rt2x00: Update copyright statements.
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob6c6d0ac355491f63fd946393a31bfaa43f75ec4d
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
33 * Radio control handlers.
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
37 int status;
40 * Don't enable the radio twice.
41 * And check if the hardware button has been disabled.
43 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
44 return 0;
47 * Initialize all data queues.
49 rt2x00queue_init_queues(rt2x00dev);
52 * Enable radio.
54 status =
55 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
56 if (status)
57 return status;
59 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
61 rt2x00leds_led_radio(rt2x00dev, true);
62 rt2x00led_led_activity(rt2x00dev, true);
64 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
67 * Enable RX.
69 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
72 * Start the TX queues.
74 ieee80211_wake_queues(rt2x00dev->hw);
76 return 0;
79 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
81 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
82 return;
85 * Stop the TX queues in mac80211.
87 ieee80211_stop_queues(rt2x00dev->hw);
88 rt2x00queue_stop_queues(rt2x00dev);
91 * Disable RX.
93 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
96 * Disable radio.
98 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
99 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
100 rt2x00led_led_activity(rt2x00dev, false);
101 rt2x00leds_led_radio(rt2x00dev, false);
104 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
107 * When we are disabling the RX, we should also stop the link tuner.
109 if (state == STATE_RADIO_RX_OFF)
110 rt2x00link_stop_tuner(rt2x00dev);
112 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
115 * When we are enabling the RX, we should also start the link tuner.
117 if (state == STATE_RADIO_RX_ON)
118 rt2x00link_start_tuner(rt2x00dev);
121 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
122 struct ieee80211_vif *vif)
124 struct rt2x00_dev *rt2x00dev = data;
125 struct rt2x00_intf *intf = vif_to_intf(vif);
126 int delayed_flags;
129 * Copy all data we need during this action under the protection
130 * of a spinlock. Otherwise race conditions might occur which results
131 * into an invalid configuration.
133 spin_lock(&intf->lock);
135 delayed_flags = intf->delayed_flags;
136 intf->delayed_flags = 0;
138 spin_unlock(&intf->lock);
141 * It is possible the radio was disabled while the work had been
142 * scheduled. If that happens we should return here immediately,
143 * note that in the spinlock protected area above the delayed_flags
144 * have been cleared correctly.
146 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
147 return;
149 if (delayed_flags & DELAYED_UPDATE_BEACON)
150 rt2x00queue_update_beacon(rt2x00dev, vif, true);
153 static void rt2x00lib_intf_scheduled(struct work_struct *work)
155 struct rt2x00_dev *rt2x00dev =
156 container_of(work, struct rt2x00_dev, intf_work);
159 * Iterate over each interface and perform the
160 * requested configurations.
162 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
163 rt2x00lib_intf_scheduled_iter,
164 rt2x00dev);
168 * Interrupt context handlers.
170 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
171 struct ieee80211_vif *vif)
173 struct rt2x00_intf *intf = vif_to_intf(vif);
175 if (vif->type != NL80211_IFTYPE_AP &&
176 vif->type != NL80211_IFTYPE_ADHOC &&
177 vif->type != NL80211_IFTYPE_MESH_POINT &&
178 vif->type != NL80211_IFTYPE_WDS)
179 return;
181 spin_lock(&intf->lock);
182 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
183 spin_unlock(&intf->lock);
186 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
188 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
189 return;
191 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
192 rt2x00lib_beacondone_iter,
193 rt2x00dev);
195 ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
197 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
199 void rt2x00lib_txdone(struct queue_entry *entry,
200 struct txdone_entry_desc *txdesc)
202 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
203 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
204 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
205 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
206 unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
207 u8 rate_idx, rate_flags, retry_rates;
208 unsigned int i;
209 bool success;
212 * Unmap the skb.
214 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
217 * Remove L2 padding which was added during
219 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
220 rt2x00queue_remove_l2pad(entry->skb, header_length);
223 * If the IV/EIV data was stripped from the frame before it was
224 * passed to the hardware, we should now reinsert it again because
225 * mac80211 will expect the the same data to be present it the
226 * frame as it was passed to us.
228 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
229 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
232 * Send frame to debugfs immediately, after this call is completed
233 * we are going to overwrite the skb->cb array.
235 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
238 * Determine if the frame has been successfully transmitted.
240 success =
241 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
242 test_bit(TXDONE_UNKNOWN, &txdesc->flags) ||
243 test_bit(TXDONE_FALLBACK, &txdesc->flags);
246 * Update TX statistics.
248 rt2x00dev->link.qual.tx_success += success;
249 rt2x00dev->link.qual.tx_failed += !success;
251 rate_idx = skbdesc->tx_rate_idx;
252 rate_flags = skbdesc->tx_rate_flags;
253 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
254 (txdesc->retry + 1) : 1;
257 * Initialize TX status
259 memset(&tx_info->status, 0, sizeof(tx_info->status));
260 tx_info->status.ack_signal = 0;
263 * Frame was send with retries, hardware tried
264 * different rates to send out the frame, at each
265 * retry it lowered the rate 1 step.
267 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
268 tx_info->status.rates[i].idx = rate_idx - i;
269 tx_info->status.rates[i].flags = rate_flags;
270 tx_info->status.rates[i].count = 1;
272 if (i < (IEEE80211_TX_MAX_RATES - 1))
273 tx_info->status.rates[i].idx = -1; /* terminate */
275 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
276 if (success)
277 tx_info->flags |= IEEE80211_TX_STAT_ACK;
278 else
279 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
282 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
283 if (success)
284 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
285 else
286 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
290 * Only send the status report to mac80211 when TX status was
291 * requested by it. If this was a extra frame coming through
292 * a mac80211 library call (RTS/CTS) then we should not send the
293 * status report back.
295 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
296 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
297 else
298 dev_kfree_skb_irq(entry->skb);
301 * Make this entry available for reuse.
303 entry->skb = NULL;
304 entry->flags = 0;
306 rt2x00dev->ops->lib->clear_entry(entry);
308 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
309 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
312 * If the data queue was below the threshold before the txdone
313 * handler we must make sure the packet queue in the mac80211 stack
314 * is reenabled when the txdone handler has finished.
316 if (!rt2x00queue_threshold(entry->queue))
317 ieee80211_wake_queue(rt2x00dev->hw, qid);
319 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
321 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
322 struct rxdone_entry_desc *rxdesc)
324 struct ieee80211_supported_band *sband;
325 const struct rt2x00_rate *rate;
326 unsigned int i;
327 int signal;
328 int type;
331 * For non-HT rates the MCS value needs to contain the
332 * actually used rate modulation (CCK or OFDM).
334 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
335 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
336 else
337 signal = rxdesc->signal;
339 type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
341 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
342 for (i = 0; i < sband->n_bitrates; i++) {
343 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
345 if (((type == RXDONE_SIGNAL_PLCP) &&
346 (rate->plcp == signal)) ||
347 ((type == RXDONE_SIGNAL_BITRATE) &&
348 (rate->bitrate == signal)) ||
349 ((type == RXDONE_SIGNAL_MCS) &&
350 (rate->mcs == signal))) {
351 return i;
355 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
356 "signal=0x%.4x, type=%d.\n", signal, type);
357 return 0;
360 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
361 struct queue_entry *entry)
363 struct rxdone_entry_desc rxdesc;
364 struct sk_buff *skb;
365 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
366 unsigned int header_length;
367 int rate_idx;
369 * Allocate a new sk_buffer. If no new buffer available, drop the
370 * received frame and reuse the existing buffer.
372 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
373 if (!skb)
374 return;
377 * Unmap the skb.
379 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
382 * Extract the RXD details.
384 memset(&rxdesc, 0, sizeof(rxdesc));
385 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
387 /* Trim buffer to correct size */
388 skb_trim(entry->skb, rxdesc.size);
391 * The data behind the ieee80211 header must be
392 * aligned on a 4 byte boundary.
394 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
397 * Hardware might have stripped the IV/EIV/ICV data,
398 * in that case it is possible that the data was
399 * provided seperately (through hardware descriptor)
400 * in which case we should reinsert the data into the frame.
402 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
403 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
404 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
405 &rxdesc);
406 else if (rxdesc.dev_flags & RXDONE_L2PAD)
407 rt2x00queue_remove_l2pad(entry->skb, header_length);
408 else
409 rt2x00queue_align_payload(entry->skb, header_length);
412 * Check if the frame was received using HT. In that case,
413 * the rate is the MCS index and should be passed to mac80211
414 * directly. Otherwise we need to translate the signal to
415 * the correct bitrate index.
417 if (rxdesc.rate_mode == RATE_MODE_CCK ||
418 rxdesc.rate_mode == RATE_MODE_OFDM) {
419 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
420 } else {
421 rxdesc.flags |= RX_FLAG_HT;
422 rate_idx = rxdesc.signal;
426 * Update extra components
428 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
429 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
431 rx_status->mactime = rxdesc.timestamp;
432 rx_status->rate_idx = rate_idx;
433 rx_status->signal = rxdesc.rssi;
434 rx_status->noise = rxdesc.noise;
435 rx_status->flag = rxdesc.flags;
436 rx_status->antenna = rt2x00dev->link.ant.active.rx;
439 * Send frame to mac80211 & debugfs.
440 * mac80211 will clean up the skb structure.
442 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
443 memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
444 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
447 * Replace the skb with the freshly allocated one.
449 entry->skb = skb;
450 entry->flags = 0;
452 rt2x00dev->ops->lib->clear_entry(entry);
454 rt2x00queue_index_inc(entry->queue, Q_INDEX);
456 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
459 * Driver initialization handlers.
461 const struct rt2x00_rate rt2x00_supported_rates[12] = {
463 .flags = DEV_RATE_CCK,
464 .bitrate = 10,
465 .ratemask = BIT(0),
466 .plcp = 0x00,
467 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
470 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
471 .bitrate = 20,
472 .ratemask = BIT(1),
473 .plcp = 0x01,
474 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
477 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
478 .bitrate = 55,
479 .ratemask = BIT(2),
480 .plcp = 0x02,
481 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
484 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
485 .bitrate = 110,
486 .ratemask = BIT(3),
487 .plcp = 0x03,
488 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
491 .flags = DEV_RATE_OFDM,
492 .bitrate = 60,
493 .ratemask = BIT(4),
494 .plcp = 0x0b,
495 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
498 .flags = DEV_RATE_OFDM,
499 .bitrate = 90,
500 .ratemask = BIT(5),
501 .plcp = 0x0f,
502 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
505 .flags = DEV_RATE_OFDM,
506 .bitrate = 120,
507 .ratemask = BIT(6),
508 .plcp = 0x0a,
509 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
512 .flags = DEV_RATE_OFDM,
513 .bitrate = 180,
514 .ratemask = BIT(7),
515 .plcp = 0x0e,
516 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
519 .flags = DEV_RATE_OFDM,
520 .bitrate = 240,
521 .ratemask = BIT(8),
522 .plcp = 0x09,
523 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
526 .flags = DEV_RATE_OFDM,
527 .bitrate = 360,
528 .ratemask = BIT(9),
529 .plcp = 0x0d,
530 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
533 .flags = DEV_RATE_OFDM,
534 .bitrate = 480,
535 .ratemask = BIT(10),
536 .plcp = 0x08,
537 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
540 .flags = DEV_RATE_OFDM,
541 .bitrate = 540,
542 .ratemask = BIT(11),
543 .plcp = 0x0c,
544 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
548 static void rt2x00lib_channel(struct ieee80211_channel *entry,
549 const int channel, const int tx_power,
550 const int value)
552 entry->center_freq = ieee80211_channel_to_frequency(channel);
553 entry->hw_value = value;
554 entry->max_power = tx_power;
555 entry->max_antenna_gain = 0xff;
558 static void rt2x00lib_rate(struct ieee80211_rate *entry,
559 const u16 index, const struct rt2x00_rate *rate)
561 entry->flags = 0;
562 entry->bitrate = rate->bitrate;
563 entry->hw_value =index;
564 entry->hw_value_short = index;
566 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
567 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
570 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
571 struct hw_mode_spec *spec)
573 struct ieee80211_hw *hw = rt2x00dev->hw;
574 struct ieee80211_channel *channels;
575 struct ieee80211_rate *rates;
576 unsigned int num_rates;
577 unsigned int i;
579 num_rates = 0;
580 if (spec->supported_rates & SUPPORT_RATE_CCK)
581 num_rates += 4;
582 if (spec->supported_rates & SUPPORT_RATE_OFDM)
583 num_rates += 8;
585 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
586 if (!channels)
587 return -ENOMEM;
589 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
590 if (!rates)
591 goto exit_free_channels;
594 * Initialize Rate list.
596 for (i = 0; i < num_rates; i++)
597 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
600 * Initialize Channel list.
602 for (i = 0; i < spec->num_channels; i++) {
603 rt2x00lib_channel(&channels[i],
604 spec->channels[i].channel,
605 spec->channels_info[i].tx_power1, i);
609 * Intitialize 802.11b, 802.11g
610 * Rates: CCK, OFDM.
611 * Channels: 2.4 GHz
613 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
614 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
615 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
616 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
617 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
618 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
619 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
620 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
621 &spec->ht, sizeof(spec->ht));
625 * Intitialize 802.11a
626 * Rates: OFDM.
627 * Channels: OFDM, UNII, HiperLAN2.
629 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
630 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
631 spec->num_channels - 14;
632 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
633 num_rates - 4;
634 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
635 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
636 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
637 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
638 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
639 &spec->ht, sizeof(spec->ht));
642 return 0;
644 exit_free_channels:
645 kfree(channels);
646 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
647 return -ENOMEM;
650 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
652 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
653 ieee80211_unregister_hw(rt2x00dev->hw);
655 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
656 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
657 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
658 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
659 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
662 kfree(rt2x00dev->spec.channels_info);
665 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
667 struct hw_mode_spec *spec = &rt2x00dev->spec;
668 int status;
670 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
671 return 0;
674 * Initialize HW modes.
676 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
677 if (status)
678 return status;
681 * Initialize HW fields.
683 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
686 * Register HW.
688 status = ieee80211_register_hw(rt2x00dev->hw);
689 if (status)
690 return status;
692 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
694 return 0;
698 * Initialization/uninitialization handlers.
700 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
702 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
703 return;
706 * Unregister extra components.
708 rt2x00rfkill_unregister(rt2x00dev);
711 * Allow the HW to uninitialize.
713 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
716 * Free allocated queue entries.
718 rt2x00queue_uninitialize(rt2x00dev);
721 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
723 int status;
725 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
726 return 0;
729 * Allocate all queue entries.
731 status = rt2x00queue_initialize(rt2x00dev);
732 if (status)
733 return status;
736 * Initialize the device.
738 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
739 if (status) {
740 rt2x00queue_uninitialize(rt2x00dev);
741 return status;
744 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
747 * Register the extra components.
749 rt2x00rfkill_register(rt2x00dev);
751 return 0;
754 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
756 int retval;
758 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
759 return 0;
762 * If this is the first interface which is added,
763 * we should load the firmware now.
765 retval = rt2x00lib_load_firmware(rt2x00dev);
766 if (retval)
767 return retval;
770 * Initialize the device.
772 retval = rt2x00lib_initialize(rt2x00dev);
773 if (retval)
774 return retval;
776 rt2x00dev->intf_ap_count = 0;
777 rt2x00dev->intf_sta_count = 0;
778 rt2x00dev->intf_associated = 0;
780 /* Enable the radio */
781 retval = rt2x00lib_enable_radio(rt2x00dev);
782 if (retval) {
783 rt2x00queue_uninitialize(rt2x00dev);
784 return retval;
787 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
789 return 0;
792 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
794 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
795 return;
798 * Perhaps we can add something smarter here,
799 * but for now just disabling the radio should do.
801 rt2x00lib_disable_radio(rt2x00dev);
803 rt2x00dev->intf_ap_count = 0;
804 rt2x00dev->intf_sta_count = 0;
805 rt2x00dev->intf_associated = 0;
809 * driver allocation handlers.
811 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
813 int retval = -ENOMEM;
815 mutex_init(&rt2x00dev->csr_mutex);
817 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
820 * Make room for rt2x00_intf inside the per-interface
821 * structure ieee80211_vif.
823 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
826 * Determine which operating modes are supported, all modes
827 * which require beaconing, depend on the availability of
828 * beacon entries.
830 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
831 if (rt2x00dev->ops->bcn->entry_num > 0)
832 rt2x00dev->hw->wiphy->interface_modes |=
833 BIT(NL80211_IFTYPE_ADHOC) |
834 BIT(NL80211_IFTYPE_AP) |
835 BIT(NL80211_IFTYPE_MESH_POINT) |
836 BIT(NL80211_IFTYPE_WDS);
839 * Let the driver probe the device to detect the capabilities.
841 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
842 if (retval) {
843 ERROR(rt2x00dev, "Failed to allocate device.\n");
844 goto exit;
848 * Initialize configuration work.
850 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
853 * Allocate queue array.
855 retval = rt2x00queue_allocate(rt2x00dev);
856 if (retval)
857 goto exit;
860 * Initialize ieee80211 structure.
862 retval = rt2x00lib_probe_hw(rt2x00dev);
863 if (retval) {
864 ERROR(rt2x00dev, "Failed to initialize hw.\n");
865 goto exit;
869 * Register extra components.
871 rt2x00link_register(rt2x00dev);
872 rt2x00leds_register(rt2x00dev);
873 rt2x00debug_register(rt2x00dev);
875 return 0;
877 exit:
878 rt2x00lib_remove_dev(rt2x00dev);
880 return retval;
882 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
884 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
886 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
889 * Disable radio.
891 rt2x00lib_disable_radio(rt2x00dev);
894 * Stop all work.
896 cancel_work_sync(&rt2x00dev->intf_work);
899 * Uninitialize device.
901 rt2x00lib_uninitialize(rt2x00dev);
904 * Free extra components
906 rt2x00debug_deregister(rt2x00dev);
907 rt2x00leds_unregister(rt2x00dev);
910 * Free ieee80211_hw memory.
912 rt2x00lib_remove_hw(rt2x00dev);
915 * Free firmware image.
917 rt2x00lib_free_firmware(rt2x00dev);
920 * Free queue structures.
922 rt2x00queue_free(rt2x00dev);
924 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
927 * Device state handlers
929 #ifdef CONFIG_PM
930 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
932 NOTICE(rt2x00dev, "Going to sleep.\n");
935 * Prevent mac80211 from accessing driver while suspended.
937 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
938 return 0;
941 * Cleanup as much as possible.
943 rt2x00lib_uninitialize(rt2x00dev);
946 * Suspend/disable extra components.
948 rt2x00leds_suspend(rt2x00dev);
949 rt2x00debug_deregister(rt2x00dev);
952 * Set device mode to sleep for power management,
953 * on some hardware this call seems to consistently fail.
954 * From the specifications it is hard to tell why it fails,
955 * and if this is a "bad thing".
956 * Overall it is safe to just ignore the failure and
957 * continue suspending. The only downside is that the
958 * device will not be in optimal power save mode, but with
959 * the radio and the other components already disabled the
960 * device is as good as disabled.
962 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
963 WARNING(rt2x00dev, "Device failed to enter sleep state, "
964 "continue suspending.\n");
966 return 0;
968 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
970 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
972 NOTICE(rt2x00dev, "Waking up.\n");
975 * Restore/enable extra components.
977 rt2x00debug_register(rt2x00dev);
978 rt2x00leds_resume(rt2x00dev);
981 * We are ready again to receive requests from mac80211.
983 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
985 return 0;
987 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
988 #endif /* CONFIG_PM */
991 * rt2x00lib module information.
993 MODULE_AUTHOR(DRV_PROJECT);
994 MODULE_VERSION(DRV_VERSION);
995 MODULE_DESCRIPTION("rt2x00 library");
996 MODULE_LICENSE("GPL");