Merge branches 'iommu/fixes', 'dma-debug', 'x86/amd', 'x86/vt-d', 'arm/tegra' and...
[linux-2.6/btrfs-unstable.git] / drivers / iommu / intel-iommu.c
blobf7fd3d0aeb4ca55bc2130a76c76e0adae4de28fc
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
62 #define MAX_AGAW_WIDTH 64
64 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
65 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
68 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
69 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
70 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
71 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
74 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
75 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
77 /* page table handling */
78 #define LEVEL_STRIDE (9)
79 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
82 * This bitmap is used to advertise the page sizes our hardware support
83 * to the IOMMU core, which will then use this information to split
84 * physically contiguous memory regions it is mapping into page sizes
85 * that we support.
87 * Traditionally the IOMMU core just handed us the mappings directly,
88 * after making sure the size is an order of a 4KiB page and that the
89 * mapping has natural alignment.
91 * To retain this behavior, we currently advertise that we support
92 * all page sizes that are an order of 4KiB.
94 * If at some point we'd like to utilize the IOMMU core's new behavior,
95 * we could change this to advertise the real page sizes we support.
97 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
99 static inline int agaw_to_level(int agaw)
101 return agaw + 2;
104 static inline int agaw_to_width(int agaw)
106 return 30 + agaw * LEVEL_STRIDE;
109 static inline int width_to_agaw(int width)
111 return (width - 30) / LEVEL_STRIDE;
114 static inline unsigned int level_to_offset_bits(int level)
116 return (level - 1) * LEVEL_STRIDE;
119 static inline int pfn_level_offset(unsigned long pfn, int level)
121 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
124 static inline unsigned long level_mask(int level)
126 return -1UL << level_to_offset_bits(level);
129 static inline unsigned long level_size(int level)
131 return 1UL << level_to_offset_bits(level);
134 static inline unsigned long align_to_level(unsigned long pfn, int level)
136 return (pfn + level_size(level) - 1) & level_mask(level);
139 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
141 return 1 << ((lvl - 1) * LEVEL_STRIDE);
144 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
145 are never going to work. */
146 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
148 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
151 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
153 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
155 static inline unsigned long page_to_dma_pfn(struct page *pg)
157 return mm_to_dma_pfn(page_to_pfn(pg));
159 static inline unsigned long virt_to_dma_pfn(void *p)
161 return page_to_dma_pfn(virt_to_page(p));
164 /* global iommu list, set NULL for ignored DMAR units */
165 static struct intel_iommu **g_iommus;
167 static void __init check_tylersburg_isoch(void);
168 static int rwbf_quirk;
171 * set to 1 to panic kernel if can't successfully enable VT-d
172 * (used when kernel is launched w/ TXT)
174 static int force_on = 0;
177 * 0: Present
178 * 1-11: Reserved
179 * 12-63: Context Ptr (12 - (haw-1))
180 * 64-127: Reserved
182 struct root_entry {
183 u64 val;
184 u64 rsvd1;
186 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
187 static inline bool root_present(struct root_entry *root)
189 return (root->val & 1);
191 static inline void set_root_present(struct root_entry *root)
193 root->val |= 1;
195 static inline void set_root_value(struct root_entry *root, unsigned long value)
197 root->val |= value & VTD_PAGE_MASK;
200 static inline struct context_entry *
201 get_context_addr_from_root(struct root_entry *root)
203 return (struct context_entry *)
204 (root_present(root)?phys_to_virt(
205 root->val & VTD_PAGE_MASK) :
206 NULL);
210 * low 64 bits:
211 * 0: present
212 * 1: fault processing disable
213 * 2-3: translation type
214 * 12-63: address space root
215 * high 64 bits:
216 * 0-2: address width
217 * 3-6: aval
218 * 8-23: domain id
220 struct context_entry {
221 u64 lo;
222 u64 hi;
225 static inline bool context_present(struct context_entry *context)
227 return (context->lo & 1);
229 static inline void context_set_present(struct context_entry *context)
231 context->lo |= 1;
234 static inline void context_set_fault_enable(struct context_entry *context)
236 context->lo &= (((u64)-1) << 2) | 1;
239 static inline void context_set_translation_type(struct context_entry *context,
240 unsigned long value)
242 context->lo &= (((u64)-1) << 4) | 3;
243 context->lo |= (value & 3) << 2;
246 static inline void context_set_address_root(struct context_entry *context,
247 unsigned long value)
249 context->lo |= value & VTD_PAGE_MASK;
252 static inline void context_set_address_width(struct context_entry *context,
253 unsigned long value)
255 context->hi |= value & 7;
258 static inline void context_set_domain_id(struct context_entry *context,
259 unsigned long value)
261 context->hi |= (value & ((1 << 16) - 1)) << 8;
264 static inline void context_clear_entry(struct context_entry *context)
266 context->lo = 0;
267 context->hi = 0;
271 * 0: readable
272 * 1: writable
273 * 2-6: reserved
274 * 7: super page
275 * 8-10: available
276 * 11: snoop behavior
277 * 12-63: Host physcial address
279 struct dma_pte {
280 u64 val;
283 static inline void dma_clear_pte(struct dma_pte *pte)
285 pte->val = 0;
288 static inline void dma_set_pte_readable(struct dma_pte *pte)
290 pte->val |= DMA_PTE_READ;
293 static inline void dma_set_pte_writable(struct dma_pte *pte)
295 pte->val |= DMA_PTE_WRITE;
298 static inline void dma_set_pte_snp(struct dma_pte *pte)
300 pte->val |= DMA_PTE_SNP;
303 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
305 pte->val = (pte->val & ~3) | (prot & 3);
308 static inline u64 dma_pte_addr(struct dma_pte *pte)
310 #ifdef CONFIG_64BIT
311 return pte->val & VTD_PAGE_MASK;
312 #else
313 /* Must have a full atomic 64-bit read */
314 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
315 #endif
318 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
320 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
323 static inline bool dma_pte_present(struct dma_pte *pte)
325 return (pte->val & 3) != 0;
328 static inline bool dma_pte_superpage(struct dma_pte *pte)
330 return (pte->val & (1 << 7));
333 static inline int first_pte_in_page(struct dma_pte *pte)
335 return !((unsigned long)pte & ~VTD_PAGE_MASK);
339 * This domain is a statically identity mapping domain.
340 * 1. This domain creats a static 1:1 mapping to all usable memory.
341 * 2. It maps to each iommu if successful.
342 * 3. Each iommu mapps to this domain if successful.
344 static struct dmar_domain *si_domain;
345 static int hw_pass_through = 1;
347 /* devices under the same p2p bridge are owned in one domain */
348 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
350 /* domain represents a virtual machine, more than one devices
351 * across iommus may be owned in one domain, e.g. kvm guest.
353 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
355 /* si_domain contains mulitple devices */
356 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
358 /* define the limit of IOMMUs supported in each domain */
359 #ifdef CONFIG_X86
360 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
361 #else
362 # define IOMMU_UNITS_SUPPORTED 64
363 #endif
365 struct dmar_domain {
366 int id; /* domain id */
367 int nid; /* node id */
368 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
369 /* bitmap of iommus this domain uses*/
371 struct list_head devices; /* all devices' list */
372 struct iova_domain iovad; /* iova's that belong to this domain */
374 struct dma_pte *pgd; /* virtual address */
375 int gaw; /* max guest address width */
377 /* adjusted guest address width, 0 is level 2 30-bit */
378 int agaw;
380 int flags; /* flags to find out type of domain */
382 int iommu_coherency;/* indicate coherency of iommu access */
383 int iommu_snooping; /* indicate snooping control feature*/
384 int iommu_count; /* reference count of iommu */
385 int iommu_superpage;/* Level of superpages supported:
386 0 == 4KiB (no superpages), 1 == 2MiB,
387 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
388 spinlock_t iommu_lock; /* protect iommu set in domain */
389 u64 max_addr; /* maximum mapped address */
392 /* PCI domain-device relationship */
393 struct device_domain_info {
394 struct list_head link; /* link to domain siblings */
395 struct list_head global; /* link to global list */
396 int segment; /* PCI domain */
397 u8 bus; /* PCI bus number */
398 u8 devfn; /* PCI devfn number */
399 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
400 struct intel_iommu *iommu; /* IOMMU used by this device */
401 struct dmar_domain *domain; /* pointer to domain */
404 static void flush_unmaps_timeout(unsigned long data);
406 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
408 #define HIGH_WATER_MARK 250
409 struct deferred_flush_tables {
410 int next;
411 struct iova *iova[HIGH_WATER_MARK];
412 struct dmar_domain *domain[HIGH_WATER_MARK];
415 static struct deferred_flush_tables *deferred_flush;
417 /* bitmap for indexing intel_iommus */
418 static int g_num_of_iommus;
420 static DEFINE_SPINLOCK(async_umap_flush_lock);
421 static LIST_HEAD(unmaps_to_do);
423 static int timer_on;
424 static long list_size;
426 static void domain_remove_dev_info(struct dmar_domain *domain);
428 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
429 int dmar_disabled = 0;
430 #else
431 int dmar_disabled = 1;
432 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
434 int intel_iommu_enabled = 0;
435 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
437 static int dmar_map_gfx = 1;
438 static int dmar_forcedac;
439 static int intel_iommu_strict;
440 static int intel_iommu_superpage = 1;
442 int intel_iommu_gfx_mapped;
443 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
445 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
446 static DEFINE_SPINLOCK(device_domain_lock);
447 static LIST_HEAD(device_domain_list);
449 static struct iommu_ops intel_iommu_ops;
451 static int __init intel_iommu_setup(char *str)
453 if (!str)
454 return -EINVAL;
455 while (*str) {
456 if (!strncmp(str, "on", 2)) {
457 dmar_disabled = 0;
458 printk(KERN_INFO "Intel-IOMMU: enabled\n");
459 } else if (!strncmp(str, "off", 3)) {
460 dmar_disabled = 1;
461 printk(KERN_INFO "Intel-IOMMU: disabled\n");
462 } else if (!strncmp(str, "igfx_off", 8)) {
463 dmar_map_gfx = 0;
464 printk(KERN_INFO
465 "Intel-IOMMU: disable GFX device mapping\n");
466 } else if (!strncmp(str, "forcedac", 8)) {
467 printk(KERN_INFO
468 "Intel-IOMMU: Forcing DAC for PCI devices\n");
469 dmar_forcedac = 1;
470 } else if (!strncmp(str, "strict", 6)) {
471 printk(KERN_INFO
472 "Intel-IOMMU: disable batched IOTLB flush\n");
473 intel_iommu_strict = 1;
474 } else if (!strncmp(str, "sp_off", 6)) {
475 printk(KERN_INFO
476 "Intel-IOMMU: disable supported super page\n");
477 intel_iommu_superpage = 0;
480 str += strcspn(str, ",");
481 while (*str == ',')
482 str++;
484 return 0;
486 __setup("intel_iommu=", intel_iommu_setup);
488 static struct kmem_cache *iommu_domain_cache;
489 static struct kmem_cache *iommu_devinfo_cache;
490 static struct kmem_cache *iommu_iova_cache;
492 static inline void *alloc_pgtable_page(int node)
494 struct page *page;
495 void *vaddr = NULL;
497 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
498 if (page)
499 vaddr = page_address(page);
500 return vaddr;
503 static inline void free_pgtable_page(void *vaddr)
505 free_page((unsigned long)vaddr);
508 static inline void *alloc_domain_mem(void)
510 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
513 static void free_domain_mem(void *vaddr)
515 kmem_cache_free(iommu_domain_cache, vaddr);
518 static inline void * alloc_devinfo_mem(void)
520 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
523 static inline void free_devinfo_mem(void *vaddr)
525 kmem_cache_free(iommu_devinfo_cache, vaddr);
528 struct iova *alloc_iova_mem(void)
530 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
533 void free_iova_mem(struct iova *iova)
535 kmem_cache_free(iommu_iova_cache, iova);
539 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
541 unsigned long sagaw;
542 int agaw = -1;
544 sagaw = cap_sagaw(iommu->cap);
545 for (agaw = width_to_agaw(max_gaw);
546 agaw >= 0; agaw--) {
547 if (test_bit(agaw, &sagaw))
548 break;
551 return agaw;
555 * Calculate max SAGAW for each iommu.
557 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
559 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
563 * calculate agaw for each iommu.
564 * "SAGAW" may be different across iommus, use a default agaw, and
565 * get a supported less agaw for iommus that don't support the default agaw.
567 int iommu_calculate_agaw(struct intel_iommu *iommu)
569 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
572 /* This functionin only returns single iommu in a domain */
573 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
575 int iommu_id;
577 /* si_domain and vm domain should not get here. */
578 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
579 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
581 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
582 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
583 return NULL;
585 return g_iommus[iommu_id];
588 static void domain_update_iommu_coherency(struct dmar_domain *domain)
590 int i;
592 i = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
594 domain->iommu_coherency = i < g_num_of_iommus ? 1 : 0;
596 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
597 if (!ecap_coherent(g_iommus[i]->ecap)) {
598 domain->iommu_coherency = 0;
599 break;
604 static void domain_update_iommu_snooping(struct dmar_domain *domain)
606 int i;
608 domain->iommu_snooping = 1;
610 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
611 if (!ecap_sc_support(g_iommus[i]->ecap)) {
612 domain->iommu_snooping = 0;
613 break;
618 static void domain_update_iommu_superpage(struct dmar_domain *domain)
620 struct dmar_drhd_unit *drhd;
621 struct intel_iommu *iommu = NULL;
622 int mask = 0xf;
624 if (!intel_iommu_superpage) {
625 domain->iommu_superpage = 0;
626 return;
629 /* set iommu_superpage to the smallest common denominator */
630 for_each_active_iommu(iommu, drhd) {
631 mask &= cap_super_page_val(iommu->cap);
632 if (!mask) {
633 break;
636 domain->iommu_superpage = fls(mask);
639 /* Some capabilities may be different across iommus */
640 static void domain_update_iommu_cap(struct dmar_domain *domain)
642 domain_update_iommu_coherency(domain);
643 domain_update_iommu_snooping(domain);
644 domain_update_iommu_superpage(domain);
647 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
649 struct dmar_drhd_unit *drhd = NULL;
650 int i;
652 for_each_drhd_unit(drhd) {
653 if (drhd->ignored)
654 continue;
655 if (segment != drhd->segment)
656 continue;
658 for (i = 0; i < drhd->devices_cnt; i++) {
659 if (drhd->devices[i] &&
660 drhd->devices[i]->bus->number == bus &&
661 drhd->devices[i]->devfn == devfn)
662 return drhd->iommu;
663 if (drhd->devices[i] &&
664 drhd->devices[i]->subordinate &&
665 drhd->devices[i]->subordinate->number <= bus &&
666 drhd->devices[i]->subordinate->busn_res.end >= bus)
667 return drhd->iommu;
670 if (drhd->include_all)
671 return drhd->iommu;
674 return NULL;
677 static void domain_flush_cache(struct dmar_domain *domain,
678 void *addr, int size)
680 if (!domain->iommu_coherency)
681 clflush_cache_range(addr, size);
684 /* Gets context entry for a given bus and devfn */
685 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
686 u8 bus, u8 devfn)
688 struct root_entry *root;
689 struct context_entry *context;
690 unsigned long phy_addr;
691 unsigned long flags;
693 spin_lock_irqsave(&iommu->lock, flags);
694 root = &iommu->root_entry[bus];
695 context = get_context_addr_from_root(root);
696 if (!context) {
697 context = (struct context_entry *)
698 alloc_pgtable_page(iommu->node);
699 if (!context) {
700 spin_unlock_irqrestore(&iommu->lock, flags);
701 return NULL;
703 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
704 phy_addr = virt_to_phys((void *)context);
705 set_root_value(root, phy_addr);
706 set_root_present(root);
707 __iommu_flush_cache(iommu, root, sizeof(*root));
709 spin_unlock_irqrestore(&iommu->lock, flags);
710 return &context[devfn];
713 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
715 struct root_entry *root;
716 struct context_entry *context;
717 int ret;
718 unsigned long flags;
720 spin_lock_irqsave(&iommu->lock, flags);
721 root = &iommu->root_entry[bus];
722 context = get_context_addr_from_root(root);
723 if (!context) {
724 ret = 0;
725 goto out;
727 ret = context_present(&context[devfn]);
728 out:
729 spin_unlock_irqrestore(&iommu->lock, flags);
730 return ret;
733 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
735 struct root_entry *root;
736 struct context_entry *context;
737 unsigned long flags;
739 spin_lock_irqsave(&iommu->lock, flags);
740 root = &iommu->root_entry[bus];
741 context = get_context_addr_from_root(root);
742 if (context) {
743 context_clear_entry(&context[devfn]);
744 __iommu_flush_cache(iommu, &context[devfn], \
745 sizeof(*context));
747 spin_unlock_irqrestore(&iommu->lock, flags);
750 static void free_context_table(struct intel_iommu *iommu)
752 struct root_entry *root;
753 int i;
754 unsigned long flags;
755 struct context_entry *context;
757 spin_lock_irqsave(&iommu->lock, flags);
758 if (!iommu->root_entry) {
759 goto out;
761 for (i = 0; i < ROOT_ENTRY_NR; i++) {
762 root = &iommu->root_entry[i];
763 context = get_context_addr_from_root(root);
764 if (context)
765 free_pgtable_page(context);
767 free_pgtable_page(iommu->root_entry);
768 iommu->root_entry = NULL;
769 out:
770 spin_unlock_irqrestore(&iommu->lock, flags);
773 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
774 unsigned long pfn, int target_level)
776 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
777 struct dma_pte *parent, *pte = NULL;
778 int level = agaw_to_level(domain->agaw);
779 int offset;
781 BUG_ON(!domain->pgd);
782 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
783 parent = domain->pgd;
785 while (level > 0) {
786 void *tmp_page;
788 offset = pfn_level_offset(pfn, level);
789 pte = &parent[offset];
790 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
791 break;
792 if (level == target_level)
793 break;
795 if (!dma_pte_present(pte)) {
796 uint64_t pteval;
798 tmp_page = alloc_pgtable_page(domain->nid);
800 if (!tmp_page)
801 return NULL;
803 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
804 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
805 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
806 /* Someone else set it while we were thinking; use theirs. */
807 free_pgtable_page(tmp_page);
808 } else {
809 dma_pte_addr(pte);
810 domain_flush_cache(domain, pte, sizeof(*pte));
813 parent = phys_to_virt(dma_pte_addr(pte));
814 level--;
817 return pte;
821 /* return address's pte at specific level */
822 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
823 unsigned long pfn,
824 int level, int *large_page)
826 struct dma_pte *parent, *pte = NULL;
827 int total = agaw_to_level(domain->agaw);
828 int offset;
830 parent = domain->pgd;
831 while (level <= total) {
832 offset = pfn_level_offset(pfn, total);
833 pte = &parent[offset];
834 if (level == total)
835 return pte;
837 if (!dma_pte_present(pte)) {
838 *large_page = total;
839 break;
842 if (pte->val & DMA_PTE_LARGE_PAGE) {
843 *large_page = total;
844 return pte;
847 parent = phys_to_virt(dma_pte_addr(pte));
848 total--;
850 return NULL;
853 /* clear last level pte, a tlb flush should be followed */
854 static int dma_pte_clear_range(struct dmar_domain *domain,
855 unsigned long start_pfn,
856 unsigned long last_pfn)
858 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
859 unsigned int large_page = 1;
860 struct dma_pte *first_pte, *pte;
861 int order;
863 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
864 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
865 BUG_ON(start_pfn > last_pfn);
867 /* we don't need lock here; nobody else touches the iova range */
868 do {
869 large_page = 1;
870 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
871 if (!pte) {
872 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
873 continue;
875 do {
876 dma_clear_pte(pte);
877 start_pfn += lvl_to_nr_pages(large_page);
878 pte++;
879 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
881 domain_flush_cache(domain, first_pte,
882 (void *)pte - (void *)first_pte);
884 } while (start_pfn && start_pfn <= last_pfn);
886 order = (large_page - 1) * 9;
887 return order;
890 /* free page table pages. last level pte should already be cleared */
891 static void dma_pte_free_pagetable(struct dmar_domain *domain,
892 unsigned long start_pfn,
893 unsigned long last_pfn)
895 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
896 struct dma_pte *first_pte, *pte;
897 int total = agaw_to_level(domain->agaw);
898 int level;
899 unsigned long tmp;
900 int large_page = 2;
902 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
903 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
904 BUG_ON(start_pfn > last_pfn);
906 /* We don't need lock here; nobody else touches the iova range */
907 level = 2;
908 while (level <= total) {
909 tmp = align_to_level(start_pfn, level);
911 /* If we can't even clear one PTE at this level, we're done */
912 if (tmp + level_size(level) - 1 > last_pfn)
913 return;
915 do {
916 large_page = level;
917 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
918 if (large_page > level)
919 level = large_page + 1;
920 if (!pte) {
921 tmp = align_to_level(tmp + 1, level + 1);
922 continue;
924 do {
925 if (dma_pte_present(pte)) {
926 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
927 dma_clear_pte(pte);
929 pte++;
930 tmp += level_size(level);
931 } while (!first_pte_in_page(pte) &&
932 tmp + level_size(level) - 1 <= last_pfn);
934 domain_flush_cache(domain, first_pte,
935 (void *)pte - (void *)first_pte);
937 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
938 level++;
940 /* free pgd */
941 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
942 free_pgtable_page(domain->pgd);
943 domain->pgd = NULL;
947 /* iommu handling */
948 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
950 struct root_entry *root;
951 unsigned long flags;
953 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
954 if (!root)
955 return -ENOMEM;
957 __iommu_flush_cache(iommu, root, ROOT_SIZE);
959 spin_lock_irqsave(&iommu->lock, flags);
960 iommu->root_entry = root;
961 spin_unlock_irqrestore(&iommu->lock, flags);
963 return 0;
966 static void iommu_set_root_entry(struct intel_iommu *iommu)
968 void *addr;
969 u32 sts;
970 unsigned long flag;
972 addr = iommu->root_entry;
974 raw_spin_lock_irqsave(&iommu->register_lock, flag);
975 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
977 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
979 /* Make sure hardware complete it */
980 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
981 readl, (sts & DMA_GSTS_RTPS), sts);
983 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
986 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
988 u32 val;
989 unsigned long flag;
991 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
992 return;
994 raw_spin_lock_irqsave(&iommu->register_lock, flag);
995 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
997 /* Make sure hardware complete it */
998 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
999 readl, (!(val & DMA_GSTS_WBFS)), val);
1001 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1004 /* return value determine if we need a write buffer flush */
1005 static void __iommu_flush_context(struct intel_iommu *iommu,
1006 u16 did, u16 source_id, u8 function_mask,
1007 u64 type)
1009 u64 val = 0;
1010 unsigned long flag;
1012 switch (type) {
1013 case DMA_CCMD_GLOBAL_INVL:
1014 val = DMA_CCMD_GLOBAL_INVL;
1015 break;
1016 case DMA_CCMD_DOMAIN_INVL:
1017 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1018 break;
1019 case DMA_CCMD_DEVICE_INVL:
1020 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1021 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1022 break;
1023 default:
1024 BUG();
1026 val |= DMA_CCMD_ICC;
1028 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1029 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1031 /* Make sure hardware complete it */
1032 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1033 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1035 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1038 /* return value determine if we need a write buffer flush */
1039 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1040 u64 addr, unsigned int size_order, u64 type)
1042 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1043 u64 val = 0, val_iva = 0;
1044 unsigned long flag;
1046 switch (type) {
1047 case DMA_TLB_GLOBAL_FLUSH:
1048 /* global flush doesn't need set IVA_REG */
1049 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1050 break;
1051 case DMA_TLB_DSI_FLUSH:
1052 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1053 break;
1054 case DMA_TLB_PSI_FLUSH:
1055 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1056 /* Note: always flush non-leaf currently */
1057 val_iva = size_order | addr;
1058 break;
1059 default:
1060 BUG();
1062 /* Note: set drain read/write */
1063 #if 0
1065 * This is probably to be super secure.. Looks like we can
1066 * ignore it without any impact.
1068 if (cap_read_drain(iommu->cap))
1069 val |= DMA_TLB_READ_DRAIN;
1070 #endif
1071 if (cap_write_drain(iommu->cap))
1072 val |= DMA_TLB_WRITE_DRAIN;
1074 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1075 /* Note: Only uses first TLB reg currently */
1076 if (val_iva)
1077 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1078 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1080 /* Make sure hardware complete it */
1081 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1082 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1084 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1086 /* check IOTLB invalidation granularity */
1087 if (DMA_TLB_IAIG(val) == 0)
1088 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1089 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1090 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1091 (unsigned long long)DMA_TLB_IIRG(type),
1092 (unsigned long long)DMA_TLB_IAIG(val));
1095 static struct device_domain_info *iommu_support_dev_iotlb(
1096 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1098 int found = 0;
1099 unsigned long flags;
1100 struct device_domain_info *info;
1101 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1103 if (!ecap_dev_iotlb_support(iommu->ecap))
1104 return NULL;
1106 if (!iommu->qi)
1107 return NULL;
1109 spin_lock_irqsave(&device_domain_lock, flags);
1110 list_for_each_entry(info, &domain->devices, link)
1111 if (info->bus == bus && info->devfn == devfn) {
1112 found = 1;
1113 break;
1115 spin_unlock_irqrestore(&device_domain_lock, flags);
1117 if (!found || !info->dev)
1118 return NULL;
1120 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1121 return NULL;
1123 if (!dmar_find_matched_atsr_unit(info->dev))
1124 return NULL;
1126 info->iommu = iommu;
1128 return info;
1131 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1133 if (!info)
1134 return;
1136 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1139 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1141 if (!info->dev || !pci_ats_enabled(info->dev))
1142 return;
1144 pci_disable_ats(info->dev);
1147 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1148 u64 addr, unsigned mask)
1150 u16 sid, qdep;
1151 unsigned long flags;
1152 struct device_domain_info *info;
1154 spin_lock_irqsave(&device_domain_lock, flags);
1155 list_for_each_entry(info, &domain->devices, link) {
1156 if (!info->dev || !pci_ats_enabled(info->dev))
1157 continue;
1159 sid = info->bus << 8 | info->devfn;
1160 qdep = pci_ats_queue_depth(info->dev);
1161 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1163 spin_unlock_irqrestore(&device_domain_lock, flags);
1166 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1167 unsigned long pfn, unsigned int pages, int map)
1169 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1170 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1172 BUG_ON(pages == 0);
1175 * Fallback to domain selective flush if no PSI support or the size is
1176 * too big.
1177 * PSI requires page size to be 2 ^ x, and the base address is naturally
1178 * aligned to the size
1180 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1181 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1182 DMA_TLB_DSI_FLUSH);
1183 else
1184 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1185 DMA_TLB_PSI_FLUSH);
1188 * In caching mode, changes of pages from non-present to present require
1189 * flush. However, device IOTLB doesn't need to be flushed in this case.
1191 if (!cap_caching_mode(iommu->cap) || !map)
1192 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1195 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1197 u32 pmen;
1198 unsigned long flags;
1200 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1201 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1202 pmen &= ~DMA_PMEN_EPM;
1203 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1205 /* wait for the protected region status bit to clear */
1206 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1207 readl, !(pmen & DMA_PMEN_PRS), pmen);
1209 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1212 static int iommu_enable_translation(struct intel_iommu *iommu)
1214 u32 sts;
1215 unsigned long flags;
1217 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1218 iommu->gcmd |= DMA_GCMD_TE;
1219 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1221 /* Make sure hardware complete it */
1222 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1223 readl, (sts & DMA_GSTS_TES), sts);
1225 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1226 return 0;
1229 static int iommu_disable_translation(struct intel_iommu *iommu)
1231 u32 sts;
1232 unsigned long flag;
1234 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1235 iommu->gcmd &= ~DMA_GCMD_TE;
1236 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1238 /* Make sure hardware complete it */
1239 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1240 readl, (!(sts & DMA_GSTS_TES)), sts);
1242 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1243 return 0;
1247 static int iommu_init_domains(struct intel_iommu *iommu)
1249 unsigned long ndomains;
1250 unsigned long nlongs;
1252 ndomains = cap_ndoms(iommu->cap);
1253 pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id,
1254 ndomains);
1255 nlongs = BITS_TO_LONGS(ndomains);
1257 spin_lock_init(&iommu->lock);
1259 /* TBD: there might be 64K domains,
1260 * consider other allocation for future chip
1262 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1263 if (!iommu->domain_ids) {
1264 printk(KERN_ERR "Allocating domain id array failed\n");
1265 return -ENOMEM;
1267 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1268 GFP_KERNEL);
1269 if (!iommu->domains) {
1270 printk(KERN_ERR "Allocating domain array failed\n");
1271 return -ENOMEM;
1275 * if Caching mode is set, then invalid translations are tagged
1276 * with domainid 0. Hence we need to pre-allocate it.
1278 if (cap_caching_mode(iommu->cap))
1279 set_bit(0, iommu->domain_ids);
1280 return 0;
1284 static void domain_exit(struct dmar_domain *domain);
1285 static void vm_domain_exit(struct dmar_domain *domain);
1287 void free_dmar_iommu(struct intel_iommu *iommu)
1289 struct dmar_domain *domain;
1290 int i;
1291 unsigned long flags;
1293 if ((iommu->domains) && (iommu->domain_ids)) {
1294 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1295 domain = iommu->domains[i];
1296 clear_bit(i, iommu->domain_ids);
1298 spin_lock_irqsave(&domain->iommu_lock, flags);
1299 if (--domain->iommu_count == 0) {
1300 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1301 vm_domain_exit(domain);
1302 else
1303 domain_exit(domain);
1305 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1309 if (iommu->gcmd & DMA_GCMD_TE)
1310 iommu_disable_translation(iommu);
1312 if (iommu->irq) {
1313 irq_set_handler_data(iommu->irq, NULL);
1314 /* This will mask the irq */
1315 free_irq(iommu->irq, iommu);
1316 destroy_irq(iommu->irq);
1319 kfree(iommu->domains);
1320 kfree(iommu->domain_ids);
1322 g_iommus[iommu->seq_id] = NULL;
1324 /* if all iommus are freed, free g_iommus */
1325 for (i = 0; i < g_num_of_iommus; i++) {
1326 if (g_iommus[i])
1327 break;
1330 if (i == g_num_of_iommus)
1331 kfree(g_iommus);
1333 /* free context mapping */
1334 free_context_table(iommu);
1337 static struct dmar_domain *alloc_domain(void)
1339 struct dmar_domain *domain;
1341 domain = alloc_domain_mem();
1342 if (!domain)
1343 return NULL;
1345 domain->nid = -1;
1346 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1347 domain->flags = 0;
1349 return domain;
1352 static int iommu_attach_domain(struct dmar_domain *domain,
1353 struct intel_iommu *iommu)
1355 int num;
1356 unsigned long ndomains;
1357 unsigned long flags;
1359 ndomains = cap_ndoms(iommu->cap);
1361 spin_lock_irqsave(&iommu->lock, flags);
1363 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1364 if (num >= ndomains) {
1365 spin_unlock_irqrestore(&iommu->lock, flags);
1366 printk(KERN_ERR "IOMMU: no free domain ids\n");
1367 return -ENOMEM;
1370 domain->id = num;
1371 set_bit(num, iommu->domain_ids);
1372 set_bit(iommu->seq_id, domain->iommu_bmp);
1373 iommu->domains[num] = domain;
1374 spin_unlock_irqrestore(&iommu->lock, flags);
1376 return 0;
1379 static void iommu_detach_domain(struct dmar_domain *domain,
1380 struct intel_iommu *iommu)
1382 unsigned long flags;
1383 int num, ndomains;
1384 int found = 0;
1386 spin_lock_irqsave(&iommu->lock, flags);
1387 ndomains = cap_ndoms(iommu->cap);
1388 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1389 if (iommu->domains[num] == domain) {
1390 found = 1;
1391 break;
1395 if (found) {
1396 clear_bit(num, iommu->domain_ids);
1397 clear_bit(iommu->seq_id, domain->iommu_bmp);
1398 iommu->domains[num] = NULL;
1400 spin_unlock_irqrestore(&iommu->lock, flags);
1403 static struct iova_domain reserved_iova_list;
1404 static struct lock_class_key reserved_rbtree_key;
1406 static int dmar_init_reserved_ranges(void)
1408 struct pci_dev *pdev = NULL;
1409 struct iova *iova;
1410 int i;
1412 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1414 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1415 &reserved_rbtree_key);
1417 /* IOAPIC ranges shouldn't be accessed by DMA */
1418 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1419 IOVA_PFN(IOAPIC_RANGE_END));
1420 if (!iova) {
1421 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1422 return -ENODEV;
1425 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1426 for_each_pci_dev(pdev) {
1427 struct resource *r;
1429 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1430 r = &pdev->resource[i];
1431 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1432 continue;
1433 iova = reserve_iova(&reserved_iova_list,
1434 IOVA_PFN(r->start),
1435 IOVA_PFN(r->end));
1436 if (!iova) {
1437 printk(KERN_ERR "Reserve iova failed\n");
1438 return -ENODEV;
1442 return 0;
1445 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1447 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1450 static inline int guestwidth_to_adjustwidth(int gaw)
1452 int agaw;
1453 int r = (gaw - 12) % 9;
1455 if (r == 0)
1456 agaw = gaw;
1457 else
1458 agaw = gaw + 9 - r;
1459 if (agaw > 64)
1460 agaw = 64;
1461 return agaw;
1464 static int domain_init(struct dmar_domain *domain, int guest_width)
1466 struct intel_iommu *iommu;
1467 int adjust_width, agaw;
1468 unsigned long sagaw;
1470 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1471 spin_lock_init(&domain->iommu_lock);
1473 domain_reserve_special_ranges(domain);
1475 /* calculate AGAW */
1476 iommu = domain_get_iommu(domain);
1477 if (guest_width > cap_mgaw(iommu->cap))
1478 guest_width = cap_mgaw(iommu->cap);
1479 domain->gaw = guest_width;
1480 adjust_width = guestwidth_to_adjustwidth(guest_width);
1481 agaw = width_to_agaw(adjust_width);
1482 sagaw = cap_sagaw(iommu->cap);
1483 if (!test_bit(agaw, &sagaw)) {
1484 /* hardware doesn't support it, choose a bigger one */
1485 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1486 agaw = find_next_bit(&sagaw, 5, agaw);
1487 if (agaw >= 5)
1488 return -ENODEV;
1490 domain->agaw = agaw;
1491 INIT_LIST_HEAD(&domain->devices);
1493 if (ecap_coherent(iommu->ecap))
1494 domain->iommu_coherency = 1;
1495 else
1496 domain->iommu_coherency = 0;
1498 if (ecap_sc_support(iommu->ecap))
1499 domain->iommu_snooping = 1;
1500 else
1501 domain->iommu_snooping = 0;
1503 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1504 domain->iommu_count = 1;
1505 domain->nid = iommu->node;
1507 /* always allocate the top pgd */
1508 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1509 if (!domain->pgd)
1510 return -ENOMEM;
1511 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1512 return 0;
1515 static void domain_exit(struct dmar_domain *domain)
1517 struct dmar_drhd_unit *drhd;
1518 struct intel_iommu *iommu;
1520 /* Domain 0 is reserved, so dont process it */
1521 if (!domain)
1522 return;
1524 /* Flush any lazy unmaps that may reference this domain */
1525 if (!intel_iommu_strict)
1526 flush_unmaps_timeout(0);
1528 domain_remove_dev_info(domain);
1529 /* destroy iovas */
1530 put_iova_domain(&domain->iovad);
1532 /* clear ptes */
1533 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1535 /* free page tables */
1536 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1538 for_each_active_iommu(iommu, drhd)
1539 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1540 iommu_detach_domain(domain, iommu);
1542 free_domain_mem(domain);
1545 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1546 u8 bus, u8 devfn, int translation)
1548 struct context_entry *context;
1549 unsigned long flags;
1550 struct intel_iommu *iommu;
1551 struct dma_pte *pgd;
1552 unsigned long num;
1553 unsigned long ndomains;
1554 int id;
1555 int agaw;
1556 struct device_domain_info *info = NULL;
1558 pr_debug("Set context mapping for %02x:%02x.%d\n",
1559 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1561 BUG_ON(!domain->pgd);
1562 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1563 translation != CONTEXT_TT_MULTI_LEVEL);
1565 iommu = device_to_iommu(segment, bus, devfn);
1566 if (!iommu)
1567 return -ENODEV;
1569 context = device_to_context_entry(iommu, bus, devfn);
1570 if (!context)
1571 return -ENOMEM;
1572 spin_lock_irqsave(&iommu->lock, flags);
1573 if (context_present(context)) {
1574 spin_unlock_irqrestore(&iommu->lock, flags);
1575 return 0;
1578 id = domain->id;
1579 pgd = domain->pgd;
1581 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1582 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1583 int found = 0;
1585 /* find an available domain id for this device in iommu */
1586 ndomains = cap_ndoms(iommu->cap);
1587 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1588 if (iommu->domains[num] == domain) {
1589 id = num;
1590 found = 1;
1591 break;
1595 if (found == 0) {
1596 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1597 if (num >= ndomains) {
1598 spin_unlock_irqrestore(&iommu->lock, flags);
1599 printk(KERN_ERR "IOMMU: no free domain ids\n");
1600 return -EFAULT;
1603 set_bit(num, iommu->domain_ids);
1604 iommu->domains[num] = domain;
1605 id = num;
1608 /* Skip top levels of page tables for
1609 * iommu which has less agaw than default.
1610 * Unnecessary for PT mode.
1612 if (translation != CONTEXT_TT_PASS_THROUGH) {
1613 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1614 pgd = phys_to_virt(dma_pte_addr(pgd));
1615 if (!dma_pte_present(pgd)) {
1616 spin_unlock_irqrestore(&iommu->lock, flags);
1617 return -ENOMEM;
1623 context_set_domain_id(context, id);
1625 if (translation != CONTEXT_TT_PASS_THROUGH) {
1626 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1627 translation = info ? CONTEXT_TT_DEV_IOTLB :
1628 CONTEXT_TT_MULTI_LEVEL;
1631 * In pass through mode, AW must be programmed to indicate the largest
1632 * AGAW value supported by hardware. And ASR is ignored by hardware.
1634 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1635 context_set_address_width(context, iommu->msagaw);
1636 else {
1637 context_set_address_root(context, virt_to_phys(pgd));
1638 context_set_address_width(context, iommu->agaw);
1641 context_set_translation_type(context, translation);
1642 context_set_fault_enable(context);
1643 context_set_present(context);
1644 domain_flush_cache(domain, context, sizeof(*context));
1647 * It's a non-present to present mapping. If hardware doesn't cache
1648 * non-present entry we only need to flush the write-buffer. If the
1649 * _does_ cache non-present entries, then it does so in the special
1650 * domain #0, which we have to flush:
1652 if (cap_caching_mode(iommu->cap)) {
1653 iommu->flush.flush_context(iommu, 0,
1654 (((u16)bus) << 8) | devfn,
1655 DMA_CCMD_MASK_NOBIT,
1656 DMA_CCMD_DEVICE_INVL);
1657 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1658 } else {
1659 iommu_flush_write_buffer(iommu);
1661 iommu_enable_dev_iotlb(info);
1662 spin_unlock_irqrestore(&iommu->lock, flags);
1664 spin_lock_irqsave(&domain->iommu_lock, flags);
1665 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1666 domain->iommu_count++;
1667 if (domain->iommu_count == 1)
1668 domain->nid = iommu->node;
1669 domain_update_iommu_cap(domain);
1671 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1672 return 0;
1675 static int
1676 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1677 int translation)
1679 int ret;
1680 struct pci_dev *tmp, *parent;
1682 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1683 pdev->bus->number, pdev->devfn,
1684 translation);
1685 if (ret)
1686 return ret;
1688 /* dependent device mapping */
1689 tmp = pci_find_upstream_pcie_bridge(pdev);
1690 if (!tmp)
1691 return 0;
1692 /* Secondary interface's bus number and devfn 0 */
1693 parent = pdev->bus->self;
1694 while (parent != tmp) {
1695 ret = domain_context_mapping_one(domain,
1696 pci_domain_nr(parent->bus),
1697 parent->bus->number,
1698 parent->devfn, translation);
1699 if (ret)
1700 return ret;
1701 parent = parent->bus->self;
1703 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1704 return domain_context_mapping_one(domain,
1705 pci_domain_nr(tmp->subordinate),
1706 tmp->subordinate->number, 0,
1707 translation);
1708 else /* this is a legacy PCI bridge */
1709 return domain_context_mapping_one(domain,
1710 pci_domain_nr(tmp->bus),
1711 tmp->bus->number,
1712 tmp->devfn,
1713 translation);
1716 static int domain_context_mapped(struct pci_dev *pdev)
1718 int ret;
1719 struct pci_dev *tmp, *parent;
1720 struct intel_iommu *iommu;
1722 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1723 pdev->devfn);
1724 if (!iommu)
1725 return -ENODEV;
1727 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1728 if (!ret)
1729 return ret;
1730 /* dependent device mapping */
1731 tmp = pci_find_upstream_pcie_bridge(pdev);
1732 if (!tmp)
1733 return ret;
1734 /* Secondary interface's bus number and devfn 0 */
1735 parent = pdev->bus->self;
1736 while (parent != tmp) {
1737 ret = device_context_mapped(iommu, parent->bus->number,
1738 parent->devfn);
1739 if (!ret)
1740 return ret;
1741 parent = parent->bus->self;
1743 if (pci_is_pcie(tmp))
1744 return device_context_mapped(iommu, tmp->subordinate->number,
1746 else
1747 return device_context_mapped(iommu, tmp->bus->number,
1748 tmp->devfn);
1751 /* Returns a number of VTD pages, but aligned to MM page size */
1752 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1753 size_t size)
1755 host_addr &= ~PAGE_MASK;
1756 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1759 /* Return largest possible superpage level for a given mapping */
1760 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1761 unsigned long iov_pfn,
1762 unsigned long phy_pfn,
1763 unsigned long pages)
1765 int support, level = 1;
1766 unsigned long pfnmerge;
1768 support = domain->iommu_superpage;
1770 /* To use a large page, the virtual *and* physical addresses
1771 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1772 of them will mean we have to use smaller pages. So just
1773 merge them and check both at once. */
1774 pfnmerge = iov_pfn | phy_pfn;
1776 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1777 pages >>= VTD_STRIDE_SHIFT;
1778 if (!pages)
1779 break;
1780 pfnmerge >>= VTD_STRIDE_SHIFT;
1781 level++;
1782 support--;
1784 return level;
1787 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1788 struct scatterlist *sg, unsigned long phys_pfn,
1789 unsigned long nr_pages, int prot)
1791 struct dma_pte *first_pte = NULL, *pte = NULL;
1792 phys_addr_t uninitialized_var(pteval);
1793 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1794 unsigned long sg_res;
1795 unsigned int largepage_lvl = 0;
1796 unsigned long lvl_pages = 0;
1798 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1800 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1801 return -EINVAL;
1803 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1805 if (sg)
1806 sg_res = 0;
1807 else {
1808 sg_res = nr_pages + 1;
1809 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1812 while (nr_pages > 0) {
1813 uint64_t tmp;
1815 if (!sg_res) {
1816 sg_res = aligned_nrpages(sg->offset, sg->length);
1817 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1818 sg->dma_length = sg->length;
1819 pteval = page_to_phys(sg_page(sg)) | prot;
1820 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1823 if (!pte) {
1824 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1826 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1827 if (!pte)
1828 return -ENOMEM;
1829 /* It is large page*/
1830 if (largepage_lvl > 1)
1831 pteval |= DMA_PTE_LARGE_PAGE;
1832 else
1833 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1836 /* We don't need lock here, nobody else
1837 * touches the iova range
1839 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1840 if (tmp) {
1841 static int dumps = 5;
1842 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1843 iov_pfn, tmp, (unsigned long long)pteval);
1844 if (dumps) {
1845 dumps--;
1846 debug_dma_dump_mappings(NULL);
1848 WARN_ON(1);
1851 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1853 BUG_ON(nr_pages < lvl_pages);
1854 BUG_ON(sg_res < lvl_pages);
1856 nr_pages -= lvl_pages;
1857 iov_pfn += lvl_pages;
1858 phys_pfn += lvl_pages;
1859 pteval += lvl_pages * VTD_PAGE_SIZE;
1860 sg_res -= lvl_pages;
1862 /* If the next PTE would be the first in a new page, then we
1863 need to flush the cache on the entries we've just written.
1864 And then we'll need to recalculate 'pte', so clear it and
1865 let it get set again in the if (!pte) block above.
1867 If we're done (!nr_pages) we need to flush the cache too.
1869 Also if we've been setting superpages, we may need to
1870 recalculate 'pte' and switch back to smaller pages for the
1871 end of the mapping, if the trailing size is not enough to
1872 use another superpage (i.e. sg_res < lvl_pages). */
1873 pte++;
1874 if (!nr_pages || first_pte_in_page(pte) ||
1875 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1876 domain_flush_cache(domain, first_pte,
1877 (void *)pte - (void *)first_pte);
1878 pte = NULL;
1881 if (!sg_res && nr_pages)
1882 sg = sg_next(sg);
1884 return 0;
1887 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1888 struct scatterlist *sg, unsigned long nr_pages,
1889 int prot)
1891 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1894 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1895 unsigned long phys_pfn, unsigned long nr_pages,
1896 int prot)
1898 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1901 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1903 if (!iommu)
1904 return;
1906 clear_context_table(iommu, bus, devfn);
1907 iommu->flush.flush_context(iommu, 0, 0, 0,
1908 DMA_CCMD_GLOBAL_INVL);
1909 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1912 static inline void unlink_domain_info(struct device_domain_info *info)
1914 assert_spin_locked(&device_domain_lock);
1915 list_del(&info->link);
1916 list_del(&info->global);
1917 if (info->dev)
1918 info->dev->dev.archdata.iommu = NULL;
1921 static void domain_remove_dev_info(struct dmar_domain *domain)
1923 struct device_domain_info *info;
1924 unsigned long flags;
1925 struct intel_iommu *iommu;
1927 spin_lock_irqsave(&device_domain_lock, flags);
1928 while (!list_empty(&domain->devices)) {
1929 info = list_entry(domain->devices.next,
1930 struct device_domain_info, link);
1931 unlink_domain_info(info);
1932 spin_unlock_irqrestore(&device_domain_lock, flags);
1934 iommu_disable_dev_iotlb(info);
1935 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1936 iommu_detach_dev(iommu, info->bus, info->devfn);
1937 free_devinfo_mem(info);
1939 spin_lock_irqsave(&device_domain_lock, flags);
1941 spin_unlock_irqrestore(&device_domain_lock, flags);
1945 * find_domain
1946 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1948 static struct dmar_domain *
1949 find_domain(struct pci_dev *pdev)
1951 struct device_domain_info *info;
1953 /* No lock here, assumes no domain exit in normal case */
1954 info = pdev->dev.archdata.iommu;
1955 if (info)
1956 return info->domain;
1957 return NULL;
1960 /* domain is initialized */
1961 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1963 struct dmar_domain *domain, *found = NULL;
1964 struct intel_iommu *iommu;
1965 struct dmar_drhd_unit *drhd;
1966 struct device_domain_info *info, *tmp;
1967 struct pci_dev *dev_tmp;
1968 unsigned long flags;
1969 int bus = 0, devfn = 0;
1970 int segment;
1971 int ret;
1973 domain = find_domain(pdev);
1974 if (domain)
1975 return domain;
1977 segment = pci_domain_nr(pdev->bus);
1979 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1980 if (dev_tmp) {
1981 if (pci_is_pcie(dev_tmp)) {
1982 bus = dev_tmp->subordinate->number;
1983 devfn = 0;
1984 } else {
1985 bus = dev_tmp->bus->number;
1986 devfn = dev_tmp->devfn;
1988 spin_lock_irqsave(&device_domain_lock, flags);
1989 list_for_each_entry(info, &device_domain_list, global) {
1990 if (info->segment == segment &&
1991 info->bus == bus && info->devfn == devfn) {
1992 found = info->domain;
1993 break;
1996 spin_unlock_irqrestore(&device_domain_lock, flags);
1997 /* pcie-pci bridge already has a domain, uses it */
1998 if (found) {
1999 domain = found;
2000 goto found_domain;
2004 domain = alloc_domain();
2005 if (!domain)
2006 goto error;
2008 /* Allocate new domain for the device */
2009 drhd = dmar_find_matched_drhd_unit(pdev);
2010 if (!drhd) {
2011 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2012 pci_name(pdev));
2013 free_domain_mem(domain);
2014 return NULL;
2016 iommu = drhd->iommu;
2018 ret = iommu_attach_domain(domain, iommu);
2019 if (ret) {
2020 free_domain_mem(domain);
2021 goto error;
2024 if (domain_init(domain, gaw)) {
2025 domain_exit(domain);
2026 goto error;
2029 /* register pcie-to-pci device */
2030 if (dev_tmp) {
2031 info = alloc_devinfo_mem();
2032 if (!info) {
2033 domain_exit(domain);
2034 goto error;
2036 info->segment = segment;
2037 info->bus = bus;
2038 info->devfn = devfn;
2039 info->dev = NULL;
2040 info->domain = domain;
2041 /* This domain is shared by devices under p2p bridge */
2042 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2044 /* pcie-to-pci bridge already has a domain, uses it */
2045 found = NULL;
2046 spin_lock_irqsave(&device_domain_lock, flags);
2047 list_for_each_entry(tmp, &device_domain_list, global) {
2048 if (tmp->segment == segment &&
2049 tmp->bus == bus && tmp->devfn == devfn) {
2050 found = tmp->domain;
2051 break;
2054 if (found) {
2055 spin_unlock_irqrestore(&device_domain_lock, flags);
2056 free_devinfo_mem(info);
2057 domain_exit(domain);
2058 domain = found;
2059 } else {
2060 list_add(&info->link, &domain->devices);
2061 list_add(&info->global, &device_domain_list);
2062 spin_unlock_irqrestore(&device_domain_lock, flags);
2066 found_domain:
2067 info = alloc_devinfo_mem();
2068 if (!info)
2069 goto error;
2070 info->segment = segment;
2071 info->bus = pdev->bus->number;
2072 info->devfn = pdev->devfn;
2073 info->dev = pdev;
2074 info->domain = domain;
2075 spin_lock_irqsave(&device_domain_lock, flags);
2076 /* somebody is fast */
2077 found = find_domain(pdev);
2078 if (found != NULL) {
2079 spin_unlock_irqrestore(&device_domain_lock, flags);
2080 if (found != domain) {
2081 domain_exit(domain);
2082 domain = found;
2084 free_devinfo_mem(info);
2085 return domain;
2087 list_add(&info->link, &domain->devices);
2088 list_add(&info->global, &device_domain_list);
2089 pdev->dev.archdata.iommu = info;
2090 spin_unlock_irqrestore(&device_domain_lock, flags);
2091 return domain;
2092 error:
2093 /* recheck it here, maybe others set it */
2094 return find_domain(pdev);
2097 static int iommu_identity_mapping;
2098 #define IDENTMAP_ALL 1
2099 #define IDENTMAP_GFX 2
2100 #define IDENTMAP_AZALIA 4
2102 static int iommu_domain_identity_map(struct dmar_domain *domain,
2103 unsigned long long start,
2104 unsigned long long end)
2106 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2107 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2109 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2110 dma_to_mm_pfn(last_vpfn))) {
2111 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2112 return -ENOMEM;
2115 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2116 start, end, domain->id);
2118 * RMRR range might have overlap with physical memory range,
2119 * clear it first
2121 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2123 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2124 last_vpfn - first_vpfn + 1,
2125 DMA_PTE_READ|DMA_PTE_WRITE);
2128 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2129 unsigned long long start,
2130 unsigned long long end)
2132 struct dmar_domain *domain;
2133 int ret;
2135 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2136 if (!domain)
2137 return -ENOMEM;
2139 /* For _hardware_ passthrough, don't bother. But for software
2140 passthrough, we do it anyway -- it may indicate a memory
2141 range which is reserved in E820, so which didn't get set
2142 up to start with in si_domain */
2143 if (domain == si_domain && hw_pass_through) {
2144 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2145 pci_name(pdev), start, end);
2146 return 0;
2149 printk(KERN_INFO
2150 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2151 pci_name(pdev), start, end);
2153 if (end < start) {
2154 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2155 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2156 dmi_get_system_info(DMI_BIOS_VENDOR),
2157 dmi_get_system_info(DMI_BIOS_VERSION),
2158 dmi_get_system_info(DMI_PRODUCT_VERSION));
2159 ret = -EIO;
2160 goto error;
2163 if (end >> agaw_to_width(domain->agaw)) {
2164 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2165 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2166 agaw_to_width(domain->agaw),
2167 dmi_get_system_info(DMI_BIOS_VENDOR),
2168 dmi_get_system_info(DMI_BIOS_VERSION),
2169 dmi_get_system_info(DMI_PRODUCT_VERSION));
2170 ret = -EIO;
2171 goto error;
2174 ret = iommu_domain_identity_map(domain, start, end);
2175 if (ret)
2176 goto error;
2178 /* context entry init */
2179 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2180 if (ret)
2181 goto error;
2183 return 0;
2185 error:
2186 domain_exit(domain);
2187 return ret;
2190 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2191 struct pci_dev *pdev)
2193 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2194 return 0;
2195 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2196 rmrr->end_address);
2199 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2200 static inline void iommu_prepare_isa(void)
2202 struct pci_dev *pdev;
2203 int ret;
2205 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2206 if (!pdev)
2207 return;
2209 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2210 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2212 if (ret)
2213 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2214 "floppy might not work\n");
2217 #else
2218 static inline void iommu_prepare_isa(void)
2220 return;
2222 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2224 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2226 static int __init si_domain_init(int hw)
2228 struct dmar_drhd_unit *drhd;
2229 struct intel_iommu *iommu;
2230 int nid, ret = 0;
2232 si_domain = alloc_domain();
2233 if (!si_domain)
2234 return -EFAULT;
2236 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2238 for_each_active_iommu(iommu, drhd) {
2239 ret = iommu_attach_domain(si_domain, iommu);
2240 if (ret) {
2241 domain_exit(si_domain);
2242 return -EFAULT;
2246 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2247 domain_exit(si_domain);
2248 return -EFAULT;
2251 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2253 if (hw)
2254 return 0;
2256 for_each_online_node(nid) {
2257 unsigned long start_pfn, end_pfn;
2258 int i;
2260 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2261 ret = iommu_domain_identity_map(si_domain,
2262 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2263 if (ret)
2264 return ret;
2268 return 0;
2271 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2272 struct pci_dev *pdev);
2273 static int identity_mapping(struct pci_dev *pdev)
2275 struct device_domain_info *info;
2277 if (likely(!iommu_identity_mapping))
2278 return 0;
2280 info = pdev->dev.archdata.iommu;
2281 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2282 return (info->domain == si_domain);
2284 return 0;
2287 static int domain_add_dev_info(struct dmar_domain *domain,
2288 struct pci_dev *pdev,
2289 int translation)
2291 struct device_domain_info *info;
2292 unsigned long flags;
2293 int ret;
2295 info = alloc_devinfo_mem();
2296 if (!info)
2297 return -ENOMEM;
2299 info->segment = pci_domain_nr(pdev->bus);
2300 info->bus = pdev->bus->number;
2301 info->devfn = pdev->devfn;
2302 info->dev = pdev;
2303 info->domain = domain;
2305 spin_lock_irqsave(&device_domain_lock, flags);
2306 list_add(&info->link, &domain->devices);
2307 list_add(&info->global, &device_domain_list);
2308 pdev->dev.archdata.iommu = info;
2309 spin_unlock_irqrestore(&device_domain_lock, flags);
2311 ret = domain_context_mapping(domain, pdev, translation);
2312 if (ret) {
2313 spin_lock_irqsave(&device_domain_lock, flags);
2314 unlink_domain_info(info);
2315 spin_unlock_irqrestore(&device_domain_lock, flags);
2316 free_devinfo_mem(info);
2317 return ret;
2320 return 0;
2323 static bool device_has_rmrr(struct pci_dev *dev)
2325 struct dmar_rmrr_unit *rmrr;
2326 int i;
2328 for_each_rmrr_units(rmrr) {
2329 for (i = 0; i < rmrr->devices_cnt; i++) {
2331 * Return TRUE if this RMRR contains the device that
2332 * is passed in.
2334 if (rmrr->devices[i] == dev)
2335 return true;
2338 return false;
2341 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2345 * We want to prevent any device associated with an RMRR from
2346 * getting placed into the SI Domain. This is done because
2347 * problems exist when devices are moved in and out of domains
2348 * and their respective RMRR info is lost. We exempt USB devices
2349 * from this process due to their usage of RMRRs that are known
2350 * to not be needed after BIOS hand-off to OS.
2352 if (device_has_rmrr(pdev) &&
2353 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2354 return 0;
2356 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2357 return 1;
2359 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2360 return 1;
2362 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2363 return 0;
2366 * We want to start off with all devices in the 1:1 domain, and
2367 * take them out later if we find they can't access all of memory.
2369 * However, we can't do this for PCI devices behind bridges,
2370 * because all PCI devices behind the same bridge will end up
2371 * with the same source-id on their transactions.
2373 * Practically speaking, we can't change things around for these
2374 * devices at run-time, because we can't be sure there'll be no
2375 * DMA transactions in flight for any of their siblings.
2377 * So PCI devices (unless they're on the root bus) as well as
2378 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2379 * the 1:1 domain, just in _case_ one of their siblings turns out
2380 * not to be able to map all of memory.
2382 if (!pci_is_pcie(pdev)) {
2383 if (!pci_is_root_bus(pdev->bus))
2384 return 0;
2385 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2386 return 0;
2387 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2388 return 0;
2391 * At boot time, we don't yet know if devices will be 64-bit capable.
2392 * Assume that they will -- if they turn out not to be, then we can
2393 * take them out of the 1:1 domain later.
2395 if (!startup) {
2397 * If the device's dma_mask is less than the system's memory
2398 * size then this is not a candidate for identity mapping.
2400 u64 dma_mask = pdev->dma_mask;
2402 if (pdev->dev.coherent_dma_mask &&
2403 pdev->dev.coherent_dma_mask < dma_mask)
2404 dma_mask = pdev->dev.coherent_dma_mask;
2406 return dma_mask >= dma_get_required_mask(&pdev->dev);
2409 return 1;
2412 static int __init iommu_prepare_static_identity_mapping(int hw)
2414 struct pci_dev *pdev = NULL;
2415 int ret;
2417 ret = si_domain_init(hw);
2418 if (ret)
2419 return -EFAULT;
2421 for_each_pci_dev(pdev) {
2422 if (iommu_should_identity_map(pdev, 1)) {
2423 ret = domain_add_dev_info(si_domain, pdev,
2424 hw ? CONTEXT_TT_PASS_THROUGH :
2425 CONTEXT_TT_MULTI_LEVEL);
2426 if (ret) {
2427 /* device not associated with an iommu */
2428 if (ret == -ENODEV)
2429 continue;
2430 return ret;
2432 pr_info("IOMMU: %s identity mapping for device %s\n",
2433 hw ? "hardware" : "software", pci_name(pdev));
2437 return 0;
2440 static int __init init_dmars(void)
2442 struct dmar_drhd_unit *drhd;
2443 struct dmar_rmrr_unit *rmrr;
2444 struct pci_dev *pdev;
2445 struct intel_iommu *iommu;
2446 int i, ret;
2449 * for each drhd
2450 * allocate root
2451 * initialize and program root entry to not present
2452 * endfor
2454 for_each_drhd_unit(drhd) {
2456 * lock not needed as this is only incremented in the single
2457 * threaded kernel __init code path all other access are read
2458 * only
2460 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2461 g_num_of_iommus++;
2462 continue;
2464 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2465 IOMMU_UNITS_SUPPORTED);
2468 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2469 GFP_KERNEL);
2470 if (!g_iommus) {
2471 printk(KERN_ERR "Allocating global iommu array failed\n");
2472 ret = -ENOMEM;
2473 goto error;
2476 deferred_flush = kzalloc(g_num_of_iommus *
2477 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2478 if (!deferred_flush) {
2479 ret = -ENOMEM;
2480 goto error;
2483 for_each_drhd_unit(drhd) {
2484 if (drhd->ignored)
2485 continue;
2487 iommu = drhd->iommu;
2488 g_iommus[iommu->seq_id] = iommu;
2490 ret = iommu_init_domains(iommu);
2491 if (ret)
2492 goto error;
2495 * TBD:
2496 * we could share the same root & context tables
2497 * among all IOMMU's. Need to Split it later.
2499 ret = iommu_alloc_root_entry(iommu);
2500 if (ret) {
2501 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2502 goto error;
2504 if (!ecap_pass_through(iommu->ecap))
2505 hw_pass_through = 0;
2509 * Start from the sane iommu hardware state.
2511 for_each_drhd_unit(drhd) {
2512 if (drhd->ignored)
2513 continue;
2515 iommu = drhd->iommu;
2518 * If the queued invalidation is already initialized by us
2519 * (for example, while enabling interrupt-remapping) then
2520 * we got the things already rolling from a sane state.
2522 if (iommu->qi)
2523 continue;
2526 * Clear any previous faults.
2528 dmar_fault(-1, iommu);
2530 * Disable queued invalidation if supported and already enabled
2531 * before OS handover.
2533 dmar_disable_qi(iommu);
2536 for_each_drhd_unit(drhd) {
2537 if (drhd->ignored)
2538 continue;
2540 iommu = drhd->iommu;
2542 if (dmar_enable_qi(iommu)) {
2544 * Queued Invalidate not enabled, use Register Based
2545 * Invalidate
2547 iommu->flush.flush_context = __iommu_flush_context;
2548 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2549 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2550 "invalidation\n",
2551 iommu->seq_id,
2552 (unsigned long long)drhd->reg_base_addr);
2553 } else {
2554 iommu->flush.flush_context = qi_flush_context;
2555 iommu->flush.flush_iotlb = qi_flush_iotlb;
2556 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2557 "invalidation\n",
2558 iommu->seq_id,
2559 (unsigned long long)drhd->reg_base_addr);
2563 if (iommu_pass_through)
2564 iommu_identity_mapping |= IDENTMAP_ALL;
2566 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2567 iommu_identity_mapping |= IDENTMAP_GFX;
2568 #endif
2570 check_tylersburg_isoch();
2573 * If pass through is not set or not enabled, setup context entries for
2574 * identity mappings for rmrr, gfx, and isa and may fall back to static
2575 * identity mapping if iommu_identity_mapping is set.
2577 if (iommu_identity_mapping) {
2578 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2579 if (ret) {
2580 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2581 goto error;
2585 * For each rmrr
2586 * for each dev attached to rmrr
2587 * do
2588 * locate drhd for dev, alloc domain for dev
2589 * allocate free domain
2590 * allocate page table entries for rmrr
2591 * if context not allocated for bus
2592 * allocate and init context
2593 * set present in root table for this bus
2594 * init context with domain, translation etc
2595 * endfor
2596 * endfor
2598 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2599 for_each_rmrr_units(rmrr) {
2600 for (i = 0; i < rmrr->devices_cnt; i++) {
2601 pdev = rmrr->devices[i];
2603 * some BIOS lists non-exist devices in DMAR
2604 * table.
2606 if (!pdev)
2607 continue;
2608 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2609 if (ret)
2610 printk(KERN_ERR
2611 "IOMMU: mapping reserved region failed\n");
2615 iommu_prepare_isa();
2618 * for each drhd
2619 * enable fault log
2620 * global invalidate context cache
2621 * global invalidate iotlb
2622 * enable translation
2624 for_each_drhd_unit(drhd) {
2625 if (drhd->ignored) {
2627 * we always have to disable PMRs or DMA may fail on
2628 * this device
2630 if (force_on)
2631 iommu_disable_protect_mem_regions(drhd->iommu);
2632 continue;
2634 iommu = drhd->iommu;
2636 iommu_flush_write_buffer(iommu);
2638 ret = dmar_set_interrupt(iommu);
2639 if (ret)
2640 goto error;
2642 iommu_set_root_entry(iommu);
2644 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2645 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2647 ret = iommu_enable_translation(iommu);
2648 if (ret)
2649 goto error;
2651 iommu_disable_protect_mem_regions(iommu);
2654 return 0;
2655 error:
2656 for_each_drhd_unit(drhd) {
2657 if (drhd->ignored)
2658 continue;
2659 iommu = drhd->iommu;
2660 free_iommu(iommu);
2662 kfree(g_iommus);
2663 return ret;
2666 /* This takes a number of _MM_ pages, not VTD pages */
2667 static struct iova *intel_alloc_iova(struct device *dev,
2668 struct dmar_domain *domain,
2669 unsigned long nrpages, uint64_t dma_mask)
2671 struct pci_dev *pdev = to_pci_dev(dev);
2672 struct iova *iova = NULL;
2674 /* Restrict dma_mask to the width that the iommu can handle */
2675 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2677 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2679 * First try to allocate an io virtual address in
2680 * DMA_BIT_MASK(32) and if that fails then try allocating
2681 * from higher range
2683 iova = alloc_iova(&domain->iovad, nrpages,
2684 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2685 if (iova)
2686 return iova;
2688 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2689 if (unlikely(!iova)) {
2690 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2691 nrpages, pci_name(pdev));
2692 return NULL;
2695 return iova;
2698 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2700 struct dmar_domain *domain;
2701 int ret;
2703 domain = get_domain_for_dev(pdev,
2704 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2705 if (!domain) {
2706 printk(KERN_ERR
2707 "Allocating domain for %s failed", pci_name(pdev));
2708 return NULL;
2711 /* make sure context mapping is ok */
2712 if (unlikely(!domain_context_mapped(pdev))) {
2713 ret = domain_context_mapping(domain, pdev,
2714 CONTEXT_TT_MULTI_LEVEL);
2715 if (ret) {
2716 printk(KERN_ERR
2717 "Domain context map for %s failed",
2718 pci_name(pdev));
2719 return NULL;
2723 return domain;
2726 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2728 struct device_domain_info *info;
2730 /* No lock here, assumes no domain exit in normal case */
2731 info = dev->dev.archdata.iommu;
2732 if (likely(info))
2733 return info->domain;
2735 return __get_valid_domain_for_dev(dev);
2738 static int iommu_dummy(struct pci_dev *pdev)
2740 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2743 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2744 static int iommu_no_mapping(struct device *dev)
2746 struct pci_dev *pdev;
2747 int found;
2749 if (unlikely(dev->bus != &pci_bus_type))
2750 return 1;
2752 pdev = to_pci_dev(dev);
2753 if (iommu_dummy(pdev))
2754 return 1;
2756 if (!iommu_identity_mapping)
2757 return 0;
2759 found = identity_mapping(pdev);
2760 if (found) {
2761 if (iommu_should_identity_map(pdev, 0))
2762 return 1;
2763 else {
2765 * 32 bit DMA is removed from si_domain and fall back
2766 * to non-identity mapping.
2768 domain_remove_one_dev_info(si_domain, pdev);
2769 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2770 pci_name(pdev));
2771 return 0;
2773 } else {
2775 * In case of a detached 64 bit DMA device from vm, the device
2776 * is put into si_domain for identity mapping.
2778 if (iommu_should_identity_map(pdev, 0)) {
2779 int ret;
2780 ret = domain_add_dev_info(si_domain, pdev,
2781 hw_pass_through ?
2782 CONTEXT_TT_PASS_THROUGH :
2783 CONTEXT_TT_MULTI_LEVEL);
2784 if (!ret) {
2785 printk(KERN_INFO "64bit %s uses identity mapping\n",
2786 pci_name(pdev));
2787 return 1;
2792 return 0;
2795 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2796 size_t size, int dir, u64 dma_mask)
2798 struct pci_dev *pdev = to_pci_dev(hwdev);
2799 struct dmar_domain *domain;
2800 phys_addr_t start_paddr;
2801 struct iova *iova;
2802 int prot = 0;
2803 int ret;
2804 struct intel_iommu *iommu;
2805 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2807 BUG_ON(dir == DMA_NONE);
2809 if (iommu_no_mapping(hwdev))
2810 return paddr;
2812 domain = get_valid_domain_for_dev(pdev);
2813 if (!domain)
2814 return 0;
2816 iommu = domain_get_iommu(domain);
2817 size = aligned_nrpages(paddr, size);
2819 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2820 if (!iova)
2821 goto error;
2824 * Check if DMAR supports zero-length reads on write only
2825 * mappings..
2827 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2828 !cap_zlr(iommu->cap))
2829 prot |= DMA_PTE_READ;
2830 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2831 prot |= DMA_PTE_WRITE;
2833 * paddr - (paddr + size) might be partial page, we should map the whole
2834 * page. Note: if two part of one page are separately mapped, we
2835 * might have two guest_addr mapping to the same host paddr, but this
2836 * is not a big problem
2838 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2839 mm_to_dma_pfn(paddr_pfn), size, prot);
2840 if (ret)
2841 goto error;
2843 /* it's a non-present to present mapping. Only flush if caching mode */
2844 if (cap_caching_mode(iommu->cap))
2845 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2846 else
2847 iommu_flush_write_buffer(iommu);
2849 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2850 start_paddr += paddr & ~PAGE_MASK;
2851 return start_paddr;
2853 error:
2854 if (iova)
2855 __free_iova(&domain->iovad, iova);
2856 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2857 pci_name(pdev), size, (unsigned long long)paddr, dir);
2858 return 0;
2861 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2862 unsigned long offset, size_t size,
2863 enum dma_data_direction dir,
2864 struct dma_attrs *attrs)
2866 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2867 dir, to_pci_dev(dev)->dma_mask);
2870 static void flush_unmaps(void)
2872 int i, j;
2874 timer_on = 0;
2876 /* just flush them all */
2877 for (i = 0; i < g_num_of_iommus; i++) {
2878 struct intel_iommu *iommu = g_iommus[i];
2879 if (!iommu)
2880 continue;
2882 if (!deferred_flush[i].next)
2883 continue;
2885 /* In caching mode, global flushes turn emulation expensive */
2886 if (!cap_caching_mode(iommu->cap))
2887 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2888 DMA_TLB_GLOBAL_FLUSH);
2889 for (j = 0; j < deferred_flush[i].next; j++) {
2890 unsigned long mask;
2891 struct iova *iova = deferred_flush[i].iova[j];
2892 struct dmar_domain *domain = deferred_flush[i].domain[j];
2894 /* On real hardware multiple invalidations are expensive */
2895 if (cap_caching_mode(iommu->cap))
2896 iommu_flush_iotlb_psi(iommu, domain->id,
2897 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2898 else {
2899 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2900 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2901 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2903 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2905 deferred_flush[i].next = 0;
2908 list_size = 0;
2911 static void flush_unmaps_timeout(unsigned long data)
2913 unsigned long flags;
2915 spin_lock_irqsave(&async_umap_flush_lock, flags);
2916 flush_unmaps();
2917 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2920 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2922 unsigned long flags;
2923 int next, iommu_id;
2924 struct intel_iommu *iommu;
2926 spin_lock_irqsave(&async_umap_flush_lock, flags);
2927 if (list_size == HIGH_WATER_MARK)
2928 flush_unmaps();
2930 iommu = domain_get_iommu(dom);
2931 iommu_id = iommu->seq_id;
2933 next = deferred_flush[iommu_id].next;
2934 deferred_flush[iommu_id].domain[next] = dom;
2935 deferred_flush[iommu_id].iova[next] = iova;
2936 deferred_flush[iommu_id].next++;
2938 if (!timer_on) {
2939 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2940 timer_on = 1;
2942 list_size++;
2943 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2946 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2947 size_t size, enum dma_data_direction dir,
2948 struct dma_attrs *attrs)
2950 struct pci_dev *pdev = to_pci_dev(dev);
2951 struct dmar_domain *domain;
2952 unsigned long start_pfn, last_pfn;
2953 struct iova *iova;
2954 struct intel_iommu *iommu;
2956 if (iommu_no_mapping(dev))
2957 return;
2959 domain = find_domain(pdev);
2960 BUG_ON(!domain);
2962 iommu = domain_get_iommu(domain);
2964 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2965 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2966 (unsigned long long)dev_addr))
2967 return;
2969 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2970 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2972 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2973 pci_name(pdev), start_pfn, last_pfn);
2975 /* clear the whole page */
2976 dma_pte_clear_range(domain, start_pfn, last_pfn);
2978 /* free page tables */
2979 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2981 if (intel_iommu_strict) {
2982 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2983 last_pfn - start_pfn + 1, 0);
2984 /* free iova */
2985 __free_iova(&domain->iovad, iova);
2986 } else {
2987 add_unmap(domain, iova);
2989 * queue up the release of the unmap to save the 1/6th of the
2990 * cpu used up by the iotlb flush operation...
2995 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2996 dma_addr_t *dma_handle, gfp_t flags,
2997 struct dma_attrs *attrs)
2999 void *vaddr;
3000 int order;
3002 size = PAGE_ALIGN(size);
3003 order = get_order(size);
3005 if (!iommu_no_mapping(hwdev))
3006 flags &= ~(GFP_DMA | GFP_DMA32);
3007 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
3008 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
3009 flags |= GFP_DMA;
3010 else
3011 flags |= GFP_DMA32;
3014 vaddr = (void *)__get_free_pages(flags, order);
3015 if (!vaddr)
3016 return NULL;
3017 memset(vaddr, 0, size);
3019 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
3020 DMA_BIDIRECTIONAL,
3021 hwdev->coherent_dma_mask);
3022 if (*dma_handle)
3023 return vaddr;
3024 free_pages((unsigned long)vaddr, order);
3025 return NULL;
3028 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
3029 dma_addr_t dma_handle, struct dma_attrs *attrs)
3031 int order;
3033 size = PAGE_ALIGN(size);
3034 order = get_order(size);
3036 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3037 free_pages((unsigned long)vaddr, order);
3040 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3041 int nelems, enum dma_data_direction dir,
3042 struct dma_attrs *attrs)
3044 struct pci_dev *pdev = to_pci_dev(hwdev);
3045 struct dmar_domain *domain;
3046 unsigned long start_pfn, last_pfn;
3047 struct iova *iova;
3048 struct intel_iommu *iommu;
3050 if (iommu_no_mapping(hwdev))
3051 return;
3053 domain = find_domain(pdev);
3054 BUG_ON(!domain);
3056 iommu = domain_get_iommu(domain);
3058 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3059 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3060 (unsigned long long)sglist[0].dma_address))
3061 return;
3063 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3064 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3066 /* clear the whole page */
3067 dma_pte_clear_range(domain, start_pfn, last_pfn);
3069 /* free page tables */
3070 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3072 if (intel_iommu_strict) {
3073 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3074 last_pfn - start_pfn + 1, 0);
3075 /* free iova */
3076 __free_iova(&domain->iovad, iova);
3077 } else {
3078 add_unmap(domain, iova);
3080 * queue up the release of the unmap to save the 1/6th of the
3081 * cpu used up by the iotlb flush operation...
3086 static int intel_nontranslate_map_sg(struct device *hddev,
3087 struct scatterlist *sglist, int nelems, int dir)
3089 int i;
3090 struct scatterlist *sg;
3092 for_each_sg(sglist, sg, nelems, i) {
3093 BUG_ON(!sg_page(sg));
3094 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3095 sg->dma_length = sg->length;
3097 return nelems;
3100 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3101 enum dma_data_direction dir, struct dma_attrs *attrs)
3103 int i;
3104 struct pci_dev *pdev = to_pci_dev(hwdev);
3105 struct dmar_domain *domain;
3106 size_t size = 0;
3107 int prot = 0;
3108 struct iova *iova = NULL;
3109 int ret;
3110 struct scatterlist *sg;
3111 unsigned long start_vpfn;
3112 struct intel_iommu *iommu;
3114 BUG_ON(dir == DMA_NONE);
3115 if (iommu_no_mapping(hwdev))
3116 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3118 domain = get_valid_domain_for_dev(pdev);
3119 if (!domain)
3120 return 0;
3122 iommu = domain_get_iommu(domain);
3124 for_each_sg(sglist, sg, nelems, i)
3125 size += aligned_nrpages(sg->offset, sg->length);
3127 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3128 pdev->dma_mask);
3129 if (!iova) {
3130 sglist->dma_length = 0;
3131 return 0;
3135 * Check if DMAR supports zero-length reads on write only
3136 * mappings..
3138 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3139 !cap_zlr(iommu->cap))
3140 prot |= DMA_PTE_READ;
3141 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3142 prot |= DMA_PTE_WRITE;
3144 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3146 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3147 if (unlikely(ret)) {
3148 /* clear the page */
3149 dma_pte_clear_range(domain, start_vpfn,
3150 start_vpfn + size - 1);
3151 /* free page tables */
3152 dma_pte_free_pagetable(domain, start_vpfn,
3153 start_vpfn + size - 1);
3154 /* free iova */
3155 __free_iova(&domain->iovad, iova);
3156 return 0;
3159 /* it's a non-present to present mapping. Only flush if caching mode */
3160 if (cap_caching_mode(iommu->cap))
3161 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3162 else
3163 iommu_flush_write_buffer(iommu);
3165 return nelems;
3168 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3170 return !dma_addr;
3173 struct dma_map_ops intel_dma_ops = {
3174 .alloc = intel_alloc_coherent,
3175 .free = intel_free_coherent,
3176 .map_sg = intel_map_sg,
3177 .unmap_sg = intel_unmap_sg,
3178 .map_page = intel_map_page,
3179 .unmap_page = intel_unmap_page,
3180 .mapping_error = intel_mapping_error,
3183 static inline int iommu_domain_cache_init(void)
3185 int ret = 0;
3187 iommu_domain_cache = kmem_cache_create("iommu_domain",
3188 sizeof(struct dmar_domain),
3190 SLAB_HWCACHE_ALIGN,
3192 NULL);
3193 if (!iommu_domain_cache) {
3194 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3195 ret = -ENOMEM;
3198 return ret;
3201 static inline int iommu_devinfo_cache_init(void)
3203 int ret = 0;
3205 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3206 sizeof(struct device_domain_info),
3208 SLAB_HWCACHE_ALIGN,
3209 NULL);
3210 if (!iommu_devinfo_cache) {
3211 printk(KERN_ERR "Couldn't create devinfo cache\n");
3212 ret = -ENOMEM;
3215 return ret;
3218 static inline int iommu_iova_cache_init(void)
3220 int ret = 0;
3222 iommu_iova_cache = kmem_cache_create("iommu_iova",
3223 sizeof(struct iova),
3225 SLAB_HWCACHE_ALIGN,
3226 NULL);
3227 if (!iommu_iova_cache) {
3228 printk(KERN_ERR "Couldn't create iova cache\n");
3229 ret = -ENOMEM;
3232 return ret;
3235 static int __init iommu_init_mempool(void)
3237 int ret;
3238 ret = iommu_iova_cache_init();
3239 if (ret)
3240 return ret;
3242 ret = iommu_domain_cache_init();
3243 if (ret)
3244 goto domain_error;
3246 ret = iommu_devinfo_cache_init();
3247 if (!ret)
3248 return ret;
3250 kmem_cache_destroy(iommu_domain_cache);
3251 domain_error:
3252 kmem_cache_destroy(iommu_iova_cache);
3254 return -ENOMEM;
3257 static void __init iommu_exit_mempool(void)
3259 kmem_cache_destroy(iommu_devinfo_cache);
3260 kmem_cache_destroy(iommu_domain_cache);
3261 kmem_cache_destroy(iommu_iova_cache);
3265 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3267 struct dmar_drhd_unit *drhd;
3268 u32 vtbar;
3269 int rc;
3271 /* We know that this device on this chipset has its own IOMMU.
3272 * If we find it under a different IOMMU, then the BIOS is lying
3273 * to us. Hope that the IOMMU for this device is actually
3274 * disabled, and it needs no translation...
3276 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3277 if (rc) {
3278 /* "can't" happen */
3279 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3280 return;
3282 vtbar &= 0xffff0000;
3284 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3285 drhd = dmar_find_matched_drhd_unit(pdev);
3286 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3287 TAINT_FIRMWARE_WORKAROUND,
3288 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3289 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3291 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3293 static void __init init_no_remapping_devices(void)
3295 struct dmar_drhd_unit *drhd;
3297 for_each_drhd_unit(drhd) {
3298 if (!drhd->include_all) {
3299 int i;
3300 for (i = 0; i < drhd->devices_cnt; i++)
3301 if (drhd->devices[i] != NULL)
3302 break;
3303 /* ignore DMAR unit if no pci devices exist */
3304 if (i == drhd->devices_cnt)
3305 drhd->ignored = 1;
3309 for_each_drhd_unit(drhd) {
3310 int i;
3311 if (drhd->ignored || drhd->include_all)
3312 continue;
3314 for (i = 0; i < drhd->devices_cnt; i++)
3315 if (drhd->devices[i] &&
3316 !IS_GFX_DEVICE(drhd->devices[i]))
3317 break;
3319 if (i < drhd->devices_cnt)
3320 continue;
3322 /* This IOMMU has *only* gfx devices. Either bypass it or
3323 set the gfx_mapped flag, as appropriate */
3324 if (dmar_map_gfx) {
3325 intel_iommu_gfx_mapped = 1;
3326 } else {
3327 drhd->ignored = 1;
3328 for (i = 0; i < drhd->devices_cnt; i++) {
3329 if (!drhd->devices[i])
3330 continue;
3331 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3337 #ifdef CONFIG_SUSPEND
3338 static int init_iommu_hw(void)
3340 struct dmar_drhd_unit *drhd;
3341 struct intel_iommu *iommu = NULL;
3343 for_each_active_iommu(iommu, drhd)
3344 if (iommu->qi)
3345 dmar_reenable_qi(iommu);
3347 for_each_iommu(iommu, drhd) {
3348 if (drhd->ignored) {
3350 * we always have to disable PMRs or DMA may fail on
3351 * this device
3353 if (force_on)
3354 iommu_disable_protect_mem_regions(iommu);
3355 continue;
3358 iommu_flush_write_buffer(iommu);
3360 iommu_set_root_entry(iommu);
3362 iommu->flush.flush_context(iommu, 0, 0, 0,
3363 DMA_CCMD_GLOBAL_INVL);
3364 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3365 DMA_TLB_GLOBAL_FLUSH);
3366 if (iommu_enable_translation(iommu))
3367 return 1;
3368 iommu_disable_protect_mem_regions(iommu);
3371 return 0;
3374 static void iommu_flush_all(void)
3376 struct dmar_drhd_unit *drhd;
3377 struct intel_iommu *iommu;
3379 for_each_active_iommu(iommu, drhd) {
3380 iommu->flush.flush_context(iommu, 0, 0, 0,
3381 DMA_CCMD_GLOBAL_INVL);
3382 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3383 DMA_TLB_GLOBAL_FLUSH);
3387 static int iommu_suspend(void)
3389 struct dmar_drhd_unit *drhd;
3390 struct intel_iommu *iommu = NULL;
3391 unsigned long flag;
3393 for_each_active_iommu(iommu, drhd) {
3394 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3395 GFP_ATOMIC);
3396 if (!iommu->iommu_state)
3397 goto nomem;
3400 iommu_flush_all();
3402 for_each_active_iommu(iommu, drhd) {
3403 iommu_disable_translation(iommu);
3405 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3407 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3408 readl(iommu->reg + DMAR_FECTL_REG);
3409 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3410 readl(iommu->reg + DMAR_FEDATA_REG);
3411 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3412 readl(iommu->reg + DMAR_FEADDR_REG);
3413 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3414 readl(iommu->reg + DMAR_FEUADDR_REG);
3416 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3418 return 0;
3420 nomem:
3421 for_each_active_iommu(iommu, drhd)
3422 kfree(iommu->iommu_state);
3424 return -ENOMEM;
3427 static void iommu_resume(void)
3429 struct dmar_drhd_unit *drhd;
3430 struct intel_iommu *iommu = NULL;
3431 unsigned long flag;
3433 if (init_iommu_hw()) {
3434 if (force_on)
3435 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3436 else
3437 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3438 return;
3441 for_each_active_iommu(iommu, drhd) {
3443 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3445 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3446 iommu->reg + DMAR_FECTL_REG);
3447 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3448 iommu->reg + DMAR_FEDATA_REG);
3449 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3450 iommu->reg + DMAR_FEADDR_REG);
3451 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3452 iommu->reg + DMAR_FEUADDR_REG);
3454 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3457 for_each_active_iommu(iommu, drhd)
3458 kfree(iommu->iommu_state);
3461 static struct syscore_ops iommu_syscore_ops = {
3462 .resume = iommu_resume,
3463 .suspend = iommu_suspend,
3466 static void __init init_iommu_pm_ops(void)
3468 register_syscore_ops(&iommu_syscore_ops);
3471 #else
3472 static inline void init_iommu_pm_ops(void) {}
3473 #endif /* CONFIG_PM */
3475 LIST_HEAD(dmar_rmrr_units);
3477 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3479 list_add(&rmrr->list, &dmar_rmrr_units);
3483 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3485 struct acpi_dmar_reserved_memory *rmrr;
3486 struct dmar_rmrr_unit *rmrru;
3488 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3489 if (!rmrru)
3490 return -ENOMEM;
3492 rmrru->hdr = header;
3493 rmrr = (struct acpi_dmar_reserved_memory *)header;
3494 rmrru->base_address = rmrr->base_address;
3495 rmrru->end_address = rmrr->end_address;
3497 dmar_register_rmrr_unit(rmrru);
3498 return 0;
3501 static int __init
3502 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3504 struct acpi_dmar_reserved_memory *rmrr;
3505 int ret;
3507 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3508 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3509 ((void *)rmrr) + rmrr->header.length,
3510 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3512 if (ret || (rmrru->devices_cnt == 0)) {
3513 list_del(&rmrru->list);
3514 kfree(rmrru);
3516 return ret;
3519 static LIST_HEAD(dmar_atsr_units);
3521 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3523 struct acpi_dmar_atsr *atsr;
3524 struct dmar_atsr_unit *atsru;
3526 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3527 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3528 if (!atsru)
3529 return -ENOMEM;
3531 atsru->hdr = hdr;
3532 atsru->include_all = atsr->flags & 0x1;
3534 list_add(&atsru->list, &dmar_atsr_units);
3536 return 0;
3539 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3541 int rc;
3542 struct acpi_dmar_atsr *atsr;
3544 if (atsru->include_all)
3545 return 0;
3547 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3548 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3549 (void *)atsr + atsr->header.length,
3550 &atsru->devices_cnt, &atsru->devices,
3551 atsr->segment);
3552 if (rc || !atsru->devices_cnt) {
3553 list_del(&atsru->list);
3554 kfree(atsru);
3557 return rc;
3560 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3562 int i;
3563 struct pci_bus *bus;
3564 struct acpi_dmar_atsr *atsr;
3565 struct dmar_atsr_unit *atsru;
3567 dev = pci_physfn(dev);
3569 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3570 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3571 if (atsr->segment == pci_domain_nr(dev->bus))
3572 goto found;
3575 return 0;
3577 found:
3578 for (bus = dev->bus; bus; bus = bus->parent) {
3579 struct pci_dev *bridge = bus->self;
3581 if (!bridge || !pci_is_pcie(bridge) ||
3582 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3583 return 0;
3585 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) {
3586 for (i = 0; i < atsru->devices_cnt; i++)
3587 if (atsru->devices[i] == bridge)
3588 return 1;
3589 break;
3593 if (atsru->include_all)
3594 return 1;
3596 return 0;
3599 int __init dmar_parse_rmrr_atsr_dev(void)
3601 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3602 struct dmar_atsr_unit *atsr, *atsr_n;
3603 int ret = 0;
3605 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3606 ret = rmrr_parse_dev(rmrr);
3607 if (ret)
3608 return ret;
3611 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3612 ret = atsr_parse_dev(atsr);
3613 if (ret)
3614 return ret;
3617 return ret;
3621 * Here we only respond to action of unbound device from driver.
3623 * Added device is not attached to its DMAR domain here yet. That will happen
3624 * when mapping the device to iova.
3626 static int device_notifier(struct notifier_block *nb,
3627 unsigned long action, void *data)
3629 struct device *dev = data;
3630 struct pci_dev *pdev = to_pci_dev(dev);
3631 struct dmar_domain *domain;
3633 if (iommu_no_mapping(dev))
3634 return 0;
3636 domain = find_domain(pdev);
3637 if (!domain)
3638 return 0;
3640 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3641 domain_remove_one_dev_info(domain, pdev);
3643 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3644 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3645 list_empty(&domain->devices))
3646 domain_exit(domain);
3649 return 0;
3652 static struct notifier_block device_nb = {
3653 .notifier_call = device_notifier,
3656 int __init intel_iommu_init(void)
3658 int ret = 0;
3660 /* VT-d is required for a TXT/tboot launch, so enforce that */
3661 force_on = tboot_force_iommu();
3663 if (dmar_table_init()) {
3664 if (force_on)
3665 panic("tboot: Failed to initialize DMAR table\n");
3666 return -ENODEV;
3669 if (dmar_dev_scope_init() < 0) {
3670 if (force_on)
3671 panic("tboot: Failed to initialize DMAR device scope\n");
3672 return -ENODEV;
3675 if (no_iommu || dmar_disabled)
3676 return -ENODEV;
3678 if (iommu_init_mempool()) {
3679 if (force_on)
3680 panic("tboot: Failed to initialize iommu memory\n");
3681 return -ENODEV;
3684 if (list_empty(&dmar_rmrr_units))
3685 printk(KERN_INFO "DMAR: No RMRR found\n");
3687 if (list_empty(&dmar_atsr_units))
3688 printk(KERN_INFO "DMAR: No ATSR found\n");
3690 if (dmar_init_reserved_ranges()) {
3691 if (force_on)
3692 panic("tboot: Failed to reserve iommu ranges\n");
3693 return -ENODEV;
3696 init_no_remapping_devices();
3698 ret = init_dmars();
3699 if (ret) {
3700 if (force_on)
3701 panic("tboot: Failed to initialize DMARs\n");
3702 printk(KERN_ERR "IOMMU: dmar init failed\n");
3703 put_iova_domain(&reserved_iova_list);
3704 iommu_exit_mempool();
3705 return ret;
3707 printk(KERN_INFO
3708 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3710 init_timer(&unmap_timer);
3711 #ifdef CONFIG_SWIOTLB
3712 swiotlb = 0;
3713 #endif
3714 dma_ops = &intel_dma_ops;
3716 init_iommu_pm_ops();
3718 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3720 bus_register_notifier(&pci_bus_type, &device_nb);
3722 intel_iommu_enabled = 1;
3724 return 0;
3727 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3728 struct pci_dev *pdev)
3730 struct pci_dev *tmp, *parent;
3732 if (!iommu || !pdev)
3733 return;
3735 /* dependent device detach */
3736 tmp = pci_find_upstream_pcie_bridge(pdev);
3737 /* Secondary interface's bus number and devfn 0 */
3738 if (tmp) {
3739 parent = pdev->bus->self;
3740 while (parent != tmp) {
3741 iommu_detach_dev(iommu, parent->bus->number,
3742 parent->devfn);
3743 parent = parent->bus->self;
3745 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3746 iommu_detach_dev(iommu,
3747 tmp->subordinate->number, 0);
3748 else /* this is a legacy PCI bridge */
3749 iommu_detach_dev(iommu, tmp->bus->number,
3750 tmp->devfn);
3754 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3755 struct pci_dev *pdev)
3757 struct device_domain_info *info;
3758 struct intel_iommu *iommu;
3759 unsigned long flags;
3760 int found = 0;
3761 struct list_head *entry, *tmp;
3763 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3764 pdev->devfn);
3765 if (!iommu)
3766 return;
3768 spin_lock_irqsave(&device_domain_lock, flags);
3769 list_for_each_safe(entry, tmp, &domain->devices) {
3770 info = list_entry(entry, struct device_domain_info, link);
3771 if (info->segment == pci_domain_nr(pdev->bus) &&
3772 info->bus == pdev->bus->number &&
3773 info->devfn == pdev->devfn) {
3774 unlink_domain_info(info);
3775 spin_unlock_irqrestore(&device_domain_lock, flags);
3777 iommu_disable_dev_iotlb(info);
3778 iommu_detach_dev(iommu, info->bus, info->devfn);
3779 iommu_detach_dependent_devices(iommu, pdev);
3780 free_devinfo_mem(info);
3782 spin_lock_irqsave(&device_domain_lock, flags);
3784 if (found)
3785 break;
3786 else
3787 continue;
3790 /* if there is no other devices under the same iommu
3791 * owned by this domain, clear this iommu in iommu_bmp
3792 * update iommu count and coherency
3794 if (iommu == device_to_iommu(info->segment, info->bus,
3795 info->devfn))
3796 found = 1;
3799 spin_unlock_irqrestore(&device_domain_lock, flags);
3801 if (found == 0) {
3802 unsigned long tmp_flags;
3803 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3804 clear_bit(iommu->seq_id, domain->iommu_bmp);
3805 domain->iommu_count--;
3806 domain_update_iommu_cap(domain);
3807 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3809 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3810 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3811 spin_lock_irqsave(&iommu->lock, tmp_flags);
3812 clear_bit(domain->id, iommu->domain_ids);
3813 iommu->domains[domain->id] = NULL;
3814 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3819 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3821 struct device_domain_info *info;
3822 struct intel_iommu *iommu;
3823 unsigned long flags1, flags2;
3825 spin_lock_irqsave(&device_domain_lock, flags1);
3826 while (!list_empty(&domain->devices)) {
3827 info = list_entry(domain->devices.next,
3828 struct device_domain_info, link);
3829 unlink_domain_info(info);
3830 spin_unlock_irqrestore(&device_domain_lock, flags1);
3832 iommu_disable_dev_iotlb(info);
3833 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3834 iommu_detach_dev(iommu, info->bus, info->devfn);
3835 iommu_detach_dependent_devices(iommu, info->dev);
3837 /* clear this iommu in iommu_bmp, update iommu count
3838 * and capabilities
3840 spin_lock_irqsave(&domain->iommu_lock, flags2);
3841 if (test_and_clear_bit(iommu->seq_id,
3842 domain->iommu_bmp)) {
3843 domain->iommu_count--;
3844 domain_update_iommu_cap(domain);
3846 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3848 free_devinfo_mem(info);
3849 spin_lock_irqsave(&device_domain_lock, flags1);
3851 spin_unlock_irqrestore(&device_domain_lock, flags1);
3854 /* domain id for virtual machine, it won't be set in context */
3855 static unsigned long vm_domid;
3857 static struct dmar_domain *iommu_alloc_vm_domain(void)
3859 struct dmar_domain *domain;
3861 domain = alloc_domain_mem();
3862 if (!domain)
3863 return NULL;
3865 domain->id = vm_domid++;
3866 domain->nid = -1;
3867 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3868 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3870 return domain;
3873 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3875 int adjust_width;
3877 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3878 spin_lock_init(&domain->iommu_lock);
3880 domain_reserve_special_ranges(domain);
3882 /* calculate AGAW */
3883 domain->gaw = guest_width;
3884 adjust_width = guestwidth_to_adjustwidth(guest_width);
3885 domain->agaw = width_to_agaw(adjust_width);
3887 INIT_LIST_HEAD(&domain->devices);
3889 domain->iommu_count = 0;
3890 domain->iommu_coherency = 0;
3891 domain->iommu_snooping = 0;
3892 domain->iommu_superpage = 0;
3893 domain->max_addr = 0;
3894 domain->nid = -1;
3896 /* always allocate the top pgd */
3897 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3898 if (!domain->pgd)
3899 return -ENOMEM;
3900 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3901 return 0;
3904 static void iommu_free_vm_domain(struct dmar_domain *domain)
3906 unsigned long flags;
3907 struct dmar_drhd_unit *drhd;
3908 struct intel_iommu *iommu;
3909 unsigned long i;
3910 unsigned long ndomains;
3912 for_each_drhd_unit(drhd) {
3913 if (drhd->ignored)
3914 continue;
3915 iommu = drhd->iommu;
3917 ndomains = cap_ndoms(iommu->cap);
3918 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3919 if (iommu->domains[i] == domain) {
3920 spin_lock_irqsave(&iommu->lock, flags);
3921 clear_bit(i, iommu->domain_ids);
3922 iommu->domains[i] = NULL;
3923 spin_unlock_irqrestore(&iommu->lock, flags);
3924 break;
3930 static void vm_domain_exit(struct dmar_domain *domain)
3932 /* Domain 0 is reserved, so dont process it */
3933 if (!domain)
3934 return;
3936 vm_domain_remove_all_dev_info(domain);
3937 /* destroy iovas */
3938 put_iova_domain(&domain->iovad);
3940 /* clear ptes */
3941 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3943 /* free page tables */
3944 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3946 iommu_free_vm_domain(domain);
3947 free_domain_mem(domain);
3950 static int intel_iommu_domain_init(struct iommu_domain *domain)
3952 struct dmar_domain *dmar_domain;
3954 dmar_domain = iommu_alloc_vm_domain();
3955 if (!dmar_domain) {
3956 printk(KERN_ERR
3957 "intel_iommu_domain_init: dmar_domain == NULL\n");
3958 return -ENOMEM;
3960 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3961 printk(KERN_ERR
3962 "intel_iommu_domain_init() failed\n");
3963 vm_domain_exit(dmar_domain);
3964 return -ENOMEM;
3966 domain_update_iommu_cap(dmar_domain);
3967 domain->priv = dmar_domain;
3969 domain->geometry.aperture_start = 0;
3970 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
3971 domain->geometry.force_aperture = true;
3973 return 0;
3976 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3978 struct dmar_domain *dmar_domain = domain->priv;
3980 domain->priv = NULL;
3981 vm_domain_exit(dmar_domain);
3984 static int intel_iommu_attach_device(struct iommu_domain *domain,
3985 struct device *dev)
3987 struct dmar_domain *dmar_domain = domain->priv;
3988 struct pci_dev *pdev = to_pci_dev(dev);
3989 struct intel_iommu *iommu;
3990 int addr_width;
3992 /* normally pdev is not mapped */
3993 if (unlikely(domain_context_mapped(pdev))) {
3994 struct dmar_domain *old_domain;
3996 old_domain = find_domain(pdev);
3997 if (old_domain) {
3998 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3999 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4000 domain_remove_one_dev_info(old_domain, pdev);
4001 else
4002 domain_remove_dev_info(old_domain);
4006 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
4007 pdev->devfn);
4008 if (!iommu)
4009 return -ENODEV;
4011 /* check if this iommu agaw is sufficient for max mapped address */
4012 addr_width = agaw_to_width(iommu->agaw);
4013 if (addr_width > cap_mgaw(iommu->cap))
4014 addr_width = cap_mgaw(iommu->cap);
4016 if (dmar_domain->max_addr > (1LL << addr_width)) {
4017 printk(KERN_ERR "%s: iommu width (%d) is not "
4018 "sufficient for the mapped address (%llx)\n",
4019 __func__, addr_width, dmar_domain->max_addr);
4020 return -EFAULT;
4022 dmar_domain->gaw = addr_width;
4025 * Knock out extra levels of page tables if necessary
4027 while (iommu->agaw < dmar_domain->agaw) {
4028 struct dma_pte *pte;
4030 pte = dmar_domain->pgd;
4031 if (dma_pte_present(pte)) {
4032 dmar_domain->pgd = (struct dma_pte *)
4033 phys_to_virt(dma_pte_addr(pte));
4034 free_pgtable_page(pte);
4036 dmar_domain->agaw--;
4039 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4042 static void intel_iommu_detach_device(struct iommu_domain *domain,
4043 struct device *dev)
4045 struct dmar_domain *dmar_domain = domain->priv;
4046 struct pci_dev *pdev = to_pci_dev(dev);
4048 domain_remove_one_dev_info(dmar_domain, pdev);
4051 static int intel_iommu_map(struct iommu_domain *domain,
4052 unsigned long iova, phys_addr_t hpa,
4053 size_t size, int iommu_prot)
4055 struct dmar_domain *dmar_domain = domain->priv;
4056 u64 max_addr;
4057 int prot = 0;
4058 int ret;
4060 if (iommu_prot & IOMMU_READ)
4061 prot |= DMA_PTE_READ;
4062 if (iommu_prot & IOMMU_WRITE)
4063 prot |= DMA_PTE_WRITE;
4064 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4065 prot |= DMA_PTE_SNP;
4067 max_addr = iova + size;
4068 if (dmar_domain->max_addr < max_addr) {
4069 u64 end;
4071 /* check if minimum agaw is sufficient for mapped address */
4072 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4073 if (end < max_addr) {
4074 printk(KERN_ERR "%s: iommu width (%d) is not "
4075 "sufficient for the mapped address (%llx)\n",
4076 __func__, dmar_domain->gaw, max_addr);
4077 return -EFAULT;
4079 dmar_domain->max_addr = max_addr;
4081 /* Round up size to next multiple of PAGE_SIZE, if it and
4082 the low bits of hpa would take us onto the next page */
4083 size = aligned_nrpages(hpa, size);
4084 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4085 hpa >> VTD_PAGE_SHIFT, size, prot);
4086 return ret;
4089 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4090 unsigned long iova, size_t size)
4092 struct dmar_domain *dmar_domain = domain->priv;
4093 int order;
4095 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4096 (iova + size - 1) >> VTD_PAGE_SHIFT);
4098 if (dmar_domain->max_addr == iova + size)
4099 dmar_domain->max_addr = iova;
4101 return PAGE_SIZE << order;
4104 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4105 unsigned long iova)
4107 struct dmar_domain *dmar_domain = domain->priv;
4108 struct dma_pte *pte;
4109 u64 phys = 0;
4111 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4112 if (pte)
4113 phys = dma_pte_addr(pte);
4115 return phys;
4118 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4119 unsigned long cap)
4121 struct dmar_domain *dmar_domain = domain->priv;
4123 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4124 return dmar_domain->iommu_snooping;
4125 if (cap == IOMMU_CAP_INTR_REMAP)
4126 return irq_remapping_enabled;
4128 return 0;
4131 static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
4133 pci_dev_put(*from);
4134 *from = to;
4137 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4139 static int intel_iommu_add_device(struct device *dev)
4141 struct pci_dev *pdev = to_pci_dev(dev);
4142 struct pci_dev *bridge, *dma_pdev = NULL;
4143 struct iommu_group *group;
4144 int ret;
4146 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4147 pdev->bus->number, pdev->devfn))
4148 return -ENODEV;
4150 bridge = pci_find_upstream_pcie_bridge(pdev);
4151 if (bridge) {
4152 if (pci_is_pcie(bridge))
4153 dma_pdev = pci_get_domain_bus_and_slot(
4154 pci_domain_nr(pdev->bus),
4155 bridge->subordinate->number, 0);
4156 if (!dma_pdev)
4157 dma_pdev = pci_dev_get(bridge);
4158 } else
4159 dma_pdev = pci_dev_get(pdev);
4161 /* Account for quirked devices */
4162 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4165 * If it's a multifunction device that does not support our
4166 * required ACS flags, add to the same group as function 0.
4168 if (dma_pdev->multifunction &&
4169 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
4170 swap_pci_ref(&dma_pdev,
4171 pci_get_slot(dma_pdev->bus,
4172 PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
4173 0)));
4176 * Devices on the root bus go through the iommu. If that's not us,
4177 * find the next upstream device and test ACS up to the root bus.
4178 * Finding the next device may require skipping virtual buses.
4180 while (!pci_is_root_bus(dma_pdev->bus)) {
4181 struct pci_bus *bus = dma_pdev->bus;
4183 while (!bus->self) {
4184 if (!pci_is_root_bus(bus))
4185 bus = bus->parent;
4186 else
4187 goto root_bus;
4190 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4191 break;
4193 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4196 root_bus:
4197 group = iommu_group_get(&dma_pdev->dev);
4198 pci_dev_put(dma_pdev);
4199 if (!group) {
4200 group = iommu_group_alloc();
4201 if (IS_ERR(group))
4202 return PTR_ERR(group);
4205 ret = iommu_group_add_device(group, dev);
4207 iommu_group_put(group);
4208 return ret;
4211 static void intel_iommu_remove_device(struct device *dev)
4213 iommu_group_remove_device(dev);
4216 static struct iommu_ops intel_iommu_ops = {
4217 .domain_init = intel_iommu_domain_init,
4218 .domain_destroy = intel_iommu_domain_destroy,
4219 .attach_dev = intel_iommu_attach_device,
4220 .detach_dev = intel_iommu_detach_device,
4221 .map = intel_iommu_map,
4222 .unmap = intel_iommu_unmap,
4223 .iova_to_phys = intel_iommu_iova_to_phys,
4224 .domain_has_cap = intel_iommu_domain_has_cap,
4225 .add_device = intel_iommu_add_device,
4226 .remove_device = intel_iommu_remove_device,
4227 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4230 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4233 * Mobile 4 Series Chipset neglects to set RWBF capability,
4234 * but needs it:
4236 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4237 rwbf_quirk = 1;
4239 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4240 if (dev->revision == 0x07) {
4241 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4242 dmar_map_gfx = 0;
4246 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4248 #define GGC 0x52
4249 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4250 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4251 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4252 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4253 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4254 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4255 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4256 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4258 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4260 unsigned short ggc;
4262 if (pci_read_config_word(dev, GGC, &ggc))
4263 return;
4265 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4266 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4267 dmar_map_gfx = 0;
4268 } else if (dmar_map_gfx) {
4269 /* we have to ensure the gfx device is idle before we flush */
4270 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4271 intel_iommu_strict = 1;
4274 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4275 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4276 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4277 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4279 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4280 ISOCH DMAR unit for the Azalia sound device, but not give it any
4281 TLB entries, which causes it to deadlock. Check for that. We do
4282 this in a function called from init_dmars(), instead of in a PCI
4283 quirk, because we don't want to print the obnoxious "BIOS broken"
4284 message if VT-d is actually disabled.
4286 static void __init check_tylersburg_isoch(void)
4288 struct pci_dev *pdev;
4289 uint32_t vtisochctrl;
4291 /* If there's no Azalia in the system anyway, forget it. */
4292 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4293 if (!pdev)
4294 return;
4295 pci_dev_put(pdev);
4297 /* System Management Registers. Might be hidden, in which case
4298 we can't do the sanity check. But that's OK, because the
4299 known-broken BIOSes _don't_ actually hide it, so far. */
4300 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4301 if (!pdev)
4302 return;
4304 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4305 pci_dev_put(pdev);
4306 return;
4309 pci_dev_put(pdev);
4311 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4312 if (vtisochctrl & 1)
4313 return;
4315 /* Drop all bits other than the number of TLB entries */
4316 vtisochctrl &= 0x1c;
4318 /* If we have the recommended number of TLB entries (16), fine. */
4319 if (vtisochctrl == 0x10)
4320 return;
4322 /* Zero TLB entries? You get to ride the short bus to school. */
4323 if (!vtisochctrl) {
4324 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4325 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4326 dmi_get_system_info(DMI_BIOS_VENDOR),
4327 dmi_get_system_info(DMI_BIOS_VERSION),
4328 dmi_get_system_info(DMI_PRODUCT_VERSION));
4329 iommu_identity_mapping |= IDENTMAP_AZALIA;
4330 return;
4333 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4334 vtisochctrl);