staging: rtl8723au: odm_precomp.h: Remove unused #define TEST_FALG__
[linux-2.6/btrfs-unstable.git] / fs / ext4 / mballoc.c
blobc8238a26818cd9ef7567d0552a60a461bfd1f76e
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
147 * The regular allocator (using the buddy cache) supports a few tunables.
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
281 * Logic in few words:
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
309 * - discard inode's preallocations:
313 * Locking rules
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
320 * Paths:
321 * - new pa
322 * object
323 * group
325 * - find and use pa:
326 * pa
328 * - release consumed pa:
329 * pa
330 * group
331 * object
333 * - generate in-core bitmap:
334 * group
335 * pa
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
386 static inline int mb_test_bit(int bit, void *addr)
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
396 static inline void mb_set_bit(int bit, void *addr)
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
402 static inline void mb_clear_bit(int bit, void *addr)
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
427 static inline int mb_find_next_bit(void *addr, int max, int start)
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442 char *bb;
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461 return bb;
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
468 int i;
469 struct super_block *sb = e4b->bd_sb;
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493 int i;
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
528 return;
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
533 return;
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537 return;
539 #endif
541 #ifdef AGGRESSIVE_CHECK
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
551 } while (0)
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
585 count = 0;
586 for (i = 0; i < max; i++) {
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
597 continue;
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
609 count++;
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
624 continue;
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 return 0;
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned short border;
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675 border = 2 << sb->s_blocksize_bits;
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
694 len -= chunk;
695 first += chunk;
700 * Cache the order of the largest free extent we have available in this block
701 * group.
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706 int i;
707 int bits;
709 grp->bb_largest_free_order = -1; /* uninit */
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 ext4_grpblk_t i = 0;
727 ext4_grpblk_t first;
728 ext4_grpblk_t len;
729 unsigned free = 0;
730 unsigned fragments = 0;
731 unsigned long long period = get_cycles();
733 /* initialize buddy from bitmap which is aggregation
734 * of on-disk bitmap and preallocations */
735 i = mb_find_next_zero_bit(bitmap, max, 0);
736 grp->bb_first_free = i;
737 while (i < max) {
738 fragments++;
739 first = i;
740 i = mb_find_next_bit(bitmap, max, i);
741 len = i - first;
742 free += len;
743 if (len > 1)
744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 else
746 grp->bb_counters[0]++;
747 if (i < max)
748 i = mb_find_next_zero_bit(bitmap, max, i);
750 grp->bb_fragments = fragments;
752 if (free != grp->bb_free) {
753 ext4_grp_locked_error(sb, group, 0, 0,
754 "%u clusters in bitmap, %u in gd; "
755 "block bitmap corrupt.",
756 free, grp->bb_free);
758 * If we intend to continue, we consider group descriptor
759 * corrupt and update bb_free using bitmap value
761 grp->bb_free = free;
762 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
764 mb_set_largest_free_order(sb, grp);
766 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
768 period = get_cycles() - period;
769 spin_lock(&EXT4_SB(sb)->s_bal_lock);
770 EXT4_SB(sb)->s_mb_buddies_generated++;
771 EXT4_SB(sb)->s_mb_generation_time += period;
772 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
775 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
777 int count;
778 int order = 1;
779 void *buddy;
781 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
782 ext4_set_bits(buddy, 0, count);
784 e4b->bd_info->bb_fragments = 0;
785 memset(e4b->bd_info->bb_counters, 0,
786 sizeof(*e4b->bd_info->bb_counters) *
787 (e4b->bd_sb->s_blocksize_bits + 2));
789 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
790 e4b->bd_bitmap, e4b->bd_group);
793 /* The buddy information is attached the buddy cache inode
794 * for convenience. The information regarding each group
795 * is loaded via ext4_mb_load_buddy. The information involve
796 * block bitmap and buddy information. The information are
797 * stored in the inode as
799 * { page }
800 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
803 * one block each for bitmap and buddy information.
804 * So for each group we take up 2 blocks. A page can
805 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
806 * So it can have information regarding groups_per_page which
807 * is blocks_per_page/2
809 * Locking note: This routine takes the block group lock of all groups
810 * for this page; do not hold this lock when calling this routine!
813 static int ext4_mb_init_cache(struct page *page, char *incore)
815 ext4_group_t ngroups;
816 int blocksize;
817 int blocks_per_page;
818 int groups_per_page;
819 int err = 0;
820 int i;
821 ext4_group_t first_group, group;
822 int first_block;
823 struct super_block *sb;
824 struct buffer_head *bhs;
825 struct buffer_head **bh = NULL;
826 struct inode *inode;
827 char *data;
828 char *bitmap;
829 struct ext4_group_info *grinfo;
831 mb_debug(1, "init page %lu\n", page->index);
833 inode = page->mapping->host;
834 sb = inode->i_sb;
835 ngroups = ext4_get_groups_count(sb);
836 blocksize = 1 << inode->i_blkbits;
837 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
839 groups_per_page = blocks_per_page >> 1;
840 if (groups_per_page == 0)
841 groups_per_page = 1;
843 /* allocate buffer_heads to read bitmaps */
844 if (groups_per_page > 1) {
845 i = sizeof(struct buffer_head *) * groups_per_page;
846 bh = kzalloc(i, GFP_NOFS);
847 if (bh == NULL) {
848 err = -ENOMEM;
849 goto out;
851 } else
852 bh = &bhs;
854 first_group = page->index * blocks_per_page / 2;
856 /* read all groups the page covers into the cache */
857 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
858 if (group >= ngroups)
859 break;
861 grinfo = ext4_get_group_info(sb, group);
863 * If page is uptodate then we came here after online resize
864 * which added some new uninitialized group info structs, so
865 * we must skip all initialized uptodate buddies on the page,
866 * which may be currently in use by an allocating task.
868 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
869 bh[i] = NULL;
870 continue;
872 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
873 err = -ENOMEM;
874 goto out;
876 mb_debug(1, "read bitmap for group %u\n", group);
879 /* wait for I/O completion */
880 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
881 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
882 err = -EIO;
883 goto out;
887 first_block = page->index * blocks_per_page;
888 for (i = 0; i < blocks_per_page; i++) {
889 group = (first_block + i) >> 1;
890 if (group >= ngroups)
891 break;
893 if (!bh[group - first_group])
894 /* skip initialized uptodate buddy */
895 continue;
898 * data carry information regarding this
899 * particular group in the format specified
900 * above
903 data = page_address(page) + (i * blocksize);
904 bitmap = bh[group - first_group]->b_data;
907 * We place the buddy block and bitmap block
908 * close together
910 if ((first_block + i) & 1) {
911 /* this is block of buddy */
912 BUG_ON(incore == NULL);
913 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
914 group, page->index, i * blocksize);
915 trace_ext4_mb_buddy_bitmap_load(sb, group);
916 grinfo = ext4_get_group_info(sb, group);
917 grinfo->bb_fragments = 0;
918 memset(grinfo->bb_counters, 0,
919 sizeof(*grinfo->bb_counters) *
920 (sb->s_blocksize_bits+2));
922 * incore got set to the group block bitmap below
924 ext4_lock_group(sb, group);
925 /* init the buddy */
926 memset(data, 0xff, blocksize);
927 ext4_mb_generate_buddy(sb, data, incore, group);
928 ext4_unlock_group(sb, group);
929 incore = NULL;
930 } else {
931 /* this is block of bitmap */
932 BUG_ON(incore != NULL);
933 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
934 group, page->index, i * blocksize);
935 trace_ext4_mb_bitmap_load(sb, group);
937 /* see comments in ext4_mb_put_pa() */
938 ext4_lock_group(sb, group);
939 memcpy(data, bitmap, blocksize);
941 /* mark all preallocated blks used in in-core bitmap */
942 ext4_mb_generate_from_pa(sb, data, group);
943 ext4_mb_generate_from_freelist(sb, data, group);
944 ext4_unlock_group(sb, group);
946 /* set incore so that the buddy information can be
947 * generated using this
949 incore = data;
952 SetPageUptodate(page);
954 out:
955 if (bh) {
956 for (i = 0; i < groups_per_page; i++)
957 brelse(bh[i]);
958 if (bh != &bhs)
959 kfree(bh);
961 return err;
965 * Lock the buddy and bitmap pages. This make sure other parallel init_group
966 * on the same buddy page doesn't happen whild holding the buddy page lock.
967 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
968 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
970 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
971 ext4_group_t group, struct ext4_buddy *e4b)
973 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
974 int block, pnum, poff;
975 int blocks_per_page;
976 struct page *page;
978 e4b->bd_buddy_page = NULL;
979 e4b->bd_bitmap_page = NULL;
981 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
983 * the buddy cache inode stores the block bitmap
984 * and buddy information in consecutive blocks.
985 * So for each group we need two blocks.
987 block = group * 2;
988 pnum = block / blocks_per_page;
989 poff = block % blocks_per_page;
990 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
991 if (!page)
992 return -ENOMEM;
993 BUG_ON(page->mapping != inode->i_mapping);
994 e4b->bd_bitmap_page = page;
995 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
997 if (blocks_per_page >= 2) {
998 /* buddy and bitmap are on the same page */
999 return 0;
1002 block++;
1003 pnum = block / blocks_per_page;
1004 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1005 if (!page)
1006 return -ENOMEM;
1007 BUG_ON(page->mapping != inode->i_mapping);
1008 e4b->bd_buddy_page = page;
1009 return 0;
1012 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1014 if (e4b->bd_bitmap_page) {
1015 unlock_page(e4b->bd_bitmap_page);
1016 page_cache_release(e4b->bd_bitmap_page);
1018 if (e4b->bd_buddy_page) {
1019 unlock_page(e4b->bd_buddy_page);
1020 page_cache_release(e4b->bd_buddy_page);
1025 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1026 * block group lock of all groups for this page; do not hold the BG lock when
1027 * calling this routine!
1029 static noinline_for_stack
1030 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1033 struct ext4_group_info *this_grp;
1034 struct ext4_buddy e4b;
1035 struct page *page;
1036 int ret = 0;
1038 might_sleep();
1039 mb_debug(1, "init group %u\n", group);
1040 this_grp = ext4_get_group_info(sb, group);
1042 * This ensures that we don't reinit the buddy cache
1043 * page which map to the group from which we are already
1044 * allocating. If we are looking at the buddy cache we would
1045 * have taken a reference using ext4_mb_load_buddy and that
1046 * would have pinned buddy page to page cache.
1048 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1049 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1051 * somebody initialized the group
1052 * return without doing anything
1054 goto err;
1057 page = e4b.bd_bitmap_page;
1058 ret = ext4_mb_init_cache(page, NULL);
1059 if (ret)
1060 goto err;
1061 if (!PageUptodate(page)) {
1062 ret = -EIO;
1063 goto err;
1065 mark_page_accessed(page);
1067 if (e4b.bd_buddy_page == NULL) {
1069 * If both the bitmap and buddy are in
1070 * the same page we don't need to force
1071 * init the buddy
1073 ret = 0;
1074 goto err;
1076 /* init buddy cache */
1077 page = e4b.bd_buddy_page;
1078 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1079 if (ret)
1080 goto err;
1081 if (!PageUptodate(page)) {
1082 ret = -EIO;
1083 goto err;
1085 mark_page_accessed(page);
1086 err:
1087 ext4_mb_put_buddy_page_lock(&e4b);
1088 return ret;
1092 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1093 * block group lock of all groups for this page; do not hold the BG lock when
1094 * calling this routine!
1096 static noinline_for_stack int
1097 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1098 struct ext4_buddy *e4b)
1100 int blocks_per_page;
1101 int block;
1102 int pnum;
1103 int poff;
1104 struct page *page;
1105 int ret;
1106 struct ext4_group_info *grp;
1107 struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 struct inode *inode = sbi->s_buddy_cache;
1110 might_sleep();
1111 mb_debug(1, "load group %u\n", group);
1113 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1114 grp = ext4_get_group_info(sb, group);
1116 e4b->bd_blkbits = sb->s_blocksize_bits;
1117 e4b->bd_info = grp;
1118 e4b->bd_sb = sb;
1119 e4b->bd_group = group;
1120 e4b->bd_buddy_page = NULL;
1121 e4b->bd_bitmap_page = NULL;
1123 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1125 * we need full data about the group
1126 * to make a good selection
1128 ret = ext4_mb_init_group(sb, group);
1129 if (ret)
1130 return ret;
1134 * the buddy cache inode stores the block bitmap
1135 * and buddy information in consecutive blocks.
1136 * So for each group we need two blocks.
1138 block = group * 2;
1139 pnum = block / blocks_per_page;
1140 poff = block % blocks_per_page;
1142 /* we could use find_or_create_page(), but it locks page
1143 * what we'd like to avoid in fast path ... */
1144 page = find_get_page(inode->i_mapping, pnum);
1145 if (page == NULL || !PageUptodate(page)) {
1146 if (page)
1148 * drop the page reference and try
1149 * to get the page with lock. If we
1150 * are not uptodate that implies
1151 * somebody just created the page but
1152 * is yet to initialize the same. So
1153 * wait for it to initialize.
1155 page_cache_release(page);
1156 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1157 if (page) {
1158 BUG_ON(page->mapping != inode->i_mapping);
1159 if (!PageUptodate(page)) {
1160 ret = ext4_mb_init_cache(page, NULL);
1161 if (ret) {
1162 unlock_page(page);
1163 goto err;
1165 mb_cmp_bitmaps(e4b, page_address(page) +
1166 (poff * sb->s_blocksize));
1168 unlock_page(page);
1171 if (page == NULL) {
1172 ret = -ENOMEM;
1173 goto err;
1175 if (!PageUptodate(page)) {
1176 ret = -EIO;
1177 goto err;
1179 e4b->bd_bitmap_page = page;
1180 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1181 mark_page_accessed(page);
1183 block++;
1184 pnum = block / blocks_per_page;
1185 poff = block % blocks_per_page;
1187 page = find_get_page(inode->i_mapping, pnum);
1188 if (page == NULL || !PageUptodate(page)) {
1189 if (page)
1190 page_cache_release(page);
1191 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1192 if (page) {
1193 BUG_ON(page->mapping != inode->i_mapping);
1194 if (!PageUptodate(page)) {
1195 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1196 if (ret) {
1197 unlock_page(page);
1198 goto err;
1201 unlock_page(page);
1204 if (page == NULL) {
1205 ret = -ENOMEM;
1206 goto err;
1208 if (!PageUptodate(page)) {
1209 ret = -EIO;
1210 goto err;
1212 e4b->bd_buddy_page = page;
1213 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1214 mark_page_accessed(page);
1216 BUG_ON(e4b->bd_bitmap_page == NULL);
1217 BUG_ON(e4b->bd_buddy_page == NULL);
1219 return 0;
1221 err:
1222 if (page)
1223 page_cache_release(page);
1224 if (e4b->bd_bitmap_page)
1225 page_cache_release(e4b->bd_bitmap_page);
1226 if (e4b->bd_buddy_page)
1227 page_cache_release(e4b->bd_buddy_page);
1228 e4b->bd_buddy = NULL;
1229 e4b->bd_bitmap = NULL;
1230 return ret;
1233 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1235 if (e4b->bd_bitmap_page)
1236 page_cache_release(e4b->bd_bitmap_page);
1237 if (e4b->bd_buddy_page)
1238 page_cache_release(e4b->bd_buddy_page);
1242 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1244 int order = 1;
1245 void *bb;
1247 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1248 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1250 bb = e4b->bd_buddy;
1251 while (order <= e4b->bd_blkbits + 1) {
1252 block = block >> 1;
1253 if (!mb_test_bit(block, bb)) {
1254 /* this block is part of buddy of order 'order' */
1255 return order;
1257 bb += 1 << (e4b->bd_blkbits - order);
1258 order++;
1260 return 0;
1263 static void mb_clear_bits(void *bm, int cur, int len)
1265 __u32 *addr;
1267 len = cur + len;
1268 while (cur < len) {
1269 if ((cur & 31) == 0 && (len - cur) >= 32) {
1270 /* fast path: clear whole word at once */
1271 addr = bm + (cur >> 3);
1272 *addr = 0;
1273 cur += 32;
1274 continue;
1276 mb_clear_bit(cur, bm);
1277 cur++;
1281 /* clear bits in given range
1282 * will return first found zero bit if any, -1 otherwise
1284 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1286 __u32 *addr;
1287 int zero_bit = -1;
1289 len = cur + len;
1290 while (cur < len) {
1291 if ((cur & 31) == 0 && (len - cur) >= 32) {
1292 /* fast path: clear whole word at once */
1293 addr = bm + (cur >> 3);
1294 if (*addr != (__u32)(-1) && zero_bit == -1)
1295 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1296 *addr = 0;
1297 cur += 32;
1298 continue;
1300 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1301 zero_bit = cur;
1302 cur++;
1305 return zero_bit;
1308 void ext4_set_bits(void *bm, int cur, int len)
1310 __u32 *addr;
1312 len = cur + len;
1313 while (cur < len) {
1314 if ((cur & 31) == 0 && (len - cur) >= 32) {
1315 /* fast path: set whole word at once */
1316 addr = bm + (cur >> 3);
1317 *addr = 0xffffffff;
1318 cur += 32;
1319 continue;
1321 mb_set_bit(cur, bm);
1322 cur++;
1327 * _________________________________________________________________ */
1329 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1331 if (mb_test_bit(*bit + side, bitmap)) {
1332 mb_clear_bit(*bit, bitmap);
1333 (*bit) -= side;
1334 return 1;
1336 else {
1337 (*bit) += side;
1338 mb_set_bit(*bit, bitmap);
1339 return -1;
1343 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1345 int max;
1346 int order = 1;
1347 void *buddy = mb_find_buddy(e4b, order, &max);
1349 while (buddy) {
1350 void *buddy2;
1352 /* Bits in range [first; last] are known to be set since
1353 * corresponding blocks were allocated. Bits in range
1354 * (first; last) will stay set because they form buddies on
1355 * upper layer. We just deal with borders if they don't
1356 * align with upper layer and then go up.
1357 * Releasing entire group is all about clearing
1358 * single bit of highest order buddy.
1361 /* Example:
1362 * ---------------------------------
1363 * | 1 | 1 | 1 | 1 |
1364 * ---------------------------------
1365 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1366 * ---------------------------------
1367 * 0 1 2 3 4 5 6 7
1368 * \_____________________/
1370 * Neither [1] nor [6] is aligned to above layer.
1371 * Left neighbour [0] is free, so mark it busy,
1372 * decrease bb_counters and extend range to
1373 * [0; 6]
1374 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1375 * mark [6] free, increase bb_counters and shrink range to
1376 * [0; 5].
1377 * Then shift range to [0; 2], go up and do the same.
1381 if (first & 1)
1382 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1383 if (!(last & 1))
1384 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1385 if (first > last)
1386 break;
1387 order++;
1389 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1390 mb_clear_bits(buddy, first, last - first + 1);
1391 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1392 break;
1394 first >>= 1;
1395 last >>= 1;
1396 buddy = buddy2;
1400 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1401 int first, int count)
1403 int left_is_free = 0;
1404 int right_is_free = 0;
1405 int block;
1406 int last = first + count - 1;
1407 struct super_block *sb = e4b->bd_sb;
1409 BUG_ON(last >= (sb->s_blocksize << 3));
1410 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1411 /* Don't bother if the block group is corrupt. */
1412 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1413 return;
1415 mb_check_buddy(e4b);
1416 mb_free_blocks_double(inode, e4b, first, count);
1418 e4b->bd_info->bb_free += count;
1419 if (first < e4b->bd_info->bb_first_free)
1420 e4b->bd_info->bb_first_free = first;
1422 /* access memory sequentially: check left neighbour,
1423 * clear range and then check right neighbour
1425 if (first != 0)
1426 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1427 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1428 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1429 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1431 if (unlikely(block != -1)) {
1432 ext4_fsblk_t blocknr;
1434 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1435 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1436 ext4_grp_locked_error(sb, e4b->bd_group,
1437 inode ? inode->i_ino : 0,
1438 blocknr,
1439 "freeing already freed block "
1440 "(bit %u); block bitmap corrupt.",
1441 block);
1442 /* Mark the block group as corrupt. */
1443 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1444 &e4b->bd_info->bb_state);
1445 mb_regenerate_buddy(e4b);
1446 goto done;
1449 /* let's maintain fragments counter */
1450 if (left_is_free && right_is_free)
1451 e4b->bd_info->bb_fragments--;
1452 else if (!left_is_free && !right_is_free)
1453 e4b->bd_info->bb_fragments++;
1455 /* buddy[0] == bd_bitmap is a special case, so handle
1456 * it right away and let mb_buddy_mark_free stay free of
1457 * zero order checks.
1458 * Check if neighbours are to be coaleasced,
1459 * adjust bitmap bb_counters and borders appropriately.
1461 if (first & 1) {
1462 first += !left_is_free;
1463 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1465 if (!(last & 1)) {
1466 last -= !right_is_free;
1467 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1470 if (first <= last)
1471 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1473 done:
1474 mb_set_largest_free_order(sb, e4b->bd_info);
1475 mb_check_buddy(e4b);
1478 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1479 int needed, struct ext4_free_extent *ex)
1481 int next = block;
1482 int max, order;
1483 void *buddy;
1485 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1486 BUG_ON(ex == NULL);
1488 buddy = mb_find_buddy(e4b, 0, &max);
1489 BUG_ON(buddy == NULL);
1490 BUG_ON(block >= max);
1491 if (mb_test_bit(block, buddy)) {
1492 ex->fe_len = 0;
1493 ex->fe_start = 0;
1494 ex->fe_group = 0;
1495 return 0;
1498 /* find actual order */
1499 order = mb_find_order_for_block(e4b, block);
1500 block = block >> order;
1502 ex->fe_len = 1 << order;
1503 ex->fe_start = block << order;
1504 ex->fe_group = e4b->bd_group;
1506 /* calc difference from given start */
1507 next = next - ex->fe_start;
1508 ex->fe_len -= next;
1509 ex->fe_start += next;
1511 while (needed > ex->fe_len &&
1512 mb_find_buddy(e4b, order, &max)) {
1514 if (block + 1 >= max)
1515 break;
1517 next = (block + 1) * (1 << order);
1518 if (mb_test_bit(next, e4b->bd_bitmap))
1519 break;
1521 order = mb_find_order_for_block(e4b, next);
1523 block = next >> order;
1524 ex->fe_len += 1 << order;
1527 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1528 return ex->fe_len;
1531 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1533 int ord;
1534 int mlen = 0;
1535 int max = 0;
1536 int cur;
1537 int start = ex->fe_start;
1538 int len = ex->fe_len;
1539 unsigned ret = 0;
1540 int len0 = len;
1541 void *buddy;
1543 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1544 BUG_ON(e4b->bd_group != ex->fe_group);
1545 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1546 mb_check_buddy(e4b);
1547 mb_mark_used_double(e4b, start, len);
1549 e4b->bd_info->bb_free -= len;
1550 if (e4b->bd_info->bb_first_free == start)
1551 e4b->bd_info->bb_first_free += len;
1553 /* let's maintain fragments counter */
1554 if (start != 0)
1555 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1556 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1557 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1558 if (mlen && max)
1559 e4b->bd_info->bb_fragments++;
1560 else if (!mlen && !max)
1561 e4b->bd_info->bb_fragments--;
1563 /* let's maintain buddy itself */
1564 while (len) {
1565 ord = mb_find_order_for_block(e4b, start);
1567 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1568 /* the whole chunk may be allocated at once! */
1569 mlen = 1 << ord;
1570 buddy = mb_find_buddy(e4b, ord, &max);
1571 BUG_ON((start >> ord) >= max);
1572 mb_set_bit(start >> ord, buddy);
1573 e4b->bd_info->bb_counters[ord]--;
1574 start += mlen;
1575 len -= mlen;
1576 BUG_ON(len < 0);
1577 continue;
1580 /* store for history */
1581 if (ret == 0)
1582 ret = len | (ord << 16);
1584 /* we have to split large buddy */
1585 BUG_ON(ord <= 0);
1586 buddy = mb_find_buddy(e4b, ord, &max);
1587 mb_set_bit(start >> ord, buddy);
1588 e4b->bd_info->bb_counters[ord]--;
1590 ord--;
1591 cur = (start >> ord) & ~1U;
1592 buddy = mb_find_buddy(e4b, ord, &max);
1593 mb_clear_bit(cur, buddy);
1594 mb_clear_bit(cur + 1, buddy);
1595 e4b->bd_info->bb_counters[ord]++;
1596 e4b->bd_info->bb_counters[ord]++;
1598 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1600 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1601 mb_check_buddy(e4b);
1603 return ret;
1607 * Must be called under group lock!
1609 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1610 struct ext4_buddy *e4b)
1612 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1613 int ret;
1615 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1616 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1618 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1619 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1620 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1622 /* preallocation can change ac_b_ex, thus we store actually
1623 * allocated blocks for history */
1624 ac->ac_f_ex = ac->ac_b_ex;
1626 ac->ac_status = AC_STATUS_FOUND;
1627 ac->ac_tail = ret & 0xffff;
1628 ac->ac_buddy = ret >> 16;
1631 * take the page reference. We want the page to be pinned
1632 * so that we don't get a ext4_mb_init_cache_call for this
1633 * group until we update the bitmap. That would mean we
1634 * double allocate blocks. The reference is dropped
1635 * in ext4_mb_release_context
1637 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1638 get_page(ac->ac_bitmap_page);
1639 ac->ac_buddy_page = e4b->bd_buddy_page;
1640 get_page(ac->ac_buddy_page);
1641 /* store last allocated for subsequent stream allocation */
1642 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1643 spin_lock(&sbi->s_md_lock);
1644 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1645 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1646 spin_unlock(&sbi->s_md_lock);
1651 * regular allocator, for general purposes allocation
1654 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1655 struct ext4_buddy *e4b,
1656 int finish_group)
1658 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1659 struct ext4_free_extent *bex = &ac->ac_b_ex;
1660 struct ext4_free_extent *gex = &ac->ac_g_ex;
1661 struct ext4_free_extent ex;
1662 int max;
1664 if (ac->ac_status == AC_STATUS_FOUND)
1665 return;
1667 * We don't want to scan for a whole year
1669 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1670 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1671 ac->ac_status = AC_STATUS_BREAK;
1672 return;
1676 * Haven't found good chunk so far, let's continue
1678 if (bex->fe_len < gex->fe_len)
1679 return;
1681 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1682 && bex->fe_group == e4b->bd_group) {
1683 /* recheck chunk's availability - we don't know
1684 * when it was found (within this lock-unlock
1685 * period or not) */
1686 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1687 if (max >= gex->fe_len) {
1688 ext4_mb_use_best_found(ac, e4b);
1689 return;
1695 * The routine checks whether found extent is good enough. If it is,
1696 * then the extent gets marked used and flag is set to the context
1697 * to stop scanning. Otherwise, the extent is compared with the
1698 * previous found extent and if new one is better, then it's stored
1699 * in the context. Later, the best found extent will be used, if
1700 * mballoc can't find good enough extent.
1702 * FIXME: real allocation policy is to be designed yet!
1704 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1705 struct ext4_free_extent *ex,
1706 struct ext4_buddy *e4b)
1708 struct ext4_free_extent *bex = &ac->ac_b_ex;
1709 struct ext4_free_extent *gex = &ac->ac_g_ex;
1711 BUG_ON(ex->fe_len <= 0);
1712 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1713 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1714 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1716 ac->ac_found++;
1719 * The special case - take what you catch first
1721 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1722 *bex = *ex;
1723 ext4_mb_use_best_found(ac, e4b);
1724 return;
1728 * Let's check whether the chuck is good enough
1730 if (ex->fe_len == gex->fe_len) {
1731 *bex = *ex;
1732 ext4_mb_use_best_found(ac, e4b);
1733 return;
1737 * If this is first found extent, just store it in the context
1739 if (bex->fe_len == 0) {
1740 *bex = *ex;
1741 return;
1745 * If new found extent is better, store it in the context
1747 if (bex->fe_len < gex->fe_len) {
1748 /* if the request isn't satisfied, any found extent
1749 * larger than previous best one is better */
1750 if (ex->fe_len > bex->fe_len)
1751 *bex = *ex;
1752 } else if (ex->fe_len > gex->fe_len) {
1753 /* if the request is satisfied, then we try to find
1754 * an extent that still satisfy the request, but is
1755 * smaller than previous one */
1756 if (ex->fe_len < bex->fe_len)
1757 *bex = *ex;
1760 ext4_mb_check_limits(ac, e4b, 0);
1763 static noinline_for_stack
1764 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1765 struct ext4_buddy *e4b)
1767 struct ext4_free_extent ex = ac->ac_b_ex;
1768 ext4_group_t group = ex.fe_group;
1769 int max;
1770 int err;
1772 BUG_ON(ex.fe_len <= 0);
1773 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1774 if (err)
1775 return err;
1777 ext4_lock_group(ac->ac_sb, group);
1778 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1780 if (max > 0) {
1781 ac->ac_b_ex = ex;
1782 ext4_mb_use_best_found(ac, e4b);
1785 ext4_unlock_group(ac->ac_sb, group);
1786 ext4_mb_unload_buddy(e4b);
1788 return 0;
1791 static noinline_for_stack
1792 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1793 struct ext4_buddy *e4b)
1795 ext4_group_t group = ac->ac_g_ex.fe_group;
1796 int max;
1797 int err;
1798 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1799 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1800 struct ext4_free_extent ex;
1802 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1803 return 0;
1804 if (grp->bb_free == 0)
1805 return 0;
1807 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1808 if (err)
1809 return err;
1811 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1812 ext4_mb_unload_buddy(e4b);
1813 return 0;
1816 ext4_lock_group(ac->ac_sb, group);
1817 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1818 ac->ac_g_ex.fe_len, &ex);
1819 ex.fe_logical = 0xDEADFA11; /* debug value */
1821 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1822 ext4_fsblk_t start;
1824 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1825 ex.fe_start;
1826 /* use do_div to get remainder (would be 64-bit modulo) */
1827 if (do_div(start, sbi->s_stripe) == 0) {
1828 ac->ac_found++;
1829 ac->ac_b_ex = ex;
1830 ext4_mb_use_best_found(ac, e4b);
1832 } else if (max >= ac->ac_g_ex.fe_len) {
1833 BUG_ON(ex.fe_len <= 0);
1834 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1835 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1836 ac->ac_found++;
1837 ac->ac_b_ex = ex;
1838 ext4_mb_use_best_found(ac, e4b);
1839 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1840 /* Sometimes, caller may want to merge even small
1841 * number of blocks to an existing extent */
1842 BUG_ON(ex.fe_len <= 0);
1843 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1844 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1845 ac->ac_found++;
1846 ac->ac_b_ex = ex;
1847 ext4_mb_use_best_found(ac, e4b);
1849 ext4_unlock_group(ac->ac_sb, group);
1850 ext4_mb_unload_buddy(e4b);
1852 return 0;
1856 * The routine scans buddy structures (not bitmap!) from given order
1857 * to max order and tries to find big enough chunk to satisfy the req
1859 static noinline_for_stack
1860 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1861 struct ext4_buddy *e4b)
1863 struct super_block *sb = ac->ac_sb;
1864 struct ext4_group_info *grp = e4b->bd_info;
1865 void *buddy;
1866 int i;
1867 int k;
1868 int max;
1870 BUG_ON(ac->ac_2order <= 0);
1871 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1872 if (grp->bb_counters[i] == 0)
1873 continue;
1875 buddy = mb_find_buddy(e4b, i, &max);
1876 BUG_ON(buddy == NULL);
1878 k = mb_find_next_zero_bit(buddy, max, 0);
1879 BUG_ON(k >= max);
1881 ac->ac_found++;
1883 ac->ac_b_ex.fe_len = 1 << i;
1884 ac->ac_b_ex.fe_start = k << i;
1885 ac->ac_b_ex.fe_group = e4b->bd_group;
1887 ext4_mb_use_best_found(ac, e4b);
1889 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1891 if (EXT4_SB(sb)->s_mb_stats)
1892 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1894 break;
1899 * The routine scans the group and measures all found extents.
1900 * In order to optimize scanning, caller must pass number of
1901 * free blocks in the group, so the routine can know upper limit.
1903 static noinline_for_stack
1904 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1905 struct ext4_buddy *e4b)
1907 struct super_block *sb = ac->ac_sb;
1908 void *bitmap = e4b->bd_bitmap;
1909 struct ext4_free_extent ex;
1910 int i;
1911 int free;
1913 free = e4b->bd_info->bb_free;
1914 BUG_ON(free <= 0);
1916 i = e4b->bd_info->bb_first_free;
1918 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1919 i = mb_find_next_zero_bit(bitmap,
1920 EXT4_CLUSTERS_PER_GROUP(sb), i);
1921 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1923 * IF we have corrupt bitmap, we won't find any
1924 * free blocks even though group info says we
1925 * we have free blocks
1927 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1928 "%d free clusters as per "
1929 "group info. But bitmap says 0",
1930 free);
1931 break;
1934 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1935 BUG_ON(ex.fe_len <= 0);
1936 if (free < ex.fe_len) {
1937 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1938 "%d free clusters as per "
1939 "group info. But got %d blocks",
1940 free, ex.fe_len);
1942 * The number of free blocks differs. This mostly
1943 * indicate that the bitmap is corrupt. So exit
1944 * without claiming the space.
1946 break;
1948 ex.fe_logical = 0xDEADC0DE; /* debug value */
1949 ext4_mb_measure_extent(ac, &ex, e4b);
1951 i += ex.fe_len;
1952 free -= ex.fe_len;
1955 ext4_mb_check_limits(ac, e4b, 1);
1959 * This is a special case for storages like raid5
1960 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1962 static noinline_for_stack
1963 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1964 struct ext4_buddy *e4b)
1966 struct super_block *sb = ac->ac_sb;
1967 struct ext4_sb_info *sbi = EXT4_SB(sb);
1968 void *bitmap = e4b->bd_bitmap;
1969 struct ext4_free_extent ex;
1970 ext4_fsblk_t first_group_block;
1971 ext4_fsblk_t a;
1972 ext4_grpblk_t i;
1973 int max;
1975 BUG_ON(sbi->s_stripe == 0);
1977 /* find first stripe-aligned block in group */
1978 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1980 a = first_group_block + sbi->s_stripe - 1;
1981 do_div(a, sbi->s_stripe);
1982 i = (a * sbi->s_stripe) - first_group_block;
1984 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1985 if (!mb_test_bit(i, bitmap)) {
1986 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1987 if (max >= sbi->s_stripe) {
1988 ac->ac_found++;
1989 ex.fe_logical = 0xDEADF00D; /* debug value */
1990 ac->ac_b_ex = ex;
1991 ext4_mb_use_best_found(ac, e4b);
1992 break;
1995 i += sbi->s_stripe;
1999 /* This is now called BEFORE we load the buddy bitmap. */
2000 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2001 ext4_group_t group, int cr)
2003 unsigned free, fragments;
2004 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2005 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2007 BUG_ON(cr < 0 || cr >= 4);
2009 free = grp->bb_free;
2010 if (free == 0)
2011 return 0;
2012 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2013 return 0;
2015 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2016 return 0;
2018 /* We only do this if the grp has never been initialized */
2019 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2020 int ret = ext4_mb_init_group(ac->ac_sb, group);
2021 if (ret)
2022 return 0;
2025 fragments = grp->bb_fragments;
2026 if (fragments == 0)
2027 return 0;
2029 switch (cr) {
2030 case 0:
2031 BUG_ON(ac->ac_2order == 0);
2033 /* Avoid using the first bg of a flexgroup for data files */
2034 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2035 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2036 ((group % flex_size) == 0))
2037 return 0;
2039 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2040 (free / fragments) >= ac->ac_g_ex.fe_len)
2041 return 1;
2043 if (grp->bb_largest_free_order < ac->ac_2order)
2044 return 0;
2046 return 1;
2047 case 1:
2048 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2049 return 1;
2050 break;
2051 case 2:
2052 if (free >= ac->ac_g_ex.fe_len)
2053 return 1;
2054 break;
2055 case 3:
2056 return 1;
2057 default:
2058 BUG();
2061 return 0;
2064 static noinline_for_stack int
2065 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2067 ext4_group_t ngroups, group, i;
2068 int cr;
2069 int err = 0;
2070 struct ext4_sb_info *sbi;
2071 struct super_block *sb;
2072 struct ext4_buddy e4b;
2074 sb = ac->ac_sb;
2075 sbi = EXT4_SB(sb);
2076 ngroups = ext4_get_groups_count(sb);
2077 /* non-extent files are limited to low blocks/groups */
2078 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2079 ngroups = sbi->s_blockfile_groups;
2081 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2083 /* first, try the goal */
2084 err = ext4_mb_find_by_goal(ac, &e4b);
2085 if (err || ac->ac_status == AC_STATUS_FOUND)
2086 goto out;
2088 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2089 goto out;
2092 * ac->ac2_order is set only if the fe_len is a power of 2
2093 * if ac2_order is set we also set criteria to 0 so that we
2094 * try exact allocation using buddy.
2096 i = fls(ac->ac_g_ex.fe_len);
2097 ac->ac_2order = 0;
2099 * We search using buddy data only if the order of the request
2100 * is greater than equal to the sbi_s_mb_order2_reqs
2101 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2103 if (i >= sbi->s_mb_order2_reqs) {
2105 * This should tell if fe_len is exactly power of 2
2107 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2108 ac->ac_2order = i - 1;
2111 /* if stream allocation is enabled, use global goal */
2112 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2113 /* TBD: may be hot point */
2114 spin_lock(&sbi->s_md_lock);
2115 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2116 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2117 spin_unlock(&sbi->s_md_lock);
2120 /* Let's just scan groups to find more-less suitable blocks */
2121 cr = ac->ac_2order ? 0 : 1;
2123 * cr == 0 try to get exact allocation,
2124 * cr == 3 try to get anything
2126 repeat:
2127 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2128 ac->ac_criteria = cr;
2130 * searching for the right group start
2131 * from the goal value specified
2133 group = ac->ac_g_ex.fe_group;
2135 for (i = 0; i < ngroups; group++, i++) {
2136 cond_resched();
2138 * Artificially restricted ngroups for non-extent
2139 * files makes group > ngroups possible on first loop.
2141 if (group >= ngroups)
2142 group = 0;
2144 /* This now checks without needing the buddy page */
2145 if (!ext4_mb_good_group(ac, group, cr))
2146 continue;
2148 err = ext4_mb_load_buddy(sb, group, &e4b);
2149 if (err)
2150 goto out;
2152 ext4_lock_group(sb, group);
2155 * We need to check again after locking the
2156 * block group
2158 if (!ext4_mb_good_group(ac, group, cr)) {
2159 ext4_unlock_group(sb, group);
2160 ext4_mb_unload_buddy(&e4b);
2161 continue;
2164 ac->ac_groups_scanned++;
2165 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2166 ext4_mb_simple_scan_group(ac, &e4b);
2167 else if (cr == 1 && sbi->s_stripe &&
2168 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2169 ext4_mb_scan_aligned(ac, &e4b);
2170 else
2171 ext4_mb_complex_scan_group(ac, &e4b);
2173 ext4_unlock_group(sb, group);
2174 ext4_mb_unload_buddy(&e4b);
2176 if (ac->ac_status != AC_STATUS_CONTINUE)
2177 break;
2181 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2182 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2184 * We've been searching too long. Let's try to allocate
2185 * the best chunk we've found so far
2188 ext4_mb_try_best_found(ac, &e4b);
2189 if (ac->ac_status != AC_STATUS_FOUND) {
2191 * Someone more lucky has already allocated it.
2192 * The only thing we can do is just take first
2193 * found block(s)
2194 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2196 ac->ac_b_ex.fe_group = 0;
2197 ac->ac_b_ex.fe_start = 0;
2198 ac->ac_b_ex.fe_len = 0;
2199 ac->ac_status = AC_STATUS_CONTINUE;
2200 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2201 cr = 3;
2202 atomic_inc(&sbi->s_mb_lost_chunks);
2203 goto repeat;
2206 out:
2207 return err;
2210 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2212 struct super_block *sb = seq->private;
2213 ext4_group_t group;
2215 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2216 return NULL;
2217 group = *pos + 1;
2218 return (void *) ((unsigned long) group);
2221 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2223 struct super_block *sb = seq->private;
2224 ext4_group_t group;
2226 ++*pos;
2227 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2228 return NULL;
2229 group = *pos + 1;
2230 return (void *) ((unsigned long) group);
2233 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2235 struct super_block *sb = seq->private;
2236 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2237 int i;
2238 int err, buddy_loaded = 0;
2239 struct ext4_buddy e4b;
2240 struct ext4_group_info *grinfo;
2241 struct sg {
2242 struct ext4_group_info info;
2243 ext4_grpblk_t counters[16];
2244 } sg;
2246 group--;
2247 if (group == 0)
2248 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2249 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2250 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2251 "group", "free", "frags", "first",
2252 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2253 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2255 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2256 sizeof(struct ext4_group_info);
2257 grinfo = ext4_get_group_info(sb, group);
2258 /* Load the group info in memory only if not already loaded. */
2259 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2260 err = ext4_mb_load_buddy(sb, group, &e4b);
2261 if (err) {
2262 seq_printf(seq, "#%-5u: I/O error\n", group);
2263 return 0;
2265 buddy_loaded = 1;
2268 memcpy(&sg, ext4_get_group_info(sb, group), i);
2270 if (buddy_loaded)
2271 ext4_mb_unload_buddy(&e4b);
2273 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2274 sg.info.bb_fragments, sg.info.bb_first_free);
2275 for (i = 0; i <= 13; i++)
2276 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2277 sg.info.bb_counters[i] : 0);
2278 seq_printf(seq, " ]\n");
2280 return 0;
2283 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2287 static const struct seq_operations ext4_mb_seq_groups_ops = {
2288 .start = ext4_mb_seq_groups_start,
2289 .next = ext4_mb_seq_groups_next,
2290 .stop = ext4_mb_seq_groups_stop,
2291 .show = ext4_mb_seq_groups_show,
2294 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2296 struct super_block *sb = PDE_DATA(inode);
2297 int rc;
2299 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2300 if (rc == 0) {
2301 struct seq_file *m = file->private_data;
2302 m->private = sb;
2304 return rc;
2308 static const struct file_operations ext4_mb_seq_groups_fops = {
2309 .owner = THIS_MODULE,
2310 .open = ext4_mb_seq_groups_open,
2311 .read = seq_read,
2312 .llseek = seq_lseek,
2313 .release = seq_release,
2316 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2318 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2319 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2321 BUG_ON(!cachep);
2322 return cachep;
2326 * Allocate the top-level s_group_info array for the specified number
2327 * of groups
2329 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2331 struct ext4_sb_info *sbi = EXT4_SB(sb);
2332 unsigned size;
2333 struct ext4_group_info ***new_groupinfo;
2335 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2336 EXT4_DESC_PER_BLOCK_BITS(sb);
2337 if (size <= sbi->s_group_info_size)
2338 return 0;
2340 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2341 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2342 if (!new_groupinfo) {
2343 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2344 return -ENOMEM;
2346 if (sbi->s_group_info) {
2347 memcpy(new_groupinfo, sbi->s_group_info,
2348 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2349 ext4_kvfree(sbi->s_group_info);
2351 sbi->s_group_info = new_groupinfo;
2352 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2353 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2354 sbi->s_group_info_size);
2355 return 0;
2358 /* Create and initialize ext4_group_info data for the given group. */
2359 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2360 struct ext4_group_desc *desc)
2362 int i;
2363 int metalen = 0;
2364 struct ext4_sb_info *sbi = EXT4_SB(sb);
2365 struct ext4_group_info **meta_group_info;
2366 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2369 * First check if this group is the first of a reserved block.
2370 * If it's true, we have to allocate a new table of pointers
2371 * to ext4_group_info structures
2373 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2374 metalen = sizeof(*meta_group_info) <<
2375 EXT4_DESC_PER_BLOCK_BITS(sb);
2376 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2377 if (meta_group_info == NULL) {
2378 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2379 "for a buddy group");
2380 goto exit_meta_group_info;
2382 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2383 meta_group_info;
2386 meta_group_info =
2387 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2388 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2390 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2391 if (meta_group_info[i] == NULL) {
2392 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2393 goto exit_group_info;
2395 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2396 &(meta_group_info[i]->bb_state));
2399 * initialize bb_free to be able to skip
2400 * empty groups without initialization
2402 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2403 meta_group_info[i]->bb_free =
2404 ext4_free_clusters_after_init(sb, group, desc);
2405 } else {
2406 meta_group_info[i]->bb_free =
2407 ext4_free_group_clusters(sb, desc);
2410 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2411 init_rwsem(&meta_group_info[i]->alloc_sem);
2412 meta_group_info[i]->bb_free_root = RB_ROOT;
2413 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2415 #ifdef DOUBLE_CHECK
2417 struct buffer_head *bh;
2418 meta_group_info[i]->bb_bitmap =
2419 kmalloc(sb->s_blocksize, GFP_KERNEL);
2420 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2421 bh = ext4_read_block_bitmap(sb, group);
2422 BUG_ON(bh == NULL);
2423 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2424 sb->s_blocksize);
2425 put_bh(bh);
2427 #endif
2429 return 0;
2431 exit_group_info:
2432 /* If a meta_group_info table has been allocated, release it now */
2433 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2434 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2435 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2437 exit_meta_group_info:
2438 return -ENOMEM;
2439 } /* ext4_mb_add_groupinfo */
2441 static int ext4_mb_init_backend(struct super_block *sb)
2443 ext4_group_t ngroups = ext4_get_groups_count(sb);
2444 ext4_group_t i;
2445 struct ext4_sb_info *sbi = EXT4_SB(sb);
2446 int err;
2447 struct ext4_group_desc *desc;
2448 struct kmem_cache *cachep;
2450 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2451 if (err)
2452 return err;
2454 sbi->s_buddy_cache = new_inode(sb);
2455 if (sbi->s_buddy_cache == NULL) {
2456 ext4_msg(sb, KERN_ERR, "can't get new inode");
2457 goto err_freesgi;
2459 /* To avoid potentially colliding with an valid on-disk inode number,
2460 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2461 * not in the inode hash, so it should never be found by iget(), but
2462 * this will avoid confusion if it ever shows up during debugging. */
2463 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2464 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2465 for (i = 0; i < ngroups; i++) {
2466 desc = ext4_get_group_desc(sb, i, NULL);
2467 if (desc == NULL) {
2468 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2469 goto err_freebuddy;
2471 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2472 goto err_freebuddy;
2475 return 0;
2477 err_freebuddy:
2478 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2479 while (i-- > 0)
2480 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2481 i = sbi->s_group_info_size;
2482 while (i-- > 0)
2483 kfree(sbi->s_group_info[i]);
2484 iput(sbi->s_buddy_cache);
2485 err_freesgi:
2486 ext4_kvfree(sbi->s_group_info);
2487 return -ENOMEM;
2490 static void ext4_groupinfo_destroy_slabs(void)
2492 int i;
2494 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2495 if (ext4_groupinfo_caches[i])
2496 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2497 ext4_groupinfo_caches[i] = NULL;
2501 static int ext4_groupinfo_create_slab(size_t size)
2503 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2504 int slab_size;
2505 int blocksize_bits = order_base_2(size);
2506 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2507 struct kmem_cache *cachep;
2509 if (cache_index >= NR_GRPINFO_CACHES)
2510 return -EINVAL;
2512 if (unlikely(cache_index < 0))
2513 cache_index = 0;
2515 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2516 if (ext4_groupinfo_caches[cache_index]) {
2517 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2518 return 0; /* Already created */
2521 slab_size = offsetof(struct ext4_group_info,
2522 bb_counters[blocksize_bits + 2]);
2524 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2525 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2526 NULL);
2528 ext4_groupinfo_caches[cache_index] = cachep;
2530 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2531 if (!cachep) {
2532 printk(KERN_EMERG
2533 "EXT4-fs: no memory for groupinfo slab cache\n");
2534 return -ENOMEM;
2537 return 0;
2540 int ext4_mb_init(struct super_block *sb)
2542 struct ext4_sb_info *sbi = EXT4_SB(sb);
2543 unsigned i, j;
2544 unsigned offset;
2545 unsigned max;
2546 int ret;
2548 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2550 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2551 if (sbi->s_mb_offsets == NULL) {
2552 ret = -ENOMEM;
2553 goto out;
2556 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2557 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2558 if (sbi->s_mb_maxs == NULL) {
2559 ret = -ENOMEM;
2560 goto out;
2563 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2564 if (ret < 0)
2565 goto out;
2567 /* order 0 is regular bitmap */
2568 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2569 sbi->s_mb_offsets[0] = 0;
2571 i = 1;
2572 offset = 0;
2573 max = sb->s_blocksize << 2;
2574 do {
2575 sbi->s_mb_offsets[i] = offset;
2576 sbi->s_mb_maxs[i] = max;
2577 offset += 1 << (sb->s_blocksize_bits - i);
2578 max = max >> 1;
2579 i++;
2580 } while (i <= sb->s_blocksize_bits + 1);
2582 spin_lock_init(&sbi->s_md_lock);
2583 spin_lock_init(&sbi->s_bal_lock);
2585 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2586 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2587 sbi->s_mb_stats = MB_DEFAULT_STATS;
2588 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2589 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2591 * The default group preallocation is 512, which for 4k block
2592 * sizes translates to 2 megabytes. However for bigalloc file
2593 * systems, this is probably too big (i.e, if the cluster size
2594 * is 1 megabyte, then group preallocation size becomes half a
2595 * gigabyte!). As a default, we will keep a two megabyte
2596 * group pralloc size for cluster sizes up to 64k, and after
2597 * that, we will force a minimum group preallocation size of
2598 * 32 clusters. This translates to 8 megs when the cluster
2599 * size is 256k, and 32 megs when the cluster size is 1 meg,
2600 * which seems reasonable as a default.
2602 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2603 sbi->s_cluster_bits, 32);
2605 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2606 * to the lowest multiple of s_stripe which is bigger than
2607 * the s_mb_group_prealloc as determined above. We want
2608 * the preallocation size to be an exact multiple of the
2609 * RAID stripe size so that preallocations don't fragment
2610 * the stripes.
2612 if (sbi->s_stripe > 1) {
2613 sbi->s_mb_group_prealloc = roundup(
2614 sbi->s_mb_group_prealloc, sbi->s_stripe);
2617 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2618 if (sbi->s_locality_groups == NULL) {
2619 ret = -ENOMEM;
2620 goto out_free_groupinfo_slab;
2622 for_each_possible_cpu(i) {
2623 struct ext4_locality_group *lg;
2624 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2625 mutex_init(&lg->lg_mutex);
2626 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2627 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2628 spin_lock_init(&lg->lg_prealloc_lock);
2631 /* init file for buddy data */
2632 ret = ext4_mb_init_backend(sb);
2633 if (ret != 0)
2634 goto out_free_locality_groups;
2636 if (sbi->s_proc)
2637 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2638 &ext4_mb_seq_groups_fops, sb);
2640 return 0;
2642 out_free_locality_groups:
2643 free_percpu(sbi->s_locality_groups);
2644 sbi->s_locality_groups = NULL;
2645 out_free_groupinfo_slab:
2646 ext4_groupinfo_destroy_slabs();
2647 out:
2648 kfree(sbi->s_mb_offsets);
2649 sbi->s_mb_offsets = NULL;
2650 kfree(sbi->s_mb_maxs);
2651 sbi->s_mb_maxs = NULL;
2652 return ret;
2655 /* need to called with the ext4 group lock held */
2656 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2658 struct ext4_prealloc_space *pa;
2659 struct list_head *cur, *tmp;
2660 int count = 0;
2662 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2663 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2664 list_del(&pa->pa_group_list);
2665 count++;
2666 kmem_cache_free(ext4_pspace_cachep, pa);
2668 if (count)
2669 mb_debug(1, "mballoc: %u PAs left\n", count);
2673 int ext4_mb_release(struct super_block *sb)
2675 ext4_group_t ngroups = ext4_get_groups_count(sb);
2676 ext4_group_t i;
2677 int num_meta_group_infos;
2678 struct ext4_group_info *grinfo;
2679 struct ext4_sb_info *sbi = EXT4_SB(sb);
2680 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2682 if (sbi->s_proc)
2683 remove_proc_entry("mb_groups", sbi->s_proc);
2685 if (sbi->s_group_info) {
2686 for (i = 0; i < ngroups; i++) {
2687 grinfo = ext4_get_group_info(sb, i);
2688 #ifdef DOUBLE_CHECK
2689 kfree(grinfo->bb_bitmap);
2690 #endif
2691 ext4_lock_group(sb, i);
2692 ext4_mb_cleanup_pa(grinfo);
2693 ext4_unlock_group(sb, i);
2694 kmem_cache_free(cachep, grinfo);
2696 num_meta_group_infos = (ngroups +
2697 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2698 EXT4_DESC_PER_BLOCK_BITS(sb);
2699 for (i = 0; i < num_meta_group_infos; i++)
2700 kfree(sbi->s_group_info[i]);
2701 ext4_kvfree(sbi->s_group_info);
2703 kfree(sbi->s_mb_offsets);
2704 kfree(sbi->s_mb_maxs);
2705 if (sbi->s_buddy_cache)
2706 iput(sbi->s_buddy_cache);
2707 if (sbi->s_mb_stats) {
2708 ext4_msg(sb, KERN_INFO,
2709 "mballoc: %u blocks %u reqs (%u success)",
2710 atomic_read(&sbi->s_bal_allocated),
2711 atomic_read(&sbi->s_bal_reqs),
2712 atomic_read(&sbi->s_bal_success));
2713 ext4_msg(sb, KERN_INFO,
2714 "mballoc: %u extents scanned, %u goal hits, "
2715 "%u 2^N hits, %u breaks, %u lost",
2716 atomic_read(&sbi->s_bal_ex_scanned),
2717 atomic_read(&sbi->s_bal_goals),
2718 atomic_read(&sbi->s_bal_2orders),
2719 atomic_read(&sbi->s_bal_breaks),
2720 atomic_read(&sbi->s_mb_lost_chunks));
2721 ext4_msg(sb, KERN_INFO,
2722 "mballoc: %lu generated and it took %Lu",
2723 sbi->s_mb_buddies_generated,
2724 sbi->s_mb_generation_time);
2725 ext4_msg(sb, KERN_INFO,
2726 "mballoc: %u preallocated, %u discarded",
2727 atomic_read(&sbi->s_mb_preallocated),
2728 atomic_read(&sbi->s_mb_discarded));
2731 free_percpu(sbi->s_locality_groups);
2733 return 0;
2736 static inline int ext4_issue_discard(struct super_block *sb,
2737 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2739 ext4_fsblk_t discard_block;
2741 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2742 ext4_group_first_block_no(sb, block_group));
2743 count = EXT4_C2B(EXT4_SB(sb), count);
2744 trace_ext4_discard_blocks(sb,
2745 (unsigned long long) discard_block, count);
2746 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2750 * This function is called by the jbd2 layer once the commit has finished,
2751 * so we know we can free the blocks that were released with that commit.
2753 static void ext4_free_data_callback(struct super_block *sb,
2754 struct ext4_journal_cb_entry *jce,
2755 int rc)
2757 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2758 struct ext4_buddy e4b;
2759 struct ext4_group_info *db;
2760 int err, count = 0, count2 = 0;
2762 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2763 entry->efd_count, entry->efd_group, entry);
2765 if (test_opt(sb, DISCARD)) {
2766 err = ext4_issue_discard(sb, entry->efd_group,
2767 entry->efd_start_cluster,
2768 entry->efd_count);
2769 if (err && err != -EOPNOTSUPP)
2770 ext4_msg(sb, KERN_WARNING, "discard request in"
2771 " group:%d block:%d count:%d failed"
2772 " with %d", entry->efd_group,
2773 entry->efd_start_cluster,
2774 entry->efd_count, err);
2777 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2778 /* we expect to find existing buddy because it's pinned */
2779 BUG_ON(err != 0);
2782 db = e4b.bd_info;
2783 /* there are blocks to put in buddy to make them really free */
2784 count += entry->efd_count;
2785 count2++;
2786 ext4_lock_group(sb, entry->efd_group);
2787 /* Take it out of per group rb tree */
2788 rb_erase(&entry->efd_node, &(db->bb_free_root));
2789 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2792 * Clear the trimmed flag for the group so that the next
2793 * ext4_trim_fs can trim it.
2794 * If the volume is mounted with -o discard, online discard
2795 * is supported and the free blocks will be trimmed online.
2797 if (!test_opt(sb, DISCARD))
2798 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2800 if (!db->bb_free_root.rb_node) {
2801 /* No more items in the per group rb tree
2802 * balance refcounts from ext4_mb_free_metadata()
2804 page_cache_release(e4b.bd_buddy_page);
2805 page_cache_release(e4b.bd_bitmap_page);
2807 ext4_unlock_group(sb, entry->efd_group);
2808 kmem_cache_free(ext4_free_data_cachep, entry);
2809 ext4_mb_unload_buddy(&e4b);
2811 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2814 int __init ext4_init_mballoc(void)
2816 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2817 SLAB_RECLAIM_ACCOUNT);
2818 if (ext4_pspace_cachep == NULL)
2819 return -ENOMEM;
2821 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2822 SLAB_RECLAIM_ACCOUNT);
2823 if (ext4_ac_cachep == NULL) {
2824 kmem_cache_destroy(ext4_pspace_cachep);
2825 return -ENOMEM;
2828 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2829 SLAB_RECLAIM_ACCOUNT);
2830 if (ext4_free_data_cachep == NULL) {
2831 kmem_cache_destroy(ext4_pspace_cachep);
2832 kmem_cache_destroy(ext4_ac_cachep);
2833 return -ENOMEM;
2835 return 0;
2838 void ext4_exit_mballoc(void)
2841 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2842 * before destroying the slab cache.
2844 rcu_barrier();
2845 kmem_cache_destroy(ext4_pspace_cachep);
2846 kmem_cache_destroy(ext4_ac_cachep);
2847 kmem_cache_destroy(ext4_free_data_cachep);
2848 ext4_groupinfo_destroy_slabs();
2853 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2854 * Returns 0 if success or error code
2856 static noinline_for_stack int
2857 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2858 handle_t *handle, unsigned int reserv_clstrs)
2860 struct buffer_head *bitmap_bh = NULL;
2861 struct ext4_group_desc *gdp;
2862 struct buffer_head *gdp_bh;
2863 struct ext4_sb_info *sbi;
2864 struct super_block *sb;
2865 ext4_fsblk_t block;
2866 int err, len;
2868 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2869 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2871 sb = ac->ac_sb;
2872 sbi = EXT4_SB(sb);
2874 err = -EIO;
2875 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2876 if (!bitmap_bh)
2877 goto out_err;
2879 err = ext4_journal_get_write_access(handle, bitmap_bh);
2880 if (err)
2881 goto out_err;
2883 err = -EIO;
2884 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2885 if (!gdp)
2886 goto out_err;
2888 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2889 ext4_free_group_clusters(sb, gdp));
2891 err = ext4_journal_get_write_access(handle, gdp_bh);
2892 if (err)
2893 goto out_err;
2895 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2897 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2898 if (!ext4_data_block_valid(sbi, block, len)) {
2899 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2900 "fs metadata", block, block+len);
2901 /* File system mounted not to panic on error
2902 * Fix the bitmap and repeat the block allocation
2903 * We leak some of the blocks here.
2905 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2906 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2907 ac->ac_b_ex.fe_len);
2908 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2909 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2910 if (!err)
2911 err = -EAGAIN;
2912 goto out_err;
2915 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2916 #ifdef AGGRESSIVE_CHECK
2918 int i;
2919 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2920 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2921 bitmap_bh->b_data));
2924 #endif
2925 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2926 ac->ac_b_ex.fe_len);
2927 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2928 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2929 ext4_free_group_clusters_set(sb, gdp,
2930 ext4_free_clusters_after_init(sb,
2931 ac->ac_b_ex.fe_group, gdp));
2933 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2934 ext4_free_group_clusters_set(sb, gdp, len);
2935 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2936 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2938 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2939 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2941 * Now reduce the dirty block count also. Should not go negative
2943 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2944 /* release all the reserved blocks if non delalloc */
2945 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2946 reserv_clstrs);
2948 if (sbi->s_log_groups_per_flex) {
2949 ext4_group_t flex_group = ext4_flex_group(sbi,
2950 ac->ac_b_ex.fe_group);
2951 atomic64_sub(ac->ac_b_ex.fe_len,
2952 &sbi->s_flex_groups[flex_group].free_clusters);
2955 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2956 if (err)
2957 goto out_err;
2958 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2960 out_err:
2961 brelse(bitmap_bh);
2962 return err;
2966 * here we normalize request for locality group
2967 * Group request are normalized to s_mb_group_prealloc, which goes to
2968 * s_strip if we set the same via mount option.
2969 * s_mb_group_prealloc can be configured via
2970 * /sys/fs/ext4/<partition>/mb_group_prealloc
2972 * XXX: should we try to preallocate more than the group has now?
2974 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2976 struct super_block *sb = ac->ac_sb;
2977 struct ext4_locality_group *lg = ac->ac_lg;
2979 BUG_ON(lg == NULL);
2980 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2981 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2982 current->pid, ac->ac_g_ex.fe_len);
2986 * Normalization means making request better in terms of
2987 * size and alignment
2989 static noinline_for_stack void
2990 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2991 struct ext4_allocation_request *ar)
2993 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2994 int bsbits, max;
2995 ext4_lblk_t end;
2996 loff_t size, start_off;
2997 loff_t orig_size __maybe_unused;
2998 ext4_lblk_t start;
2999 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3000 struct ext4_prealloc_space *pa;
3002 /* do normalize only data requests, metadata requests
3003 do not need preallocation */
3004 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3005 return;
3007 /* sometime caller may want exact blocks */
3008 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3009 return;
3011 /* caller may indicate that preallocation isn't
3012 * required (it's a tail, for example) */
3013 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3014 return;
3016 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3017 ext4_mb_normalize_group_request(ac);
3018 return ;
3021 bsbits = ac->ac_sb->s_blocksize_bits;
3023 /* first, let's learn actual file size
3024 * given current request is allocated */
3025 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3026 size = size << bsbits;
3027 if (size < i_size_read(ac->ac_inode))
3028 size = i_size_read(ac->ac_inode);
3029 orig_size = size;
3031 /* max size of free chunks */
3032 max = 2 << bsbits;
3034 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3035 (req <= (size) || max <= (chunk_size))
3037 /* first, try to predict filesize */
3038 /* XXX: should this table be tunable? */
3039 start_off = 0;
3040 if (size <= 16 * 1024) {
3041 size = 16 * 1024;
3042 } else if (size <= 32 * 1024) {
3043 size = 32 * 1024;
3044 } else if (size <= 64 * 1024) {
3045 size = 64 * 1024;
3046 } else if (size <= 128 * 1024) {
3047 size = 128 * 1024;
3048 } else if (size <= 256 * 1024) {
3049 size = 256 * 1024;
3050 } else if (size <= 512 * 1024) {
3051 size = 512 * 1024;
3052 } else if (size <= 1024 * 1024) {
3053 size = 1024 * 1024;
3054 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3055 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3056 (21 - bsbits)) << 21;
3057 size = 2 * 1024 * 1024;
3058 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3059 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3060 (22 - bsbits)) << 22;
3061 size = 4 * 1024 * 1024;
3062 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3063 (8<<20)>>bsbits, max, 8 * 1024)) {
3064 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3065 (23 - bsbits)) << 23;
3066 size = 8 * 1024 * 1024;
3067 } else {
3068 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3069 size = ac->ac_o_ex.fe_len << bsbits;
3071 size = size >> bsbits;
3072 start = start_off >> bsbits;
3074 /* don't cover already allocated blocks in selected range */
3075 if (ar->pleft && start <= ar->lleft) {
3076 size -= ar->lleft + 1 - start;
3077 start = ar->lleft + 1;
3079 if (ar->pright && start + size - 1 >= ar->lright)
3080 size -= start + size - ar->lright;
3082 end = start + size;
3084 /* check we don't cross already preallocated blocks */
3085 rcu_read_lock();
3086 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3087 ext4_lblk_t pa_end;
3089 if (pa->pa_deleted)
3090 continue;
3091 spin_lock(&pa->pa_lock);
3092 if (pa->pa_deleted) {
3093 spin_unlock(&pa->pa_lock);
3094 continue;
3097 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3098 pa->pa_len);
3100 /* PA must not overlap original request */
3101 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3102 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3104 /* skip PAs this normalized request doesn't overlap with */
3105 if (pa->pa_lstart >= end || pa_end <= start) {
3106 spin_unlock(&pa->pa_lock);
3107 continue;
3109 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3111 /* adjust start or end to be adjacent to this pa */
3112 if (pa_end <= ac->ac_o_ex.fe_logical) {
3113 BUG_ON(pa_end < start);
3114 start = pa_end;
3115 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3116 BUG_ON(pa->pa_lstart > end);
3117 end = pa->pa_lstart;
3119 spin_unlock(&pa->pa_lock);
3121 rcu_read_unlock();
3122 size = end - start;
3124 /* XXX: extra loop to check we really don't overlap preallocations */
3125 rcu_read_lock();
3126 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3127 ext4_lblk_t pa_end;
3129 spin_lock(&pa->pa_lock);
3130 if (pa->pa_deleted == 0) {
3131 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3132 pa->pa_len);
3133 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3135 spin_unlock(&pa->pa_lock);
3137 rcu_read_unlock();
3139 if (start + size <= ac->ac_o_ex.fe_logical &&
3140 start > ac->ac_o_ex.fe_logical) {
3141 ext4_msg(ac->ac_sb, KERN_ERR,
3142 "start %lu, size %lu, fe_logical %lu",
3143 (unsigned long) start, (unsigned long) size,
3144 (unsigned long) ac->ac_o_ex.fe_logical);
3146 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3147 start > ac->ac_o_ex.fe_logical);
3148 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3150 /* now prepare goal request */
3152 /* XXX: is it better to align blocks WRT to logical
3153 * placement or satisfy big request as is */
3154 ac->ac_g_ex.fe_logical = start;
3155 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3157 /* define goal start in order to merge */
3158 if (ar->pright && (ar->lright == (start + size))) {
3159 /* merge to the right */
3160 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3161 &ac->ac_f_ex.fe_group,
3162 &ac->ac_f_ex.fe_start);
3163 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3165 if (ar->pleft && (ar->lleft + 1 == start)) {
3166 /* merge to the left */
3167 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3168 &ac->ac_f_ex.fe_group,
3169 &ac->ac_f_ex.fe_start);
3170 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3173 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3174 (unsigned) orig_size, (unsigned) start);
3177 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3179 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3181 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3182 atomic_inc(&sbi->s_bal_reqs);
3183 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3184 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3185 atomic_inc(&sbi->s_bal_success);
3186 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3187 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3188 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3189 atomic_inc(&sbi->s_bal_goals);
3190 if (ac->ac_found > sbi->s_mb_max_to_scan)
3191 atomic_inc(&sbi->s_bal_breaks);
3194 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3195 trace_ext4_mballoc_alloc(ac);
3196 else
3197 trace_ext4_mballoc_prealloc(ac);
3201 * Called on failure; free up any blocks from the inode PA for this
3202 * context. We don't need this for MB_GROUP_PA because we only change
3203 * pa_free in ext4_mb_release_context(), but on failure, we've already
3204 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3206 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3208 struct ext4_prealloc_space *pa = ac->ac_pa;
3210 if (pa && pa->pa_type == MB_INODE_PA)
3211 pa->pa_free += ac->ac_b_ex.fe_len;
3215 * use blocks preallocated to inode
3217 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3218 struct ext4_prealloc_space *pa)
3220 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3221 ext4_fsblk_t start;
3222 ext4_fsblk_t end;
3223 int len;
3225 /* found preallocated blocks, use them */
3226 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3227 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3228 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3229 len = EXT4_NUM_B2C(sbi, end - start);
3230 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3231 &ac->ac_b_ex.fe_start);
3232 ac->ac_b_ex.fe_len = len;
3233 ac->ac_status = AC_STATUS_FOUND;
3234 ac->ac_pa = pa;
3236 BUG_ON(start < pa->pa_pstart);
3237 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3238 BUG_ON(pa->pa_free < len);
3239 pa->pa_free -= len;
3241 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3245 * use blocks preallocated to locality group
3247 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3248 struct ext4_prealloc_space *pa)
3250 unsigned int len = ac->ac_o_ex.fe_len;
3252 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3253 &ac->ac_b_ex.fe_group,
3254 &ac->ac_b_ex.fe_start);
3255 ac->ac_b_ex.fe_len = len;
3256 ac->ac_status = AC_STATUS_FOUND;
3257 ac->ac_pa = pa;
3259 /* we don't correct pa_pstart or pa_plen here to avoid
3260 * possible race when the group is being loaded concurrently
3261 * instead we correct pa later, after blocks are marked
3262 * in on-disk bitmap -- see ext4_mb_release_context()
3263 * Other CPUs are prevented from allocating from this pa by lg_mutex
3265 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3269 * Return the prealloc space that have minimal distance
3270 * from the goal block. @cpa is the prealloc
3271 * space that is having currently known minimal distance
3272 * from the goal block.
3274 static struct ext4_prealloc_space *
3275 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3276 struct ext4_prealloc_space *pa,
3277 struct ext4_prealloc_space *cpa)
3279 ext4_fsblk_t cur_distance, new_distance;
3281 if (cpa == NULL) {
3282 atomic_inc(&pa->pa_count);
3283 return pa;
3285 cur_distance = abs(goal_block - cpa->pa_pstart);
3286 new_distance = abs(goal_block - pa->pa_pstart);
3288 if (cur_distance <= new_distance)
3289 return cpa;
3291 /* drop the previous reference */
3292 atomic_dec(&cpa->pa_count);
3293 atomic_inc(&pa->pa_count);
3294 return pa;
3298 * search goal blocks in preallocated space
3300 static noinline_for_stack int
3301 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3303 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3304 int order, i;
3305 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3306 struct ext4_locality_group *lg;
3307 struct ext4_prealloc_space *pa, *cpa = NULL;
3308 ext4_fsblk_t goal_block;
3310 /* only data can be preallocated */
3311 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3312 return 0;
3314 /* first, try per-file preallocation */
3315 rcu_read_lock();
3316 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3318 /* all fields in this condition don't change,
3319 * so we can skip locking for them */
3320 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3321 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3322 EXT4_C2B(sbi, pa->pa_len)))
3323 continue;
3325 /* non-extent files can't have physical blocks past 2^32 */
3326 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3327 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3328 EXT4_MAX_BLOCK_FILE_PHYS))
3329 continue;
3331 /* found preallocated blocks, use them */
3332 spin_lock(&pa->pa_lock);
3333 if (pa->pa_deleted == 0 && pa->pa_free) {
3334 atomic_inc(&pa->pa_count);
3335 ext4_mb_use_inode_pa(ac, pa);
3336 spin_unlock(&pa->pa_lock);
3337 ac->ac_criteria = 10;
3338 rcu_read_unlock();
3339 return 1;
3341 spin_unlock(&pa->pa_lock);
3343 rcu_read_unlock();
3345 /* can we use group allocation? */
3346 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3347 return 0;
3349 /* inode may have no locality group for some reason */
3350 lg = ac->ac_lg;
3351 if (lg == NULL)
3352 return 0;
3353 order = fls(ac->ac_o_ex.fe_len) - 1;
3354 if (order > PREALLOC_TB_SIZE - 1)
3355 /* The max size of hash table is PREALLOC_TB_SIZE */
3356 order = PREALLOC_TB_SIZE - 1;
3358 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3360 * search for the prealloc space that is having
3361 * minimal distance from the goal block.
3363 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3364 rcu_read_lock();
3365 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3366 pa_inode_list) {
3367 spin_lock(&pa->pa_lock);
3368 if (pa->pa_deleted == 0 &&
3369 pa->pa_free >= ac->ac_o_ex.fe_len) {
3371 cpa = ext4_mb_check_group_pa(goal_block,
3372 pa, cpa);
3374 spin_unlock(&pa->pa_lock);
3376 rcu_read_unlock();
3378 if (cpa) {
3379 ext4_mb_use_group_pa(ac, cpa);
3380 ac->ac_criteria = 20;
3381 return 1;
3383 return 0;
3387 * the function goes through all block freed in the group
3388 * but not yet committed and marks them used in in-core bitmap.
3389 * buddy must be generated from this bitmap
3390 * Need to be called with the ext4 group lock held
3392 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3393 ext4_group_t group)
3395 struct rb_node *n;
3396 struct ext4_group_info *grp;
3397 struct ext4_free_data *entry;
3399 grp = ext4_get_group_info(sb, group);
3400 n = rb_first(&(grp->bb_free_root));
3402 while (n) {
3403 entry = rb_entry(n, struct ext4_free_data, efd_node);
3404 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3405 n = rb_next(n);
3407 return;
3411 * the function goes through all preallocation in this group and marks them
3412 * used in in-core bitmap. buddy must be generated from this bitmap
3413 * Need to be called with ext4 group lock held
3415 static noinline_for_stack
3416 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3417 ext4_group_t group)
3419 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3420 struct ext4_prealloc_space *pa;
3421 struct list_head *cur;
3422 ext4_group_t groupnr;
3423 ext4_grpblk_t start;
3424 int preallocated = 0;
3425 int len;
3427 /* all form of preallocation discards first load group,
3428 * so the only competing code is preallocation use.
3429 * we don't need any locking here
3430 * notice we do NOT ignore preallocations with pa_deleted
3431 * otherwise we could leave used blocks available for
3432 * allocation in buddy when concurrent ext4_mb_put_pa()
3433 * is dropping preallocation
3435 list_for_each(cur, &grp->bb_prealloc_list) {
3436 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3437 spin_lock(&pa->pa_lock);
3438 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3439 &groupnr, &start);
3440 len = pa->pa_len;
3441 spin_unlock(&pa->pa_lock);
3442 if (unlikely(len == 0))
3443 continue;
3444 BUG_ON(groupnr != group);
3445 ext4_set_bits(bitmap, start, len);
3446 preallocated += len;
3448 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3451 static void ext4_mb_pa_callback(struct rcu_head *head)
3453 struct ext4_prealloc_space *pa;
3454 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3456 BUG_ON(atomic_read(&pa->pa_count));
3457 BUG_ON(pa->pa_deleted == 0);
3458 kmem_cache_free(ext4_pspace_cachep, pa);
3462 * drops a reference to preallocated space descriptor
3463 * if this was the last reference and the space is consumed
3465 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3466 struct super_block *sb, struct ext4_prealloc_space *pa)
3468 ext4_group_t grp;
3469 ext4_fsblk_t grp_blk;
3471 /* in this short window concurrent discard can set pa_deleted */
3472 spin_lock(&pa->pa_lock);
3473 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3474 spin_unlock(&pa->pa_lock);
3475 return;
3478 if (pa->pa_deleted == 1) {
3479 spin_unlock(&pa->pa_lock);
3480 return;
3483 pa->pa_deleted = 1;
3484 spin_unlock(&pa->pa_lock);
3486 grp_blk = pa->pa_pstart;
3488 * If doing group-based preallocation, pa_pstart may be in the
3489 * next group when pa is used up
3491 if (pa->pa_type == MB_GROUP_PA)
3492 grp_blk--;
3494 grp = ext4_get_group_number(sb, grp_blk);
3497 * possible race:
3499 * P1 (buddy init) P2 (regular allocation)
3500 * find block B in PA
3501 * copy on-disk bitmap to buddy
3502 * mark B in on-disk bitmap
3503 * drop PA from group
3504 * mark all PAs in buddy
3506 * thus, P1 initializes buddy with B available. to prevent this
3507 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3508 * against that pair
3510 ext4_lock_group(sb, grp);
3511 list_del(&pa->pa_group_list);
3512 ext4_unlock_group(sb, grp);
3514 spin_lock(pa->pa_obj_lock);
3515 list_del_rcu(&pa->pa_inode_list);
3516 spin_unlock(pa->pa_obj_lock);
3518 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3522 * creates new preallocated space for given inode
3524 static noinline_for_stack int
3525 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3527 struct super_block *sb = ac->ac_sb;
3528 struct ext4_sb_info *sbi = EXT4_SB(sb);
3529 struct ext4_prealloc_space *pa;
3530 struct ext4_group_info *grp;
3531 struct ext4_inode_info *ei;
3533 /* preallocate only when found space is larger then requested */
3534 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3535 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3536 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3538 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3539 if (pa == NULL)
3540 return -ENOMEM;
3542 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3543 int winl;
3544 int wins;
3545 int win;
3546 int offs;
3548 /* we can't allocate as much as normalizer wants.
3549 * so, found space must get proper lstart
3550 * to cover original request */
3551 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3552 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3554 /* we're limited by original request in that
3555 * logical block must be covered any way
3556 * winl is window we can move our chunk within */
3557 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3559 /* also, we should cover whole original request */
3560 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3562 /* the smallest one defines real window */
3563 win = min(winl, wins);
3565 offs = ac->ac_o_ex.fe_logical %
3566 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3567 if (offs && offs < win)
3568 win = offs;
3570 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3571 EXT4_NUM_B2C(sbi, win);
3572 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3573 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3576 /* preallocation can change ac_b_ex, thus we store actually
3577 * allocated blocks for history */
3578 ac->ac_f_ex = ac->ac_b_ex;
3580 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3581 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3582 pa->pa_len = ac->ac_b_ex.fe_len;
3583 pa->pa_free = pa->pa_len;
3584 atomic_set(&pa->pa_count, 1);
3585 spin_lock_init(&pa->pa_lock);
3586 INIT_LIST_HEAD(&pa->pa_inode_list);
3587 INIT_LIST_HEAD(&pa->pa_group_list);
3588 pa->pa_deleted = 0;
3589 pa->pa_type = MB_INODE_PA;
3591 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3592 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3593 trace_ext4_mb_new_inode_pa(ac, pa);
3595 ext4_mb_use_inode_pa(ac, pa);
3596 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3598 ei = EXT4_I(ac->ac_inode);
3599 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3601 pa->pa_obj_lock = &ei->i_prealloc_lock;
3602 pa->pa_inode = ac->ac_inode;
3604 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3605 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3606 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3608 spin_lock(pa->pa_obj_lock);
3609 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3610 spin_unlock(pa->pa_obj_lock);
3612 return 0;
3616 * creates new preallocated space for locality group inodes belongs to
3618 static noinline_for_stack int
3619 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3621 struct super_block *sb = ac->ac_sb;
3622 struct ext4_locality_group *lg;
3623 struct ext4_prealloc_space *pa;
3624 struct ext4_group_info *grp;
3626 /* preallocate only when found space is larger then requested */
3627 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3628 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3629 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3631 BUG_ON(ext4_pspace_cachep == NULL);
3632 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3633 if (pa == NULL)
3634 return -ENOMEM;
3636 /* preallocation can change ac_b_ex, thus we store actually
3637 * allocated blocks for history */
3638 ac->ac_f_ex = ac->ac_b_ex;
3640 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3641 pa->pa_lstart = pa->pa_pstart;
3642 pa->pa_len = ac->ac_b_ex.fe_len;
3643 pa->pa_free = pa->pa_len;
3644 atomic_set(&pa->pa_count, 1);
3645 spin_lock_init(&pa->pa_lock);
3646 INIT_LIST_HEAD(&pa->pa_inode_list);
3647 INIT_LIST_HEAD(&pa->pa_group_list);
3648 pa->pa_deleted = 0;
3649 pa->pa_type = MB_GROUP_PA;
3651 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3652 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3653 trace_ext4_mb_new_group_pa(ac, pa);
3655 ext4_mb_use_group_pa(ac, pa);
3656 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3658 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3659 lg = ac->ac_lg;
3660 BUG_ON(lg == NULL);
3662 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3663 pa->pa_inode = NULL;
3665 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3666 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3667 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3670 * We will later add the new pa to the right bucket
3671 * after updating the pa_free in ext4_mb_release_context
3673 return 0;
3676 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3678 int err;
3680 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3681 err = ext4_mb_new_group_pa(ac);
3682 else
3683 err = ext4_mb_new_inode_pa(ac);
3684 return err;
3688 * finds all unused blocks in on-disk bitmap, frees them in
3689 * in-core bitmap and buddy.
3690 * @pa must be unlinked from inode and group lists, so that
3691 * nobody else can find/use it.
3692 * the caller MUST hold group/inode locks.
3693 * TODO: optimize the case when there are no in-core structures yet
3695 static noinline_for_stack int
3696 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3697 struct ext4_prealloc_space *pa)
3699 struct super_block *sb = e4b->bd_sb;
3700 struct ext4_sb_info *sbi = EXT4_SB(sb);
3701 unsigned int end;
3702 unsigned int next;
3703 ext4_group_t group;
3704 ext4_grpblk_t bit;
3705 unsigned long long grp_blk_start;
3706 int err = 0;
3707 int free = 0;
3709 BUG_ON(pa->pa_deleted == 0);
3710 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3711 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3712 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3713 end = bit + pa->pa_len;
3715 while (bit < end) {
3716 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3717 if (bit >= end)
3718 break;
3719 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3720 mb_debug(1, " free preallocated %u/%u in group %u\n",
3721 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3722 (unsigned) next - bit, (unsigned) group);
3723 free += next - bit;
3725 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3726 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3727 EXT4_C2B(sbi, bit)),
3728 next - bit);
3729 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3730 bit = next + 1;
3732 if (free != pa->pa_free) {
3733 ext4_msg(e4b->bd_sb, KERN_CRIT,
3734 "pa %p: logic %lu, phys. %lu, len %lu",
3735 pa, (unsigned long) pa->pa_lstart,
3736 (unsigned long) pa->pa_pstart,
3737 (unsigned long) pa->pa_len);
3738 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3739 free, pa->pa_free);
3741 * pa is already deleted so we use the value obtained
3742 * from the bitmap and continue.
3745 atomic_add(free, &sbi->s_mb_discarded);
3747 return err;
3750 static noinline_for_stack int
3751 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3752 struct ext4_prealloc_space *pa)
3754 struct super_block *sb = e4b->bd_sb;
3755 ext4_group_t group;
3756 ext4_grpblk_t bit;
3758 trace_ext4_mb_release_group_pa(sb, pa);
3759 BUG_ON(pa->pa_deleted == 0);
3760 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3761 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3762 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3763 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3764 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3766 return 0;
3770 * releases all preallocations in given group
3772 * first, we need to decide discard policy:
3773 * - when do we discard
3774 * 1) ENOSPC
3775 * - how many do we discard
3776 * 1) how many requested
3778 static noinline_for_stack int
3779 ext4_mb_discard_group_preallocations(struct super_block *sb,
3780 ext4_group_t group, int needed)
3782 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3783 struct buffer_head *bitmap_bh = NULL;
3784 struct ext4_prealloc_space *pa, *tmp;
3785 struct list_head list;
3786 struct ext4_buddy e4b;
3787 int err;
3788 int busy = 0;
3789 int free = 0;
3791 mb_debug(1, "discard preallocation for group %u\n", group);
3793 if (list_empty(&grp->bb_prealloc_list))
3794 return 0;
3796 bitmap_bh = ext4_read_block_bitmap(sb, group);
3797 if (bitmap_bh == NULL) {
3798 ext4_error(sb, "Error reading block bitmap for %u", group);
3799 return 0;
3802 err = ext4_mb_load_buddy(sb, group, &e4b);
3803 if (err) {
3804 ext4_error(sb, "Error loading buddy information for %u", group);
3805 put_bh(bitmap_bh);
3806 return 0;
3809 if (needed == 0)
3810 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3812 INIT_LIST_HEAD(&list);
3813 repeat:
3814 ext4_lock_group(sb, group);
3815 list_for_each_entry_safe(pa, tmp,
3816 &grp->bb_prealloc_list, pa_group_list) {
3817 spin_lock(&pa->pa_lock);
3818 if (atomic_read(&pa->pa_count)) {
3819 spin_unlock(&pa->pa_lock);
3820 busy = 1;
3821 continue;
3823 if (pa->pa_deleted) {
3824 spin_unlock(&pa->pa_lock);
3825 continue;
3828 /* seems this one can be freed ... */
3829 pa->pa_deleted = 1;
3831 /* we can trust pa_free ... */
3832 free += pa->pa_free;
3834 spin_unlock(&pa->pa_lock);
3836 list_del(&pa->pa_group_list);
3837 list_add(&pa->u.pa_tmp_list, &list);
3840 /* if we still need more blocks and some PAs were used, try again */
3841 if (free < needed && busy) {
3842 busy = 0;
3843 ext4_unlock_group(sb, group);
3844 cond_resched();
3845 goto repeat;
3848 /* found anything to free? */
3849 if (list_empty(&list)) {
3850 BUG_ON(free != 0);
3851 goto out;
3854 /* now free all selected PAs */
3855 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3857 /* remove from object (inode or locality group) */
3858 spin_lock(pa->pa_obj_lock);
3859 list_del_rcu(&pa->pa_inode_list);
3860 spin_unlock(pa->pa_obj_lock);
3862 if (pa->pa_type == MB_GROUP_PA)
3863 ext4_mb_release_group_pa(&e4b, pa);
3864 else
3865 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3867 list_del(&pa->u.pa_tmp_list);
3868 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3871 out:
3872 ext4_unlock_group(sb, group);
3873 ext4_mb_unload_buddy(&e4b);
3874 put_bh(bitmap_bh);
3875 return free;
3879 * releases all non-used preallocated blocks for given inode
3881 * It's important to discard preallocations under i_data_sem
3882 * We don't want another block to be served from the prealloc
3883 * space when we are discarding the inode prealloc space.
3885 * FIXME!! Make sure it is valid at all the call sites
3887 void ext4_discard_preallocations(struct inode *inode)
3889 struct ext4_inode_info *ei = EXT4_I(inode);
3890 struct super_block *sb = inode->i_sb;
3891 struct buffer_head *bitmap_bh = NULL;
3892 struct ext4_prealloc_space *pa, *tmp;
3893 ext4_group_t group = 0;
3894 struct list_head list;
3895 struct ext4_buddy e4b;
3896 int err;
3898 if (!S_ISREG(inode->i_mode)) {
3899 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3900 return;
3903 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3904 trace_ext4_discard_preallocations(inode);
3906 INIT_LIST_HEAD(&list);
3908 repeat:
3909 /* first, collect all pa's in the inode */
3910 spin_lock(&ei->i_prealloc_lock);
3911 while (!list_empty(&ei->i_prealloc_list)) {
3912 pa = list_entry(ei->i_prealloc_list.next,
3913 struct ext4_prealloc_space, pa_inode_list);
3914 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3915 spin_lock(&pa->pa_lock);
3916 if (atomic_read(&pa->pa_count)) {
3917 /* this shouldn't happen often - nobody should
3918 * use preallocation while we're discarding it */
3919 spin_unlock(&pa->pa_lock);
3920 spin_unlock(&ei->i_prealloc_lock);
3921 ext4_msg(sb, KERN_ERR,
3922 "uh-oh! used pa while discarding");
3923 WARN_ON(1);
3924 schedule_timeout_uninterruptible(HZ);
3925 goto repeat;
3928 if (pa->pa_deleted == 0) {
3929 pa->pa_deleted = 1;
3930 spin_unlock(&pa->pa_lock);
3931 list_del_rcu(&pa->pa_inode_list);
3932 list_add(&pa->u.pa_tmp_list, &list);
3933 continue;
3936 /* someone is deleting pa right now */
3937 spin_unlock(&pa->pa_lock);
3938 spin_unlock(&ei->i_prealloc_lock);
3940 /* we have to wait here because pa_deleted
3941 * doesn't mean pa is already unlinked from
3942 * the list. as we might be called from
3943 * ->clear_inode() the inode will get freed
3944 * and concurrent thread which is unlinking
3945 * pa from inode's list may access already
3946 * freed memory, bad-bad-bad */
3948 /* XXX: if this happens too often, we can
3949 * add a flag to force wait only in case
3950 * of ->clear_inode(), but not in case of
3951 * regular truncate */
3952 schedule_timeout_uninterruptible(HZ);
3953 goto repeat;
3955 spin_unlock(&ei->i_prealloc_lock);
3957 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3958 BUG_ON(pa->pa_type != MB_INODE_PA);
3959 group = ext4_get_group_number(sb, pa->pa_pstart);
3961 err = ext4_mb_load_buddy(sb, group, &e4b);
3962 if (err) {
3963 ext4_error(sb, "Error loading buddy information for %u",
3964 group);
3965 continue;
3968 bitmap_bh = ext4_read_block_bitmap(sb, group);
3969 if (bitmap_bh == NULL) {
3970 ext4_error(sb, "Error reading block bitmap for %u",
3971 group);
3972 ext4_mb_unload_buddy(&e4b);
3973 continue;
3976 ext4_lock_group(sb, group);
3977 list_del(&pa->pa_group_list);
3978 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3979 ext4_unlock_group(sb, group);
3981 ext4_mb_unload_buddy(&e4b);
3982 put_bh(bitmap_bh);
3984 list_del(&pa->u.pa_tmp_list);
3985 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3989 #ifdef CONFIG_EXT4_DEBUG
3990 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3992 struct super_block *sb = ac->ac_sb;
3993 ext4_group_t ngroups, i;
3995 if (!ext4_mballoc_debug ||
3996 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3997 return;
3999 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4000 " Allocation context details:");
4001 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4002 ac->ac_status, ac->ac_flags);
4003 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4004 "goal %lu/%lu/%lu@%lu, "
4005 "best %lu/%lu/%lu@%lu cr %d",
4006 (unsigned long)ac->ac_o_ex.fe_group,
4007 (unsigned long)ac->ac_o_ex.fe_start,
4008 (unsigned long)ac->ac_o_ex.fe_len,
4009 (unsigned long)ac->ac_o_ex.fe_logical,
4010 (unsigned long)ac->ac_g_ex.fe_group,
4011 (unsigned long)ac->ac_g_ex.fe_start,
4012 (unsigned long)ac->ac_g_ex.fe_len,
4013 (unsigned long)ac->ac_g_ex.fe_logical,
4014 (unsigned long)ac->ac_b_ex.fe_group,
4015 (unsigned long)ac->ac_b_ex.fe_start,
4016 (unsigned long)ac->ac_b_ex.fe_len,
4017 (unsigned long)ac->ac_b_ex.fe_logical,
4018 (int)ac->ac_criteria);
4019 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4020 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4021 ngroups = ext4_get_groups_count(sb);
4022 for (i = 0; i < ngroups; i++) {
4023 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4024 struct ext4_prealloc_space *pa;
4025 ext4_grpblk_t start;
4026 struct list_head *cur;
4027 ext4_lock_group(sb, i);
4028 list_for_each(cur, &grp->bb_prealloc_list) {
4029 pa = list_entry(cur, struct ext4_prealloc_space,
4030 pa_group_list);
4031 spin_lock(&pa->pa_lock);
4032 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4033 NULL, &start);
4034 spin_unlock(&pa->pa_lock);
4035 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4036 start, pa->pa_len);
4038 ext4_unlock_group(sb, i);
4040 if (grp->bb_free == 0)
4041 continue;
4042 printk(KERN_ERR "%u: %d/%d \n",
4043 i, grp->bb_free, grp->bb_fragments);
4045 printk(KERN_ERR "\n");
4047 #else
4048 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4050 return;
4052 #endif
4055 * We use locality group preallocation for small size file. The size of the
4056 * file is determined by the current size or the resulting size after
4057 * allocation which ever is larger
4059 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4061 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4063 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4064 int bsbits = ac->ac_sb->s_blocksize_bits;
4065 loff_t size, isize;
4067 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4068 return;
4070 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4071 return;
4073 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4074 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4075 >> bsbits;
4077 if ((size == isize) &&
4078 !ext4_fs_is_busy(sbi) &&
4079 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4080 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4081 return;
4084 if (sbi->s_mb_group_prealloc <= 0) {
4085 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4086 return;
4089 /* don't use group allocation for large files */
4090 size = max(size, isize);
4091 if (size > sbi->s_mb_stream_request) {
4092 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4093 return;
4096 BUG_ON(ac->ac_lg != NULL);
4098 * locality group prealloc space are per cpu. The reason for having
4099 * per cpu locality group is to reduce the contention between block
4100 * request from multiple CPUs.
4102 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4104 /* we're going to use group allocation */
4105 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4107 /* serialize all allocations in the group */
4108 mutex_lock(&ac->ac_lg->lg_mutex);
4111 static noinline_for_stack int
4112 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4113 struct ext4_allocation_request *ar)
4115 struct super_block *sb = ar->inode->i_sb;
4116 struct ext4_sb_info *sbi = EXT4_SB(sb);
4117 struct ext4_super_block *es = sbi->s_es;
4118 ext4_group_t group;
4119 unsigned int len;
4120 ext4_fsblk_t goal;
4121 ext4_grpblk_t block;
4123 /* we can't allocate > group size */
4124 len = ar->len;
4126 /* just a dirty hack to filter too big requests */
4127 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4128 len = EXT4_CLUSTERS_PER_GROUP(sb);
4130 /* start searching from the goal */
4131 goal = ar->goal;
4132 if (goal < le32_to_cpu(es->s_first_data_block) ||
4133 goal >= ext4_blocks_count(es))
4134 goal = le32_to_cpu(es->s_first_data_block);
4135 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4137 /* set up allocation goals */
4138 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4139 ac->ac_status = AC_STATUS_CONTINUE;
4140 ac->ac_sb = sb;
4141 ac->ac_inode = ar->inode;
4142 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4143 ac->ac_o_ex.fe_group = group;
4144 ac->ac_o_ex.fe_start = block;
4145 ac->ac_o_ex.fe_len = len;
4146 ac->ac_g_ex = ac->ac_o_ex;
4147 ac->ac_flags = ar->flags;
4149 /* we have to define context: we'll we work with a file or
4150 * locality group. this is a policy, actually */
4151 ext4_mb_group_or_file(ac);
4153 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4154 "left: %u/%u, right %u/%u to %swritable\n",
4155 (unsigned) ar->len, (unsigned) ar->logical,
4156 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4157 (unsigned) ar->lleft, (unsigned) ar->pleft,
4158 (unsigned) ar->lright, (unsigned) ar->pright,
4159 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4160 return 0;
4164 static noinline_for_stack void
4165 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4166 struct ext4_locality_group *lg,
4167 int order, int total_entries)
4169 ext4_group_t group = 0;
4170 struct ext4_buddy e4b;
4171 struct list_head discard_list;
4172 struct ext4_prealloc_space *pa, *tmp;
4174 mb_debug(1, "discard locality group preallocation\n");
4176 INIT_LIST_HEAD(&discard_list);
4178 spin_lock(&lg->lg_prealloc_lock);
4179 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4180 pa_inode_list) {
4181 spin_lock(&pa->pa_lock);
4182 if (atomic_read(&pa->pa_count)) {
4184 * This is the pa that we just used
4185 * for block allocation. So don't
4186 * free that
4188 spin_unlock(&pa->pa_lock);
4189 continue;
4191 if (pa->pa_deleted) {
4192 spin_unlock(&pa->pa_lock);
4193 continue;
4195 /* only lg prealloc space */
4196 BUG_ON(pa->pa_type != MB_GROUP_PA);
4198 /* seems this one can be freed ... */
4199 pa->pa_deleted = 1;
4200 spin_unlock(&pa->pa_lock);
4202 list_del_rcu(&pa->pa_inode_list);
4203 list_add(&pa->u.pa_tmp_list, &discard_list);
4205 total_entries--;
4206 if (total_entries <= 5) {
4208 * we want to keep only 5 entries
4209 * allowing it to grow to 8. This
4210 * mak sure we don't call discard
4211 * soon for this list.
4213 break;
4216 spin_unlock(&lg->lg_prealloc_lock);
4218 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4220 group = ext4_get_group_number(sb, pa->pa_pstart);
4221 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4222 ext4_error(sb, "Error loading buddy information for %u",
4223 group);
4224 continue;
4226 ext4_lock_group(sb, group);
4227 list_del(&pa->pa_group_list);
4228 ext4_mb_release_group_pa(&e4b, pa);
4229 ext4_unlock_group(sb, group);
4231 ext4_mb_unload_buddy(&e4b);
4232 list_del(&pa->u.pa_tmp_list);
4233 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4238 * We have incremented pa_count. So it cannot be freed at this
4239 * point. Also we hold lg_mutex. So no parallel allocation is
4240 * possible from this lg. That means pa_free cannot be updated.
4242 * A parallel ext4_mb_discard_group_preallocations is possible.
4243 * which can cause the lg_prealloc_list to be updated.
4246 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4248 int order, added = 0, lg_prealloc_count = 1;
4249 struct super_block *sb = ac->ac_sb;
4250 struct ext4_locality_group *lg = ac->ac_lg;
4251 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4253 order = fls(pa->pa_free) - 1;
4254 if (order > PREALLOC_TB_SIZE - 1)
4255 /* The max size of hash table is PREALLOC_TB_SIZE */
4256 order = PREALLOC_TB_SIZE - 1;
4257 /* Add the prealloc space to lg */
4258 spin_lock(&lg->lg_prealloc_lock);
4259 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4260 pa_inode_list) {
4261 spin_lock(&tmp_pa->pa_lock);
4262 if (tmp_pa->pa_deleted) {
4263 spin_unlock(&tmp_pa->pa_lock);
4264 continue;
4266 if (!added && pa->pa_free < tmp_pa->pa_free) {
4267 /* Add to the tail of the previous entry */
4268 list_add_tail_rcu(&pa->pa_inode_list,
4269 &tmp_pa->pa_inode_list);
4270 added = 1;
4272 * we want to count the total
4273 * number of entries in the list
4276 spin_unlock(&tmp_pa->pa_lock);
4277 lg_prealloc_count++;
4279 if (!added)
4280 list_add_tail_rcu(&pa->pa_inode_list,
4281 &lg->lg_prealloc_list[order]);
4282 spin_unlock(&lg->lg_prealloc_lock);
4284 /* Now trim the list to be not more than 8 elements */
4285 if (lg_prealloc_count > 8) {
4286 ext4_mb_discard_lg_preallocations(sb, lg,
4287 order, lg_prealloc_count);
4288 return;
4290 return ;
4294 * release all resource we used in allocation
4296 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4298 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4299 struct ext4_prealloc_space *pa = ac->ac_pa;
4300 if (pa) {
4301 if (pa->pa_type == MB_GROUP_PA) {
4302 /* see comment in ext4_mb_use_group_pa() */
4303 spin_lock(&pa->pa_lock);
4304 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4305 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4306 pa->pa_free -= ac->ac_b_ex.fe_len;
4307 pa->pa_len -= ac->ac_b_ex.fe_len;
4308 spin_unlock(&pa->pa_lock);
4311 if (pa) {
4313 * We want to add the pa to the right bucket.
4314 * Remove it from the list and while adding
4315 * make sure the list to which we are adding
4316 * doesn't grow big.
4318 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4319 spin_lock(pa->pa_obj_lock);
4320 list_del_rcu(&pa->pa_inode_list);
4321 spin_unlock(pa->pa_obj_lock);
4322 ext4_mb_add_n_trim(ac);
4324 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4326 if (ac->ac_bitmap_page)
4327 page_cache_release(ac->ac_bitmap_page);
4328 if (ac->ac_buddy_page)
4329 page_cache_release(ac->ac_buddy_page);
4330 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4331 mutex_unlock(&ac->ac_lg->lg_mutex);
4332 ext4_mb_collect_stats(ac);
4333 return 0;
4336 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4338 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4339 int ret;
4340 int freed = 0;
4342 trace_ext4_mb_discard_preallocations(sb, needed);
4343 for (i = 0; i < ngroups && needed > 0; i++) {
4344 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4345 freed += ret;
4346 needed -= ret;
4349 return freed;
4353 * Main entry point into mballoc to allocate blocks
4354 * it tries to use preallocation first, then falls back
4355 * to usual allocation
4357 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4358 struct ext4_allocation_request *ar, int *errp)
4360 int freed;
4361 struct ext4_allocation_context *ac = NULL;
4362 struct ext4_sb_info *sbi;
4363 struct super_block *sb;
4364 ext4_fsblk_t block = 0;
4365 unsigned int inquota = 0;
4366 unsigned int reserv_clstrs = 0;
4368 might_sleep();
4369 sb = ar->inode->i_sb;
4370 sbi = EXT4_SB(sb);
4372 trace_ext4_request_blocks(ar);
4374 /* Allow to use superuser reservation for quota file */
4375 if (IS_NOQUOTA(ar->inode))
4376 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4379 * For delayed allocation, we could skip the ENOSPC and
4380 * EDQUOT check, as blocks and quotas have been already
4381 * reserved when data being copied into pagecache.
4383 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4384 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4385 else {
4386 /* Without delayed allocation we need to verify
4387 * there is enough free blocks to do block allocation
4388 * and verify allocation doesn't exceed the quota limits.
4390 while (ar->len &&
4391 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4393 /* let others to free the space */
4394 cond_resched();
4395 ar->len = ar->len >> 1;
4397 if (!ar->len) {
4398 *errp = -ENOSPC;
4399 return 0;
4401 reserv_clstrs = ar->len;
4402 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4403 dquot_alloc_block_nofail(ar->inode,
4404 EXT4_C2B(sbi, ar->len));
4405 } else {
4406 while (ar->len &&
4407 dquot_alloc_block(ar->inode,
4408 EXT4_C2B(sbi, ar->len))) {
4410 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4411 ar->len--;
4414 inquota = ar->len;
4415 if (ar->len == 0) {
4416 *errp = -EDQUOT;
4417 goto out;
4421 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4422 if (!ac) {
4423 ar->len = 0;
4424 *errp = -ENOMEM;
4425 goto out;
4428 *errp = ext4_mb_initialize_context(ac, ar);
4429 if (*errp) {
4430 ar->len = 0;
4431 goto out;
4434 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4435 if (!ext4_mb_use_preallocated(ac)) {
4436 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4437 ext4_mb_normalize_request(ac, ar);
4438 repeat:
4439 /* allocate space in core */
4440 *errp = ext4_mb_regular_allocator(ac);
4441 if (*errp)
4442 goto discard_and_exit;
4444 /* as we've just preallocated more space than
4445 * user requested originally, we store allocated
4446 * space in a special descriptor */
4447 if (ac->ac_status == AC_STATUS_FOUND &&
4448 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4449 *errp = ext4_mb_new_preallocation(ac);
4450 if (*errp) {
4451 discard_and_exit:
4452 ext4_discard_allocated_blocks(ac);
4453 goto errout;
4456 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4457 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4458 if (*errp == -EAGAIN) {
4460 * drop the reference that we took
4461 * in ext4_mb_use_best_found
4463 ext4_mb_release_context(ac);
4464 ac->ac_b_ex.fe_group = 0;
4465 ac->ac_b_ex.fe_start = 0;
4466 ac->ac_b_ex.fe_len = 0;
4467 ac->ac_status = AC_STATUS_CONTINUE;
4468 goto repeat;
4469 } else if (*errp) {
4470 ext4_discard_allocated_blocks(ac);
4471 goto errout;
4472 } else {
4473 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4474 ar->len = ac->ac_b_ex.fe_len;
4476 } else {
4477 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4478 if (freed)
4479 goto repeat;
4480 *errp = -ENOSPC;
4483 errout:
4484 if (*errp) {
4485 ac->ac_b_ex.fe_len = 0;
4486 ar->len = 0;
4487 ext4_mb_show_ac(ac);
4489 ext4_mb_release_context(ac);
4490 out:
4491 if (ac)
4492 kmem_cache_free(ext4_ac_cachep, ac);
4493 if (inquota && ar->len < inquota)
4494 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4495 if (!ar->len) {
4496 if (!ext4_test_inode_state(ar->inode,
4497 EXT4_STATE_DELALLOC_RESERVED))
4498 /* release all the reserved blocks if non delalloc */
4499 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4500 reserv_clstrs);
4503 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4505 return block;
4509 * We can merge two free data extents only if the physical blocks
4510 * are contiguous, AND the extents were freed by the same transaction,
4511 * AND the blocks are associated with the same group.
4513 static int can_merge(struct ext4_free_data *entry1,
4514 struct ext4_free_data *entry2)
4516 if ((entry1->efd_tid == entry2->efd_tid) &&
4517 (entry1->efd_group == entry2->efd_group) &&
4518 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4519 return 1;
4520 return 0;
4523 static noinline_for_stack int
4524 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4525 struct ext4_free_data *new_entry)
4527 ext4_group_t group = e4b->bd_group;
4528 ext4_grpblk_t cluster;
4529 struct ext4_free_data *entry;
4530 struct ext4_group_info *db = e4b->bd_info;
4531 struct super_block *sb = e4b->bd_sb;
4532 struct ext4_sb_info *sbi = EXT4_SB(sb);
4533 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4534 struct rb_node *parent = NULL, *new_node;
4536 BUG_ON(!ext4_handle_valid(handle));
4537 BUG_ON(e4b->bd_bitmap_page == NULL);
4538 BUG_ON(e4b->bd_buddy_page == NULL);
4540 new_node = &new_entry->efd_node;
4541 cluster = new_entry->efd_start_cluster;
4543 if (!*n) {
4544 /* first free block exent. We need to
4545 protect buddy cache from being freed,
4546 * otherwise we'll refresh it from
4547 * on-disk bitmap and lose not-yet-available
4548 * blocks */
4549 page_cache_get(e4b->bd_buddy_page);
4550 page_cache_get(e4b->bd_bitmap_page);
4552 while (*n) {
4553 parent = *n;
4554 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4555 if (cluster < entry->efd_start_cluster)
4556 n = &(*n)->rb_left;
4557 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4558 n = &(*n)->rb_right;
4559 else {
4560 ext4_grp_locked_error(sb, group, 0,
4561 ext4_group_first_block_no(sb, group) +
4562 EXT4_C2B(sbi, cluster),
4563 "Block already on to-be-freed list");
4564 return 0;
4568 rb_link_node(new_node, parent, n);
4569 rb_insert_color(new_node, &db->bb_free_root);
4571 /* Now try to see the extent can be merged to left and right */
4572 node = rb_prev(new_node);
4573 if (node) {
4574 entry = rb_entry(node, struct ext4_free_data, efd_node);
4575 if (can_merge(entry, new_entry) &&
4576 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4577 new_entry->efd_start_cluster = entry->efd_start_cluster;
4578 new_entry->efd_count += entry->efd_count;
4579 rb_erase(node, &(db->bb_free_root));
4580 kmem_cache_free(ext4_free_data_cachep, entry);
4584 node = rb_next(new_node);
4585 if (node) {
4586 entry = rb_entry(node, struct ext4_free_data, efd_node);
4587 if (can_merge(new_entry, entry) &&
4588 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4589 new_entry->efd_count += entry->efd_count;
4590 rb_erase(node, &(db->bb_free_root));
4591 kmem_cache_free(ext4_free_data_cachep, entry);
4594 /* Add the extent to transaction's private list */
4595 ext4_journal_callback_add(handle, ext4_free_data_callback,
4596 &new_entry->efd_jce);
4597 return 0;
4601 * ext4_free_blocks() -- Free given blocks and update quota
4602 * @handle: handle for this transaction
4603 * @inode: inode
4604 * @block: start physical block to free
4605 * @count: number of blocks to count
4606 * @flags: flags used by ext4_free_blocks
4608 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4609 struct buffer_head *bh, ext4_fsblk_t block,
4610 unsigned long count, int flags)
4612 struct buffer_head *bitmap_bh = NULL;
4613 struct super_block *sb = inode->i_sb;
4614 struct ext4_group_desc *gdp;
4615 unsigned int overflow;
4616 ext4_grpblk_t bit;
4617 struct buffer_head *gd_bh;
4618 ext4_group_t block_group;
4619 struct ext4_sb_info *sbi;
4620 struct ext4_inode_info *ei = EXT4_I(inode);
4621 struct ext4_buddy e4b;
4622 unsigned int count_clusters;
4623 int err = 0;
4624 int ret;
4626 might_sleep();
4627 if (bh) {
4628 if (block)
4629 BUG_ON(block != bh->b_blocknr);
4630 else
4631 block = bh->b_blocknr;
4634 sbi = EXT4_SB(sb);
4635 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4636 !ext4_data_block_valid(sbi, block, count)) {
4637 ext4_error(sb, "Freeing blocks not in datazone - "
4638 "block = %llu, count = %lu", block, count);
4639 goto error_return;
4642 ext4_debug("freeing block %llu\n", block);
4643 trace_ext4_free_blocks(inode, block, count, flags);
4645 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4646 struct buffer_head *tbh = bh;
4647 int i;
4649 BUG_ON(bh && (count > 1));
4651 for (i = 0; i < count; i++) {
4652 cond_resched();
4653 if (!bh)
4654 tbh = sb_find_get_block(inode->i_sb,
4655 block + i);
4656 if (!tbh)
4657 continue;
4658 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4659 inode, tbh, block + i);
4664 * We need to make sure we don't reuse the freed block until
4665 * after the transaction is committed, which we can do by
4666 * treating the block as metadata, below. We make an
4667 * exception if the inode is to be written in writeback mode
4668 * since writeback mode has weak data consistency guarantees.
4670 if (!ext4_should_writeback_data(inode))
4671 flags |= EXT4_FREE_BLOCKS_METADATA;
4674 * If the extent to be freed does not begin on a cluster
4675 * boundary, we need to deal with partial clusters at the
4676 * beginning and end of the extent. Normally we will free
4677 * blocks at the beginning or the end unless we are explicitly
4678 * requested to avoid doing so.
4680 overflow = EXT4_PBLK_COFF(sbi, block);
4681 if (overflow) {
4682 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4683 overflow = sbi->s_cluster_ratio - overflow;
4684 block += overflow;
4685 if (count > overflow)
4686 count -= overflow;
4687 else
4688 return;
4689 } else {
4690 block -= overflow;
4691 count += overflow;
4694 overflow = EXT4_LBLK_COFF(sbi, count);
4695 if (overflow) {
4696 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4697 if (count > overflow)
4698 count -= overflow;
4699 else
4700 return;
4701 } else
4702 count += sbi->s_cluster_ratio - overflow;
4705 do_more:
4706 overflow = 0;
4707 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4709 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4710 ext4_get_group_info(sb, block_group))))
4711 return;
4714 * Check to see if we are freeing blocks across a group
4715 * boundary.
4717 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4718 overflow = EXT4_C2B(sbi, bit) + count -
4719 EXT4_BLOCKS_PER_GROUP(sb);
4720 count -= overflow;
4722 count_clusters = EXT4_NUM_B2C(sbi, count);
4723 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4724 if (!bitmap_bh) {
4725 err = -EIO;
4726 goto error_return;
4728 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4729 if (!gdp) {
4730 err = -EIO;
4731 goto error_return;
4734 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4735 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4736 in_range(block, ext4_inode_table(sb, gdp),
4737 EXT4_SB(sb)->s_itb_per_group) ||
4738 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4739 EXT4_SB(sb)->s_itb_per_group)) {
4741 ext4_error(sb, "Freeing blocks in system zone - "
4742 "Block = %llu, count = %lu", block, count);
4743 /* err = 0. ext4_std_error should be a no op */
4744 goto error_return;
4747 BUFFER_TRACE(bitmap_bh, "getting write access");
4748 err = ext4_journal_get_write_access(handle, bitmap_bh);
4749 if (err)
4750 goto error_return;
4753 * We are about to modify some metadata. Call the journal APIs
4754 * to unshare ->b_data if a currently-committing transaction is
4755 * using it
4757 BUFFER_TRACE(gd_bh, "get_write_access");
4758 err = ext4_journal_get_write_access(handle, gd_bh);
4759 if (err)
4760 goto error_return;
4761 #ifdef AGGRESSIVE_CHECK
4763 int i;
4764 for (i = 0; i < count_clusters; i++)
4765 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4767 #endif
4768 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4770 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4771 if (err)
4772 goto error_return;
4774 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4775 struct ext4_free_data *new_entry;
4777 * blocks being freed are metadata. these blocks shouldn't
4778 * be used until this transaction is committed
4780 retry:
4781 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4782 if (!new_entry) {
4784 * We use a retry loop because
4785 * ext4_free_blocks() is not allowed to fail.
4787 cond_resched();
4788 congestion_wait(BLK_RW_ASYNC, HZ/50);
4789 goto retry;
4791 new_entry->efd_start_cluster = bit;
4792 new_entry->efd_group = block_group;
4793 new_entry->efd_count = count_clusters;
4794 new_entry->efd_tid = handle->h_transaction->t_tid;
4796 ext4_lock_group(sb, block_group);
4797 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4798 ext4_mb_free_metadata(handle, &e4b, new_entry);
4799 } else {
4800 /* need to update group_info->bb_free and bitmap
4801 * with group lock held. generate_buddy look at
4802 * them with group lock_held
4804 if (test_opt(sb, DISCARD)) {
4805 err = ext4_issue_discard(sb, block_group, bit, count);
4806 if (err && err != -EOPNOTSUPP)
4807 ext4_msg(sb, KERN_WARNING, "discard request in"
4808 " group:%d block:%d count:%lu failed"
4809 " with %d", block_group, bit, count,
4810 err);
4811 } else
4812 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4814 ext4_lock_group(sb, block_group);
4815 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4816 mb_free_blocks(inode, &e4b, bit, count_clusters);
4819 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4820 ext4_free_group_clusters_set(sb, gdp, ret);
4821 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4822 ext4_group_desc_csum_set(sb, block_group, gdp);
4823 ext4_unlock_group(sb, block_group);
4825 if (sbi->s_log_groups_per_flex) {
4826 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4827 atomic64_add(count_clusters,
4828 &sbi->s_flex_groups[flex_group].free_clusters);
4831 if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4832 percpu_counter_add(&sbi->s_dirtyclusters_counter,
4833 count_clusters);
4834 spin_lock(&ei->i_block_reservation_lock);
4835 if (flags & EXT4_FREE_BLOCKS_METADATA)
4836 ei->i_reserved_meta_blocks += count_clusters;
4837 else
4838 ei->i_reserved_data_blocks += count_clusters;
4839 spin_unlock(&ei->i_block_reservation_lock);
4840 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4841 dquot_reclaim_block(inode,
4842 EXT4_C2B(sbi, count_clusters));
4843 } else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4844 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4845 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4847 ext4_mb_unload_buddy(&e4b);
4849 /* We dirtied the bitmap block */
4850 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4851 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4853 /* And the group descriptor block */
4854 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4855 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4856 if (!err)
4857 err = ret;
4859 if (overflow && !err) {
4860 block += count;
4861 count = overflow;
4862 put_bh(bitmap_bh);
4863 goto do_more;
4865 error_return:
4866 brelse(bitmap_bh);
4867 ext4_std_error(sb, err);
4868 return;
4872 * ext4_group_add_blocks() -- Add given blocks to an existing group
4873 * @handle: handle to this transaction
4874 * @sb: super block
4875 * @block: start physical block to add to the block group
4876 * @count: number of blocks to free
4878 * This marks the blocks as free in the bitmap and buddy.
4880 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4881 ext4_fsblk_t block, unsigned long count)
4883 struct buffer_head *bitmap_bh = NULL;
4884 struct buffer_head *gd_bh;
4885 ext4_group_t block_group;
4886 ext4_grpblk_t bit;
4887 unsigned int i;
4888 struct ext4_group_desc *desc;
4889 struct ext4_sb_info *sbi = EXT4_SB(sb);
4890 struct ext4_buddy e4b;
4891 int err = 0, ret, blk_free_count;
4892 ext4_grpblk_t blocks_freed;
4894 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4896 if (count == 0)
4897 return 0;
4899 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4901 * Check to see if we are freeing blocks across a group
4902 * boundary.
4904 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4905 ext4_warning(sb, "too much blocks added to group %u\n",
4906 block_group);
4907 err = -EINVAL;
4908 goto error_return;
4911 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4912 if (!bitmap_bh) {
4913 err = -EIO;
4914 goto error_return;
4917 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4918 if (!desc) {
4919 err = -EIO;
4920 goto error_return;
4923 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4924 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4925 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4926 in_range(block + count - 1, ext4_inode_table(sb, desc),
4927 sbi->s_itb_per_group)) {
4928 ext4_error(sb, "Adding blocks in system zones - "
4929 "Block = %llu, count = %lu",
4930 block, count);
4931 err = -EINVAL;
4932 goto error_return;
4935 BUFFER_TRACE(bitmap_bh, "getting write access");
4936 err = ext4_journal_get_write_access(handle, bitmap_bh);
4937 if (err)
4938 goto error_return;
4941 * We are about to modify some metadata. Call the journal APIs
4942 * to unshare ->b_data if a currently-committing transaction is
4943 * using it
4945 BUFFER_TRACE(gd_bh, "get_write_access");
4946 err = ext4_journal_get_write_access(handle, gd_bh);
4947 if (err)
4948 goto error_return;
4950 for (i = 0, blocks_freed = 0; i < count; i++) {
4951 BUFFER_TRACE(bitmap_bh, "clear bit");
4952 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4953 ext4_error(sb, "bit already cleared for block %llu",
4954 (ext4_fsblk_t)(block + i));
4955 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4956 } else {
4957 blocks_freed++;
4961 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4962 if (err)
4963 goto error_return;
4966 * need to update group_info->bb_free and bitmap
4967 * with group lock held. generate_buddy look at
4968 * them with group lock_held
4970 ext4_lock_group(sb, block_group);
4971 mb_clear_bits(bitmap_bh->b_data, bit, count);
4972 mb_free_blocks(NULL, &e4b, bit, count);
4973 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4974 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4975 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4976 ext4_group_desc_csum_set(sb, block_group, desc);
4977 ext4_unlock_group(sb, block_group);
4978 percpu_counter_add(&sbi->s_freeclusters_counter,
4979 EXT4_NUM_B2C(sbi, blocks_freed));
4981 if (sbi->s_log_groups_per_flex) {
4982 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4983 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4984 &sbi->s_flex_groups[flex_group].free_clusters);
4987 ext4_mb_unload_buddy(&e4b);
4989 /* We dirtied the bitmap block */
4990 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4991 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4993 /* And the group descriptor block */
4994 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4995 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4996 if (!err)
4997 err = ret;
4999 error_return:
5000 brelse(bitmap_bh);
5001 ext4_std_error(sb, err);
5002 return err;
5006 * ext4_trim_extent -- function to TRIM one single free extent in the group
5007 * @sb: super block for the file system
5008 * @start: starting block of the free extent in the alloc. group
5009 * @count: number of blocks to TRIM
5010 * @group: alloc. group we are working with
5011 * @e4b: ext4 buddy for the group
5013 * Trim "count" blocks starting at "start" in the "group". To assure that no
5014 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5015 * be called with under the group lock.
5017 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5018 ext4_group_t group, struct ext4_buddy *e4b)
5019 __releases(bitlock)
5020 __acquires(bitlock)
5022 struct ext4_free_extent ex;
5023 int ret = 0;
5025 trace_ext4_trim_extent(sb, group, start, count);
5027 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5029 ex.fe_start = start;
5030 ex.fe_group = group;
5031 ex.fe_len = count;
5034 * Mark blocks used, so no one can reuse them while
5035 * being trimmed.
5037 mb_mark_used(e4b, &ex);
5038 ext4_unlock_group(sb, group);
5039 ret = ext4_issue_discard(sb, group, start, count);
5040 ext4_lock_group(sb, group);
5041 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5042 return ret;
5046 * ext4_trim_all_free -- function to trim all free space in alloc. group
5047 * @sb: super block for file system
5048 * @group: group to be trimmed
5049 * @start: first group block to examine
5050 * @max: last group block to examine
5051 * @minblocks: minimum extent block count
5053 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5054 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5055 * the extent.
5058 * ext4_trim_all_free walks through group's block bitmap searching for free
5059 * extents. When the free extent is found, mark it as used in group buddy
5060 * bitmap. Then issue a TRIM command on this extent and free the extent in
5061 * the group buddy bitmap. This is done until whole group is scanned.
5063 static ext4_grpblk_t
5064 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5065 ext4_grpblk_t start, ext4_grpblk_t max,
5066 ext4_grpblk_t minblocks)
5068 void *bitmap;
5069 ext4_grpblk_t next, count = 0, free_count = 0;
5070 struct ext4_buddy e4b;
5071 int ret = 0;
5073 trace_ext4_trim_all_free(sb, group, start, max);
5075 ret = ext4_mb_load_buddy(sb, group, &e4b);
5076 if (ret) {
5077 ext4_error(sb, "Error in loading buddy "
5078 "information for %u", group);
5079 return ret;
5081 bitmap = e4b.bd_bitmap;
5083 ext4_lock_group(sb, group);
5084 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5085 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5086 goto out;
5088 start = (e4b.bd_info->bb_first_free > start) ?
5089 e4b.bd_info->bb_first_free : start;
5091 while (start <= max) {
5092 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5093 if (start > max)
5094 break;
5095 next = mb_find_next_bit(bitmap, max + 1, start);
5097 if ((next - start) >= minblocks) {
5098 ret = ext4_trim_extent(sb, start,
5099 next - start, group, &e4b);
5100 if (ret && ret != -EOPNOTSUPP)
5101 break;
5102 ret = 0;
5103 count += next - start;
5105 free_count += next - start;
5106 start = next + 1;
5108 if (fatal_signal_pending(current)) {
5109 count = -ERESTARTSYS;
5110 break;
5113 if (need_resched()) {
5114 ext4_unlock_group(sb, group);
5115 cond_resched();
5116 ext4_lock_group(sb, group);
5119 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5120 break;
5123 if (!ret) {
5124 ret = count;
5125 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5127 out:
5128 ext4_unlock_group(sb, group);
5129 ext4_mb_unload_buddy(&e4b);
5131 ext4_debug("trimmed %d blocks in the group %d\n",
5132 count, group);
5134 return ret;
5138 * ext4_trim_fs() -- trim ioctl handle function
5139 * @sb: superblock for filesystem
5140 * @range: fstrim_range structure
5142 * start: First Byte to trim
5143 * len: number of Bytes to trim from start
5144 * minlen: minimum extent length in Bytes
5145 * ext4_trim_fs goes through all allocation groups containing Bytes from
5146 * start to start+len. For each such a group ext4_trim_all_free function
5147 * is invoked to trim all free space.
5149 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5151 struct ext4_group_info *grp;
5152 ext4_group_t group, first_group, last_group;
5153 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5154 uint64_t start, end, minlen, trimmed = 0;
5155 ext4_fsblk_t first_data_blk =
5156 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5157 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5158 int ret = 0;
5160 start = range->start >> sb->s_blocksize_bits;
5161 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5162 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5163 range->minlen >> sb->s_blocksize_bits);
5165 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5166 start >= max_blks ||
5167 range->len < sb->s_blocksize)
5168 return -EINVAL;
5169 if (end >= max_blks)
5170 end = max_blks - 1;
5171 if (end <= first_data_blk)
5172 goto out;
5173 if (start < first_data_blk)
5174 start = first_data_blk;
5176 /* Determine first and last group to examine based on start and end */
5177 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5178 &first_group, &first_cluster);
5179 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5180 &last_group, &last_cluster);
5182 /* end now represents the last cluster to discard in this group */
5183 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5185 for (group = first_group; group <= last_group; group++) {
5186 grp = ext4_get_group_info(sb, group);
5187 /* We only do this if the grp has never been initialized */
5188 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5189 ret = ext4_mb_init_group(sb, group);
5190 if (ret)
5191 break;
5195 * For all the groups except the last one, last cluster will
5196 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5197 * change it for the last group, note that last_cluster is
5198 * already computed earlier by ext4_get_group_no_and_offset()
5200 if (group == last_group)
5201 end = last_cluster;
5203 if (grp->bb_free >= minlen) {
5204 cnt = ext4_trim_all_free(sb, group, first_cluster,
5205 end, minlen);
5206 if (cnt < 0) {
5207 ret = cnt;
5208 break;
5210 trimmed += cnt;
5214 * For every group except the first one, we are sure
5215 * that the first cluster to discard will be cluster #0.
5217 first_cluster = 0;
5220 if (!ret)
5221 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5223 out:
5224 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5225 return ret;