nommu: Fix up vmalloc_node() symbol export regression.
[linux-2.6/btrfs-unstable.git] / mm / nommu.c
blob275608cd18a3d9c112971d79f0c27112c331cee0
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
40 #if 0
41 #define kenter(FMT, ...) \
42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long num_physpages;
60 unsigned long highest_memmap_pfn;
61 struct percpu_counter vm_committed_as;
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 int heap_stack_gap = 0;
68 atomic_long_t mmap_pages_allocated;
70 EXPORT_SYMBOL(mem_map);
71 EXPORT_SYMBOL(num_physpages);
73 /* list of mapped, potentially shareable regions */
74 static struct kmem_cache *vm_region_jar;
75 struct rb_root nommu_region_tree = RB_ROOT;
76 DECLARE_RWSEM(nommu_region_sem);
78 const struct vm_operations_struct generic_file_vm_ops = {
82 * Return the total memory allocated for this pointer, not
83 * just what the caller asked for.
85 * Doesn't have to be accurate, i.e. may have races.
87 unsigned int kobjsize(const void *objp)
89 struct page *page;
92 * If the object we have should not have ksize performed on it,
93 * return size of 0
95 if (!objp || !virt_addr_valid(objp))
96 return 0;
98 page = virt_to_head_page(objp);
101 * If the allocator sets PageSlab, we know the pointer came from
102 * kmalloc().
104 if (PageSlab(page))
105 return ksize(objp);
108 * If it's not a compound page, see if we have a matching VMA
109 * region. This test is intentionally done in reverse order,
110 * so if there's no VMA, we still fall through and hand back
111 * PAGE_SIZE for 0-order pages.
113 if (!PageCompound(page)) {
114 struct vm_area_struct *vma;
116 vma = find_vma(current->mm, (unsigned long)objp);
117 if (vma)
118 return vma->vm_end - vma->vm_start;
122 * The ksize() function is only guaranteed to work for pointers
123 * returned by kmalloc(). So handle arbitrary pointers here.
125 return PAGE_SIZE << compound_order(page);
128 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
129 unsigned long start, int nr_pages, unsigned int foll_flags,
130 struct page **pages, struct vm_area_struct **vmas)
132 struct vm_area_struct *vma;
133 unsigned long vm_flags;
134 int i;
136 /* calculate required read or write permissions.
137 * If FOLL_FORCE is set, we only require the "MAY" flags.
139 vm_flags = (foll_flags & FOLL_WRITE) ?
140 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
141 vm_flags &= (foll_flags & FOLL_FORCE) ?
142 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
144 for (i = 0; i < nr_pages; i++) {
145 vma = find_vma(mm, start);
146 if (!vma)
147 goto finish_or_fault;
149 /* protect what we can, including chardevs */
150 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
151 !(vm_flags & vma->vm_flags))
152 goto finish_or_fault;
154 if (pages) {
155 pages[i] = virt_to_page(start);
156 if (pages[i])
157 page_cache_get(pages[i]);
159 if (vmas)
160 vmas[i] = vma;
161 start = (start + PAGE_SIZE) & PAGE_MASK;
164 return i;
166 finish_or_fault:
167 return i ? : -EFAULT;
171 * get a list of pages in an address range belonging to the specified process
172 * and indicate the VMA that covers each page
173 * - this is potentially dodgy as we may end incrementing the page count of a
174 * slab page or a secondary page from a compound page
175 * - don't permit access to VMAs that don't support it, such as I/O mappings
177 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
178 unsigned long start, int nr_pages, int write, int force,
179 struct page **pages, struct vm_area_struct **vmas)
181 int flags = 0;
183 if (write)
184 flags |= FOLL_WRITE;
185 if (force)
186 flags |= FOLL_FORCE;
188 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
190 EXPORT_SYMBOL(get_user_pages);
193 * follow_pfn - look up PFN at a user virtual address
194 * @vma: memory mapping
195 * @address: user virtual address
196 * @pfn: location to store found PFN
198 * Only IO mappings and raw PFN mappings are allowed.
200 * Returns zero and the pfn at @pfn on success, -ve otherwise.
202 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
203 unsigned long *pfn)
205 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
206 return -EINVAL;
208 *pfn = address >> PAGE_SHIFT;
209 return 0;
211 EXPORT_SYMBOL(follow_pfn);
213 DEFINE_RWLOCK(vmlist_lock);
214 struct vm_struct *vmlist;
216 void vfree(const void *addr)
218 kfree(addr);
220 EXPORT_SYMBOL(vfree);
222 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
225 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
226 * returns only a logical address.
228 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
230 EXPORT_SYMBOL(__vmalloc);
232 void *vmalloc_user(unsigned long size)
234 void *ret;
236 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
237 PAGE_KERNEL);
238 if (ret) {
239 struct vm_area_struct *vma;
241 down_write(&current->mm->mmap_sem);
242 vma = find_vma(current->mm, (unsigned long)ret);
243 if (vma)
244 vma->vm_flags |= VM_USERMAP;
245 up_write(&current->mm->mmap_sem);
248 return ret;
250 EXPORT_SYMBOL(vmalloc_user);
252 struct page *vmalloc_to_page(const void *addr)
254 return virt_to_page(addr);
256 EXPORT_SYMBOL(vmalloc_to_page);
258 unsigned long vmalloc_to_pfn(const void *addr)
260 return page_to_pfn(virt_to_page(addr));
262 EXPORT_SYMBOL(vmalloc_to_pfn);
264 long vread(char *buf, char *addr, unsigned long count)
266 memcpy(buf, addr, count);
267 return count;
270 long vwrite(char *buf, char *addr, unsigned long count)
272 /* Don't allow overflow */
273 if ((unsigned long) addr + count < count)
274 count = -(unsigned long) addr;
276 memcpy(addr, buf, count);
277 return(count);
281 * vmalloc - allocate virtually continguos memory
283 * @size: allocation size
285 * Allocate enough pages to cover @size from the page level
286 * allocator and map them into continguos kernel virtual space.
288 * For tight control over page level allocator and protection flags
289 * use __vmalloc() instead.
291 void *vmalloc(unsigned long size)
293 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
295 EXPORT_SYMBOL(vmalloc);
298 * vzalloc - allocate virtually continguos memory with zero fill
300 * @size: allocation size
302 * Allocate enough pages to cover @size from the page level
303 * allocator and map them into continguos kernel virtual space.
304 * The memory allocated is set to zero.
306 * For tight control over page level allocator and protection flags
307 * use __vmalloc() instead.
309 void *vzalloc(unsigned long size)
311 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
312 PAGE_KERNEL);
314 EXPORT_SYMBOL(vzalloc);
317 * vmalloc_node - allocate memory on a specific node
318 * @size: allocation size
319 * @node: numa node
321 * Allocate enough pages to cover @size from the page level
322 * allocator and map them into contiguous kernel virtual space.
324 * For tight control over page level allocator and protection flags
325 * use __vmalloc() instead.
327 void *vmalloc_node(unsigned long size, int node)
329 return vmalloc(size);
331 EXPORT_SYMBOL(vmalloc_node);
334 * vzalloc_node - allocate memory on a specific node with zero fill
335 * @size: allocation size
336 * @node: numa node
338 * Allocate enough pages to cover @size from the page level
339 * allocator and map them into contiguous kernel virtual space.
340 * The memory allocated is set to zero.
342 * For tight control over page level allocator and protection flags
343 * use __vmalloc() instead.
345 void *vzalloc_node(unsigned long size, int node)
347 return vzalloc(size);
349 EXPORT_SYMBOL(vzalloc_node);
351 #ifndef PAGE_KERNEL_EXEC
352 # define PAGE_KERNEL_EXEC PAGE_KERNEL
353 #endif
356 * vmalloc_exec - allocate virtually contiguous, executable memory
357 * @size: allocation size
359 * Kernel-internal function to allocate enough pages to cover @size
360 * the page level allocator and map them into contiguous and
361 * executable kernel virtual space.
363 * For tight control over page level allocator and protection flags
364 * use __vmalloc() instead.
367 void *vmalloc_exec(unsigned long size)
369 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
373 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
374 * @size: allocation size
376 * Allocate enough 32bit PA addressable pages to cover @size from the
377 * page level allocator and map them into continguos kernel virtual space.
379 void *vmalloc_32(unsigned long size)
381 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
383 EXPORT_SYMBOL(vmalloc_32);
386 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
387 * @size: allocation size
389 * The resulting memory area is 32bit addressable and zeroed so it can be
390 * mapped to userspace without leaking data.
392 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
393 * remap_vmalloc_range() are permissible.
395 void *vmalloc_32_user(unsigned long size)
398 * We'll have to sort out the ZONE_DMA bits for 64-bit,
399 * but for now this can simply use vmalloc_user() directly.
401 return vmalloc_user(size);
403 EXPORT_SYMBOL(vmalloc_32_user);
405 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
407 BUG();
408 return NULL;
410 EXPORT_SYMBOL(vmap);
412 void vunmap(const void *addr)
414 BUG();
416 EXPORT_SYMBOL(vunmap);
418 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
420 BUG();
421 return NULL;
423 EXPORT_SYMBOL(vm_map_ram);
425 void vm_unmap_ram(const void *mem, unsigned int count)
427 BUG();
429 EXPORT_SYMBOL(vm_unmap_ram);
431 void vm_unmap_aliases(void)
434 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
437 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
438 * have one.
440 void __attribute__((weak)) vmalloc_sync_all(void)
444 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
445 struct page *page)
447 return -EINVAL;
449 EXPORT_SYMBOL(vm_insert_page);
452 * sys_brk() for the most part doesn't need the global kernel
453 * lock, except when an application is doing something nasty
454 * like trying to un-brk an area that has already been mapped
455 * to a regular file. in this case, the unmapping will need
456 * to invoke file system routines that need the global lock.
458 SYSCALL_DEFINE1(brk, unsigned long, brk)
460 struct mm_struct *mm = current->mm;
462 if (brk < mm->start_brk || brk > mm->context.end_brk)
463 return mm->brk;
465 if (mm->brk == brk)
466 return mm->brk;
469 * Always allow shrinking brk
471 if (brk <= mm->brk) {
472 mm->brk = brk;
473 return brk;
477 * Ok, looks good - let it rip.
479 flush_icache_range(mm->brk, brk);
480 return mm->brk = brk;
484 * initialise the VMA and region record slabs
486 void __init mmap_init(void)
488 int ret;
490 ret = percpu_counter_init(&vm_committed_as, 0);
491 VM_BUG_ON(ret);
492 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
496 * validate the region tree
497 * - the caller must hold the region lock
499 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
500 static noinline void validate_nommu_regions(void)
502 struct vm_region *region, *last;
503 struct rb_node *p, *lastp;
505 lastp = rb_first(&nommu_region_tree);
506 if (!lastp)
507 return;
509 last = rb_entry(lastp, struct vm_region, vm_rb);
510 BUG_ON(unlikely(last->vm_end <= last->vm_start));
511 BUG_ON(unlikely(last->vm_top < last->vm_end));
513 while ((p = rb_next(lastp))) {
514 region = rb_entry(p, struct vm_region, vm_rb);
515 last = rb_entry(lastp, struct vm_region, vm_rb);
517 BUG_ON(unlikely(region->vm_end <= region->vm_start));
518 BUG_ON(unlikely(region->vm_top < region->vm_end));
519 BUG_ON(unlikely(region->vm_start < last->vm_top));
521 lastp = p;
524 #else
525 static void validate_nommu_regions(void)
528 #endif
531 * add a region into the global tree
533 static void add_nommu_region(struct vm_region *region)
535 struct vm_region *pregion;
536 struct rb_node **p, *parent;
538 validate_nommu_regions();
540 parent = NULL;
541 p = &nommu_region_tree.rb_node;
542 while (*p) {
543 parent = *p;
544 pregion = rb_entry(parent, struct vm_region, vm_rb);
545 if (region->vm_start < pregion->vm_start)
546 p = &(*p)->rb_left;
547 else if (region->vm_start > pregion->vm_start)
548 p = &(*p)->rb_right;
549 else if (pregion == region)
550 return;
551 else
552 BUG();
555 rb_link_node(&region->vm_rb, parent, p);
556 rb_insert_color(&region->vm_rb, &nommu_region_tree);
558 validate_nommu_regions();
562 * delete a region from the global tree
564 static void delete_nommu_region(struct vm_region *region)
566 BUG_ON(!nommu_region_tree.rb_node);
568 validate_nommu_regions();
569 rb_erase(&region->vm_rb, &nommu_region_tree);
570 validate_nommu_regions();
574 * free a contiguous series of pages
576 static void free_page_series(unsigned long from, unsigned long to)
578 for (; from < to; from += PAGE_SIZE) {
579 struct page *page = virt_to_page(from);
581 kdebug("- free %lx", from);
582 atomic_long_dec(&mmap_pages_allocated);
583 if (page_count(page) != 1)
584 kdebug("free page %p: refcount not one: %d",
585 page, page_count(page));
586 put_page(page);
591 * release a reference to a region
592 * - the caller must hold the region semaphore for writing, which this releases
593 * - the region may not have been added to the tree yet, in which case vm_top
594 * will equal vm_start
596 static void __put_nommu_region(struct vm_region *region)
597 __releases(nommu_region_sem)
599 kenter("%p{%d}", region, region->vm_usage);
601 BUG_ON(!nommu_region_tree.rb_node);
603 if (--region->vm_usage == 0) {
604 if (region->vm_top > region->vm_start)
605 delete_nommu_region(region);
606 up_write(&nommu_region_sem);
608 if (region->vm_file)
609 fput(region->vm_file);
611 /* IO memory and memory shared directly out of the pagecache
612 * from ramfs/tmpfs mustn't be released here */
613 if (region->vm_flags & VM_MAPPED_COPY) {
614 kdebug("free series");
615 free_page_series(region->vm_start, region->vm_top);
617 kmem_cache_free(vm_region_jar, region);
618 } else {
619 up_write(&nommu_region_sem);
624 * release a reference to a region
626 static void put_nommu_region(struct vm_region *region)
628 down_write(&nommu_region_sem);
629 __put_nommu_region(region);
633 * update protection on a vma
635 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
637 #ifdef CONFIG_MPU
638 struct mm_struct *mm = vma->vm_mm;
639 long start = vma->vm_start & PAGE_MASK;
640 while (start < vma->vm_end) {
641 protect_page(mm, start, flags);
642 start += PAGE_SIZE;
644 update_protections(mm);
645 #endif
649 * add a VMA into a process's mm_struct in the appropriate place in the list
650 * and tree and add to the address space's page tree also if not an anonymous
651 * page
652 * - should be called with mm->mmap_sem held writelocked
654 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
656 struct vm_area_struct *pvma, **pp, *next;
657 struct address_space *mapping;
658 struct rb_node **p, *parent;
660 kenter(",%p", vma);
662 BUG_ON(!vma->vm_region);
664 mm->map_count++;
665 vma->vm_mm = mm;
667 protect_vma(vma, vma->vm_flags);
669 /* add the VMA to the mapping */
670 if (vma->vm_file) {
671 mapping = vma->vm_file->f_mapping;
673 flush_dcache_mmap_lock(mapping);
674 vma_prio_tree_insert(vma, &mapping->i_mmap);
675 flush_dcache_mmap_unlock(mapping);
678 /* add the VMA to the tree */
679 parent = NULL;
680 p = &mm->mm_rb.rb_node;
681 while (*p) {
682 parent = *p;
683 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
685 /* sort by: start addr, end addr, VMA struct addr in that order
686 * (the latter is necessary as we may get identical VMAs) */
687 if (vma->vm_start < pvma->vm_start)
688 p = &(*p)->rb_left;
689 else if (vma->vm_start > pvma->vm_start)
690 p = &(*p)->rb_right;
691 else if (vma->vm_end < pvma->vm_end)
692 p = &(*p)->rb_left;
693 else if (vma->vm_end > pvma->vm_end)
694 p = &(*p)->rb_right;
695 else if (vma < pvma)
696 p = &(*p)->rb_left;
697 else if (vma > pvma)
698 p = &(*p)->rb_right;
699 else
700 BUG();
703 rb_link_node(&vma->vm_rb, parent, p);
704 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
706 /* add VMA to the VMA list also */
707 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
708 if (pvma->vm_start > vma->vm_start)
709 break;
710 if (pvma->vm_start < vma->vm_start)
711 continue;
712 if (pvma->vm_end < vma->vm_end)
713 break;
716 next = *pp;
717 *pp = vma;
718 vma->vm_next = next;
719 if (next)
720 next->vm_prev = vma;
724 * delete a VMA from its owning mm_struct and address space
726 static void delete_vma_from_mm(struct vm_area_struct *vma)
728 struct vm_area_struct **pp;
729 struct address_space *mapping;
730 struct mm_struct *mm = vma->vm_mm;
732 kenter("%p", vma);
734 protect_vma(vma, 0);
736 mm->map_count--;
737 if (mm->mmap_cache == vma)
738 mm->mmap_cache = NULL;
740 /* remove the VMA from the mapping */
741 if (vma->vm_file) {
742 mapping = vma->vm_file->f_mapping;
744 flush_dcache_mmap_lock(mapping);
745 vma_prio_tree_remove(vma, &mapping->i_mmap);
746 flush_dcache_mmap_unlock(mapping);
749 /* remove from the MM's tree and list */
750 rb_erase(&vma->vm_rb, &mm->mm_rb);
751 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
752 if (*pp == vma) {
753 *pp = vma->vm_next;
754 break;
758 vma->vm_mm = NULL;
762 * destroy a VMA record
764 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
766 kenter("%p", vma);
767 if (vma->vm_ops && vma->vm_ops->close)
768 vma->vm_ops->close(vma);
769 if (vma->vm_file) {
770 fput(vma->vm_file);
771 if (vma->vm_flags & VM_EXECUTABLE)
772 removed_exe_file_vma(mm);
774 put_nommu_region(vma->vm_region);
775 kmem_cache_free(vm_area_cachep, vma);
779 * look up the first VMA in which addr resides, NULL if none
780 * - should be called with mm->mmap_sem at least held readlocked
782 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
784 struct vm_area_struct *vma;
785 struct rb_node *n = mm->mm_rb.rb_node;
787 /* check the cache first */
788 vma = mm->mmap_cache;
789 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
790 return vma;
792 /* trawl the tree (there may be multiple mappings in which addr
793 * resides) */
794 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
795 vma = rb_entry(n, struct vm_area_struct, vm_rb);
796 if (vma->vm_start > addr)
797 return NULL;
798 if (vma->vm_end > addr) {
799 mm->mmap_cache = vma;
800 return vma;
804 return NULL;
806 EXPORT_SYMBOL(find_vma);
809 * find a VMA
810 * - we don't extend stack VMAs under NOMMU conditions
812 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
814 return find_vma(mm, addr);
818 * expand a stack to a given address
819 * - not supported under NOMMU conditions
821 int expand_stack(struct vm_area_struct *vma, unsigned long address)
823 return -ENOMEM;
827 * look up the first VMA exactly that exactly matches addr
828 * - should be called with mm->mmap_sem at least held readlocked
830 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
831 unsigned long addr,
832 unsigned long len)
834 struct vm_area_struct *vma;
835 struct rb_node *n = mm->mm_rb.rb_node;
836 unsigned long end = addr + len;
838 /* check the cache first */
839 vma = mm->mmap_cache;
840 if (vma && vma->vm_start == addr && vma->vm_end == end)
841 return vma;
843 /* trawl the tree (there may be multiple mappings in which addr
844 * resides) */
845 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
846 vma = rb_entry(n, struct vm_area_struct, vm_rb);
847 if (vma->vm_start < addr)
848 continue;
849 if (vma->vm_start > addr)
850 return NULL;
851 if (vma->vm_end == end) {
852 mm->mmap_cache = vma;
853 return vma;
857 return NULL;
861 * determine whether a mapping should be permitted and, if so, what sort of
862 * mapping we're capable of supporting
864 static int validate_mmap_request(struct file *file,
865 unsigned long addr,
866 unsigned long len,
867 unsigned long prot,
868 unsigned long flags,
869 unsigned long pgoff,
870 unsigned long *_capabilities)
872 unsigned long capabilities, rlen;
873 unsigned long reqprot = prot;
874 int ret;
876 /* do the simple checks first */
877 if (flags & MAP_FIXED) {
878 printk(KERN_DEBUG
879 "%d: Can't do fixed-address/overlay mmap of RAM\n",
880 current->pid);
881 return -EINVAL;
884 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
885 (flags & MAP_TYPE) != MAP_SHARED)
886 return -EINVAL;
888 if (!len)
889 return -EINVAL;
891 /* Careful about overflows.. */
892 rlen = PAGE_ALIGN(len);
893 if (!rlen || rlen > TASK_SIZE)
894 return -ENOMEM;
896 /* offset overflow? */
897 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
898 return -EOVERFLOW;
900 if (file) {
901 /* validate file mapping requests */
902 struct address_space *mapping;
904 /* files must support mmap */
905 if (!file->f_op || !file->f_op->mmap)
906 return -ENODEV;
908 /* work out if what we've got could possibly be shared
909 * - we support chardevs that provide their own "memory"
910 * - we support files/blockdevs that are memory backed
912 mapping = file->f_mapping;
913 if (!mapping)
914 mapping = file->f_path.dentry->d_inode->i_mapping;
916 capabilities = 0;
917 if (mapping && mapping->backing_dev_info)
918 capabilities = mapping->backing_dev_info->capabilities;
920 if (!capabilities) {
921 /* no explicit capabilities set, so assume some
922 * defaults */
923 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
924 case S_IFREG:
925 case S_IFBLK:
926 capabilities = BDI_CAP_MAP_COPY;
927 break;
929 case S_IFCHR:
930 capabilities =
931 BDI_CAP_MAP_DIRECT |
932 BDI_CAP_READ_MAP |
933 BDI_CAP_WRITE_MAP;
934 break;
936 default:
937 return -EINVAL;
941 /* eliminate any capabilities that we can't support on this
942 * device */
943 if (!file->f_op->get_unmapped_area)
944 capabilities &= ~BDI_CAP_MAP_DIRECT;
945 if (!file->f_op->read)
946 capabilities &= ~BDI_CAP_MAP_COPY;
948 /* The file shall have been opened with read permission. */
949 if (!(file->f_mode & FMODE_READ))
950 return -EACCES;
952 if (flags & MAP_SHARED) {
953 /* do checks for writing, appending and locking */
954 if ((prot & PROT_WRITE) &&
955 !(file->f_mode & FMODE_WRITE))
956 return -EACCES;
958 if (IS_APPEND(file->f_path.dentry->d_inode) &&
959 (file->f_mode & FMODE_WRITE))
960 return -EACCES;
962 if (locks_verify_locked(file->f_path.dentry->d_inode))
963 return -EAGAIN;
965 if (!(capabilities & BDI_CAP_MAP_DIRECT))
966 return -ENODEV;
968 /* we mustn't privatise shared mappings */
969 capabilities &= ~BDI_CAP_MAP_COPY;
971 else {
972 /* we're going to read the file into private memory we
973 * allocate */
974 if (!(capabilities & BDI_CAP_MAP_COPY))
975 return -ENODEV;
977 /* we don't permit a private writable mapping to be
978 * shared with the backing device */
979 if (prot & PROT_WRITE)
980 capabilities &= ~BDI_CAP_MAP_DIRECT;
983 if (capabilities & BDI_CAP_MAP_DIRECT) {
984 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
985 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
986 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
988 capabilities &= ~BDI_CAP_MAP_DIRECT;
989 if (flags & MAP_SHARED) {
990 printk(KERN_WARNING
991 "MAP_SHARED not completely supported on !MMU\n");
992 return -EINVAL;
997 /* handle executable mappings and implied executable
998 * mappings */
999 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1000 if (prot & PROT_EXEC)
1001 return -EPERM;
1003 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1004 /* handle implication of PROT_EXEC by PROT_READ */
1005 if (current->personality & READ_IMPLIES_EXEC) {
1006 if (capabilities & BDI_CAP_EXEC_MAP)
1007 prot |= PROT_EXEC;
1010 else if ((prot & PROT_READ) &&
1011 (prot & PROT_EXEC) &&
1012 !(capabilities & BDI_CAP_EXEC_MAP)
1014 /* backing file is not executable, try to copy */
1015 capabilities &= ~BDI_CAP_MAP_DIRECT;
1018 else {
1019 /* anonymous mappings are always memory backed and can be
1020 * privately mapped
1022 capabilities = BDI_CAP_MAP_COPY;
1024 /* handle PROT_EXEC implication by PROT_READ */
1025 if ((prot & PROT_READ) &&
1026 (current->personality & READ_IMPLIES_EXEC))
1027 prot |= PROT_EXEC;
1030 /* allow the security API to have its say */
1031 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1032 if (ret < 0)
1033 return ret;
1035 /* looks okay */
1036 *_capabilities = capabilities;
1037 return 0;
1041 * we've determined that we can make the mapping, now translate what we
1042 * now know into VMA flags
1044 static unsigned long determine_vm_flags(struct file *file,
1045 unsigned long prot,
1046 unsigned long flags,
1047 unsigned long capabilities)
1049 unsigned long vm_flags;
1051 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1052 /* vm_flags |= mm->def_flags; */
1054 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1055 /* attempt to share read-only copies of mapped file chunks */
1056 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1057 if (file && !(prot & PROT_WRITE))
1058 vm_flags |= VM_MAYSHARE;
1059 } else {
1060 /* overlay a shareable mapping on the backing device or inode
1061 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1062 * romfs/cramfs */
1063 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1064 if (flags & MAP_SHARED)
1065 vm_flags |= VM_SHARED;
1068 /* refuse to let anyone share private mappings with this process if
1069 * it's being traced - otherwise breakpoints set in it may interfere
1070 * with another untraced process
1072 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1073 vm_flags &= ~VM_MAYSHARE;
1075 return vm_flags;
1079 * set up a shared mapping on a file (the driver or filesystem provides and
1080 * pins the storage)
1082 static int do_mmap_shared_file(struct vm_area_struct *vma)
1084 int ret;
1086 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1087 if (ret == 0) {
1088 vma->vm_region->vm_top = vma->vm_region->vm_end;
1089 return 0;
1091 if (ret != -ENOSYS)
1092 return ret;
1094 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1095 * opposed to tried but failed) so we can only give a suitable error as
1096 * it's not possible to make a private copy if MAP_SHARED was given */
1097 return -ENODEV;
1101 * set up a private mapping or an anonymous shared mapping
1103 static int do_mmap_private(struct vm_area_struct *vma,
1104 struct vm_region *region,
1105 unsigned long len,
1106 unsigned long capabilities)
1108 struct page *pages;
1109 unsigned long total, point, n, rlen;
1110 void *base;
1111 int ret, order;
1113 /* invoke the file's mapping function so that it can keep track of
1114 * shared mappings on devices or memory
1115 * - VM_MAYSHARE will be set if it may attempt to share
1117 if (capabilities & BDI_CAP_MAP_DIRECT) {
1118 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1119 if (ret == 0) {
1120 /* shouldn't return success if we're not sharing */
1121 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1122 vma->vm_region->vm_top = vma->vm_region->vm_end;
1123 return 0;
1125 if (ret != -ENOSYS)
1126 return ret;
1128 /* getting an ENOSYS error indicates that direct mmap isn't
1129 * possible (as opposed to tried but failed) so we'll try to
1130 * make a private copy of the data and map that instead */
1133 rlen = PAGE_ALIGN(len);
1135 /* allocate some memory to hold the mapping
1136 * - note that this may not return a page-aligned address if the object
1137 * we're allocating is smaller than a page
1139 order = get_order(rlen);
1140 kdebug("alloc order %d for %lx", order, len);
1142 pages = alloc_pages(GFP_KERNEL, order);
1143 if (!pages)
1144 goto enomem;
1146 total = 1 << order;
1147 atomic_long_add(total, &mmap_pages_allocated);
1149 point = rlen >> PAGE_SHIFT;
1151 /* we allocated a power-of-2 sized page set, so we may want to trim off
1152 * the excess */
1153 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1154 while (total > point) {
1155 order = ilog2(total - point);
1156 n = 1 << order;
1157 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1158 atomic_long_sub(n, &mmap_pages_allocated);
1159 total -= n;
1160 set_page_refcounted(pages + total);
1161 __free_pages(pages + total, order);
1165 for (point = 1; point < total; point++)
1166 set_page_refcounted(&pages[point]);
1168 base = page_address(pages);
1169 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1170 region->vm_start = (unsigned long) base;
1171 region->vm_end = region->vm_start + rlen;
1172 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1174 vma->vm_start = region->vm_start;
1175 vma->vm_end = region->vm_start + len;
1177 if (vma->vm_file) {
1178 /* read the contents of a file into the copy */
1179 mm_segment_t old_fs;
1180 loff_t fpos;
1182 fpos = vma->vm_pgoff;
1183 fpos <<= PAGE_SHIFT;
1185 old_fs = get_fs();
1186 set_fs(KERNEL_DS);
1187 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1188 set_fs(old_fs);
1190 if (ret < 0)
1191 goto error_free;
1193 /* clear the last little bit */
1194 if (ret < rlen)
1195 memset(base + ret, 0, rlen - ret);
1199 return 0;
1201 error_free:
1202 free_page_series(region->vm_start, region->vm_end);
1203 region->vm_start = vma->vm_start = 0;
1204 region->vm_end = vma->vm_end = 0;
1205 region->vm_top = 0;
1206 return ret;
1208 enomem:
1209 printk("Allocation of length %lu from process %d (%s) failed\n",
1210 len, current->pid, current->comm);
1211 show_free_areas();
1212 return -ENOMEM;
1216 * handle mapping creation for uClinux
1218 unsigned long do_mmap_pgoff(struct file *file,
1219 unsigned long addr,
1220 unsigned long len,
1221 unsigned long prot,
1222 unsigned long flags,
1223 unsigned long pgoff)
1225 struct vm_area_struct *vma;
1226 struct vm_region *region;
1227 struct rb_node *rb;
1228 unsigned long capabilities, vm_flags, result;
1229 int ret;
1231 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1233 /* decide whether we should attempt the mapping, and if so what sort of
1234 * mapping */
1235 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1236 &capabilities);
1237 if (ret < 0) {
1238 kleave(" = %d [val]", ret);
1239 return ret;
1242 /* we ignore the address hint */
1243 addr = 0;
1245 /* we've determined that we can make the mapping, now translate what we
1246 * now know into VMA flags */
1247 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1249 /* we're going to need to record the mapping */
1250 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1251 if (!region)
1252 goto error_getting_region;
1254 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1255 if (!vma)
1256 goto error_getting_vma;
1258 region->vm_usage = 1;
1259 region->vm_flags = vm_flags;
1260 region->vm_pgoff = pgoff;
1262 INIT_LIST_HEAD(&vma->anon_vma_chain);
1263 vma->vm_flags = vm_flags;
1264 vma->vm_pgoff = pgoff;
1266 if (file) {
1267 region->vm_file = file;
1268 get_file(file);
1269 vma->vm_file = file;
1270 get_file(file);
1271 if (vm_flags & VM_EXECUTABLE) {
1272 added_exe_file_vma(current->mm);
1273 vma->vm_mm = current->mm;
1277 down_write(&nommu_region_sem);
1279 /* if we want to share, we need to check for regions created by other
1280 * mmap() calls that overlap with our proposed mapping
1281 * - we can only share with a superset match on most regular files
1282 * - shared mappings on character devices and memory backed files are
1283 * permitted to overlap inexactly as far as we are concerned for in
1284 * these cases, sharing is handled in the driver or filesystem rather
1285 * than here
1287 if (vm_flags & VM_MAYSHARE) {
1288 struct vm_region *pregion;
1289 unsigned long pglen, rpglen, pgend, rpgend, start;
1291 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1292 pgend = pgoff + pglen;
1294 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1295 pregion = rb_entry(rb, struct vm_region, vm_rb);
1297 if (!(pregion->vm_flags & VM_MAYSHARE))
1298 continue;
1300 /* search for overlapping mappings on the same file */
1301 if (pregion->vm_file->f_path.dentry->d_inode !=
1302 file->f_path.dentry->d_inode)
1303 continue;
1305 if (pregion->vm_pgoff >= pgend)
1306 continue;
1308 rpglen = pregion->vm_end - pregion->vm_start;
1309 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1310 rpgend = pregion->vm_pgoff + rpglen;
1311 if (pgoff >= rpgend)
1312 continue;
1314 /* handle inexactly overlapping matches between
1315 * mappings */
1316 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1317 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1318 /* new mapping is not a subset of the region */
1319 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1320 goto sharing_violation;
1321 continue;
1324 /* we've found a region we can share */
1325 pregion->vm_usage++;
1326 vma->vm_region = pregion;
1327 start = pregion->vm_start;
1328 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1329 vma->vm_start = start;
1330 vma->vm_end = start + len;
1332 if (pregion->vm_flags & VM_MAPPED_COPY) {
1333 kdebug("share copy");
1334 vma->vm_flags |= VM_MAPPED_COPY;
1335 } else {
1336 kdebug("share mmap");
1337 ret = do_mmap_shared_file(vma);
1338 if (ret < 0) {
1339 vma->vm_region = NULL;
1340 vma->vm_start = 0;
1341 vma->vm_end = 0;
1342 pregion->vm_usage--;
1343 pregion = NULL;
1344 goto error_just_free;
1347 fput(region->vm_file);
1348 kmem_cache_free(vm_region_jar, region);
1349 region = pregion;
1350 result = start;
1351 goto share;
1354 /* obtain the address at which to make a shared mapping
1355 * - this is the hook for quasi-memory character devices to
1356 * tell us the location of a shared mapping
1358 if (capabilities & BDI_CAP_MAP_DIRECT) {
1359 addr = file->f_op->get_unmapped_area(file, addr, len,
1360 pgoff, flags);
1361 if (IS_ERR((void *) addr)) {
1362 ret = addr;
1363 if (ret != (unsigned long) -ENOSYS)
1364 goto error_just_free;
1366 /* the driver refused to tell us where to site
1367 * the mapping so we'll have to attempt to copy
1368 * it */
1369 ret = (unsigned long) -ENODEV;
1370 if (!(capabilities & BDI_CAP_MAP_COPY))
1371 goto error_just_free;
1373 capabilities &= ~BDI_CAP_MAP_DIRECT;
1374 } else {
1375 vma->vm_start = region->vm_start = addr;
1376 vma->vm_end = region->vm_end = addr + len;
1381 vma->vm_region = region;
1383 /* set up the mapping
1384 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1386 if (file && vma->vm_flags & VM_SHARED)
1387 ret = do_mmap_shared_file(vma);
1388 else
1389 ret = do_mmap_private(vma, region, len, capabilities);
1390 if (ret < 0)
1391 goto error_just_free;
1392 add_nommu_region(region);
1394 /* clear anonymous mappings that don't ask for uninitialized data */
1395 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1396 memset((void *)region->vm_start, 0,
1397 region->vm_end - region->vm_start);
1399 /* okay... we have a mapping; now we have to register it */
1400 result = vma->vm_start;
1402 current->mm->total_vm += len >> PAGE_SHIFT;
1404 share:
1405 add_vma_to_mm(current->mm, vma);
1407 /* we flush the region from the icache only when the first executable
1408 * mapping of it is made */
1409 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1410 flush_icache_range(region->vm_start, region->vm_end);
1411 region->vm_icache_flushed = true;
1414 up_write(&nommu_region_sem);
1416 kleave(" = %lx", result);
1417 return result;
1419 error_just_free:
1420 up_write(&nommu_region_sem);
1421 error:
1422 if (region->vm_file)
1423 fput(region->vm_file);
1424 kmem_cache_free(vm_region_jar, region);
1425 if (vma->vm_file)
1426 fput(vma->vm_file);
1427 if (vma->vm_flags & VM_EXECUTABLE)
1428 removed_exe_file_vma(vma->vm_mm);
1429 kmem_cache_free(vm_area_cachep, vma);
1430 kleave(" = %d", ret);
1431 return ret;
1433 sharing_violation:
1434 up_write(&nommu_region_sem);
1435 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1436 ret = -EINVAL;
1437 goto error;
1439 error_getting_vma:
1440 kmem_cache_free(vm_region_jar, region);
1441 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1442 " from process %d failed\n",
1443 len, current->pid);
1444 show_free_areas();
1445 return -ENOMEM;
1447 error_getting_region:
1448 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1449 " from process %d failed\n",
1450 len, current->pid);
1451 show_free_areas();
1452 return -ENOMEM;
1454 EXPORT_SYMBOL(do_mmap_pgoff);
1456 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1457 unsigned long, prot, unsigned long, flags,
1458 unsigned long, fd, unsigned long, pgoff)
1460 struct file *file = NULL;
1461 unsigned long retval = -EBADF;
1463 audit_mmap_fd(fd, flags);
1464 if (!(flags & MAP_ANONYMOUS)) {
1465 file = fget(fd);
1466 if (!file)
1467 goto out;
1470 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1472 down_write(&current->mm->mmap_sem);
1473 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1474 up_write(&current->mm->mmap_sem);
1476 if (file)
1477 fput(file);
1478 out:
1479 return retval;
1482 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1483 struct mmap_arg_struct {
1484 unsigned long addr;
1485 unsigned long len;
1486 unsigned long prot;
1487 unsigned long flags;
1488 unsigned long fd;
1489 unsigned long offset;
1492 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1494 struct mmap_arg_struct a;
1496 if (copy_from_user(&a, arg, sizeof(a)))
1497 return -EFAULT;
1498 if (a.offset & ~PAGE_MASK)
1499 return -EINVAL;
1501 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1502 a.offset >> PAGE_SHIFT);
1504 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1507 * split a vma into two pieces at address 'addr', a new vma is allocated either
1508 * for the first part or the tail.
1510 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1511 unsigned long addr, int new_below)
1513 struct vm_area_struct *new;
1514 struct vm_region *region;
1515 unsigned long npages;
1517 kenter("");
1519 /* we're only permitted to split anonymous regions (these should have
1520 * only a single usage on the region) */
1521 if (vma->vm_file)
1522 return -ENOMEM;
1524 if (mm->map_count >= sysctl_max_map_count)
1525 return -ENOMEM;
1527 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1528 if (!region)
1529 return -ENOMEM;
1531 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1532 if (!new) {
1533 kmem_cache_free(vm_region_jar, region);
1534 return -ENOMEM;
1537 /* most fields are the same, copy all, and then fixup */
1538 *new = *vma;
1539 *region = *vma->vm_region;
1540 new->vm_region = region;
1542 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1544 if (new_below) {
1545 region->vm_top = region->vm_end = new->vm_end = addr;
1546 } else {
1547 region->vm_start = new->vm_start = addr;
1548 region->vm_pgoff = new->vm_pgoff += npages;
1551 if (new->vm_ops && new->vm_ops->open)
1552 new->vm_ops->open(new);
1554 delete_vma_from_mm(vma);
1555 down_write(&nommu_region_sem);
1556 delete_nommu_region(vma->vm_region);
1557 if (new_below) {
1558 vma->vm_region->vm_start = vma->vm_start = addr;
1559 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1560 } else {
1561 vma->vm_region->vm_end = vma->vm_end = addr;
1562 vma->vm_region->vm_top = addr;
1564 add_nommu_region(vma->vm_region);
1565 add_nommu_region(new->vm_region);
1566 up_write(&nommu_region_sem);
1567 add_vma_to_mm(mm, vma);
1568 add_vma_to_mm(mm, new);
1569 return 0;
1573 * shrink a VMA by removing the specified chunk from either the beginning or
1574 * the end
1576 static int shrink_vma(struct mm_struct *mm,
1577 struct vm_area_struct *vma,
1578 unsigned long from, unsigned long to)
1580 struct vm_region *region;
1582 kenter("");
1584 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1585 * and list */
1586 delete_vma_from_mm(vma);
1587 if (from > vma->vm_start)
1588 vma->vm_end = from;
1589 else
1590 vma->vm_start = to;
1591 add_vma_to_mm(mm, vma);
1593 /* cut the backing region down to size */
1594 region = vma->vm_region;
1595 BUG_ON(region->vm_usage != 1);
1597 down_write(&nommu_region_sem);
1598 delete_nommu_region(region);
1599 if (from > region->vm_start) {
1600 to = region->vm_top;
1601 region->vm_top = region->vm_end = from;
1602 } else {
1603 region->vm_start = to;
1605 add_nommu_region(region);
1606 up_write(&nommu_region_sem);
1608 free_page_series(from, to);
1609 return 0;
1613 * release a mapping
1614 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1615 * VMA, though it need not cover the whole VMA
1617 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1619 struct vm_area_struct *vma;
1620 struct rb_node *rb;
1621 unsigned long end = start + len;
1622 int ret;
1624 kenter(",%lx,%zx", start, len);
1626 if (len == 0)
1627 return -EINVAL;
1629 /* find the first potentially overlapping VMA */
1630 vma = find_vma(mm, start);
1631 if (!vma) {
1632 static int limit = 0;
1633 if (limit < 5) {
1634 printk(KERN_WARNING
1635 "munmap of memory not mmapped by process %d"
1636 " (%s): 0x%lx-0x%lx\n",
1637 current->pid, current->comm,
1638 start, start + len - 1);
1639 limit++;
1641 return -EINVAL;
1644 /* we're allowed to split an anonymous VMA but not a file-backed one */
1645 if (vma->vm_file) {
1646 do {
1647 if (start > vma->vm_start) {
1648 kleave(" = -EINVAL [miss]");
1649 return -EINVAL;
1651 if (end == vma->vm_end)
1652 goto erase_whole_vma;
1653 rb = rb_next(&vma->vm_rb);
1654 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1655 } while (rb);
1656 kleave(" = -EINVAL [split file]");
1657 return -EINVAL;
1658 } else {
1659 /* the chunk must be a subset of the VMA found */
1660 if (start == vma->vm_start && end == vma->vm_end)
1661 goto erase_whole_vma;
1662 if (start < vma->vm_start || end > vma->vm_end) {
1663 kleave(" = -EINVAL [superset]");
1664 return -EINVAL;
1666 if (start & ~PAGE_MASK) {
1667 kleave(" = -EINVAL [unaligned start]");
1668 return -EINVAL;
1670 if (end != vma->vm_end && end & ~PAGE_MASK) {
1671 kleave(" = -EINVAL [unaligned split]");
1672 return -EINVAL;
1674 if (start != vma->vm_start && end != vma->vm_end) {
1675 ret = split_vma(mm, vma, start, 1);
1676 if (ret < 0) {
1677 kleave(" = %d [split]", ret);
1678 return ret;
1681 return shrink_vma(mm, vma, start, end);
1684 erase_whole_vma:
1685 delete_vma_from_mm(vma);
1686 delete_vma(mm, vma);
1687 kleave(" = 0");
1688 return 0;
1690 EXPORT_SYMBOL(do_munmap);
1692 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1694 int ret;
1695 struct mm_struct *mm = current->mm;
1697 down_write(&mm->mmap_sem);
1698 ret = do_munmap(mm, addr, len);
1699 up_write(&mm->mmap_sem);
1700 return ret;
1704 * release all the mappings made in a process's VM space
1706 void exit_mmap(struct mm_struct *mm)
1708 struct vm_area_struct *vma;
1710 if (!mm)
1711 return;
1713 kenter("");
1715 mm->total_vm = 0;
1717 while ((vma = mm->mmap)) {
1718 mm->mmap = vma->vm_next;
1719 delete_vma_from_mm(vma);
1720 delete_vma(mm, vma);
1721 cond_resched();
1724 kleave("");
1727 unsigned long do_brk(unsigned long addr, unsigned long len)
1729 return -ENOMEM;
1733 * expand (or shrink) an existing mapping, potentially moving it at the same
1734 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1736 * under NOMMU conditions, we only permit changing a mapping's size, and only
1737 * as long as it stays within the region allocated by do_mmap_private() and the
1738 * block is not shareable
1740 * MREMAP_FIXED is not supported under NOMMU conditions
1742 unsigned long do_mremap(unsigned long addr,
1743 unsigned long old_len, unsigned long new_len,
1744 unsigned long flags, unsigned long new_addr)
1746 struct vm_area_struct *vma;
1748 /* insanity checks first */
1749 if (old_len == 0 || new_len == 0)
1750 return (unsigned long) -EINVAL;
1752 if (addr & ~PAGE_MASK)
1753 return -EINVAL;
1755 if (flags & MREMAP_FIXED && new_addr != addr)
1756 return (unsigned long) -EINVAL;
1758 vma = find_vma_exact(current->mm, addr, old_len);
1759 if (!vma)
1760 return (unsigned long) -EINVAL;
1762 if (vma->vm_end != vma->vm_start + old_len)
1763 return (unsigned long) -EFAULT;
1765 if (vma->vm_flags & VM_MAYSHARE)
1766 return (unsigned long) -EPERM;
1768 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1769 return (unsigned long) -ENOMEM;
1771 /* all checks complete - do it */
1772 vma->vm_end = vma->vm_start + new_len;
1773 return vma->vm_start;
1775 EXPORT_SYMBOL(do_mremap);
1777 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1778 unsigned long, new_len, unsigned long, flags,
1779 unsigned long, new_addr)
1781 unsigned long ret;
1783 down_write(&current->mm->mmap_sem);
1784 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1785 up_write(&current->mm->mmap_sem);
1786 return ret;
1789 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1790 unsigned int foll_flags)
1792 return NULL;
1795 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1796 unsigned long to, unsigned long size, pgprot_t prot)
1798 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1799 return 0;
1801 EXPORT_SYMBOL(remap_pfn_range);
1803 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1804 unsigned long pgoff)
1806 unsigned int size = vma->vm_end - vma->vm_start;
1808 if (!(vma->vm_flags & VM_USERMAP))
1809 return -EINVAL;
1811 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1812 vma->vm_end = vma->vm_start + size;
1814 return 0;
1816 EXPORT_SYMBOL(remap_vmalloc_range);
1818 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1822 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1823 unsigned long len, unsigned long pgoff, unsigned long flags)
1825 return -ENOMEM;
1828 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1832 void unmap_mapping_range(struct address_space *mapping,
1833 loff_t const holebegin, loff_t const holelen,
1834 int even_cows)
1837 EXPORT_SYMBOL(unmap_mapping_range);
1840 * Check that a process has enough memory to allocate a new virtual
1841 * mapping. 0 means there is enough memory for the allocation to
1842 * succeed and -ENOMEM implies there is not.
1844 * We currently support three overcommit policies, which are set via the
1845 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1847 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1848 * Additional code 2002 Jul 20 by Robert Love.
1850 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1852 * Note this is a helper function intended to be used by LSMs which
1853 * wish to use this logic.
1855 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1857 unsigned long free, allowed;
1859 vm_acct_memory(pages);
1862 * Sometimes we want to use more memory than we have
1864 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1865 return 0;
1867 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1868 unsigned long n;
1870 free = global_page_state(NR_FILE_PAGES);
1871 free += nr_swap_pages;
1874 * Any slabs which are created with the
1875 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1876 * which are reclaimable, under pressure. The dentry
1877 * cache and most inode caches should fall into this
1879 free += global_page_state(NR_SLAB_RECLAIMABLE);
1882 * Leave the last 3% for root
1884 if (!cap_sys_admin)
1885 free -= free / 32;
1887 if (free > pages)
1888 return 0;
1891 * nr_free_pages() is very expensive on large systems,
1892 * only call if we're about to fail.
1894 n = nr_free_pages();
1897 * Leave reserved pages. The pages are not for anonymous pages.
1899 if (n <= totalreserve_pages)
1900 goto error;
1901 else
1902 n -= totalreserve_pages;
1905 * Leave the last 3% for root
1907 if (!cap_sys_admin)
1908 n -= n / 32;
1909 free += n;
1911 if (free > pages)
1912 return 0;
1914 goto error;
1917 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1919 * Leave the last 3% for root
1921 if (!cap_sys_admin)
1922 allowed -= allowed / 32;
1923 allowed += total_swap_pages;
1925 /* Don't let a single process grow too big:
1926 leave 3% of the size of this process for other processes */
1927 if (mm)
1928 allowed -= mm->total_vm / 32;
1930 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1931 return 0;
1933 error:
1934 vm_unacct_memory(pages);
1936 return -ENOMEM;
1939 int in_gate_area_no_task(unsigned long addr)
1941 return 0;
1944 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1946 BUG();
1947 return 0;
1949 EXPORT_SYMBOL(filemap_fault);
1952 * Access another process' address space.
1953 * - source/target buffer must be kernel space
1955 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1957 struct vm_area_struct *vma;
1958 struct mm_struct *mm;
1960 if (addr + len < addr)
1961 return 0;
1963 mm = get_task_mm(tsk);
1964 if (!mm)
1965 return 0;
1967 down_read(&mm->mmap_sem);
1969 /* the access must start within one of the target process's mappings */
1970 vma = find_vma(mm, addr);
1971 if (vma) {
1972 /* don't overrun this mapping */
1973 if (addr + len >= vma->vm_end)
1974 len = vma->vm_end - addr;
1976 /* only read or write mappings where it is permitted */
1977 if (write && vma->vm_flags & VM_MAYWRITE)
1978 copy_to_user_page(vma, NULL, addr,
1979 (void *) addr, buf, len);
1980 else if (!write && vma->vm_flags & VM_MAYREAD)
1981 copy_from_user_page(vma, NULL, addr,
1982 buf, (void *) addr, len);
1983 else
1984 len = 0;
1985 } else {
1986 len = 0;
1989 up_read(&mm->mmap_sem);
1990 mmput(mm);
1991 return len;
1995 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1996 * @inode: The inode to check
1997 * @size: The current filesize of the inode
1998 * @newsize: The proposed filesize of the inode
2000 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2001 * make sure that that any outstanding VMAs aren't broken and then shrink the
2002 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2003 * automatically grant mappings that are too large.
2005 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2006 size_t newsize)
2008 struct vm_area_struct *vma;
2009 struct prio_tree_iter iter;
2010 struct vm_region *region;
2011 pgoff_t low, high;
2012 size_t r_size, r_top;
2014 low = newsize >> PAGE_SHIFT;
2015 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2017 down_write(&nommu_region_sem);
2019 /* search for VMAs that fall within the dead zone */
2020 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2021 low, high) {
2022 /* found one - only interested if it's shared out of the page
2023 * cache */
2024 if (vma->vm_flags & VM_SHARED) {
2025 up_write(&nommu_region_sem);
2026 return -ETXTBSY; /* not quite true, but near enough */
2030 /* reduce any regions that overlap the dead zone - if in existence,
2031 * these will be pointed to by VMAs that don't overlap the dead zone
2033 * we don't check for any regions that start beyond the EOF as there
2034 * shouldn't be any
2036 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2037 0, ULONG_MAX) {
2038 if (!(vma->vm_flags & VM_SHARED))
2039 continue;
2041 region = vma->vm_region;
2042 r_size = region->vm_top - region->vm_start;
2043 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2045 if (r_top > newsize) {
2046 region->vm_top -= r_top - newsize;
2047 if (region->vm_end > region->vm_top)
2048 region->vm_end = region->vm_top;
2052 up_write(&nommu_region_sem);
2053 return 0;