock_flow_table *sock_flow_table;
3417 struct netdev_rx_queue *rxqueue = dev->_rx;
3418 struct rps_dev_flow_table *flow_table;
3419 struct rps_map *map;
3420 int cpu = -1;
3421 u32 tcpu;
3422 u32 hash;
3424 if (skb_rx_queue_recorded(skb)) {
3425 u16 index = skb_get_rx_queue(skb);
3427 if (unlikely(index >= dev->real_num_rx_queues)) {
3428 WARN_ONCE(dev->real_num_rx_queues > 1,
3429 "%s received packet on queue %u, but number "
3430 "of RX queues is %u\n",
3431 dev->name, index, dev->real_num_rx_queues);
3432 goto done;
3434 rxqueue += index;
3437 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3439 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3440 map = rcu_dereference(rxqueue->rps_map);
3441 if (!flow_table && !map)
3442 goto done;
3444 skb_reset_network_header(skb);
3445 hash = skb_get_hash(skb);
3446 if (!hash)
3447 goto done;
3449 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3450 if (flow_table && sock_flow_table) {
3451 struct rps_dev_flow *rflow;
3452 u32 next_cpu;
3453 u32 ident;
3455 /* First check into global flow table if there is a match */
3456 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3457 if ((ident ^ hash) & ~rps_cpu_mask)
3458 goto try_rps;
3460 next_cpu = ident & rps_cpu_mask;
3462 /* OK, now we know there is a match,
3463 * we can look at the local (per receive queue) flow table
3465 rflow = &flow_table->flows[hash & flow_table->mask];
3466 tcpu = rflow->cpu;
3469 * If the desired CPU (where last recvmsg was done) is
3470 * different from current CPU (one in the rx-queue flow
3471 * table entry), switch if one of the following holds:
3472 * - Current CPU is unset (>= nr_cpu_ids).
3473 * - Current CPU is offline.
3474 * - The current CPU's queue tail has advanced beyond the
3475 * last packet that was enqueued using this table entry.
3476 * This guarantees that all previous packets for the flow
3477 * have been dequeued, thus preserving in order delivery.
3479 if (unlikely(tcpu != next_cpu) &&
3480 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3481 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3482 rflow->last_qtail)) >= 0)) {
3483 tcpu = next_cpu;
3484 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3487 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3488 *rflowp = rflow;
3489 cpu = tcpu;
3490 goto done;
3494 try_rps:
3496 if (map) {
3497 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3498 if (cpu_online(tcpu)) {
3499 cpu = tcpu;
3500 goto done;
3504 done:
3505 return cpu;
3508 #ifdef CONFIG_RFS_ACCEL
3511 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3512 * @dev: Device on which the filter was set
3513 * @rxq_index: RX queue index
3514 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3515 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3517 * Drivers that implement ndo_rx_flow_steer() should periodically call
3518 * this function for each installed filter and remove the filters for
3519 * which it returns %true.
3521 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3522 u32 flow_id, u16 filter_id)
3524 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3525 struct rps_dev_flow_table *flow_table;
3526 struct rps_dev_flow *rflow;
3527 bool expire = true;
3528 unsigned int cpu;
3530 rcu_read_lock();
3531 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3532 if (flow_table && flow_id <= flow_table->mask) {
3533 rflow = &flow_table->flows[flow_id];
3534 cpu = ACCESS_ONCE(rflow->cpu);
3535 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3536 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3537 rflow->last_qtail) <
3538 (int)(10 * flow_table->mask)))
3539 expire = false;
3541 rcu_read_unlock();
3542 return expire;
3544 EXPORT_SYMBOL(rps_may_expire_flow);
3546 #endif /* CONFIG_RFS_ACCEL */
3548 /* Called from hardirq (IPI) context */
3549 static void rps_trigger_softirq(void *data)
3551 struct softnet_data *sd = data;
3553 ____napi_schedule(sd, &sd->backlog);
3554 sd->received_rps++;
3557 #endif /* CONFIG_RPS */
3560 * Check if this softnet_data structure is another cpu one
3561 * If yes, queue it to our IPI list and return 1
3562 * If no, return 0
3564 static int rps_ipi_queued(struct softnet_data *sd)
3566 #ifdef CONFIG_RPS
3567 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3569 if (sd != mysd) {
3570 sd->rps_ipi_next = mysd->rps_ipi_list;
3571 mysd->rps_ipi_list = sd;
3573 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3574 return 1;
3576 #endif /* CONFIG_RPS */
3577 return 0;
3580 #ifdef CONFIG_NET_FLOW_LIMIT
3581 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3582 #endif
3584 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3586 #ifdef CONFIG_NET_FLOW_LIMIT
3587 struct sd_flow_limit *fl;
3588 struct softnet_data *sd;
3589 unsigned int old_flow, new_flow;
3591 if (qlen < (netdev_max_backlog >> 1))
3592 return false;
3594 sd = this_cpu_ptr(&softnet_data);
3596 rcu_read_lock();
3597 fl = rcu_dereference(sd->flow_limit);
3598 if (fl) {
3599 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3600 old_flow = fl->history[fl->history_head];
3601 fl->history[fl->history_head] = new_flow;
3603 fl->history_head++;
3604 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3606 if (likely(fl->buckets[old_flow]))
3607 fl->buckets[old_flow]--;
3609 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3610 fl->count++;
3611 rcu_read_unlock();
3612 return true;
3615 rcu_read_unlock();
3616 #endif
3617 return false;
3621 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3622 * queue (may be a remote CPU queue).
3624 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3625 unsigned int *qtail)
3627 struct softnet_data *sd;
3628 unsigned long flags;
3629 unsigned int qlen;
3631 sd = &per_cpu(softnet_data, cpu);
3633 local_irq_save(flags);
3635 rps_lock(sd);
3636 if (!netif_running(skb->dev))
3637 goto drop;
3638 qlen = skb_queue_len(&sd->input_pkt_queue);
3639 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3640 if (qlen) {
3641 enqueue:
3642 __skb_queue_tail(&sd->input_pkt_queue, skb);
3643 input_queue_tail_incr_save(sd, qtail);
3644 rps_unlock(sd);
3645 local_irq_restore(flags);
3646 return NET_RX_SUCCESS;
3649 /* Schedule NAPI for backlog device
3650 * We can use non atomic operation since we own the queue lock
3652 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3653 if (!rps_ipi_queued(sd))
3654 ____napi_schedule(sd, &sd->backlog);
3656 goto enqueue;
3659 drop:
3660 sd->dropped++;
3661 rps_unlock(sd);
3663 local_irq_restore(flags);
3665 atomic_long_inc(&skb->dev->rx_dropped);
3666 kfree_skb(skb);
3667 return NET_RX_DROP;
3670 static int netif_rx_internal(struct sk_buff *skb)
3672 int ret;
3674 net_timestamp_check(netdev_tstamp_prequeue, skb);
3676 trace_netif_rx(skb);
3677 #ifdef CONFIG_RPS
3678 if (static_key_false(&rps_needed)) {
3679 struct rps_dev_flow voidflow, *rflow = &voidflow;
3680 int cpu;
3682 preempt_disable();
3683 rcu_read_lock();
3685 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3686 if (cpu < 0)
3687 cpu = smp_processor_id();
3689 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3691 rcu_read_unlock();
3692 preempt_enable();
3693 } else
3694 #endif
3696 unsigned int qtail;
3697 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3698 put_cpu();
3700 return ret;
3704 * netif_rx - post buffer to the network code
3705 * @skb: buffer to post
3707 * This function receives a packet from a device driver and queues it for
3708 * the upper (protocol) levels to process. It always succeeds. The buffer
3709 * may be dropped during processing for congestion control or by the
3710 * protocol layers.
3712 * return values:
3713 * NET_RX_SUCCESS (no congestion)
3714 * NET_RX_DROP (packet was dropped)
3718 int netif_rx(struct sk_buff *skb)
3720 trace_netif_rx_entry(skb);
3722 return netif_rx_internal(skb);
3724 EXPORT_SYMBOL(netif_rx);
3726 int netif_rx_ni(struct sk_buff *skb)
3728 int err;
3730 trace_netif_rx_ni_entry(skb);
3732 preempt_disable();
3733 err = netif_rx_internal(skb);
3734 if (local_softirq_pending())
3735 do_softirq();
3736 preempt_enable();
3738 return err;
3740 EXPORT_SYMBOL(netif_rx_ni);
3742 static __latent_entropy void net_tx_action(struct softirq_action *h)
3744 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3746 if (sd->completion_queue) {
3747 struct sk_buff *clist;
3749 local_irq_disable();
3750 clist = sd->completion_queue;
3751 sd->completion_queue = NULL;
3752 local_irq_enable();
3754 while (clist) {
3755 struct sk_buff *skb = clist;
3756 clist = clist->next;
3758 WARN_ON(atomic_read(&skb->users));
3759 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3760 trace_consume_skb(skb);
3761 else
3762 trace_kfree_skb(skb, net_tx_action);
3764 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3765 __kfree_skb(skb);
3766 else
3767 __kfree_skb_defer(skb);
3770 __kfree_skb_flush();
3773 if (sd->output_queue) {
3774 struct Qdisc *head;
3776 local_irq_disable();
3777 head = sd->output_queue;
3778 sd->output_queue = NULL;
3779 sd->output_queue_tailp = &sd->output_queue;
3780 local_irq_enable();
3782 while (head) {
3783 struct Qdisc *q = head;
3784 spinlock_t *root_lock;
3786 head = head->next_sched;
3788 root_lock = qdisc_lock(q);
3789 spin_lock(root_lock);
3790 /* We need to make sure head->next_sched is read
3791 * before clearing __QDISC_STATE_SCHED
3793 smp_mb__before_atomic();
3794 clear_bit(__QDISC_STATE_SCHED, &q->state);
3795 qdisc_run(q);
3796 spin_unlock(root_lock);
3801 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3802 /* This hook is defined here for ATM LANE */
3803 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3804 unsigned char *addr) __read_mostly;
3805 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3806 #endif
3808 static inline struct sk_buff *
3809 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3810 struct net_device *orig_dev)
3812 #ifdef CONFIG_NET_CLS_ACT
3813 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3814 struct tcf_result cl_res;
3816 /* If there's at least one ingress present somewhere (so
3817 * we get here via enabled static key), remaining devices
3818 * that are not configured with an ingress qdisc will bail
3819 * out here.
3821 if (!cl)
3822 return skb;
3823 if (*pt_prev) {
3824 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3825 *pt_prev = NULL;
3828 qdisc_skb_cb(skb)->pkt_len = skb->len;
3829 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3830 qdisc_bstats_cpu_update(cl->q, skb);
3832 switch (tc_classify(skb, cl, &cl_res, false)) {
3833 case TC_ACT_OK:
3834 case TC_ACT_RECLASSIFY:
3835 skb->tc_index = TC_H_MIN(cl_res.classid);
3836 break;
3837 case TC_ACT_SHOT:
3838 qdisc_qstats_cpu_drop(cl->q);
3839 kfree_skb(skb);
3840 return NULL;
3841 case TC_ACT_STOLEN:
3842 case TC_ACT_QUEUED:
3843 consume_skb(skb);
3844 return NULL;
3845 case TC_ACT_REDIRECT:
3846 /* skb_mac_header check was done by cls/act_bpf, so
3847 * we can safely push the L2 header back before
3848 * redirecting to another netdev
3850 __skb_push(skb, skb->mac_len);
3851 skb_do_redirect(skb);
3852 return NULL;
3853 default:
3854 break;
3856 #endif /* CONFIG_NET_CLS_ACT */
3857 return skb;
3861 * netdev_is_rx_handler_busy - check if receive handler is registered
3862 * @dev: device to check
3864 * Check if a receive handler is already registered for a given device.
3865 * Return true if there one.
3867 * The caller must hold the rtnl_mutex.
3869 bool netdev_is_rx_handler_busy(struct net_device *dev)
3871 ASSERT_RTNL();
3872 return dev && rtnl_dereference(dev->rx_handler);
3874 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3877 * netdev_rx_handler_register - register receive handler
3878 * @dev: device to register a handler for
3879 * @rx_handler: receive handler to register
3880 * @rx_handler_data: data pointer that is used by rx handler
3882 * Register a receive handler for a device. This handler will then be
3883 * called from __netif_receive_skb. A negative errno code is returned
3884 * on a failure.
3886 * The caller must hold the rtnl_mutex.
3888 * For a general description of rx_handler, see enum rx_handler_result.
3890 int netdev_rx_handler_register(struct net_device *dev,
3891 rx_handler_func_t *rx_handler,
3892 void *rx_handler_data)
3894 ASSERT_RTNL();
3896 if (dev->rx_handler)
3897 return -EBUSY;
3899 /* Note: rx_handler_data must be set before rx_handler */
3900 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3901 rcu_assign_pointer(dev->rx_handler, rx_handler);
3903 return 0;
3905 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3908 * netdev_rx_handler_unregister - unregister receive handler
3909 * @dev: device to unregister a handler from
3911 * Unregister a receive handler from a device.
3913 * The caller must hold the rtnl_mutex.
3915 void netdev_rx_handler_unregister(struct net_device *dev)
3918 ASSERT_RTNL();
3919 RCU_INIT_POINTER(dev->rx_handler, NULL);
3920 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3921 * section has a guarantee to see a non NULL rx_handler_data
3922 * as well.
3924 synchronize_net();
3925 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3927 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3930 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3931 * the special handling of PFMEMALLOC skbs.
3933 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3935 switch (skb->protocol) {
3936 case htons(ETH_P_ARP):
3937 case htons(ETH_P_IP):
3938 case htons(ETH_P_IPV6):
3939 case htons(ETH_P_8021Q):
3940 case htons(ETH_P_8021AD):
3941 return true;
3942 default:
3943 return false;
3947 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3948 int *ret, struct net_device *orig_dev)
3950 #ifdef CONFIG_NETFILTER_INGRESS
3951 if (nf_hook_ingress_active(skb)) {
3952 int ingress_retval;
3954 if (*pt_prev) {
3955 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3956 *pt_prev = NULL;
3959 rcu_read_lock();
3960 ingress_retval = nf_hook_ingress(skb);
3961 rcu_read_unlock();
3962 return ingress_retval;
3964 #endif /* CONFIG_NETFILTER_INGRESS */
3965 return 0;
3968 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3970 struct packet_type *ptype, *pt_prev;
3971 rx_handler_func_t *rx_handler;
3972 struct net_device *orig_dev;
3973 bool deliver_exact = false;
3974 int ret = NET_RX_DROP;
3975 __be16 type;
3977 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3979 trace_netif_receive_skb(skb);
3981 orig_dev = skb->dev;
3983 skb_reset_network_header(skb);
3984 if (!skb_transport_header_was_set(skb))
3985 skb_reset_transport_header(skb);
3986 skb_reset_mac_len(skb);
3988 pt_prev = NULL;
3990 another_round:
3991 skb->skb_iif = skb->dev->ifindex;
3993 __this_cpu_inc(softnet_data.processed);
3995 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3996 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3997 skb = skb_vlan_untag(skb);
3998 if (unlikely(!skb))
3999 goto out;
4002 #ifdef CONFIG_NET_CLS_ACT
4003 if (skb->tc_verd & TC_NCLS) {
4004 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4005 goto ncls;
4007 #endif
4009 if (pfmemalloc)
4010 goto skip_taps;
4012 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4013 if (pt_prev)
4014 ret = deliver_skb(skb, pt_prev, orig_dev);
4015 pt_prev = ptype;
4018 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4019 if (pt_prev)
4020 ret = deliver_skb(skb, pt_prev, orig_dev);
4021 pt_prev = ptype;
4024 skip_taps:
4025 #ifdef CONFIG_NET_INGRESS
4026 if (static_key_false(&ingress_needed)) {
4027 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4028 if (!skb)
4029 goto out;
4031 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4032 goto out;
4034 #endif
4035 #ifdef CONFIG_NET_CLS_ACT
4036 skb->tc_verd = 0;
4037 ncls:
4038 #endif
4039 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4040 goto drop;
4042 if (skb_vlan_tag_present(skb)) {
4043 if (pt_prev) {
4044 ret = deliver_skb(skb, pt_prev, orig_dev);
4045 pt_prev = NULL;
4047 if (vlan_do_receive(&skb))
4048 goto another_round;
4049 else if (unlikely(!skb))
4050 goto out;
4053 rx_handler = rcu_dereference(skb->dev->rx_handler);
4054 if (rx_handler) {
4055 if (pt_prev) {
4056 ret = deliver_skb(skb, pt_prev, orig_dev);
4057 pt_prev = NULL;
4059 switch (rx_handler(&skb)) {
4060 case RX_HANDLER_CONSUMED:
4061 ret = NET_RX_SUCCESS;
4062 goto out;
4063 case RX_HANDLER_ANOTHER:
4064 goto another_round;
4065 case RX_HANDLER_EXACT:
4066 deliver_exact = true;
4067 case RX_HANDLER_PASS:
4068 break;
4069 default:
4070 BUG();
4074 if (unlikely(skb_vlan_tag_present(skb))) {
4075 if (skb_vlan_tag_get_id(skb))
4076 skb->pkt_type = PACKET_OTHERHOST;
4077 /* Note: we might in the future use prio bits
4078 * and set skb->priority like in vlan_do_receive()
4079 * For the time being, just ignore Priority Code Point
4081 skb->vlan_tci = 0;
4084 type = skb->protocol;
4086 /* deliver only exact match when indicated */
4087 if (likely(!deliver_exact)) {
4088 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4089 &ptype_base[ntohs(type) &
4090 PTYPE_HASH_MASK]);
4093 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4094 &orig_dev->ptype_specific);
4096 if (unlikely(skb->dev != orig_dev)) {
4097 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4098 &skb->dev->ptype_specific);
4101 if (pt_prev) {
4102 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4103 goto drop;
4104 else
4105 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4106 } else {
4107 drop:
4108 if (!deliver_exact)
4109 atomic_long_inc(&skb->dev->rx_dropped);
4110 else
4111 atomic_long_inc(&skb->dev->rx_nohandler);
4112 kfree_skb(skb);
4113 /* Jamal, now you will not able to escape explaining
4114 * me how you were going to use this. :-)
4116 ret = NET_RX_DROP;
4119 out:
4120 return ret;
4123 static int __netif_receive_skb(struct sk_buff *skb)
4125 int ret;
4127 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4128 unsigned long pflags = current->flags;
4131 * PFMEMALLOC skbs are special, they should
4132 * - be delivered to SOCK_MEMALLOC sockets only
4133 * - stay away from userspace
4134 * - have bounded memory usage
4136 * Use PF_MEMALLOC as this saves us from propagating the allocation
4137 * context down to all allocation sites.
4139 current->flags |= PF_MEMALLOC;
4140 ret = __netif_receive_skb_core(skb, true);
4141 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4142 } else
4143 ret = __netif_receive_skb_core(skb, false);
4145 return ret;
4148 static int netif_receive_skb_internal(struct sk_buff *skb)
4150 int ret;
4152 net_timestamp_check(netdev_tstamp_prequeue, skb);
4154 if (skb_defer_rx_timestamp(skb))
4155 return NET_RX_SUCCESS;
4157 rcu_read_lock();
4159 #ifdef CONFIG_RPS
4160 if (static_key_false(&rps_needed)) {
4161 struct rps_dev_flow voidflow, *rflow = &voidflow;
4162 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4164 if (cpu >= 0) {
4165 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4166 rcu_read_unlock();
4167 return ret;
4170 #endif
4171 ret = __netif_receive_skb(skb);
4172 rcu_read_unlock();
4173 return ret;
4177 * netif_receive_skb - process receive buffer from network
4178 * @skb: buffer to process
4180 * netif_receive_skb() is the main receive data processing function.
4181 * It always succeeds. The buffer may be dropped during processing
4182 * for congestion control or by the protocol layers.
4184 * This function may only be called from softirq context and interrupts
4185 * should be enabled.
4187 * Return values (usually ignored):
4188 * NET_RX_SUCCESS: no congestion
4189 * NET_RX_DROP: packet was dropped
4191 int netif_receive_skb(struct sk_buff *skb)
4193 trace_netif_receive_skb_entry(skb);
4195 return netif_receive_skb_internal(skb);
4197 EXPORT_SYMBOL(netif_receive_skb);
4199 DEFINE_PER_CPU(struct work_struct, flush_works);
4201 /* Network device is going away, flush any packets still pending */
4202 static void flush_backlog(struct work_struct *work)
4204 struct sk_buff *skb, *tmp;
4205 struct softnet_data *sd;
4207 local_bh_disable();
4208 sd = this_cpu_ptr(&softnet_data);
4210 local_irq_disable();
4211 rps_lock(sd);
4212 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4213 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4214 __skb_unlink(skb, &sd->input_pkt_queue);
4215 kfree_skb(skb);
4216 input_queue_head_incr(sd);
4219 rps_unlock(sd);
4220 local_irq_enable();
4222 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4223 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4224 __skb_unlink(skb, &sd->process_queue);
4225 kfree_skb(skb);
4226 input_queue_head_incr(sd);
4229 local_bh_enable();
4232 static void flush_all_backlogs(void)
4234 unsigned int cpu;
4236 get_online_cpus();
4238 for_each_online_cpu(cpu)
4239 queue_work_on(cpu, system_highpri_wq,
4240 per_cpu_ptr(&flush_works, cpu));
4242 for_each_online_cpu(cpu)
4243 flush_work(per_cpu_ptr(&flush_works, cpu));
4245 put_online_cpus();
4248 static int napi_gro_complete(struct sk_buff *skb)
4250 struct packet_offload *ptype;
4251 __be16 type = skb->protocol;
4252 struct list_head *head = &offload_base;
4253 int err = -ENOENT;
4255 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4257 if (NAPI_GRO_CB(skb)->count == 1) {
4258 skb_shinfo(skb)->gso_size = 0;
4259 goto out;
4262 rcu_read_lock();
4263 list_for_each_entry_rcu(ptype, head, list) {
4264 if (ptype->type != type || !ptype->callbacks.gro_complete)
4265 continue;
4267 err = ptype->callbacks.gro_complete(skb, 0);
4268 break;
4270 rcu_read_unlock();
4272 if (err) {
4273 WARN_ON(&ptype->list == head);
4274 kfree_skb(skb);
4275 return NET_RX_SUCCESS;
4278 out:
4279 return netif_receive_skb_internal(skb);
4282 /* napi->gro_list contains packets ordered by age.
4283 * youngest packets at the head of it.
4284 * Complete skbs in reverse order to reduce latencies.
4286 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4288 struct sk_buff *skb, *prev = NULL;
4290 /* scan list and build reverse chain */
4291 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4292 skb->prev = prev;
4293 prev = skb;
4296 for (skb = prev; skb; skb = prev) {
4297 skb->next = NULL;
4299 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4300 return;
4302 prev = skb->prev;
4303 napi_gro_complete(skb);
4304 napi->gro_count--;
4307 napi->gro_list = NULL;
4309 EXPORT_SYMBOL(napi_gro_flush);
4311 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4313 struct sk_buff *p;
4314 unsigned int maclen = skb->dev->hard_header_len;
4315 u32 hash = skb_get_hash_raw(skb);
4317 for (p = napi->gro_list; p; p = p->next) {
4318 unsigned long diffs;
4320 NAPI_GRO_CB(p)->flush = 0;
4322 if (hash != skb_get_hash_raw(p)) {
4323 NAPI_GRO_CB(p)->same_flow = 0;
4324 continue;
4327 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4328 diffs |= p->vlan_tci ^ skb->vlan_tci;
4329 diffs |= skb_metadata_dst_cmp(p, skb);
4330 if (maclen == ETH_HLEN)
4331 diffs |= compare_ether_header(skb_mac_header(p),
4332 skb_mac_header(skb));
4333 else if (!diffs)
4334 diffs = memcmp(skb_mac_header(p),
4335 skb_mac_header(skb),
4336 maclen);
4337 NAPI_GRO_CB(p)->same_flow = !diffs;
4341 static void skb_gro_reset_offset(struct sk_buff *skb)
4343 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4344 const skb_frag_t *frag0 = &pinfo->frags[0];
4346 NAPI_GRO_CB(skb)->data_offset = 0;
4347 NAPI_GRO_CB(skb)->frag0 = NULL;
4348 NAPI_GRO_CB(skb)->frag0_len = 0;
4350 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4351 pinfo->nr_frags &&
4352 !PageHighMem(skb_frag_page(frag0))) {
4353 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4354 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4358 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4360 struct skb_shared_info *pinfo = skb_shinfo(skb);
4362 BUG_ON(skb->end - skb->tail < grow);
4364 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4366 skb->data_len -= grow;
4367 skb->tail += grow;
4369 pinfo->frags[0].page_offset += grow;
4370 skb_frag_size_sub(&pinfo->frags[0], grow);
4372 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4373 skb_frag_unref(skb, 0);
4374 memmove(pinfo->frags, pinfo->frags + 1,
4375 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4379 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4381 struct sk_buff **pp = NULL;
4382 struct packet_offload *ptype;
4383 __be16 type = skb->protocol;
4384 struct list_head *head = &offload_base;
4385 int same_flow;
4386 enum gro_result ret;
4387 int grow;
4389 if (!(skb->dev->features & NETIF_F_GRO))
4390 goto normal;
4392 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4393 goto normal;
4395 gro_list_prepare(napi, skb);
4397 rcu_read_lock();
4398 list_for_each_entry_rcu(ptype, head, list) {
4399 if (ptype->type != type || !ptype->callbacks.gro_receive)
4400 continue;
4402 skb_set_network_header(skb, skb_gro_offset(skb));
4403 skb_reset_mac_len(skb);
4404 NAPI_GRO_CB(skb)->same_flow = 0;
4405 NAPI_GRO_CB(skb)->flush = 0;
4406 NAPI_GRO_CB(skb)->free = 0;
4407 NAPI_GRO_CB(skb)->encap_mark = 0;
4408 NAPI_GRO_CB(skb)->recursion_counter = 0;
4409 NAPI_GRO_CB(skb)->is_fou = 0;
4410 NAPI_GRO_CB(skb)->is_atomic = 1;
4411 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4413 /* Setup for GRO checksum validation */
4414 switch (skb->ip_summed) {
4415 case CHECKSUM_COMPLETE:
4416 NAPI_GRO_CB(skb)->csum = skb->csum;
4417 NAPI_GRO_CB(skb)->csum_valid = 1;
4418 NAPI_GRO_CB(skb)->csum_cnt = 0;
4419 break;
4420 case CHECKSUM_UNNECESSARY:
4421 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4422 NAPI_GRO_CB(skb)->csum_valid = 0;
4423 break;
4424 default:
4425 NAPI_GRO_CB(skb)->csum_cnt = 0;
4426 NAPI_GRO_CB(skb)->csum_valid = 0;
4429 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4430 break;
4432 rcu_read_unlock();
4434 if (&ptype->list == head)
4435 goto normal;
4437 same_flow = NAPI_GRO_CB(skb)->same_flow;
4438 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4440 if (pp) {
4441 struct sk_buff *nskb = *pp;
4443 *pp = nskb->next;
4444 nskb->next = NULL;
4445 napi_gro_complete(nskb);
4446 napi->gro_count--;
4449 if (same_flow)
4450 goto ok;
4452 if (NAPI_GRO_CB(skb)->flush)
4453 goto normal;
4455 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4456 struct sk_buff *nskb = napi->gro_list;
4458 /* locate the end of the list to select the 'oldest' flow */
4459 while (nskb->next) {
4460 pp = &nskb->next;
4461 nskb = *pp;
4463 *pp = NULL;
4464 nskb->next = NULL;
4465 napi_gro_complete(nskb);
4466 } else {
4467 napi->gro_count++;
4469 NAPI_GRO_CB(skb)->count = 1;
4470 NAPI_GRO_CB(skb)->age = jiffies;
4471 NAPI_GRO_CB(skb)->last = skb;
4472 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4473 skb->next = napi->gro_list;
4474 napi->gro_list = skb;
4475 ret = GRO_HELD;
4477 pull:
4478 grow = skb_gro_offset(skb) - skb_headlen(skb);
4479 if (grow > 0)
4480 gro_pull_from_frag0(skb, grow);
4482 return ret;
4484 normal:
4485 ret = GRO_NORMAL;
4486 goto pull;
4489 struct packet_offload *gro_find_receive_by_type(__be16 type)
4491 struct list_head *offload_head = &offload_base;
4492 struct packet_offload *ptype;
4494 list_for_each_entry_rcu(ptype, offload_head, list) {
4495 if (ptype->type != type || !ptype->callbacks.gro_receive)
4496 continue;
4497 return ptype;
4499 return NULL;
4501 EXPORT_SYMBOL(gro_find_receive_by_type);
4503 struct packet_offload *gro_find_complete_by_type(__be16 type)
4505 struct list_head *offload_head = &offload_base;
4506 struct packet_offload *ptype;
4508 list_for_each_entry_rcu(ptype, offload_head, list) {
4509 if (ptype->type != type || !ptype->callbacks.gro_complete)
4510 continue;
4511 return ptype;
4513 return NULL;
4515 EXPORT_SYMBOL(gro_find_complete_by_type);
4517 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4519 switch (ret) {
4520 case GRO_NORMAL:
4521 if (netif_receive_skb_internal(skb))
4522 ret = GRO_DROP;
4523 break;
4525 case GRO_DROP:
4526 kfree_skb(skb);
4527 break;
4529 case GRO_MERGED_FREE:
4530 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4531 skb_dst_drop(skb);
4532 kmem_cache_free(skbuff_head_cache, skb);
4533 } else {
4534 __kfree_skb(skb);
4536 break;
4538 case GRO_HELD:
4539 case GRO_MERGED:
4540 break;
4543 return ret;
4546 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4548 skb_mark_napi_id(skb, napi);
4549 trace_napi_gro_receive_entry(skb);
4551 skb_gro_reset_offset(skb);
4553 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4555 EXPORT_SYMBOL(napi_gro_receive);
4557 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4559 if (unlikely(skb->pfmemalloc)) {
4560 consume_skb(skb);
4561 return;
4563 __skb_pull(skb, skb_headlen(skb));
4564 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4565 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4566 skb->vlan_tci = 0;
4567 skb->dev = napi->dev;
4568 skb->skb_iif = 0;
4569 skb->encapsulation = 0;
4570 skb_shinfo(skb)->gso_type = 0;
4571 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4573 napi->skb = skb;
4576 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4578 struct sk_buff *skb = napi->skb;
4580 if (!skb) {
4581 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4582 if (skb) {
4583 napi->skb = skb;
4584 skb_mark_napi_id(skb, napi);
4587 return skb;
4589 EXPORT_SYMBOL(napi_get_frags);
4591 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4592 struct sk_buff *skb,
4593 gro_result_t ret)
4595 switch (ret) {
4596 case GRO_NORMAL:
4597 case GRO_HELD:
4598 __skb_push(skb, ETH_HLEN);
4599 skb->protocol = eth_type_trans(skb, skb->dev);
4600 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4601 ret = GRO_DROP;
4602 break;
4604 case GRO_DROP:
4605 case GRO_MERGED_FREE:
4606 napi_reuse_skb(napi, skb);
4607 break;
4609 case GRO_MERGED:
4610 break;
4613 return ret;
4616 /* Upper GRO stack assumes network header starts at gro_offset=0
4617 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4618 * We copy ethernet header into skb->data to have a common layout.
4620 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4622 struct sk_buff *skb = napi->skb;
4623 const struct ethhdr *eth;
4624 unsigned int hlen = sizeof(*eth);
4626 napi->skb = NULL;
4628 skb_reset_mac_header(skb);
4629 skb_gro_reset_offset(skb);
4631 eth = skb_gro_header_fast(skb, 0);
4632 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4633 eth = skb_gro_header_slow(skb, hlen, 0);
4634 if (unlikely(!eth)) {
4635 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4636 __func__, napi->dev->name);
4637 napi_reuse_skb(napi, skb);
4638 return NULL;
4640 } else {
4641 gro_pull_from_frag0(skb, hlen);
4642 NAPI_GRO_CB(skb)->frag0 += hlen;
4643 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4645 __skb_pull(skb, hlen);
4648 * This works because the only protocols we care about don't require
4649 * special handling.
4650 * We'll fix it up properly in napi_frags_finish()
4652 skb->protocol = eth->h_proto;
4654 return skb;
4657 gro_result_t napi_gro_frags(struct napi_struct *napi)
4659 struct sk_buff *skb = napi_frags_skb(napi);
4661 if (!skb)
4662 return GRO_DROP;
4664 trace_napi_gro_frags_entry(skb);
4666 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4668 EXPORT_SYMBOL(napi_gro_frags);
4670 /* Compute the checksum from gro_offset and return the folded value
4671 * after adding in any pseudo checksum.
4673 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4675 __wsum wsum;
4676 __sum16 sum;
4678 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4680 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4681 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4682 if (likely(!sum)) {
4683 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4684 !skb->csum_complete_sw)
4685 netdev_rx_csum_fault(skb->dev);
4688 NAPI_GRO_CB(skb)->csum = wsum;
4689 NAPI_GRO_CB(skb)->csum_valid = 1;
4691 return sum;
4693 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4696 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4697 * Note: called with local irq disabled, but exits with local irq enabled.
4699 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4701 #ifdef CONFIG_RPS
4702 struct softnet_data *remsd = sd->rps_ipi_list;
4704 if (remsd) {
4705 sd->rps_ipi_list = NULL;
4707 local_irq_enable();
4709 /* Send pending IPI's to kick RPS processing on remote cpus. */
4710 while (remsd) {
4711 struct softnet_data *next = remsd->rps_ipi_next;
4713 if (cpu_online(remsd->cpu))
4714 smp_call_function_single_async(remsd->cpu,
4715 &remsd->csd);
4716 remsd = next;
4718 } else
4719 #endif
4720 local_irq_enable();
4723 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4725 #ifdef CONFIG_RPS
4726 return sd->rps_ipi_list != NULL;
4727 #else
4728 return false;
4729 #endif
4732 static int process_backlog(struct napi_struct *napi, int quota)
4734 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4735 bool again = true;
4736 int work = 0;
4738 /* Check if we have pending ipi, its better to send them now,
4739 * not waiting net_rx_action() end.
4741 if (sd_has_rps_ipi_waiting(sd)) {
4742 local_irq_disable();
4743 net_rps_action_and_irq_enable(sd);
4746 napi->weight = weight_p;
4747 while (again) {
4748 struct sk_buff *skb;
4750 while ((skb = __skb_dequeue(&sd->process_queue))) {
4751 rcu_read_lock();
4752 __netif_receive_skb(skb);
4753 rcu_read_unlock();
4754 input_queue_head_incr(sd);
4755 if (++work >= quota)
4756 return work;
4760 local_irq_disable();
4761 rps_lock(sd);
4762 if (skb_queue_empty(&sd->input_pkt_queue)) {
4764 * Inline a custom version of __napi_complete().
4765 * only current cpu owns and manipulates this napi,
4766 * and NAPI_STATE_SCHED is the only possible flag set
4767 * on backlog.
4768 * We can use a plain write instead of clear_bit(),
4769 * and we dont need an smp_mb() memory barrier.
4771 napi->state = 0;
4772 again = false;
4773 } else {
4774 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4775 &sd->process_queue);
4777 rps_unlock(sd);
4778 local_irq_enable();
4781 return work;
4785 * __napi_schedule - schedule for receive
4786 * @n: entry to schedule
4788 * The entry's receive function will be scheduled to run.
4789 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4791 void __napi_schedule(struct napi_struct *n)
4793 unsigned long flags;
4795 local_irq_save(flags);
4796 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4797 local_irq_restore(flags);
4799 EXPORT_SYMBOL(__napi_schedule);
4802 * __napi_schedule_irqoff - schedule for receive
4803 * @n: entry to schedule
4805 * Variant of __napi_schedule() assuming hard irqs are masked
4807 void __napi_schedule_irqoff(struct napi_struct *n)
4809 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4811 EXPORT_SYMBOL(__napi_schedule_irqoff);
4813 void __napi_complete(struct napi_struct *n)
4815 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4817 list_del_init(&n->poll_list);
4818 smp_mb__before_atomic();
4819 clear_bit(NAPI_STATE_SCHED, &n->state);
4821 EXPORT_SYMBOL(__napi_complete);
4823 void napi_complete_done(struct napi_struct *n, int work_done)
4825 unsigned long flags;
4828 * don't let napi dequeue from the cpu poll list
4829 * just in case its running on a different cpu
4831 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4832 return;
4834 if (n->gro_list) {
4835 unsigned long timeout = 0;
4837 if (work_done)
4838 timeout = n->dev->gro_flush_timeout;
4840 if (timeout)
4841 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4842 HRTIMER_MODE_REL_PINNED);
4843 else
4844 napi_gro_flush(n, false);
4846 if (likely(list_empty(&n->poll_list))) {
4847 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4848 } else {
4849 /* If n->poll_list is not empty, we need to mask irqs */
4850 local_irq_save(flags);
4851 __napi_complete(n);
4852 local_irq_restore(flags);
4855 EXPORT_SYMBOL(napi_complete_done);
4857 /* must be called under rcu_read_lock(), as we dont take a reference */
4858 static struct napi_struct *napi_by_id(unsigned int napi_id)
4860 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4861 struct napi_struct *napi;
4863 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4864 if (napi->napi_id == napi_id)
4865 return napi;
4867 return NULL;
4870 #if defined(CONFIG_NET_RX_BUSY_POLL)
4871 #define BUSY_POLL_BUDGET 8
4872 bool sk_busy_loop(struct sock *sk, int nonblock)
4874 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4875 int (*busy_poll)(struct napi_struct *dev);
4876 struct napi_struct *napi;
4877 int rc = false;
4879 rcu_read_lock();
4881 napi = napi_by_id(sk->sk_napi_id);
4882 if (!napi)
4883 goto out;
4885 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4886 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4888 do {
4889 rc = 0;
4890 local_bh_disable();
4891 if (busy_poll) {
4892 rc = busy_poll(napi);
4893 } else if (napi_schedule_prep(napi)) {
4894 void *have = netpoll_poll_lock(napi);
4896 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4897 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4898 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4899 if (rc == BUSY_POLL_BUDGET) {
4900 napi_complete_done(napi, rc);
4901 napi_schedule(napi);
4904 netpoll_poll_unlock(have);
4906 if (rc > 0)
4907 __NET_ADD_STATS(sock_net(sk),
4908 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4909 local_bh_enable();
4911 if (rc == LL_FLUSH_FAILED)
4912 break; /* permanent failure */
4914 cpu_relax();
4915 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4916 !need_resched() && !busy_loop_timeout(end_time));
4918 rc = !skb_queue_empty(&sk->sk_receive_queue);
4919 out:
4920 rcu_read_unlock();
4921 return rc;
4923 EXPORT_SYMBOL(sk_busy_loop);
4925 #endif /* CONFIG_NET_RX_BUSY_POLL */
4927 void napi_hash_add(struct napi_struct *napi)
4929 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4930 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4931 return;
4933 spin_lock(&napi_hash_lock);
4935 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4936 do {
4937 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4938 napi_gen_id = NR_CPUS + 1;
4939 } while (napi_by_id(napi_gen_id));
4940 napi->napi_id = napi_gen_id;
4942 hlist_add_head_rcu(&napi->napi_hash_node,
4943 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4945 spin_unlock(&napi_hash_lock);
4947 EXPORT_SYMBOL_GPL(napi_hash_add);
4949 /* Warning : caller is responsible to make sure rcu grace period
4950 * is respected before freeing memory containing @napi
4952 bool napi_hash_del(struct napi_struct *napi)
4954 bool rcu_sync_needed = false;
4956 spin_lock(&napi_hash_lock);
4958 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4959 rcu_sync_needed = true;
4960 hlist_del_rcu(&napi->napi_hash_node);
4962 spin_unlock(&napi_hash_lock);
4963 return rcu_sync_needed;
4965 EXPORT_SYMBOL_GPL(napi_hash_del);
4967 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4969 struct napi_struct *napi;
4971 napi = container_of(timer, struct napi_struct, timer);
4972 if (napi->gro_list)
4973 napi_schedule(napi);
4975 return HRTIMER_NORESTART;
4978 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4979 int (*poll)(struct napi_struct *, int), int weight)
4981 INIT_LIST_HEAD(&napi->poll_list);
4982 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4983 napi->timer.function = napi_watchdog;
4984 napi->gro_count = 0;
4985 napi->gro_list = NULL;
4986 napi->skb = NULL;
4987 napi->poll = poll;
4988 if (weight > NAPI_POLL_WEIGHT)
4989 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4990 weight, dev->name);
4991 napi->weight = weight;
4992 list_add(&napi->dev_list, &dev->napi_list);
4993 napi->dev = dev;
4994 #ifdef CONFIG_NETPOLL
4995 spin_lock_init(&napi->poll_lock);
4996 napi->poll_owner = -1;
4997 #endif
4998 set_bit(NAPI_STATE_SCHED, &napi->state);
4999 napi_hash_add(napi);
5001 EXPORT_SYMBOL(netif_napi_add);
5003 void napi_disable(struct napi_struct *n)
5005 might_sleep();
5006 set_bit(NAPI_STATE_DISABLE, &n->state);
5008 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5009 msleep(1);
5010 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5011 msleep(1);
5013 hrtimer_cancel(&n->timer);
5015 clear_bit(NAPI_STATE_DISABLE, &n->state);
5017 EXPORT_SYMBOL(napi_disable);
5019 /* Must be called in process context */
5020 void netif_napi_del(struct napi_struct *napi)
5022 might_sleep();
5023 if (napi_hash_del(napi))
5024 synchronize_net();
5025 list_del_init(&napi->dev_list);
5026 napi_free_frags(napi);
5028 kfree_skb_list(napi->gro_list);
5029 napi->gro_list = NULL;
5030 napi->gro_count = 0;
5032 EXPORT_SYMBOL(netif_napi_del);
5034 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5036 void *have;
5037 int work, weight;
5039 list_del_init(&n->poll_list);
5041 have = netpoll_poll_lock(n);
5043 weight = n->weight;
5045 /* This NAPI_STATE_SCHED test is for avoiding a race
5046 * with netpoll's poll_napi(). Only the entity which
5047 * obtains the lock and sees NAPI_STATE_SCHED set will
5048 * actually make the ->poll() call. Therefore we avoid
5049 * accidentally calling ->poll() when NAPI is not scheduled.
5051 work = 0;
5052 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5053 work = n->poll(n, weight);
5054 trace_napi_poll(n, work, weight);
5057 WARN_ON_ONCE(work > weight);
5059 if (likely(work < weight))
5060 goto out_unlock;
5062 /* Drivers must not modify the NAPI state if they
5063 * consume the entire weight. In such cases this code
5064 * still "owns" the NAPI instance and therefore can
5065 * move the instance around on the list at-will.
5067 if (unlikely(napi_disable_pending(n))) {
5068 napi_complete(n);
5069 goto out_unlock;
5072 if (n->gro_list) {
5073 /* flush too old packets
5074 * If HZ < 1000, flush all packets.
5076 napi_gro_flush(n, HZ >= 1000);
5079 /* Some drivers may have called napi_schedule
5080 * prior to exhausting their budget.
5082 if (unlikely(!list_empty(&n->poll_list))) {
5083 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5084 n->dev ? n->dev->name : "backlog");
5085 goto out_unlock;
5088 list_add_tail(&n->poll_list, repoll);
5090 out_unlock:
5091 netpoll_poll_unlock(have);
5093 return work;
5096 static __latent_entropy void net_rx_action(struct softirq_action *h)
5098 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5099 unsigned long time_limit = jiffies + 2;
5100 int budget = netdev_budget;
5101 LIST_HEAD(list);
5102 LIST_HEAD(repoll);
5104 local_irq_disable();
5105 list_splice_init(&sd->poll_list, &list);
5106 local_irq_enable();
5108 for (;;) {
5109 struct napi_struct *n;
5111 if (list_empty(&list)) {
5112 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5113 return;
5114 break;
5117 n = list_first_entry(&list, struct napi_struct, poll_list);
5118 budget -= napi_poll(n, &repoll);
5120 /* If softirq window is exhausted then punt.
5121 * Allow this to run for 2 jiffies since which will allow
5122 * an average latency of 1.5/HZ.
5124 if (unlikely(budget <= 0 ||
5125 time_after_eq(jiffies, time_limit))) {
5126 sd->time_squeeze++;
5127 break;
5131 __kfree_skb_flush();
5132 local_irq_disable();
5134 list_splice_tail_init(&sd->poll_list, &list);
5135 list_splice_tail(&repoll, &list);
5136 list_splice(&list, &sd->poll_list);
5137 if (!list_empty(&sd->poll_list))
5138 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5140 net_rps_action_and_irq_enable(sd);
5143 struct netdev_adjacent {
5144 struct net_device *dev;
5146 /* upper master flag, there can only be one master device per list */
5147 bool master;
5149 /* counter for the number of times this device was added to us */
5150 u16 ref_nr;
5152 /* private field for the users */
5153 void *private;
5155 struct list_head list;
5156 struct rcu_head rcu;
5159 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5160 struct list_head *adj_list)
5162 struct netdev_adjacent *adj;
5164 list_for_each_entry(adj, adj_list, list) {
5165 if (adj->dev == adj_dev)
5166 return adj;
5168 return NULL;
5171 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5173 struct net_device *dev = data;
5175 return upper_dev == dev;
5179 * netdev_has_upper_dev - Check if device is linked to an upper device
5180 * @dev: device
5181 * @upper_dev: upper device to check
5183 * Find out if a device is linked to specified upper device and return true
5184 * in case it is. Note that this checks only immediate upper device,
5185 * not through a complete stack of devices. The caller must hold the RTNL lock.
5187 bool netdev_has_upper_dev(struct net_device *dev,
5188 struct net_device *upper_dev)
5190 ASSERT_RTNL();
5192 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5193 upper_dev);
5195 EXPORT_SYMBOL(netdev_has_upper_dev);
5198 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5199 * @dev: device
5200 * @upper_dev: upper device to check
5202 * Find out if a device is linked to specified upper device and return true
5203 * in case it is. Note that this checks the entire upper device chain.
5204 * The caller must hold rcu lock.
5207 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5208 struct net_device *upper_dev)
5210 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5211 upper_dev);
5213 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5216 * netdev_has_any_upper_dev - Check if device is linked to some device
5217 * @dev: device
5219 * Find out if a device is linked to an upper device and return true in case
5220 * it is. The caller must hold the RTNL lock.
5222 static bool netdev_has_any_upper_dev(struct net_device *dev)
5224 ASSERT_RTNL();
5226 return !list_empty(&dev->adj_list.upper);
5230 * netdev_master_upper_dev_get - Get master upper device
5231 * @dev: device
5233 * Find a master upper device and return pointer to it or NULL in case
5234 * it's not there. The caller must hold the RTNL lock.
5236 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5238 struct netdev_adjacent *upper;
5240 ASSERT_RTNL();
5242 if (list_empty(&dev->adj_list.upper))
5243 return NULL;
5245 upper = list_first_entry(&dev->adj_list.upper,
5246 struct netdev_adjacent, list);
5247 if (likely(upper->master))
5248 return upper->dev;
5249 return NULL;
5251 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5254 * netdev_has_any_lower_dev - Check if device is linked to some device
5255 * @dev: device
5257 * Find out if a device is linked to a lower device and return true in case
5258 * it is. The caller must hold the RTNL lock.
5260 static bool netdev_has_any_lower_dev(struct net_device *dev)
5262 ASSERT_RTNL();
5264 return !list_empty(&dev->adj_list.lower);
5267 void *netdev_adjacent_get_private(struct list_head *adj_list)
5269 struct netdev_adjacent *adj;
5271 adj = list_entry(adj_list, struct netdev_adjacent, list);
5273 return adj->private;
5275 EXPORT_SYMBOL(netdev_adjacent_get_private);
5278 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5279 * @dev: device
5280 * @iter: list_head ** of the current position
5282 * Gets the next device from the dev's upper list, starting from iter
5283 * position. The caller must hold RCU read lock.
5285 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5286 struct list_head **iter)
5288 struct netdev_adjacent *upper;
5290 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5292 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5294 if (&upper->list == &dev->adj_list.upper)
5295 return NULL;
5297 *iter = &upper->list;
5299 return upper->dev;
5301 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5303 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5304 struct list_head **iter)
5306 struct netdev_adjacent *upper;
5308 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5310 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5312 if (&upper->list == &dev->adj_list.upper)
5313 return NULL;
5315 *iter = &upper->list;
5317 return upper->dev;
5320 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5321 int (*fn)(struct net_device *dev,
5322 void *data),
5323 void *data)
5325 struct net_device *udev;
5326 struct list_head *iter;
5327 int ret;
5329 for (iter = &dev->adj_list.upper,
5330 udev = netdev_next_upper_dev_rcu(dev, &iter);
5331 udev;
5332 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5333 /* first is the upper device itself */
5334 ret = fn(udev, data);
5335 if (ret)
5336 return ret;
5338 /* then look at all of its upper devices */
5339 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5340 if (ret)
5341 return ret;
5344 return 0;
5346 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5349 * netdev_lower_get_next_private - Get the next ->private from the
5350 * lower neighbour list
5351 * @dev: device
5352 * @iter: list_head ** of the current position
5354 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5355 * list, starting from iter position. The caller must hold either hold the
5356 * RTNL lock or its own locking that guarantees that the neighbour lower
5357 * list will remain unchanged.
5359 void *netdev_lower_get_next_private(struct net_device *dev,
5360 struct list_head **iter)
5362 struct netdev_adjacent *lower;
5364 lower = list_entry(*iter, struct netdev_adjacent, list);
5366 if (&lower->list == &dev->adj_list.lower)
5367 return NULL;
5369 *iter = lower->list.next;
5371 return lower->private;
5373 EXPORT_SYMBOL(netdev_lower_get_next_private);
5376 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5377 * lower neighbour list, RCU
5378 * variant
5379 * @dev: device
5380 * @iter: list_head ** of the current position
5382 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5383 * list, starting from iter position. The caller must hold RCU read lock.
5385 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5386 struct list_head **iter)
5388 struct netdev_adjacent *lower;
5390 WARN_ON_ONCE(!rcu_read_lock_held());
5392 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5394 if (&lower->list == &dev->adj_list.lower)
5395 return NULL;
5397 *iter = &lower->list;
5399 return lower->private;
5401 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5404 * netdev_lower_get_next - Get the next device from the lower neighbour
5405 * list
5406 * @dev: device
5407 * @iter: list_head ** of the current position
5409 * Gets the next netdev_adjacent from the dev's lower neighbour
5410 * list, starting from iter position. The caller must hold RTNL lock or
5411 * its own locking that guarantees that the neighbour lower
5412 * list will remain unchanged.
5414 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5416 struct netdev_adjacent *lower;
5418 lower = list_entry(*iter, struct netdev_adjacent, list);
5420 if (&lower->list == &dev->adj_list.lower)
5421 return NULL;
5423 *iter = lower->list.next;
5425 return lower->dev;
5427 EXPORT_SYMBOL(netdev_lower_get_next);
5429 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5430 struct list_head **iter)
5432 struct netdev_adjacent *lower;
5434 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5436 if (&lower->list == &dev->adj_list.lower)
5437 return NULL;
5439 *iter = &lower->list;
5441 return lower->dev;
5444 int netdev_walk_all_lower_dev(struct net_device *dev,
5445 int (*fn)(struct net_device *dev,
5446 void *data),
5447 void *data)
5449 struct net_device *ldev;
5450 struct list_head *iter;
5451 int ret;
5453 for (iter = &dev->adj_list.lower,
5454 ldev = netdev_next_lower_dev(dev, &iter);
5455 ldev;
5456 ldev = netdev_next_lower_dev(dev, &iter)) {
5457 /* first is the lower device itself */
5458 ret = fn(ldev, data);
5459 if (ret)
5460 return ret;
5462 /* then look at all of its lower devices */
5463 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5464 if (ret)
5465 return ret;
5468 return 0;
5470 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5472 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5473 struct list_head **iter)
5475 struct netdev_adjacent *lower;
5477 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5478 if (&lower->list == &dev->adj_list.lower)
5479 return NULL;
5481 *iter = &lower->list;
5483 return lower->dev;
5486 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5487 int (*fn)(struct net_device *dev,
5488 void *data),
5489 void *data)
5491 struct net_device *ldev;
5492 struct list_head *iter;
5493 int ret;
5495 for (iter = &dev->adj_list.lower,
5496 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5497 ldev;
5498 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5499 /* first is the lower device itself */
5500 ret = fn(ldev, data);
5501 if (ret)
5502 return ret;
5504 /* then look at all of its lower devices */
5505 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5506 if (ret)
5507 return ret;
5510 return 0;
5512 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5515 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5516 * lower neighbour list, RCU
5517 * variant
5518 * @dev: device
5520 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5521 * list. The caller must hold RCU read lock.
5523 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5525 struct netdev_adjacent *lower;
5527 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5528 struct netdev_adjacent, list);
5529 if (lower)
5530 return lower->private;
5531 return NULL;
5533 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5536 * netdev_master_upper_dev_get_rcu - Get master upper device
5537 * @dev: device
5539 * Find a master upper device and return pointer to it or NULL in case
5540 * it's not there. The caller must hold the RCU read lock.
5542 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5544 struct netdev_adjacent *upper;
5546 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5547 struct netdev_adjacent, list);
5548 if (upper && likely(upper->master))
5549 return upper->dev;
5550 return NULL;
5552 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5554 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5555 struct net_device *adj_dev,
5556 struct list_head *dev_list)
5558 char linkname[IFNAMSIZ+7];
5559 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5560 "upper_%s" : "lower_%s", adj_dev->name);
5561 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5562 linkname);
5564 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5565 char *name,
5566 struct list_head *dev_list)
5568 char linkname[IFNAMSIZ+7];
5569 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5570 "upper_%s" : "lower_%s", name);
5571 sysfs_remove_link(&(dev->dev.kobj), linkname);
5574 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5575 struct net_device *adj_dev,
5576 struct list_head *dev_list)
5578 return (dev_list == &dev->adj_list.upper ||
5579 dev_list == &dev->adj_list.lower) &&
5580 net_eq(dev_net(dev), dev_net(adj_dev));
5583 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5584 struct net_device *adj_dev,
5585 struct list_head *dev_list,
5586 void *private, bool master)
5588 struct netdev_adjacent *adj;
5589 int ret;
5591 adj = __netdev_find_adj(adj_dev, dev_list);
5593 if (adj) {
5594 adj->ref_nr += 1;
5595 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5596 dev->name, adj_dev->name, adj->ref_nr);
5598 return 0;
5601 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5602 if (!adj)
5603 return -ENOMEM;
5605 adj->dev = adj_dev;
5606 adj->master = master;
5607 adj->ref_nr = 1;
5608 adj->private = private;
5609 dev_hold(adj_dev);
5611 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5612 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5614 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5615 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5616 if (ret)
5617 goto free_adj;
5620 /* Ensure that master link is always the first item in list. */
5621 if (master) {
5622 ret = sysfs_create_link(&(dev->dev.kobj),
5623 &(adj_dev->dev.kobj), "master");
5624 if (ret)
5625 goto remove_symlinks;
5627 list_add_rcu(&adj->list, dev_list);
5628 } else {
5629 list_add_tail_rcu(&adj->list, dev_list);
5632 return 0;
5634 remove_symlinks:
5635 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5636 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5637 free_adj:
5638 kfree(adj);
5639 dev_put(adj_dev);
5641 return ret;
5644 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5645 struct net_device *adj_dev,
5646 u16 ref_nr,
5647 struct list_head *dev_list)
5649 struct netdev_adjacent *adj;
5651 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5652 dev->name, adj_dev->name, ref_nr);
5654 adj = __netdev_find_adj(adj_dev, dev_list);
5656 if (!adj) {
5657 pr_err("Adjacency does not exist for device %s from %s\n",
5658 dev->name, adj_dev->name);
5659 WARN_ON(1);
5660 return;
5663 if (adj->ref_nr > ref_nr) {
5664 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5665 dev->name, adj_dev->name, ref_nr,
5666 adj->ref_nr - ref_nr);
5667 adj->ref_nr -= ref_nr;
5668 return;
5671 if (adj->master)
5672 sysfs_remove_link(&(dev->dev.kobj), "master");
5674 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5675 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5677 list_del_rcu(&adj->list);
5678 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5679 adj_dev->name, dev->name, adj_dev->name);
5680 dev_put(adj_dev);
5681 kfree_rcu(adj, rcu);
5684 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5685 struct net_device *upper_dev,
5686 struct list_head *up_list,
5687 struct list_head *down_list,
5688 void *private, bool master)
5690 int ret;
5692 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5693 private, master);
5694 if (ret)
5695 return ret;
5697 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5698 private, false);
5699 if (ret) {
5700 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5701 return ret;
5704 return 0;
5707 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5708 struct net_device *upper_dev,
5709 u16 ref_nr,
5710 struct list_head *up_list,
5711 struct list_head *down_list)
5713 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5714 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5717 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5718 struct net_device *upper_dev,
5719 void *private, bool master)
5721 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5722 &dev->adj_list.upper,
5723 &upper_dev->adj_list.lower,
5724 private, master);
5727 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5728 struct net_device *upper_dev)
5730 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5731 &dev->adj_list.upper,
5732 &upper_dev->adj_list.lower);
5735 static int __netdev_upper_dev_link(struct net_device *dev,
5736 struct net_device *upper_dev, bool master,
5737 void *upper_priv, void *upper_info)
5739 struct netdev_notifier_changeupper_info changeupper_info;
5740 int ret = 0;
5742 ASSERT_RTNL();
5744 if (dev == upper_dev)
5745 return -EBUSY;
5747 /* To prevent loops, check if dev is not upper device to upper_dev. */
5748 if (netdev_has_upper_dev(upper_dev, dev))
5749 return -EBUSY;
5751 if (netdev_has_upper_dev(dev, upper_dev))
5752 return -EEXIST;
5754 if (master && netdev_master_upper_dev_get(dev))
5755 return -EBUSY;
5757 changeupper_info.upper_dev = upper_dev;
5758 changeupper_info.master = master;
5759 changeupper_info.linking = true;
5760 changeupper_info.upper_info = upper_info;
5762 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5763 &changeupper_info.info);
5764 ret = notifier_to_errno(ret);
5765 if (ret)
5766 return ret;
5768 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5769 master);
5770 if (ret)
5771 return ret;
5773 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5774 &changeupper_info.info);
5775 ret = notifier_to_errno(ret);
5776 if (ret)
5777 goto rollback;
5779 return 0;
5781 rollback:
5782 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5784 return ret;
5788 * netdev_upper_dev_link - Add a link to the upper device
5789 * @dev: device
5790 * @upper_dev: new upper device
5792 * Adds a link to device which is upper to this one. The caller must hold
5793 * the RTNL lock. On a failure a negative errno code is returned.
5794 * On success the reference counts are adjusted and the function
5795 * returns zero.
5797 int netdev_upper_dev_link(struct net_device *dev,
5798 struct net_device *upper_dev)
5800 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5802 EXPORT_SYMBOL(netdev_upper_dev_link);
5805 * netdev_master_upper_dev_link - Add a master link to the upper device
5806 * @dev: device
5807 * @upper_dev: new upper device
5808 * @upper_priv: upper device private
5809 * @upper_info: upper info to be passed down via notifier
5811 * Adds a link to device which is upper to this one. In this case, only
5812 * one master upper device can be linked, although other non-master devices
5813 * might be linked as well. The caller must hold the RTNL lock.
5814 * On a failure a negative errno code is returned. On success the reference
5815 * counts are adjusted and the function returns zero.
5817 int netdev_master_upper_dev_link(struct net_device *dev,
5818 struct net_device *upper_dev,
5819 void *upper_priv, void *upper_info)
5821 return __netdev_upper_dev_link(dev, upper_dev, true,
5822 upper_priv, upper_info);
5824 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5827 * netdev_upper_dev_unlink - Removes a link to upper device
5828 * @dev: device
5829 * @upper_dev: new upper device
5831 * Removes a link to device which is upper to this one. The caller must hold
5832 * the RTNL lock.
5834 void netdev_upper_dev_unlink(struct net_device *dev,
5835 struct net_device *upper_dev)
5837 struct netdev_notifier_changeupper_info changeupper_info;
5838 ASSERT_RTNL();
5840 changeupper_info.upper_dev = upper_dev;
5841 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5842 changeupper_info.linking = false;
5844 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5845 &changeupper_info.info);
5847 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5849 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5850 &changeupper_info.info);
5852 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5855 * netdev_bonding_info_change - Dispatch event about slave change
5856 * @dev: device
5857 * @bonding_info: info to dispatch
5859 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5860 * The caller must hold the RTNL lock.
5862 void netdev_bonding_info_change(struct net_device *dev,
5863 struct netdev_bonding_info *bonding_info)
5865 struct netdev_notifier_bonding_info info;
5867 memcpy(&info.bonding_info, bonding_info,
5868 sizeof(struct netdev_bonding_info));
5869 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5870 &info.info);
5872 EXPORT_SYMBOL(netdev_bonding_info_change);
5874 static void netdev_adjacent_add_links(struct net_device *dev)
5876 struct netdev_adjacent *iter;
5878 struct net *net = dev_net(dev);
5880 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5881 if (!net_eq(net, dev_net(iter->dev)))
5882 continue;
5883 netdev_adjacent_sysfs_add(iter->dev, dev,
5884 &iter->dev->adj_list.lower);
5885 netdev_adjacent_sysfs_add(dev, iter->dev,
5886 &dev->adj_list.upper);
5889 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5890 if (!net_eq(net, dev_net(iter->dev)))
5891 continue;
5892 netdev_adjacent_sysfs_add(iter->dev, dev,
5893 &iter->dev->adj_list.upper);
5894 netdev_adjacent_sysfs_add(dev, iter->dev,
5895 &dev->adj_list.lower);
5899 static void netdev_adjacent_del_links(struct net_device *dev)
5901 struct netdev_adjacent *iter;
5903 struct net *net = dev_net(dev);
5905 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5906 if (!net_eq(net, dev_net(iter->dev)))
5907 continue;
5908 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5909 &iter->dev->adj_list.lower);
5910 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5911 &dev->adj_list.upper);
5914 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5915 if (!net_eq(net, dev_net(iter->dev)))
5916 continue;
5917 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5918 &iter->dev->adj_list.upper);
5919 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5920 &dev->adj_list.lower);
5924 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5926 struct netdev_adjacent *iter;
5928 struct net *net = dev_net(dev);
5930 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5931 if (!net_eq(net, dev_net(iter->dev)))
5932 continue;
5933 netdev_adjacent_sysfs_del(iter->dev, oldname,
5934 &iter->dev->adj_list.lower);
5935 netdev_adjacent_sysfs_add(iter->dev, dev,
5936 &iter->dev->adj_list.lower);
5939 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5940 if (!net_eq(net, dev_net(iter->dev)))
5941 continue;
5942 netdev_adjacent_sysfs_del(iter->dev, oldname,
5943 &iter->dev->adj_list.upper);
5944 netdev_adjacent_sysfs_add(iter->dev, dev,
5945 &iter->dev->adj_list.upper);
5949 void *netdev_lower_dev_get_private(struct net_device *dev,
5950 struct net_device *lower_dev)
5952 struct netdev_adjacent *lower;
5954 if (!lower_dev)
5955 return NULL;
5956 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5957 if (!lower)
5958 return NULL;
5960 return lower->private;
5962 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5965 int dev_get_nest_level(struct net_device *dev)
5967 struct net_device *lower = NULL;
5968 struct list_head *iter;
5969 int max_nest = -1;
5970 int nest;
5972 ASSERT_RTNL();
5974 netdev_for_each_lower_dev(dev, lower, iter) {
5975 nest = dev_get_nest_level(lower);
5976 if (max_nest < nest)
5977 max_nest = nest;
5980 return max_nest + 1;
5982 EXPORT_SYMBOL(dev_get_nest_level);
5985 * netdev_lower_change - Dispatch event about lower device state change
5986 * @lower_dev: device
5987 * @lower_state_info: state to dispatch
5989 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5990 * The caller must hold the RTNL lock.
5992 void netdev_lower_state_changed(struct net_device *lower_dev,
5993 void *lower_state_info)
5995 struct netdev_notifier_changelowerstate_info changelowerstate_info;
5997 ASSERT_RTNL();
5998 changelowerstate_info.lower_state_info = lower_state_info;
5999 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6000 &changelowerstate_info.info);
6002 EXPORT_SYMBOL(netdev_lower_state_changed);
6004 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6005 struct neighbour *n)
6007 struct net_device *lower_dev, *stop_dev;
6008 struct list_head *iter;
6009 int err;
6011 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6012 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6013 continue;
6014 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6015 if (err) {
6016 stop_dev = lower_dev;
6017 goto rollback;
6020 return 0;
6022 rollback:
6023 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6024 if (lower_dev == stop_dev)
6025 break;
6026 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6027 continue;
6028 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6030 return err;
6032 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6034 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6035 struct neighbour *n)
6037 struct net_device *lower_dev;
6038 struct list_head *iter;
6040 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6041 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6042 continue;
6043 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6046 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6048 static void dev_change_rx_flags(struct net_device *dev, int flags)
6050 const struct net_device_ops *ops = dev->netdev_ops;
6052 if (ops->ndo_change_rx_flags)
6053 ops->ndo_change_rx_flags(dev, flags);
6056 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6058 unsigned int old_flags = dev->flags;
6059 kuid_t uid;
6060 kgid_t gid;
6062 ASSERT_RTNL();
6064 dev->flags |= IFF_PROMISC;
6065 dev->promiscuity += inc;
6066 if (dev->promiscuity == 0) {
6068 * Avoid overflow.
6069 * If inc causes overflow, untouch promisc and return error.
6071 if (inc < 0)
6072 dev->flags &= ~IFF_PROMISC;
6073 else {
6074 dev->promiscuity -= inc;
6075 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6076 dev->name);
6077 return -EOVERFLOW;
6080 if (dev->flags != old_flags) {
6081 pr_info("device %s %s promiscuous mode\n",
6082 dev->name,
6083 dev->flags & IFF_PROMISC ? "entered" : "left");
6084 if (audit_enabled) {
6085 current_uid_gid(&uid, &gid);
6086 audit_log(current->audit_context, GFP_ATOMIC,
6087 AUDIT_ANOM_PROMISCUOUS,
6088 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6089 dev->name, (dev->flags & IFF_PROMISC),
6090 (old_flags & IFF_PROMISC),
6091 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6092 from_kuid(&init_user_ns, uid),
6093 from_kgid(&init_user_ns, gid),
6094 audit_get_sessionid(current));
6097 dev_change_rx_flags(dev, IFF_PROMISC);
6099 if (notify)
6100 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6101 return 0;
6105 * dev_set_promiscuity - update promiscuity count on a device
6106 * @dev: device
6107 * @inc: modifier
6109 * Add or remove promiscuity from a device. While the count in the device
6110 * remains above zero the interface remains promiscuous. Once it hits zero
6111 * the device reverts back to normal filtering operation. A negative inc
6112 * value is used to drop promiscuity on the device.
6113 * Return 0 if successful or a negative errno code on error.
6115 int dev_set_promiscuity(struct net_device *dev, int inc)
6117 unsigned int old_flags = dev->flags;
6118 int err;
6120 err = __dev_set_promiscuity(dev, inc, true);
6121 if (err < 0)
6122 return err;
6123 if (dev->flags != old_flags)
6124 dev_set_rx_mode(dev);
6125 return err;
6127 EXPORT_SYMBOL(dev_set_promiscuity);
6129 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6131 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6133 ASSERT_RTNL();
6135 dev->flags |= IFF_ALLMULTI;
6136 dev->allmulti += inc;
6137 if (dev->allmulti == 0) {
6139 * Avoid overflow.
6140 * If inc causes overflow, untouch allmulti and return error.
6142 if (inc < 0)
6143 dev->flags &= ~IFF_ALLMULTI;
6144 else {
6145 dev->allmulti -= inc;
6146 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6147 dev->name);
6148 return -EOVERFLOW;
6151 if (dev->flags ^ old_flags) {
6152 dev_change_rx_flags(dev, IFF_ALLMULTI);
6153 dev_set_rx_mode(dev);
6154 if (notify)
6155 __dev_notify_flags(dev, old_flags,
6156 dev->gflags ^ old_gflags);
6158 return 0;
6162 * dev_set_allmulti - update allmulti count on a device
6163 * @dev: device
6164 * @inc: modifier
6166 * Add or remove reception of all multicast frames to a device. While the
6167 * count in the device remains above zero the interface remains listening
6168 * to all interfaces. Once it hits zero the device reverts back to normal
6169 * filtering operation. A negative @inc value is used to drop the counter
6170 * when releasing a resource needing all multicasts.
6171 * Return 0 if successful or a negative errno code on error.
6174 int dev_set_allmulti(struct net_device *dev, int inc)
6176 return __dev_set_allmulti(dev, inc, true);
6178 EXPORT_SYMBOL(dev_set_allmulti);
6181 * Upload unicast and multicast address lists to device and
6182 * configure RX filtering. When the device doesn't support unicast
6183 * filtering it is put in promiscuous mode while unicast addresses
6184 * are present.
6186 void __dev_set_rx_mode(struct net_device *dev)
6188 const struct net_device_ops *ops = dev->netdev_ops;
6190 /* dev_open will call this function so the list will stay sane. */
6191 if (!(dev->flags&IFF_UP))
6192 return;
6194 if (!netif_device_present(dev))
6195 return;
6197 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6198 /* Unicast addresses changes may only happen under the rtnl,
6199 * therefore calling __dev_set_promiscuity here is safe.
6201 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6202 __dev_set_promiscuity(dev, 1, false);
6203 dev->uc_promisc = true;
6204 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6205 __dev_set_promiscuity(dev, -1, false);
6206 dev->uc_promisc = false;
6210 if (ops->ndo_set_rx_mode)
6211 ops->ndo_set_rx_mode(dev);
6214 void dev_set_rx_mode(struct net_device *dev)
6216 netif_addr_lock_bh(dev);
6217 __dev_set_rx_mode(dev);
6218 netif_addr_unlock_bh(dev);
6222 * dev_get_flags - get flags reported to userspace
6223 * @dev: device
6225 * Get the combination of flag bits exported through APIs to userspace.
6227 unsigned int dev_get_flags(const struct net_device *dev)
6229 unsigned int flags;
6231 flags = (dev->flags & ~(IFF_PROMISC |
6232 IFF_ALLMULTI |
6233 IFF_RUNNING |
6234 IFF_LOWER_UP |
6235 IFF_DORMANT)) |
6236 (dev->gflags & (IFF_PROMISC |
6237 IFF_ALLMULTI));
6239 if (netif_running(dev)) {
6240 if (netif_oper_up(dev))
6241 flags |= IFF_RUNNING;
6242 if (netif_carrier_ok(dev))
6243 flags |= IFF_LOWER_UP;
6244 if (netif_dormant(dev))
6245 flags |= IFF_DORMANT;
6248 return flags;
6250 EXPORT_SYMBOL(dev_get_flags);
6252 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6254 unsigned int old_flags = dev->flags;
6255 int ret;
6257 ASSERT_RTNL();
6260 * Set the flags on our device.
6263 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6264 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6265 IFF_AUTOMEDIA)) |
6266 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6267 IFF_ALLMULTI));
6270 * Load in the correct multicast list now the flags have changed.
6273 if ((old_flags ^ flags) & IFF_MULTICAST)
6274 dev_change_rx_flags(dev, IFF_MULTICAST);
6276 dev_set_rx_mode(dev);
6279 * Have we downed the interface. We handle IFF_UP ourselves
6280 * according to user attempts to set it, rather than blindly
6281 * setting it.
6284 ret = 0;
6285 if ((old_flags ^ flags) & IFF_UP)
6286 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6288 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6289 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6290 unsigned int old_flags = dev->flags;
6292 dev->gflags ^= IFF_PROMISC;
6294 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6295 if (dev->flags != old_flags)
6296 dev_set_rx_mode(dev);
6299 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6300 is important. Some (broken) drivers set IFF_PROMISC, when
6301 IFF_ALLMULTI is requested not asking us and not reporting.
6303 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6304 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6306 dev->gflags ^= IFF_ALLMULTI;
6307 __dev_set_allmulti(dev, inc, false);
6310 return ret;
6313 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6314 unsigned int gchanges)
6316 unsigned int changes = dev->flags ^ old_flags;
6318 if (gchanges)
6319 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6321 if (changes & IFF_UP) {
6322 if (dev->flags & IFF_UP)
6323 call_netdevice_notifiers(NETDEV_UP, dev);
6324 else
6325 call_netdevice_notifiers(NETDEV_DOWN, dev);
6328 if (dev->flags & IFF_UP &&
6329 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6330 struct netdev_notifier_change_info change_info;
6332 change_info.flags_changed = changes;
6333 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6334 &change_info.info);
6339 * dev_change_flags - change device settings
6340 * @dev: device
6341 * @flags: device state flags
6343 * Change settings on device based state flags. The flags are
6344 * in the userspace exported format.
6346 int dev_change_flags(struct net_device *dev, unsigned int flags)
6348 int ret;
6349 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6351 ret = __dev_change_flags(dev, flags);
6352 if (ret < 0)
6353 return ret;
6355 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6356 __dev_notify_flags(dev, old_flags, changes);
6357 return ret;
6359 EXPORT_SYMBOL(dev_change_flags);
6361 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6363 const struct net_device_ops *ops = dev->netdev_ops;
6365 if (ops->ndo_change_mtu)
6366 return ops->ndo_change_mtu(dev, new_mtu);
6368 dev->mtu = new_mtu;
6369 return 0;
6373 * dev_set_mtu - Change maximum transfer unit
6374 * @dev: device
6375 * @new_mtu: new transfer unit
6377 * Change the maximum transfer size of the network device.
6379 int dev_set_mtu(struct net_device *dev, int new_mtu)
6381 int err, orig_mtu;
6383 if (new_mtu == dev->mtu)
6384 return 0;
6386 /* MTU must be positive, and in range */
6387 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6388 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6389 dev->name, new_mtu, dev->min_mtu);
6390 return -EINVAL;
6393 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6394 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6395 dev->name, new_mtu, dev->max_mtu);
6396 return -EINVAL;
6399 if (!netif_device_present(dev))
6400 return -ENODEV;
6402 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6403 err = notifier_to_errno(err);
6404 if (err)
6405 return err;
6407 orig_mtu = dev->mtu;
6408 err = __dev_set_mtu(dev, new_mtu);
6410 if (!err) {
6411 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6412 err = notifier_to_errno(err);
6413 if (err) {
6414 /* setting mtu back and notifying everyone again,
6415 * so that they have a chance to revert changes.
6417 __dev_set_mtu(dev, orig_mtu);
6418 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6421 return err;
6423 EXPORT_SYMBOL(dev_set_mtu);
6426 * dev_set_group - Change group this device belongs to
6427 * @dev: device
6428 * @new_group: group this device should belong to
6430 void dev_set_group(struct net_device *dev, int new_group)
6432 dev->group = new_group;
6434 EXPORT_SYMBOL(dev_set_group);
6437 * dev_set_mac_address - Change Media Access Control Address
6438 * @dev: device
6439 * @sa: new address
6441 * Change the hardware (MAC) address of the device
6443 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6445 const struct net_device_ops *ops = dev->netdev_ops;
6446 int err;
6448 if (!ops->ndo_set_mac_address)
6449 return -EOPNOTSUPP;
6450 if (sa->sa_family != dev->type)
6451 return -EINVAL;
6452 if (!netif_device_present(dev))
6453 return -ENODEV;
6454 err = ops->ndo_set_mac_address(dev, sa);
6455 if (err)
6456 return err;
6457 dev->addr_assign_type = NET_ADDR_SET;
6458 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6459 add_device_randomness(dev->dev_addr, dev->addr_len);
6460 return 0;
6462 EXPORT_SYMBOL(dev_set_mac_address);
6465 * dev_change_carrier - Change device carrier
6466 * @dev: device
6467 * @new_carrier: new value
6469 * Change device carrier
6471 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6473 const struct net_device_ops *ops = dev->netdev_ops;
6475 if (!ops->ndo_change_carrier)
6476 return -EOPNOTSUPP;
6477 if (!netif_device_present(dev))
6478 return -ENODEV;
6479 return ops->ndo_change_carrier(dev, new_carrier);
6481 EXPORT_SYMBOL(dev_change_carrier);
6484 * dev_get_phys_port_id - Get device physical port ID
6485 * @dev: device
6486 * @ppid: port ID
6488 * Get device physical port ID
6490 int dev_get_phys_port_id(struct net_device *dev,
6491 struct netdev_phys_item_id *ppid)
6493 const struct net_device_ops *ops = dev->netdev_ops;
6495 if (!ops->ndo_get_phys_port_id)
6496 return -EOPNOTSUPP;
6497 return ops->ndo_get_phys_port_id(dev, ppid);
6499 EXPORT_SYMBOL(dev_get_phys_port_id);
6502 * dev_get_phys_port_name - Get device physical port name
6503 * @dev: device
6504 * @name: port name
6505 * @len: limit of bytes to copy to name
6507 * Get device physical port name
6509 int dev_get_phys_port_name(struct net_device *dev,
6510 char *name, size_t len)
6512 const struct net_device_ops *ops = dev->netdev_ops;
6514 if (!ops->ndo_get_phys_port_name)
6515 return -EOPNOTSUPP;
6516 return ops->ndo_get_phys_port_name(dev, name, len);
6518 EXPORT_SYMBOL(dev_get_phys_port_name);
6521 * dev_change_proto_down - update protocol port state information
6522 * @dev: device
6523 * @proto_down: new value
6525 * This info can be used by switch drivers to set the phys state of the
6526 * port.
6528 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6530 const struct net_device_ops *ops = dev->netdev_ops;
6532 if (!ops->ndo_change_proto_down)
6533 return -EOPNOTSUPP;
6534 if (!netif_device_present(dev))
6535 return -ENODEV;
6536 return ops->ndo_change_proto_down(dev, proto_down);
6538 EXPORT_SYMBOL(dev_change_proto_down);
6541 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6542 * @dev: device
6543 * @fd: new program fd or negative value to clear
6545 * Set or clear a bpf program for a device
6547 int dev_change_xdp_fd(struct net_device *dev, int fd)
6549 const struct net_device_ops *ops = dev->netdev_ops;
6550 struct bpf_prog *prog = NULL;
6551 struct netdev_xdp xdp = {};
6552 int err;
6554 if (!ops->ndo_xdp)
6555 return -EOPNOTSUPP;
6556 if (fd >= 0) {
6557 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6558 if (IS_ERR(prog))
6559 return PTR_ERR(prog);
6562 xdp.command = XDP_SETUP_PROG;
6563 xdp.prog = prog;
6564 err = ops->ndo_xdp(dev, &xdp);
6565 if (err < 0 && prog)
6566 bpf_prog_put(prog);
6568 return err;
6570 EXPORT_SYMBOL(dev_change_xdp_fd);
6573 * dev_new_index - allocate an ifindex
6574 * @net: the applicable net namespace
6576 * Returns a suitable unique value for a new device interface
6577 * number. The caller must hold the rtnl semaphore or the
6578 * dev_base_lock to be sure it remains unique.
6580 static int dev_new_index(struct net *net)
6582 int ifindex = net->ifindex;
6583 for (;;) {
6584 if (++ifindex <= 0)
6585 ifindex = 1;
6586 if (!__dev_get_by_index(net, ifindex))
6587 return net->ifindex = ifindex;
6591 /* Delayed registration/unregisteration */
6592 static LIST_HEAD(net_todo_list);
6593 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6595 static void net_set_todo(struct net_device *dev)
6597 list_add_tail(&dev->todo_list, &net_todo_list);
6598 dev_net(dev)->dev_unreg_count++;
6601 static void rollback_registered_many(struct list_head *head)
6603 struct net_device *dev, *tmp;
6604 LIST_HEAD(close_head);
6606 BUG_ON(dev_boot_phase);
6607 ASSERT_RTNL();
6609 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6610 /* Some devices call without registering
6611 * for initialization unwind. Remove those
6612 * devices and proceed with the remaining.
6614 if (dev->reg_state == NETREG_UNINITIALIZED) {
6615 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6616 dev->name, dev);
6618 WARN_ON(1);
6619 list_del(&dev->unreg_list);
6620 continue;
6622 dev->dismantle = true;
6623 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6626 /* If device is running, close it first. */
6627 list_for_each_entry(dev, head, unreg_list)
6628 list_add_tail(&dev->close_list, &close_head);
6629 dev_close_many(&close_head, true);
6631 list_for_each_entry(dev, head, unreg_list) {
6632 /* And unlink it from device chain. */
6633 unlist_netdevice(dev);
6635 dev->reg_state = NETREG_UNREGISTERING;
6637 flush_all_backlogs();
6639 synchronize_net();
6641 list_for_each_entry(dev, head, unreg_list) {
6642 struct sk_buff *skb = NULL;
6644 /* Shutdown queueing discipline. */
6645 dev_shutdown(dev);
6648 /* Notify protocols, that we are about to destroy
6649 this device. They should clean all the things.
6651 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6653 if (!dev->rtnl_link_ops ||
6654 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6655 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6656 GFP_KERNEL);
6659 * Flush the unicast and multicast chains
6661 dev_uc_flush(dev);
6662 dev_mc_flush(dev);
6664 if (dev->netdev_ops->ndo_uninit)
6665 dev->netdev_ops->ndo_uninit(dev);
6667 if (skb)
6668 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6670 /* Notifier chain MUST detach us all upper devices. */
6671 WARN_ON(netdev_has_any_upper_dev(dev));
6672 WARN_ON(netdev_has_any_lower_dev(dev));
6674 /* Remove entries from kobject tree */
6675 netdev_unregister_kobject(dev);
6676 #ifdef CONFIG_XPS
6677 /* Remove XPS queueing entries */
6678 netif_reset_xps_queues_gt(dev, 0);
6679 #endif
6682 synchronize_net();
6684 list_for_each_entry(dev, head, unreg_list)
6685 dev_put(dev);
6688 static void rollback_registered(struct net_device *dev)
6690 LIST_HEAD(single);
6692 list_add(&dev->unreg_list, &single);
6693 rollback_registered_many(&single);
6694 list_del(&single);
6697 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6698 struct net_device *upper, netdev_features_t features)
6700 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6701 netdev_features_t feature;
6702 int feature_bit;
6704 for_each_netdev_feature(&upper_disables, feature_bit) {
6705 feature = __NETIF_F_BIT(feature_bit);
6706 if (!(upper->wanted_features & feature)
6707 && (features & feature)) {
6708 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6709 &feature, upper->name);
6710 features &= ~feature;
6714 return features;
6717 static void netdev_sync_lower_features(struct net_device *upper,
6718 struct net_device *lower, netdev_features_t features)
6720 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6721 netdev_features_t feature;
6722 int feature_bit;
6724 for_each_netdev_feature(&upper_disables, feature_bit) {
6725 feature = __NETIF_F_BIT(feature_bit);
6726 if (!(features & feature) && (lower->features & feature)) {
6727 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6728 &feature, lower->name);
6729 lower->wanted_features &= ~feature;
6730 netdev_update_features(lower);
6732 if (unlikely(lower->features & feature))
6733 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6734 &feature, lower->name);
6739 static netdev_features_t netdev_fix_features(struct net_device *dev,
6740 netdev_features_t features)
6742 /* Fix illegal checksum combinations */
6743 if ((features & NETIF_F_HW_CSUM) &&
6744 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6745 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6746 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6749 /* TSO requires that SG is present as well. */
6750 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6751 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6752 features &= ~NETIF_F_ALL_TSO;
6755 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6756 !(features & NETIF_F_IP_CSUM)) {
6757 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6758 features &= ~NETIF_F_TSO;
6759 features &= ~NETIF_F_TSO_ECN;
6762 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6763 !(features & NETIF_F_IPV6_CSUM)) {
6764 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6765 features &= ~NETIF_F_TSO6;
6768 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6769 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6770 features &= ~NETIF_F_TSO_MANGLEID;
6772 /* TSO ECN requires that TSO is present as well. */
6773 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6774 features &= ~NETIF_F_TSO_ECN;
6776 /* Software GSO depends on SG. */
6777 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6778 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6779 features &= ~NETIF_F_GSO;
6782 /* UFO needs SG and checksumming */
6783 if (features & NETIF_F_UFO) {
6784 /* maybe split UFO into V4 and V6? */
6785 if (!(features & NETIF_F_HW_CSUM) &&
6786 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6787 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6788 netdev_dbg(dev,
6789 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6790 features &= ~NETIF_F_UFO;
6793 if (!(features & NETIF_F_SG)) {
6794 netdev_dbg(dev,
6795 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6796 features &= ~NETIF_F_UFO;
6800 /* GSO partial features require GSO partial be set */
6801 if ((features & dev->gso_partial_features) &&
6802 !(features & NETIF_F_GSO_PARTIAL)) {
6803 netdev_dbg(dev,
6804 "Dropping partially supported GSO features since no GSO partial.\n");
6805 features &= ~dev->gso_partial_features;
6808 #ifdef CONFIG_NET_RX_BUSY_POLL
6809 if (dev->netdev_ops->ndo_busy_poll)
6810 features |= NETIF_F_BUSY_POLL;
6811 else
6812 #endif
6813 features &= ~NETIF_F_BUSY_POLL;
6815 return features;
6818 int __netdev_update_features(struct net_device *dev)
6820 struct net_device *upper, *lower;
6821 netdev_features_t features;
6822 struct list_head *iter;
6823 int err = -1;
6825 ASSERT_RTNL();
6827 features = netdev_get_wanted_features(dev);
6829 if (dev->netdev_ops->ndo_fix_features)
6830 features = dev->netdev_ops->ndo_fix_features(dev, features);
6832 /* driver might be less strict about feature dependencies */
6833 features = netdev_fix_features(dev, features);
6835 /* some features can't be enabled if they're off an an upper device */
6836 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6837 features = netdev_sync_upper_features(dev, upper, features);
6839 if (dev->features == features)
6840 goto sync_lower;
6842 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6843 &dev->features, &features);
6845 if (dev->netdev_ops->ndo_set_features)
6846 err = dev->netdev_ops->ndo_set_features(dev, features);
6847 else
6848 err = 0;
6850 if (unlikely(err < 0)) {
6851 netdev_err(dev,
6852 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6853 err, &features, &dev->features);
6854 /* return non-0 since some features might have changed and
6855 * it's better to fire a spurious notification than miss it
6857 return -1;
6860 sync_lower:
6861 /* some features must be disabled on lower devices when disabled
6862 * on an upper device (think: bonding master or bridge)
6864 netdev_for_each_lower_dev(dev, lower, iter)
6865 netdev_sync_lower_features(dev, lower, features);
6867 if (!err)
6868 dev->features = features;
6870 return err < 0 ? 0 : 1;
6874 * netdev_update_features - recalculate device features
6875 * @dev: the device to check
6877 * Recalculate dev->features set and send notifications if it
6878 * has changed. Should be called after driver or hardware dependent
6879 * conditions might have changed that influence the features.
6881 void netdev_update_features(struct net_device *dev)
6883 if (__netdev_update_features(dev))
6884 netdev_features_change(dev);
6886 EXPORT_SYMBOL(netdev_update_features);
6889 * netdev_change_features - recalculate device features
6890 * @dev: the device to check
6892 * Recalculate dev->features set and send notifications even
6893 * if they have not changed. Should be called instead of
6894 * netdev_update_features() if also dev->vlan_features might
6895 * have changed to allow the changes to be propagated to stacked
6896 * VLAN devices.
6898 void netdev_change_features(struct net_device *dev)
6900 __netdev_update_features(dev);
6901 netdev_features_change(dev);
6903 EXPORT_SYMBOL(netdev_change_features);
6906 * netif_stacked_transfer_operstate - transfer operstate
6907 * @rootdev: the root or lower level device to transfer state from
6908 * @dev: the device to transfer operstate to
6910 * Transfer operational state from root to device. This is normally
6911 * called when a stacking relationship exists between the root
6912 * device and the device(a leaf device).
6914 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6915 struct net_device *dev)
6917 if (rootdev->operstate == IF_OPER_DORMANT)
6918 netif_dormant_on(dev);
6919 else
6920 netif_dormant_off(dev);
6922 if (netif_carrier_ok(rootdev)) {
6923 if (!netif_carrier_ok(dev))
6924 netif_carrier_on(dev);
6925 } else {
6926 if (netif_carrier_ok(dev))
6927 netif_carrier_off(dev);
6930 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6932 #ifdef CONFIG_SYSFS
6933 static int netif_alloc_rx_queues(struct net_device *dev)
6935 unsigned int i, count = dev->num_rx_queues;
6936 struct netdev_rx_queue *rx;
6937 size_t sz = count * sizeof(*rx);
6939 BUG_ON(count < 1);
6941 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6942 if (!rx) {
6943 rx = vzalloc(sz);
6944 if (!rx)
6945 return -ENOMEM;
6947 dev->_rx = rx;
6949 for (i = 0; i < count; i++)
6950 rx[i].dev = dev;
6951 return 0;
6953 #endif
6955 static void netdev_init_one_queue(struct net_device *dev,
6956 struct netdev_queue *queue, void *_unused)
6958 /* Initialize queue lock */
6959 spin_lock_init(&queue->_xmit_lock);
6960 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6961 queue->xmit_lock_owner = -1;
6962 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6963 queue->dev = dev;
6964 #ifdef CONFIG_BQL
6965 dql_init(&queue->dql, HZ);
6966 #endif
6969 static void netif_free_tx_queues(struct net_device *dev)
6971 kvfree(dev->_tx);
6974 static int netif_alloc_netdev_queues(struct net_device *dev)
6976 unsigned int count = dev->num_tx_queues;
6977 struct netdev_queue *tx;
6978 size_t sz = count * sizeof(*tx);
6980 if (count < 1 || count > 0xffff)
6981 return -EINVAL;
6983 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6984 if (!tx) {
6985 tx = vzalloc(sz);
6986 if (!tx)
6987 return -ENOMEM;
6989 dev->_tx = tx;
6991 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6992 spin_lock_init(&dev->tx_global_lock);
6994 return 0;
6997 void netif_tx_stop_all_queues(struct net_device *dev)
6999 unsigned int i;
7001 for (i = 0; i < dev->num_tx_queues; i++) {
7002 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7003 netif_tx_stop_queue(txq);
7006 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7009 * register_netdevice - register a network device
7010 * @dev: device to register
7012 * Take a completed network device structure and add it to the kernel
7013 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7014 * chain. 0 is returned on success. A negative errno code is returned
7015 * on a failure to set up the device, or if the name is a duplicate.
7017 * Callers must hold the rtnl semaphore. You may want
7018 * register_netdev() instead of this.
7020 * BUGS:
7021 * The locking appears insufficient to guarantee two parallel registers
7022 * will not get the same name.
7025 int register_netdevice(struct net_device *dev)
7027 int ret;
7028 struct net *net = dev_net(dev);
7030 BUG_ON(dev_boot_phase);
7031 ASSERT_RTNL();
7033 might_sleep();
7035 /* When net_device's are persistent, this will be fatal. */
7036 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7037 BUG_ON(!net);
7039 spin_lock_init(&dev->addr_list_lock);
7040 netdev_set_addr_lockdep_class(dev);
7042 ret = dev_get_valid_name(net, dev, dev->name);
7043 if (ret < 0)
7044 goto out;
7046 /* Init, if this function is available */
7047 if (dev->netdev_ops->ndo_init) {
7048 ret = dev->netdev_ops->ndo_init(dev);
7049 if (ret) {
7050 if (ret > 0)
7051 ret = -EIO;
7052 goto out;
7056 if (((dev->hw_features | dev->features) &
7057 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7058 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7059 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7060 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7061 ret = -EINVAL;
7062 goto err_uninit;
7065 ret = -EBUSY;
7066 if (!dev->ifindex)
7067 dev->ifindex = dev_new_index(net);
7068 else if (__dev_get_by_index(net, dev->ifindex))
7069 goto err_uninit;
7071 /* Transfer changeable features to wanted_features and enable
7072 * software offloads (GSO and GRO).
7074 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7075 dev->features |= NETIF_F_SOFT_FEATURES;
7076 dev->wanted_features = dev->features & dev->hw_features;
7078 if (!(dev->flags & IFF_LOOPBACK))
7079 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7081 /* If IPv4 TCP segmentation offload is supported we should also
7082 * allow the device to enable segmenting the frame with the option
7083 * of ignoring a static IP ID value. This doesn't enable the
7084 * feature itself but allows the user to enable it later.
7086 if (dev->hw_features & NETIF_F_TSO)
7087 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7088 if (dev->vlan_features & NETIF_F_TSO)
7089 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7090 if (dev->mpls_features & NETIF_F_TSO)
7091 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7092 if (dev->hw_enc_features & NETIF_F_TSO)
7093 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7095 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7097 dev->vlan_features |= NETIF_F_HIGHDMA;
7099 /* Make NETIF_F_SG inheritable to tunnel devices.
7101 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7103 /* Make NETIF_F_SG inheritable to MPLS.
7105 dev->mpls_features |= NETIF_F_SG;
7107 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7108 ret = notifier_to_errno(ret);
7109 if (ret)
7110 goto err_uninit;
7112 ret = netdev_register_kobject(dev);
7113 if (ret)
7114 goto err_uninit;
7115 dev->reg_state = NETREG_REGISTERED;
7117 __netdev_update_features(dev);
7120 * Default initial state at registry is that the
7121 * device is present.
7124 set_bit(__LINK_STATE_PRESENT, &dev->state);
7126 linkwatch_init_dev(dev);
7128 dev_init_scheduler(dev);
7129 dev_hold(dev);
7130 list_netdevice(dev);
7131 add_device_randomness(dev->dev_addr, dev->addr_len);
7133 /* If the device has permanent device address, driver should
7134 * set dev_addr and also addr_assign_type should be set to
7135 * NET_ADDR_PERM (default value).
7137 if (dev->addr_assign_type == NET_ADDR_PERM)
7138 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7140 /* Notify protocols, that a new device appeared. */
7141 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7142 ret = notifier_to_errno(ret);
7143 if (ret) {
7144 rollback_registered(dev);
7145 dev->reg_state = NETREG_UNREGISTERED;
7148 * Prevent userspace races by waiting until the network
7149 * device is fully setup before sending notifications.
7151 if (!dev->rtnl_link_ops ||
7152 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7153 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7155 out:
7156 return ret;
7158 err_uninit:
7159 if (dev->netdev_ops->ndo_uninit)
7160 dev->netdev_ops->ndo_uninit(dev);
7161 goto out;
7163 EXPORT_SYMBOL(register_netdevice);
7166 * init_dummy_netdev - init a dummy network device for NAPI
7167 * @dev: device to init
7169 * This takes a network device structure and initialize the minimum
7170 * amount of fields so it can be used to schedule NAPI polls without
7171 * registering a full blown interface. This is to be used by drivers
7172 * that need to tie several hardware interfaces to a single NAPI
7173 * poll scheduler due to HW limitations.
7175 int init_dummy_netdev(struct net_device *dev)
7177 /* Clear everything. Note we don't initialize spinlocks
7178 * are they aren't supposed to be taken by any of the
7179 * NAPI code and this dummy netdev is supposed to be
7180 * only ever used for NAPI polls
7182 memset(dev, 0, sizeof(struct net_device));
7184 /* make sure we BUG if trying to hit standard
7185 * register/unregister code path
7187 dev->reg_state = NETREG_DUMMY;
7189 /* NAPI wants this */
7190 INIT_LIST_HEAD(&dev->napi_list);
7192 /* a dummy interface is started by default */
7193 set_bit(__LINK_STATE_PRESENT, &dev->state);
7194 set_bit(__LINK_STATE_START, &dev->state);
7196 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7197 * because users of this 'device' dont need to change
7198 * its refcount.
7201 return 0;
7203 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7207 * register_netdev - register a network device
7208 * @dev: device to register
7210 * Take a completed network device structure and add it to the kernel
7211 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7212 * chain. 0 is returned on success. A negative errno code is returned
7213 * on a failure to set up the device, or if the name is a duplicate.
7215 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7216 * and expands the device name if you passed a format string to
7217 * alloc_netdev.
7219 int register_netdev(struct net_device *dev)
7221 int err;
7223 rtnl_lock();
7224 err = register_netdevice(dev);
7225 rtnl_unlock();
7226 return err;
7228 EXPORT_SYMBOL(register_netdev);
7230 int netdev_refcnt_read(const struct net_device *dev)
7232 int i, refcnt = 0;
7234 for_each_possible_cpu(i)
7235 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7236 return refcnt;
7238 EXPORT_SYMBOL(netdev_refcnt_read);
7241 * netdev_wait_allrefs - wait until all references are gone.
7242 * @dev: target net_device
7244 * This is called when unregistering network devices.
7246 * Any protocol or device that holds a reference should register
7247 * for netdevice notification, and cleanup and put back the
7248 * reference if they receive an UNREGISTER event.
7249 * We can get stuck here if buggy protocols don't correctly
7250 * call dev_put.
7252 static void netdev_wait_allrefs(struct net_device *dev)
7254 unsigned long rebroadcast_time, warning_time;
7255 int refcnt;
7257 linkwatch_forget_dev(dev);
7259 rebroadcast_time = warning_time = jiffies;
7260 refcnt = netdev_refcnt_read(dev);
7262 while (refcnt != 0) {
7263 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7264 rtnl_lock();
7266 /* Rebroadcast unregister notification */
7267 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7269 __rtnl_unlock();
7270 rcu_barrier();
7271 rtnl_lock();
7273 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7274 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7275 &dev->state)) {
7276 /* We must not have linkwatch events
7277 * pending on unregister. If this
7278 * happens, we simply run the queue
7279 * unscheduled, resulting in a noop
7280 * for this device.
7282 linkwatch_run_queue();
7285 __rtnl_unlock();
7287 rebroadcast_time = jiffies;
7290 msleep(250);
7292 refcnt = netdev_refcnt_read(dev);
7294 if (time_after(jiffies, warning_time + 10 * HZ)) {
7295 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7296 dev->name, refcnt);
7297 warning_time = jiffies;
7302 /* The sequence is:
7304 * rtnl_lock();
7305 * ...
7306 * register_netdevice(x1);
7307 * register_netdevice(x2);
7308 * ...
7309 * unregister_netdevice(y1);
7310 * unregister_netdevice(y2);
7311 * ...
7312 * rtnl_unlock();
7313 * free_netdev(y1);
7314 * free_netdev(y2);
7316 * We are invoked by rtnl_unlock().
7317 * This allows us to deal with problems:
7318 * 1) We can delete sysfs objects which invoke hotplug
7319 * without deadlocking with linkwatch via keventd.
7320 * 2) Since we run with the RTNL semaphore not held, we can sleep
7321 * safely in order to wait for the netdev refcnt to drop to zero.
7323 * We must not return until all unregister events added during
7324 * the interval the lock was held have been completed.
7326 void netdev_run_todo(void)
7328 struct list_head list;
7330 /* Snapshot list, allow later requests */
7331 list_replace_init(&net_todo_list, &list);
7333 __rtnl_unlock();
7336 /* Wait for rcu callbacks to finish before next phase */
7337 if (!list_empty(&list))
7338 rcu_barrier();
7340 while (!list_empty(&list)) {
7341 struct net_device *dev
7342 = list_first_entry(&list, struct net_device, todo_list);
7343 list_del(&dev->todo_list);
7345 rtnl_lock();
7346 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7347 __rtnl_unlock();
7349 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7350 pr_err("network todo '%s' but state %d\n",
7351 dev->name, dev->reg_state);
7352 dump_stack();
7353 continue;
7356 dev->reg_state = NETREG_UNREGISTERED;
7358 netdev_wait_allrefs(dev);
7360 /* paranoia */
7361 BUG_ON(netdev_refcnt_read(dev));
7362 BUG_ON(!list_empty(&dev->ptype_all));
7363 BUG_ON(!list_empty(&dev->ptype_specific));
7364 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7365 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7366 WARN_ON(dev->dn_ptr);
7368 if (dev->destructor)
7369 dev->destructor(dev);
7371 /* Report a network device has been unregistered */
7372 rtnl_lock();
7373 dev_net(dev)->dev_unreg_count--;
7374 __rtnl_unlock();
7375 wake_up(&netdev_unregistering_wq);
7377 /* Free network device */
7378 kobject_put(&dev->dev.kobj);
7382 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7383 * all the same fields in the same order as net_device_stats, with only
7384 * the type differing, but rtnl_link_stats64 may have additional fields
7385 * at the end for newer counters.
7387 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7388 const struct net_device_stats *netdev_stats)
7390 #if BITS_PER_LONG == 64
7391 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7392 memcpy(stats64, netdev_stats, sizeof(*stats64));
7393 /* zero out counters that only exist in rtnl_link_stats64 */
7394 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7395 sizeof(*stats64) - sizeof(*netdev_stats));
7396 #else
7397 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7398 const unsigned long *src = (const unsigned long *)netdev_stats;
7399 u64 *dst = (u64 *)stats64;
7401 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7402 for (i = 0; i < n; i++)
7403 dst[i] = src[i];
7404 /* zero out counters that only exist in rtnl_link_stats64 */
7405 memset((char *)stats64 + n * sizeof(u64), 0,
7406 sizeof(*stats64) - n * sizeof(u64));
7407 #endif
7409 EXPORT_SYMBOL(netdev_stats_to_stats64);
7412 * dev_get_stats - get network device statistics
7413 * @dev: device to get statistics from
7414 * @storage: place to store stats
7416 * Get network statistics from device. Return @storage.
7417 * The device driver may provide its own method by setting
7418 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7419 * otherwise the internal statistics structure is used.
7421 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7422 struct rtnl_link_stats64 *storage)
7424 const struct net_device_ops *ops = dev->netdev_ops;
7426 if (ops->ndo_get_stats64) {
7427 memset(storage, 0, sizeof(*storage));
7428 ops->ndo_get_stats64(dev, storage);
7429 } else if (ops->ndo_get_stats) {
7430 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7431 } else {
7432 netdev_stats_to_stats64(storage, &dev->stats);
7434 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7435 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7436 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7437 return storage;
7439 EXPORT_SYMBOL(dev_get_stats);
7441 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7443 struct netdev_queue *queue = dev_ingress_queue(dev);
7445 #ifdef CONFIG_NET_CLS_ACT
7446 if (queue)
7447 return queue;
7448 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7449 if (!queue)
7450 return NULL;
7451 netdev_init_one_queue(dev, queue, NULL);
7452 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7453 queue->qdisc_sleeping = &noop_qdisc;
7454 rcu_assign_pointer(dev->ingress_queue, queue);
7455 #endif
7456 return queue;
7459 static const struct ethtool_ops default_ethtool_ops;
7461 void netdev_set_default_ethtool_ops(struct net_device *dev,
7462 const struct ethtool_ops *ops)
7464 if (dev->ethtool_ops == &default_ethtool_ops)
7465 dev->ethtool_ops = ops;
7467 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7469 void netdev_freemem(struct net_device *dev)
7471 char *addr = (char *)dev - dev->padded;
7473 kvfree(addr);
7477 * alloc_netdev_mqs - allocate network device
7478 * @sizeof_priv: size of private data to allocate space for
7479 * @name: device name format string
7480 * @name_assign_type: origin of device name
7481 * @setup: callback to initialize device
7482 * @txqs: the number of TX subqueues to allocate
7483 * @rxqs: the number of RX subqueues to allocate
7485 * Allocates a struct net_device with private data area for driver use
7486 * and performs basic initialization. Also allocates subqueue structs
7487 * for each queue on the device.
7489 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7490 unsigned char name_assign_type,
7491 void (*setup)(struct net_device *),
7492 unsigned int txqs, unsigned int rxqs)
7494 struct net_device *dev;
7495 size_t alloc_size;
7496 struct net_device *p;
7498 BUG_ON(strlen(name) >= sizeof(dev->name));
7500 if (txqs < 1) {
7501 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7502 return NULL;
7505 #ifdef CONFIG_SYSFS
7506 if (rxqs < 1) {
7507 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7508 return NULL;
7510 #endif
7512 alloc_size = sizeof(struct net_device);
7513 if (sizeof_priv) {
7514 /* ensure 32-byte alignment of private area */
7515 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7516 alloc_size += sizeof_priv;
7518 /* ensure 32-byte alignment of whole construct */
7519 alloc_size += NETDEV_ALIGN - 1;
7521 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7522 if (!p)
7523 p = vzalloc(alloc_size);
7524 if (!p)
7525 return NULL;
7527 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7528 dev->padded = (char *)dev - (char *)p;
7530 dev->pcpu_refcnt = alloc_percpu(int);
7531 if (!dev->pcpu_refcnt)
7532 goto free_dev;
7534 if (dev_addr_init(dev))
7535 goto free_pcpu;
7537 dev_mc_init(dev);
7538 dev_uc_init(dev);
7540 dev_net_set(dev, &init_net);
7542 dev->gso_max_size = GSO_MAX_SIZE;
7543 dev->gso_max_segs = GSO_MAX_SEGS;
7545 INIT_LIST_HEAD(&dev->napi_list);
7546 INIT_LIST_HEAD(&dev->unreg_list);
7547 INIT_LIST_HEAD(&dev->close_list);
7548 INIT_LIST_HEAD(&dev->link_watch_list);
7549 INIT_LIST_HEAD(&dev->adj_list.upper);
7550 INIT_LIST_HEAD(&dev->adj_list.lower);
7551 INIT_LIST_HEAD(&dev->ptype_all);
7552 INIT_LIST_HEAD(&dev->ptype_specific);
7553 #ifdef CONFIG_NET_SCHED
7554 hash_init(dev->qdisc_hash);
7555 #endif
7556 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7557 setup(dev);
7559 if (!dev->tx_queue_len) {
7560 dev->priv_flags |= IFF_NO_QUEUE;
7561 dev->tx_queue_len = 1;
7564 dev->num_tx_queues = txqs;
7565 dev->real_num_tx_queues = txqs;
7566 if (netif_alloc_netdev_queues(dev))
7567 goto free_all;
7569 #ifdef CONFIG_SYSFS
7570 dev->num_rx_queues = rxqs;
7571 dev->real_num_rx_queues = rxqs;
7572 if (netif_alloc_rx_queues(dev))
7573 goto free_all;
7574 #endif
7576 strcpy(dev->name, name);
7577 dev->name_assign_type = name_assign_type;
7578 dev->group = INIT_NETDEV_GROUP;
7579 if (!dev->ethtool_ops)
7580 dev->ethtool_ops = &default_ethtool_ops;
7582 nf_hook_ingress_init(dev);
7584 return dev;
7586 free_all:
7587 free_netdev(dev);
7588 return NULL;
7590 free_pcpu:
7591 free_percpu(dev->pcpu_refcnt);
7592 free_dev:
7593 netdev_freemem(dev);
7594 return NULL;
7596 EXPORT_SYMBOL(alloc_netdev_mqs);
7599 * free_netdev - free network device
7600 * @dev: device
7602 * This function does the last stage of destroying an allocated device
7603 * interface. The reference to the device object is released.
7604 * If this is the last reference then it will be freed.
7605 * Must be called in process context.
7607 void free_netdev(struct net_device *dev)
7609 struct napi_struct *p, *n;
7611 might_sleep();
7612 netif_free_tx_queues(dev);
7613 #ifdef CONFIG_SYSFS
7614 kvfree(dev->_rx);
7615 #endif
7617 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7619 /* Flush device addresses */
7620 dev_addr_flush(dev);
7622 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7623 netif_napi_del(p);
7625 free_percpu(dev->pcpu_refcnt);
7626 dev->pcpu_refcnt = NULL;
7628 /* Compatibility with error handling in drivers */
7629 if (dev->reg_state == NETREG_UNINITIALIZED) {
7630 netdev_freemem(dev);
7631 return;
7634 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7635 dev->reg_state = NETREG_RELEASED;
7637 /* will free via device release */
7638 put_device(&dev->dev);
7640 EXPORT_SYMBOL(free_netdev);
7643 * synchronize_net - Synchronize with packet receive processing
7645 * Wait for packets currently being received to be done.
7646 * Does not block later packets from starting.
7648 void synchronize_net(void)
7650 might_sleep();
7651 if (rtnl_is_locked())
7652 synchronize_rcu_expedited();
7653 else
7654 synchronize_rcu();
7656 EXPORT_SYMBOL(synchronize_net);
7659 * unregister_netdevice_queue - remove device from the kernel
7660 * @dev: device
7661 * @head: list
7663 * This function shuts down a device interface and removes it
7664 * from the kernel tables.
7665 * If head not NULL, device is queued to be unregistered later.
7667 * Callers must hold the rtnl semaphore. You may want
7668 * unregister_netdev() instead of this.
7671 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7673 ASSERT_RTNL();
7675 if (head) {
7676 list_move_tail(&dev->unreg_list, head);
7677 } else {
7678 rollback_registered(dev);
7679 /* Finish processing unregister after unlock */
7680 net_set_todo(dev);
7683 EXPORT_SYMBOL(unregister_netdevice_queue);
7686 * unregister_netdevice_many - unregister many devices
7687 * @head: list of devices
7689 * Note: As most callers use a stack allocated list_head,
7690 * we force a list_del() to make sure stack wont be corrupted later.
7692 void unregister_netdevice_many(struct list_head *head)
7694 struct net_device *dev;
7696 if (!list_empty(head)) {
7697 rollback_registered_many(head);
7698 list_for_each_entry(dev, head, unreg_list)
7699 net_set_todo(dev);
7700 list_del(head);
7703 EXPORT_SYMBOL(unregister_netdevice_many);
7706 * unregister_netdev - remove device from the kernel
7707 * @dev: device
7709 * This function shuts down a device interface and removes it
7710 * from the kernel tables.
7712 * This is just a wrapper for unregister_netdevice that takes
7713 * the rtnl semaphore. In general you want to use this and not
7714 * unregister_netdevice.
7716 void unregister_netdev(struct net_device *dev)
7718 rtnl_lock();
7719 unregister_netdevice(dev);
7720 rtnl_unlock();
7722 EXPORT_SYMBOL(unregister_netdev);
7725 * dev_change_net_namespace - move device to different nethost namespace
7726 * @dev: device
7727 * @net: network namespace
7728 * @pat: If not NULL name pattern to try if the current device name
7729 * is already taken in the destination network namespace.
7731 * This function shuts down a device interface and moves it
7732 * to a new network namespace. On success 0 is returned, on
7733 * a failure a netagive errno code is returned.
7735 * Callers must hold the rtnl semaphore.
7738 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7740 int err;
7742 ASSERT_RTNL();
7744 /* Don't allow namespace local devices to be moved. */
7745 err = -EINVAL;
7746 if (dev->features & NETIF_F_NETNS_LOCAL)
7747 goto out;
7749 /* Ensure the device has been registrered */
7750 if (dev->reg_state != NETREG_REGISTERED)
7751 goto out;
7753 /* Get out if there is nothing todo */
7754 err = 0;
7755 if (net_eq(dev_net(dev), net))
7756 goto out;
7758 /* Pick the destination device name, and ensure
7759 * we can use it in the destination network namespace.
7761 err = -EEXIST;
7762 if (__dev_get_by_name(net, dev->name)) {
7763 /* We get here if we can't use the current device name */
7764 if (!pat)
7765 goto out;
7766 if (dev_get_valid_name(net, dev, pat) < 0)
7767 goto out;
7771 * And now a mini version of register_netdevice unregister_netdevice.
7774 /* If device is running close it first. */
7775 dev_close(dev);
7777 /* And unlink it from device chain */
7778 err = -ENODEV;
7779 unlist_netdevice(dev);
7781 synchronize_net();
7783 /* Shutdown queueing discipline. */
7784 dev_shutdown(dev);
7786 /* Notify protocols, that we are about to destroy
7787 this device. They should clean all the things.
7789 Note that dev->reg_state stays at NETREG_REGISTERED.
7790 This is wanted because this way 8021q and macvlan know
7791 the device is just moving and can keep their slaves up.
7793 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7794 rcu_barrier();
7795 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7796 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7799 * Flush the unicast and multicast chains
7801 dev_uc_flush(dev);
7802 dev_mc_flush(dev);
7804 /* Send a netdev-removed uevent to the old namespace */
7805 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7806 netdev_adjacent_del_links(dev);
7808 /* Actually switch the network namespace */
7809 dev_net_set(dev, net);
7811 /* If there is an ifindex conflict assign a new one */
7812 if (__dev_get_by_index(net, dev->ifindex))
7813 dev->ifindex = dev_new_index(net);
7815 /* Send a netdev-add uevent to the new namespace */
7816 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7817 netdev_adjacent_add_links(dev);
7819 /* Fixup kobjects */
7820 err = device_rename(&dev->dev, dev->name);
7821 WARN_ON(err);
7823 /* Add the device back in the hashes */
7824 list_netdevice(dev);
7826 /* Notify protocols, that a new device appeared. */
7827 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7830 * Prevent userspace races by waiting until the network
7831 * device is fully setup before sending notifications.
7833 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7835 synchronize_net();
7836 err = 0;
7837 out:
7838 return err;
7840 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7842 static int dev_cpu_callback(struct notifier_block *nfb,
7843 unsigned long action,
7844 void *ocpu)
7846 struct sk_buff **list_skb;
7847 struct sk_buff *skb;
7848 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7849 struct softnet_data *sd, *oldsd;
7851 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7852 return NOTIFY_OK;
7854 local_irq_disable();
7855 cpu = smp_processor_id();
7856 sd = &per_cpu(softnet_data, cpu);
7857 oldsd = &per_cpu(softnet_data, oldcpu);
7859 /* Find end of our completion_queue. */
7860 list_skb = &sd->completion_queue;
7861 while (*list_skb)
7862 list_skb = &(*list_skb)->next;
7863 /* Append completion queue from offline CPU. */
7864 *list_skb = oldsd->completion_queue;
7865 oldsd->completion_queue = NULL;
7867 /* Append output queue from offline CPU. */
7868 if (oldsd->output_queue) {
7869 *sd->output_queue_tailp = oldsd->output_queue;
7870 sd->output_queue_tailp = oldsd->output_queue_tailp;
7871 oldsd->output_queue = NULL;
7872 oldsd->output_queue_tailp = &oldsd->output_queue;
7874 /* Append NAPI poll list from offline CPU, with one exception :
7875 * process_backlog() must be called by cpu owning percpu backlog.
7876 * We properly handle process_queue & input_pkt_queue later.
7878 while (!list_empty(&oldsd->poll_list)) {
7879 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7880 struct napi_struct,
7881 poll_list);
7883 list_del_init(&napi->poll_list);
7884 if (napi->poll == process_backlog)
7885 napi->state = 0;
7886 else
7887 ____napi_schedule(sd, napi);
7890 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7891 local_irq_enable();
7893 /* Process offline CPU's input_pkt_queue */
7894 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7895 netif_rx_ni(skb);
7896 input_queue_head_incr(oldsd);
7898 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7899 netif_rx_ni(skb);
7900 input_queue_head_incr(oldsd);
7903 return NOTIFY_OK;
7908 * netdev_increment_features - increment feature set by one
7909 * @all: current feature set
7910 * @one: new feature set
7911 * @mask: mask feature set
7913 * Computes a new feature set after adding a device with feature set
7914 * @one to the master device with current feature set @all. Will not
7915 * enable anything that is off in @mask. Returns the new feature set.
7917 netdev_features_t netdev_increment_features(netdev_features_t all,
7918 netdev_features_t one, netdev_features_t mask)
7920 if (mask & NETIF_F_HW_CSUM)
7921 mask |= NETIF_F_CSUM_MASK;
7922 mask |= NETIF_F_VLAN_CHALLENGED;
7924 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7925 all &= one | ~NETIF_F_ALL_FOR_ALL;
7927 /* If one device supports hw checksumming, set for all. */
7928 if (all & NETIF_F_HW_CSUM)
7929 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7931 return all;
7933 EXPORT_SYMBOL(netdev_increment_features);
7935 static struct hlist_head * __net_init netdev_create_hash(void)
7937 int i;
7938 struct hlist_head *hash;
7940 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7941 if (hash != NULL)
7942 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7943 INIT_HLIST_HEAD(&hash[i]);
7945 return hash;
7948 /* Initialize per network namespace state */
7949 static int __net_init netdev_init(struct net *net)
7951 if (net != &init_net)
7952 INIT_LIST_HEAD(&net->dev_base_head);
7954 net->dev_name_head = netdev_create_hash();
7955 if (net->dev_name_head == NULL)
7956 goto err_name;
7958 net->dev_index_head = netdev_create_hash();
7959 if (net->dev_index_head == NULL)
7960 goto err_idx;
7962 return 0;
7964 err_idx:
7965 kfree(net->dev_name_head);
7966 err_name:
7967 return -ENOMEM;
7971 * netdev_drivername - network driver for the device
7972 * @dev: network device
7974 * Determine network driver for device.
7976 const char *netdev_drivername(const struct net_device *dev)
7978 const struct device_driver *driver;
7979 const struct device *parent;
7980 const char *empty = "";
7982 parent = dev->dev.parent;
7983 if (!parent)
7984 return empty;
7986 driver = parent->driver;
7987 if (driver && driver->name)
7988 return driver->name;
7989 return empty;
7992 static void __netdev_printk(const char *level, const struct net_device *dev,
7993 struct va_format *vaf)
7995 if (dev && dev->dev.parent) {
7996 dev_printk_emit(level[1] - '0',
7997 dev->dev.parent,
7998 "%s %s %s%s: %pV",
7999 dev_driver_string(dev->dev.parent),
8000 dev_name(dev->dev.parent),
8001 netdev_name(dev), netdev_reg_state(dev),
8002 vaf);
8003 } else if (dev) {
8004 printk("%s%s%s: %pV",
8005 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8006 } else {
8007 printk("%s(NULL net_device): %pV", level, vaf);
8011 void netdev_printk(const char *level, const struct net_device *dev,
8012 const char *format, ...)
8014 struct va_format vaf;
8015 va_list args;
8017 va_start(args, format);
8019 vaf.fmt = format;
8020 vaf.va = &args;
8022 __netdev_printk(level, dev, &vaf);
8024 va_end(args);
8026 EXPORT_SYMBOL(netdev_printk);
8028 #define define_netdev_printk_level(func, level) \
8029 void func(const struct net_device *dev, const char *fmt, ...) \
8031 struct va_format vaf; \
8032 va_list args; \
8034 va_start(args, fmt); \
8036 vaf.fmt = fmt; \
8037 vaf.va = &args; \
8039 __netdev_printk(level, dev, &vaf); \
8041 va_end(args); \
8043 EXPORT_SYMBOL(func);
8045 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8046 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8047 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8048 define_netdev_printk_level(netdev_err, KERN_ERR);
8049 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8050 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8051 define_netdev_printk_level(netdev_info, KERN_INFO);
8053 static void __net_exit netdev_exit(struct net *net)
8055 kfree(net->dev_name_head);
8056 kfree(net->dev_index_head);
8059 static struct pernet_operations __net_initdata netdev_net_ops = {
8060 .init = netdev_init,
8061 .exit = netdev_exit,
8064 static void __net_exit default_device_exit(struct net *net)
8066 struct net_device *dev, *aux;
8068 * Push all migratable network devices back to the
8069 * initial network namespace
8071 rtnl_lock();
8072 for_each_netdev_safe(net, dev, aux) {
8073 int err;
8074 char fb_name[IFNAMSIZ];
8076 /* Ignore unmoveable devices (i.e. loopback) */
8077 if (dev->features & NETIF_F_NETNS_LOCAL)
8078 continue;
8080 /* Leave virtual devices for the generic cleanup */
8081 if (dev->rtnl_link_ops)
8082 continue;
8084 /* Push remaining network devices to init_net */
8085 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8086 err = dev_change_net_namespace(dev, &init_net, fb_name);
8087 if (err) {
8088 pr_emerg("%s: failed to move %s to init_net: %d\n",
8089 __func__, dev->name, err);
8090 BUG();
8093 rtnl_unlock();
8096 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8098 /* Return with the rtnl_lock held when there are no network
8099 * devices unregistering in any network namespace in net_list.
8101 struct net *net;
8102 bool unregistering;
8103 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8105 add_wait_queue(&netdev_unregistering_wq, &wait);
8106 for (;;) {
8107 unregistering = false;
8108 rtnl_lock();
8109 list_for_each_entry(net, net_list, exit_list) {
8110 if (net->dev_unreg_count > 0) {
8111 unregistering = true;
8112 break;
8115 if (!unregistering)
8116 break;
8117 __rtnl_unlock();
8119 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8121 remove_wait_queue(&netdev_unregistering_wq, &wait);
8124 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8126 /* At exit all network devices most be removed from a network
8127 * namespace. Do this in the reverse order of registration.
8128 * Do this across as many network namespaces as possible to
8129 * improve batching efficiency.
8131 struct net_device *dev;
8132 struct net *net;
8133 LIST_HEAD(dev_kill_list);
8135 /* To prevent network device cleanup code from dereferencing
8136 * loopback devices or network devices that have been freed
8137 * wait here for all pending unregistrations to complete,
8138 * before unregistring the loopback device and allowing the
8139 * network namespace be freed.
8141 * The netdev todo list containing all network devices
8142 * unregistrations that happen in default_device_exit_batch
8143 * will run in the rtnl_unlock() at the end of
8144 * default_device_exit_batch.
8146 rtnl_lock_unregistering(net_list);
8147 list_for_each_entry(net, net_list, exit_list) {
8148 for_each_netdev_reverse(net, dev) {
8149 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8150 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8151 else
8152 unregister_netdevice_queue(dev, &dev_kill_list);
8155 unregister_netdevice_many(&dev_kill_list);
8156 rtnl_unlock();
8159 static struct pernet_operations __net_initdata default_device_ops = {
8160 .exit = default_device_exit,
8161 .exit_batch = default_device_exit_batch,
8165 * Initialize the DEV module. At boot time this walks the device list and
8166 * unhooks any devices that fail to initialise (normally hardware not
8167 * present) and leaves us with a valid list of present and active devices.
8172 * This is called single threaded during boot, so no need
8173 * to take the rtnl semaphore.
8175 static int __init net_dev_init(void)
8177 int i, rc = -ENOMEM;
8179 BUG_ON(!dev_boot_phase);
8181 if (dev_proc_init())
8182 goto out;
8184 if (netdev_kobject_init())
8185 goto out;
8187 INIT_LIST_HEAD(&ptype_all);
8188 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8189 INIT_LIST_HEAD(&ptype_base[i]);
8191 INIT_LIST_HEAD(&offload_base);
8193 if (register_pernet_subsys(&netdev_net_ops))
8194 goto out;
8197 * Initialise the packet receive queues.
8200 for_each_possible_cpu(i) {
8201 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8202 struct softnet_data *sd = &per_cpu(softnet_data, i);
8204 INIT_WORK(flush, flush_backlog);
8206 skb_queue_head_init(&sd->input_pkt_queue);
8207 skb_queue_head_init(&sd->process_queue);
8208 INIT_LIST_HEAD(&sd->poll_list);
8209 sd->output_queue_tailp = &sd->output_queue;
8210 #ifdef CONFIG_RPS
8211 sd->csd.func = rps_trigger_softirq;
8212 sd->csd.info = sd;
8213 sd->cpu = i;
8214 #endif
8216 sd->backlog.poll = process_backlog;
8217 sd->backlog.weight = weight_p;
8220 dev_boot_phase = 0;
8222 /* The loopback device is special if any other network devices
8223 * is present in a network namespace the loopback device must
8224 * be present. Since we now dynamically allocate and free the
8225 * loopback device ensure this invariant is maintained by
8226 * keeping the loopback device as the first device on the
8227 * list of network devices. Ensuring the loopback devices
8228 * is the first device that appears and the last network device
8229 * that disappears.
8231 if (register_pernet_device(&loopback_net_ops))
8232 goto out;
8234 if (register_pernet_device(&default_device_ops))
8235 goto out;
8237 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8238 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8240 hotcpu_notifier(dev_cpu_callback, 0);
8241 dst_subsys_init();
8242 rc = 0;
8243 out:
8244 return rc;
8247 subsys_initcall(net_dev_init);