[PATCH] cpusets: Move the ia64 domain setup code to the generic code
[linux-2.6/btrfs-unstable.git] / fs / bio.c
blobbf3ec9d2b54c6d30468df71e003b000be3539a4e
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
29 #define BIO_POOL_SIZE 256
31 static kmem_cache_t *bio_slab;
33 #define BIOVEC_NR_POOLS 6
36 * a small number of entries is fine, not going to be performance critical.
37 * basically we just need to survive
39 #define BIO_SPLIT_ENTRIES 8
40 mempool_t *bio_split_pool;
42 struct biovec_slab {
43 int nr_vecs;
44 char *name;
45 kmem_cache_t *slab;
49 * if you change this list, also change bvec_alloc or things will
50 * break badly! cannot be bigger than what you can fit into an
51 * unsigned short
54 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
55 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
56 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
58 #undef BV
61 * bio_set is used to allow other portions of the IO system to
62 * allocate their own private memory pools for bio and iovec structures.
63 * These memory pools in turn all allocate from the bio_slab
64 * and the bvec_slabs[].
66 struct bio_set {
67 mempool_t *bio_pool;
68 mempool_t *bvec_pools[BIOVEC_NR_POOLS];
72 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
73 * IO code that does not need private memory pools.
75 static struct bio_set *fs_bio_set;
77 static inline struct bio_vec *bvec_alloc_bs(unsigned int __nocast gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
79 struct bio_vec *bvl;
80 struct biovec_slab *bp;
83 * see comment near bvec_array define!
85 switch (nr) {
86 case 1 : *idx = 0; break;
87 case 2 ... 4: *idx = 1; break;
88 case 5 ... 16: *idx = 2; break;
89 case 17 ... 64: *idx = 3; break;
90 case 65 ... 128: *idx = 4; break;
91 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
92 default:
93 return NULL;
96 * idx now points to the pool we want to allocate from
99 bp = bvec_slabs + *idx;
100 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
101 if (bvl)
102 memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
104 return bvl;
107 void bio_free(struct bio *bio, struct bio_set *bio_set)
109 const int pool_idx = BIO_POOL_IDX(bio);
111 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
113 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
114 mempool_free(bio, bio_set->bio_pool);
118 * default destructor for a bio allocated with bio_alloc_bioset()
120 static void bio_fs_destructor(struct bio *bio)
122 bio_free(bio, fs_bio_set);
125 inline void bio_init(struct bio *bio)
127 bio->bi_next = NULL;
128 bio->bi_flags = 1 << BIO_UPTODATE;
129 bio->bi_rw = 0;
130 bio->bi_vcnt = 0;
131 bio->bi_idx = 0;
132 bio->bi_phys_segments = 0;
133 bio->bi_hw_segments = 0;
134 bio->bi_hw_front_size = 0;
135 bio->bi_hw_back_size = 0;
136 bio->bi_size = 0;
137 bio->bi_max_vecs = 0;
138 bio->bi_end_io = NULL;
139 atomic_set(&bio->bi_cnt, 1);
140 bio->bi_private = NULL;
144 * bio_alloc_bioset - allocate a bio for I/O
145 * @gfp_mask: the GFP_ mask given to the slab allocator
146 * @nr_iovecs: number of iovecs to pre-allocate
147 * @bs: the bio_set to allocate from
149 * Description:
150 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
151 * If %__GFP_WAIT is set then we will block on the internal pool waiting
152 * for a &struct bio to become free.
154 * allocate bio and iovecs from the memory pools specified by the
155 * bio_set structure.
157 struct bio *bio_alloc_bioset(unsigned int __nocast gfp_mask, int nr_iovecs, struct bio_set *bs)
159 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
161 if (likely(bio)) {
162 struct bio_vec *bvl = NULL;
164 bio_init(bio);
165 if (likely(nr_iovecs)) {
166 unsigned long idx;
168 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
169 if (unlikely(!bvl)) {
170 mempool_free(bio, bs->bio_pool);
171 bio = NULL;
172 goto out;
174 bio->bi_flags |= idx << BIO_POOL_OFFSET;
175 bio->bi_max_vecs = bvec_slabs[idx].nr_vecs;
177 bio->bi_io_vec = bvl;
179 out:
180 return bio;
183 struct bio *bio_alloc(unsigned int __nocast gfp_mask, int nr_iovecs)
185 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
187 if (bio)
188 bio->bi_destructor = bio_fs_destructor;
190 return bio;
193 void zero_fill_bio(struct bio *bio)
195 unsigned long flags;
196 struct bio_vec *bv;
197 int i;
199 bio_for_each_segment(bv, bio, i) {
200 char *data = bvec_kmap_irq(bv, &flags);
201 memset(data, 0, bv->bv_len);
202 flush_dcache_page(bv->bv_page);
203 bvec_kunmap_irq(data, &flags);
206 EXPORT_SYMBOL(zero_fill_bio);
209 * bio_put - release a reference to a bio
210 * @bio: bio to release reference to
212 * Description:
213 * Put a reference to a &struct bio, either one you have gotten with
214 * bio_alloc or bio_get. The last put of a bio will free it.
216 void bio_put(struct bio *bio)
218 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
221 * last put frees it
223 if (atomic_dec_and_test(&bio->bi_cnt)) {
224 bio->bi_next = NULL;
225 bio->bi_destructor(bio);
229 inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
231 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
232 blk_recount_segments(q, bio);
234 return bio->bi_phys_segments;
237 inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
239 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
240 blk_recount_segments(q, bio);
242 return bio->bi_hw_segments;
246 * __bio_clone - clone a bio
247 * @bio: destination bio
248 * @bio_src: bio to clone
250 * Clone a &bio. Caller will own the returned bio, but not
251 * the actual data it points to. Reference count of returned
252 * bio will be one.
254 inline void __bio_clone(struct bio *bio, struct bio *bio_src)
256 request_queue_t *q = bdev_get_queue(bio_src->bi_bdev);
258 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
259 bio_src->bi_max_vecs * sizeof(struct bio_vec));
261 bio->bi_sector = bio_src->bi_sector;
262 bio->bi_bdev = bio_src->bi_bdev;
263 bio->bi_flags |= 1 << BIO_CLONED;
264 bio->bi_rw = bio_src->bi_rw;
265 bio->bi_vcnt = bio_src->bi_vcnt;
266 bio->bi_size = bio_src->bi_size;
267 bio->bi_idx = bio_src->bi_idx;
268 bio_phys_segments(q, bio);
269 bio_hw_segments(q, bio);
273 * bio_clone - clone a bio
274 * @bio: bio to clone
275 * @gfp_mask: allocation priority
277 * Like __bio_clone, only also allocates the returned bio
279 struct bio *bio_clone(struct bio *bio, unsigned int __nocast gfp_mask)
281 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
283 if (b) {
284 b->bi_destructor = bio_fs_destructor;
285 __bio_clone(b, bio);
288 return b;
292 * bio_get_nr_vecs - return approx number of vecs
293 * @bdev: I/O target
295 * Return the approximate number of pages we can send to this target.
296 * There's no guarantee that you will be able to fit this number of pages
297 * into a bio, it does not account for dynamic restrictions that vary
298 * on offset.
300 int bio_get_nr_vecs(struct block_device *bdev)
302 request_queue_t *q = bdev_get_queue(bdev);
303 int nr_pages;
305 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
306 if (nr_pages > q->max_phys_segments)
307 nr_pages = q->max_phys_segments;
308 if (nr_pages > q->max_hw_segments)
309 nr_pages = q->max_hw_segments;
311 return nr_pages;
314 static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page
315 *page, unsigned int len, unsigned int offset)
317 int retried_segments = 0;
318 struct bio_vec *bvec;
321 * cloned bio must not modify vec list
323 if (unlikely(bio_flagged(bio, BIO_CLONED)))
324 return 0;
326 if (bio->bi_vcnt >= bio->bi_max_vecs)
327 return 0;
329 if (((bio->bi_size + len) >> 9) > q->max_sectors)
330 return 0;
333 * we might lose a segment or two here, but rather that than
334 * make this too complex.
337 while (bio->bi_phys_segments >= q->max_phys_segments
338 || bio->bi_hw_segments >= q->max_hw_segments
339 || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
341 if (retried_segments)
342 return 0;
344 retried_segments = 1;
345 blk_recount_segments(q, bio);
349 * setup the new entry, we might clear it again later if we
350 * cannot add the page
352 bvec = &bio->bi_io_vec[bio->bi_vcnt];
353 bvec->bv_page = page;
354 bvec->bv_len = len;
355 bvec->bv_offset = offset;
358 * if queue has other restrictions (eg varying max sector size
359 * depending on offset), it can specify a merge_bvec_fn in the
360 * queue to get further control
362 if (q->merge_bvec_fn) {
364 * merge_bvec_fn() returns number of bytes it can accept
365 * at this offset
367 if (q->merge_bvec_fn(q, bio, bvec) < len) {
368 bvec->bv_page = NULL;
369 bvec->bv_len = 0;
370 bvec->bv_offset = 0;
371 return 0;
375 /* If we may be able to merge these biovecs, force a recount */
376 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
377 BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
378 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
380 bio->bi_vcnt++;
381 bio->bi_phys_segments++;
382 bio->bi_hw_segments++;
383 bio->bi_size += len;
384 return len;
388 * bio_add_page - attempt to add page to bio
389 * @bio: destination bio
390 * @page: page to add
391 * @len: vec entry length
392 * @offset: vec entry offset
394 * Attempt to add a page to the bio_vec maplist. This can fail for a
395 * number of reasons, such as the bio being full or target block
396 * device limitations. The target block device must allow bio's
397 * smaller than PAGE_SIZE, so it is always possible to add a single
398 * page to an empty bio.
400 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
401 unsigned int offset)
403 return __bio_add_page(bdev_get_queue(bio->bi_bdev), bio, page,
404 len, offset);
407 struct bio_map_data {
408 struct bio_vec *iovecs;
409 void __user *userptr;
412 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio)
414 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
415 bio->bi_private = bmd;
418 static void bio_free_map_data(struct bio_map_data *bmd)
420 kfree(bmd->iovecs);
421 kfree(bmd);
424 static struct bio_map_data *bio_alloc_map_data(int nr_segs)
426 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
428 if (!bmd)
429 return NULL;
431 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
432 if (bmd->iovecs)
433 return bmd;
435 kfree(bmd);
436 return NULL;
440 * bio_uncopy_user - finish previously mapped bio
441 * @bio: bio being terminated
443 * Free pages allocated from bio_copy_user() and write back data
444 * to user space in case of a read.
446 int bio_uncopy_user(struct bio *bio)
448 struct bio_map_data *bmd = bio->bi_private;
449 const int read = bio_data_dir(bio) == READ;
450 struct bio_vec *bvec;
451 int i, ret = 0;
453 __bio_for_each_segment(bvec, bio, i, 0) {
454 char *addr = page_address(bvec->bv_page);
455 unsigned int len = bmd->iovecs[i].bv_len;
457 if (read && !ret && copy_to_user(bmd->userptr, addr, len))
458 ret = -EFAULT;
460 __free_page(bvec->bv_page);
461 bmd->userptr += len;
463 bio_free_map_data(bmd);
464 bio_put(bio);
465 return ret;
469 * bio_copy_user - copy user data to bio
470 * @q: destination block queue
471 * @uaddr: start of user address
472 * @len: length in bytes
473 * @write_to_vm: bool indicating writing to pages or not
475 * Prepares and returns a bio for indirect user io, bouncing data
476 * to/from kernel pages as necessary. Must be paired with
477 * call bio_uncopy_user() on io completion.
479 struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr,
480 unsigned int len, int write_to_vm)
482 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
483 unsigned long start = uaddr >> PAGE_SHIFT;
484 struct bio_map_data *bmd;
485 struct bio_vec *bvec;
486 struct page *page;
487 struct bio *bio;
488 int i, ret;
490 bmd = bio_alloc_map_data(end - start);
491 if (!bmd)
492 return ERR_PTR(-ENOMEM);
494 bmd->userptr = (void __user *) uaddr;
496 ret = -ENOMEM;
497 bio = bio_alloc(GFP_KERNEL, end - start);
498 if (!bio)
499 goto out_bmd;
501 bio->bi_rw |= (!write_to_vm << BIO_RW);
503 ret = 0;
504 while (len) {
505 unsigned int bytes = PAGE_SIZE;
507 if (bytes > len)
508 bytes = len;
510 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
511 if (!page) {
512 ret = -ENOMEM;
513 break;
516 if (__bio_add_page(q, bio, page, bytes, 0) < bytes) {
517 ret = -EINVAL;
518 break;
521 len -= bytes;
524 if (ret)
525 goto cleanup;
528 * success
530 if (!write_to_vm) {
531 char __user *p = (char __user *) uaddr;
534 * for a write, copy in data to kernel pages
536 ret = -EFAULT;
537 bio_for_each_segment(bvec, bio, i) {
538 char *addr = page_address(bvec->bv_page);
540 if (copy_from_user(addr, p, bvec->bv_len))
541 goto cleanup;
542 p += bvec->bv_len;
546 bio_set_map_data(bmd, bio);
547 return bio;
548 cleanup:
549 bio_for_each_segment(bvec, bio, i)
550 __free_page(bvec->bv_page);
552 bio_put(bio);
553 out_bmd:
554 bio_free_map_data(bmd);
555 return ERR_PTR(ret);
558 static struct bio *__bio_map_user(request_queue_t *q, struct block_device *bdev,
559 unsigned long uaddr, unsigned int len,
560 int write_to_vm)
562 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
563 unsigned long start = uaddr >> PAGE_SHIFT;
564 const int nr_pages = end - start;
565 int ret, offset, i;
566 struct page **pages;
567 struct bio *bio;
570 * transfer and buffer must be aligned to at least hardsector
571 * size for now, in the future we can relax this restriction
573 if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
574 return ERR_PTR(-EINVAL);
576 bio = bio_alloc(GFP_KERNEL, nr_pages);
577 if (!bio)
578 return ERR_PTR(-ENOMEM);
580 ret = -ENOMEM;
581 pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
582 if (!pages)
583 goto out;
585 down_read(&current->mm->mmap_sem);
586 ret = get_user_pages(current, current->mm, uaddr, nr_pages,
587 write_to_vm, 0, pages, NULL);
588 up_read(&current->mm->mmap_sem);
590 if (ret < nr_pages)
591 goto out;
593 bio->bi_bdev = bdev;
595 offset = uaddr & ~PAGE_MASK;
596 for (i = 0; i < nr_pages; i++) {
597 unsigned int bytes = PAGE_SIZE - offset;
599 if (len <= 0)
600 break;
602 if (bytes > len)
603 bytes = len;
606 * sorry...
608 if (__bio_add_page(q, bio, pages[i], bytes, offset) < bytes)
609 break;
611 len -= bytes;
612 offset = 0;
616 * release the pages we didn't map into the bio, if any
618 while (i < nr_pages)
619 page_cache_release(pages[i++]);
621 kfree(pages);
624 * set data direction, and check if mapped pages need bouncing
626 if (!write_to_vm)
627 bio->bi_rw |= (1 << BIO_RW);
629 bio->bi_flags |= (1 << BIO_USER_MAPPED);
630 return bio;
631 out:
632 kfree(pages);
633 bio_put(bio);
634 return ERR_PTR(ret);
638 * bio_map_user - map user address into bio
639 * @q: the request_queue_t for the bio
640 * @bdev: destination block device
641 * @uaddr: start of user address
642 * @len: length in bytes
643 * @write_to_vm: bool indicating writing to pages or not
645 * Map the user space address into a bio suitable for io to a block
646 * device. Returns an error pointer in case of error.
648 struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev,
649 unsigned long uaddr, unsigned int len, int write_to_vm)
651 struct bio *bio;
653 bio = __bio_map_user(q, bdev, uaddr, len, write_to_vm);
655 if (IS_ERR(bio))
656 return bio;
659 * subtle -- if __bio_map_user() ended up bouncing a bio,
660 * it would normally disappear when its bi_end_io is run.
661 * however, we need it for the unmap, so grab an extra
662 * reference to it
664 bio_get(bio);
666 if (bio->bi_size == len)
667 return bio;
670 * don't support partial mappings
672 bio_endio(bio, bio->bi_size, 0);
673 bio_unmap_user(bio);
674 return ERR_PTR(-EINVAL);
677 static void __bio_unmap_user(struct bio *bio)
679 struct bio_vec *bvec;
680 int i;
683 * make sure we dirty pages we wrote to
685 __bio_for_each_segment(bvec, bio, i, 0) {
686 if (bio_data_dir(bio) == READ)
687 set_page_dirty_lock(bvec->bv_page);
689 page_cache_release(bvec->bv_page);
692 bio_put(bio);
696 * bio_unmap_user - unmap a bio
697 * @bio: the bio being unmapped
699 * Unmap a bio previously mapped by bio_map_user(). Must be called with
700 * a process context.
702 * bio_unmap_user() may sleep.
704 void bio_unmap_user(struct bio *bio)
706 __bio_unmap_user(bio);
707 bio_put(bio);
711 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
712 * for performing direct-IO in BIOs.
714 * The problem is that we cannot run set_page_dirty() from interrupt context
715 * because the required locks are not interrupt-safe. So what we can do is to
716 * mark the pages dirty _before_ performing IO. And in interrupt context,
717 * check that the pages are still dirty. If so, fine. If not, redirty them
718 * in process context.
720 * We special-case compound pages here: normally this means reads into hugetlb
721 * pages. The logic in here doesn't really work right for compound pages
722 * because the VM does not uniformly chase down the head page in all cases.
723 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
724 * handle them at all. So we skip compound pages here at an early stage.
726 * Note that this code is very hard to test under normal circumstances because
727 * direct-io pins the pages with get_user_pages(). This makes
728 * is_page_cache_freeable return false, and the VM will not clean the pages.
729 * But other code (eg, pdflush) could clean the pages if they are mapped
730 * pagecache.
732 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
733 * deferred bio dirtying paths.
737 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
739 void bio_set_pages_dirty(struct bio *bio)
741 struct bio_vec *bvec = bio->bi_io_vec;
742 int i;
744 for (i = 0; i < bio->bi_vcnt; i++) {
745 struct page *page = bvec[i].bv_page;
747 if (page && !PageCompound(page))
748 set_page_dirty_lock(page);
752 static void bio_release_pages(struct bio *bio)
754 struct bio_vec *bvec = bio->bi_io_vec;
755 int i;
757 for (i = 0; i < bio->bi_vcnt; i++) {
758 struct page *page = bvec[i].bv_page;
760 if (page)
761 put_page(page);
766 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
767 * If they are, then fine. If, however, some pages are clean then they must
768 * have been written out during the direct-IO read. So we take another ref on
769 * the BIO and the offending pages and re-dirty the pages in process context.
771 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
772 * here on. It will run one page_cache_release() against each page and will
773 * run one bio_put() against the BIO.
776 static void bio_dirty_fn(void *data);
778 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
779 static DEFINE_SPINLOCK(bio_dirty_lock);
780 static struct bio *bio_dirty_list;
783 * This runs in process context
785 static void bio_dirty_fn(void *data)
787 unsigned long flags;
788 struct bio *bio;
790 spin_lock_irqsave(&bio_dirty_lock, flags);
791 bio = bio_dirty_list;
792 bio_dirty_list = NULL;
793 spin_unlock_irqrestore(&bio_dirty_lock, flags);
795 while (bio) {
796 struct bio *next = bio->bi_private;
798 bio_set_pages_dirty(bio);
799 bio_release_pages(bio);
800 bio_put(bio);
801 bio = next;
805 void bio_check_pages_dirty(struct bio *bio)
807 struct bio_vec *bvec = bio->bi_io_vec;
808 int nr_clean_pages = 0;
809 int i;
811 for (i = 0; i < bio->bi_vcnt; i++) {
812 struct page *page = bvec[i].bv_page;
814 if (PageDirty(page) || PageCompound(page)) {
815 page_cache_release(page);
816 bvec[i].bv_page = NULL;
817 } else {
818 nr_clean_pages++;
822 if (nr_clean_pages) {
823 unsigned long flags;
825 spin_lock_irqsave(&bio_dirty_lock, flags);
826 bio->bi_private = bio_dirty_list;
827 bio_dirty_list = bio;
828 spin_unlock_irqrestore(&bio_dirty_lock, flags);
829 schedule_work(&bio_dirty_work);
830 } else {
831 bio_put(bio);
836 * bio_endio - end I/O on a bio
837 * @bio: bio
838 * @bytes_done: number of bytes completed
839 * @error: error, if any
841 * Description:
842 * bio_endio() will end I/O on @bytes_done number of bytes. This may be
843 * just a partial part of the bio, or it may be the whole bio. bio_endio()
844 * is the preferred way to end I/O on a bio, it takes care of decrementing
845 * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
846 * and one of the established -Exxxx (-EIO, for instance) error values in
847 * case something went wrong. Noone should call bi_end_io() directly on
848 * a bio unless they own it and thus know that it has an end_io function.
850 void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
852 if (error)
853 clear_bit(BIO_UPTODATE, &bio->bi_flags);
855 if (unlikely(bytes_done > bio->bi_size)) {
856 printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
857 bytes_done, bio->bi_size);
858 bytes_done = bio->bi_size;
861 bio->bi_size -= bytes_done;
862 bio->bi_sector += (bytes_done >> 9);
864 if (bio->bi_end_io)
865 bio->bi_end_io(bio, bytes_done, error);
868 void bio_pair_release(struct bio_pair *bp)
870 if (atomic_dec_and_test(&bp->cnt)) {
871 struct bio *master = bp->bio1.bi_private;
873 bio_endio(master, master->bi_size, bp->error);
874 mempool_free(bp, bp->bio2.bi_private);
878 static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
880 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
882 if (err)
883 bp->error = err;
885 if (bi->bi_size)
886 return 1;
888 bio_pair_release(bp);
889 return 0;
892 static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
894 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
896 if (err)
897 bp->error = err;
899 if (bi->bi_size)
900 return 1;
902 bio_pair_release(bp);
903 return 0;
907 * split a bio - only worry about a bio with a single page
908 * in it's iovec
910 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
912 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
914 if (!bp)
915 return bp;
917 BUG_ON(bi->bi_vcnt != 1);
918 BUG_ON(bi->bi_idx != 0);
919 atomic_set(&bp->cnt, 3);
920 bp->error = 0;
921 bp->bio1 = *bi;
922 bp->bio2 = *bi;
923 bp->bio2.bi_sector += first_sectors;
924 bp->bio2.bi_size -= first_sectors << 9;
925 bp->bio1.bi_size = first_sectors << 9;
927 bp->bv1 = bi->bi_io_vec[0];
928 bp->bv2 = bi->bi_io_vec[0];
929 bp->bv2.bv_offset += first_sectors << 9;
930 bp->bv2.bv_len -= first_sectors << 9;
931 bp->bv1.bv_len = first_sectors << 9;
933 bp->bio1.bi_io_vec = &bp->bv1;
934 bp->bio2.bi_io_vec = &bp->bv2;
936 bp->bio1.bi_end_io = bio_pair_end_1;
937 bp->bio2.bi_end_io = bio_pair_end_2;
939 bp->bio1.bi_private = bi;
940 bp->bio2.bi_private = pool;
942 return bp;
945 static void *bio_pair_alloc(unsigned int __nocast gfp_flags, void *data)
947 return kmalloc(sizeof(struct bio_pair), gfp_flags);
950 static void bio_pair_free(void *bp, void *data)
952 kfree(bp);
957 * create memory pools for biovec's in a bio_set.
958 * use the global biovec slabs created for general use.
960 static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale)
962 int i;
964 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
965 struct biovec_slab *bp = bvec_slabs + i;
966 mempool_t **bvp = bs->bvec_pools + i;
968 if (i >= scale)
969 pool_entries >>= 1;
971 *bvp = mempool_create(pool_entries, mempool_alloc_slab,
972 mempool_free_slab, bp->slab);
973 if (!*bvp)
974 return -ENOMEM;
976 return 0;
979 static void biovec_free_pools(struct bio_set *bs)
981 int i;
983 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
984 mempool_t *bvp = bs->bvec_pools[i];
986 if (bvp)
987 mempool_destroy(bvp);
992 void bioset_free(struct bio_set *bs)
994 if (bs->bio_pool)
995 mempool_destroy(bs->bio_pool);
997 biovec_free_pools(bs);
999 kfree(bs);
1002 struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale)
1004 struct bio_set *bs = kmalloc(sizeof(*bs), GFP_KERNEL);
1006 if (!bs)
1007 return NULL;
1009 memset(bs, 0, sizeof(*bs));
1010 bs->bio_pool = mempool_create(bio_pool_size, mempool_alloc_slab,
1011 mempool_free_slab, bio_slab);
1013 if (!bs->bio_pool)
1014 goto bad;
1016 if (!biovec_create_pools(bs, bvec_pool_size, scale))
1017 return bs;
1019 bad:
1020 bioset_free(bs);
1021 return NULL;
1024 static void __init biovec_init_slabs(void)
1026 int i;
1028 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1029 int size;
1030 struct biovec_slab *bvs = bvec_slabs + i;
1032 size = bvs->nr_vecs * sizeof(struct bio_vec);
1033 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1034 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1038 static int __init init_bio(void)
1040 int megabytes, bvec_pool_entries;
1041 int scale = BIOVEC_NR_POOLS;
1043 bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
1044 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1046 biovec_init_slabs();
1048 megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
1051 * find out where to start scaling
1053 if (megabytes <= 16)
1054 scale = 0;
1055 else if (megabytes <= 32)
1056 scale = 1;
1057 else if (megabytes <= 64)
1058 scale = 2;
1059 else if (megabytes <= 96)
1060 scale = 3;
1061 else if (megabytes <= 128)
1062 scale = 4;
1065 * scale number of entries
1067 bvec_pool_entries = megabytes * 2;
1068 if (bvec_pool_entries > 256)
1069 bvec_pool_entries = 256;
1071 fs_bio_set = bioset_create(BIO_POOL_SIZE, bvec_pool_entries, scale);
1072 if (!fs_bio_set)
1073 panic("bio: can't allocate bios\n");
1075 bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES,
1076 bio_pair_alloc, bio_pair_free, NULL);
1077 if (!bio_split_pool)
1078 panic("bio: can't create split pool\n");
1080 return 0;
1083 subsys_initcall(init_bio);
1085 EXPORT_SYMBOL(bio_alloc);
1086 EXPORT_SYMBOL(bio_put);
1087 EXPORT_SYMBOL(bio_free);
1088 EXPORT_SYMBOL(bio_endio);
1089 EXPORT_SYMBOL(bio_init);
1090 EXPORT_SYMBOL(__bio_clone);
1091 EXPORT_SYMBOL(bio_clone);
1092 EXPORT_SYMBOL(bio_phys_segments);
1093 EXPORT_SYMBOL(bio_hw_segments);
1094 EXPORT_SYMBOL(bio_add_page);
1095 EXPORT_SYMBOL(bio_get_nr_vecs);
1096 EXPORT_SYMBOL(bio_map_user);
1097 EXPORT_SYMBOL(bio_unmap_user);
1098 EXPORT_SYMBOL(bio_pair_release);
1099 EXPORT_SYMBOL(bio_split);
1100 EXPORT_SYMBOL(bio_split_pool);
1101 EXPORT_SYMBOL(bio_copy_user);
1102 EXPORT_SYMBOL(bio_uncopy_user);
1103 EXPORT_SYMBOL(bioset_create);
1104 EXPORT_SYMBOL(bioset_free);
1105 EXPORT_SYMBOL(bio_alloc_bioset);