wil6210: report reset time
[linux-2.6/btrfs-unstable.git] / drivers / ata / sata_dwc_460ex.c
blob523524b68022d3710f342d96f54926014de551ae
1 /*
2 * drivers/ata/sata_dwc_460ex.c
4 * Synopsys DesignWare Cores (DWC) SATA host driver
6 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9 * Copyright 2008 DENX Software Engineering
11 * Based on versions provided by AMCC and Synopsys which are:
12 * Copyright 2006 Applied Micro Circuits Corporation
13 * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
21 #ifdef CONFIG_SATA_DWC_DEBUG
22 #define DEBUG
23 #endif
25 #ifdef CONFIG_SATA_DWC_VDEBUG
26 #define VERBOSE_DEBUG
27 #define DEBUG_NCQ
28 #endif
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/of_platform.h>
37 #include <linux/platform_device.h>
38 #include <linux/libata.h>
39 #include <linux/slab.h>
40 #include "libata.h"
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_cmnd.h>
45 /* These two are defined in "libata.h" */
46 #undef DRV_NAME
47 #undef DRV_VERSION
49 #define DRV_NAME "sata-dwc"
50 #define DRV_VERSION "1.3"
52 /* SATA DMA driver Globals */
53 #define DMA_NUM_CHANS 1
54 #define DMA_NUM_CHAN_REGS 8
56 /* SATA DMA Register definitions */
57 #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/
59 struct dmareg {
60 u32 low; /* Low bits 0-31 */
61 u32 high; /* High bits 32-63 */
64 /* DMA Per Channel registers */
65 struct dma_chan_regs {
66 struct dmareg sar; /* Source Address */
67 struct dmareg dar; /* Destination address */
68 struct dmareg llp; /* Linked List Pointer */
69 struct dmareg ctl; /* Control */
70 struct dmareg sstat; /* Source Status not implemented in core */
71 struct dmareg dstat; /* Destination Status not implemented in core*/
72 struct dmareg sstatar; /* Source Status Address not impl in core */
73 struct dmareg dstatar; /* Destination Status Address not implemente */
74 struct dmareg cfg; /* Config */
75 struct dmareg sgr; /* Source Gather */
76 struct dmareg dsr; /* Destination Scatter */
79 /* Generic Interrupt Registers */
80 struct dma_interrupt_regs {
81 struct dmareg tfr; /* Transfer Interrupt */
82 struct dmareg block; /* Block Interrupt */
83 struct dmareg srctran; /* Source Transfer Interrupt */
84 struct dmareg dsttran; /* Dest Transfer Interrupt */
85 struct dmareg error; /* Error */
88 struct ahb_dma_regs {
89 struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS];
90 struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */
91 struct dma_interrupt_regs interrupt_status; /* Interrupt Status */
92 struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */
93 struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */
94 struct dmareg statusInt; /* Interrupt combined*/
95 struct dmareg rq_srcreg; /* Src Trans Req */
96 struct dmareg rq_dstreg; /* Dst Trans Req */
97 struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req*/
98 struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req*/
99 struct dmareg rq_lst_srcreg; /* Last Src Trans Req*/
100 struct dmareg rq_lst_dstreg; /* Last Dst Trans Req*/
101 struct dmareg dma_cfg; /* DMA Config */
102 struct dmareg dma_chan_en; /* DMA Channel Enable*/
103 struct dmareg dma_id; /* DMA ID */
104 struct dmareg dma_test; /* DMA Test */
105 struct dmareg res1; /* reserved */
106 struct dmareg res2; /* reserved */
108 * DMA Comp Params
109 * Param 6 = dma_param[0], Param 5 = dma_param[1],
110 * Param 4 = dma_param[2] ...
112 struct dmareg dma_params[6];
115 /* Data structure for linked list item */
116 struct lli {
117 u32 sar; /* Source Address */
118 u32 dar; /* Destination address */
119 u32 llp; /* Linked List Pointer */
120 struct dmareg ctl; /* Control */
121 struct dmareg dstat; /* Destination Status */
124 enum {
125 SATA_DWC_DMAC_LLI_SZ = (sizeof(struct lli)),
126 SATA_DWC_DMAC_LLI_NUM = 256,
127 SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
128 SATA_DWC_DMAC_LLI_NUM),
129 SATA_DWC_DMAC_TWIDTH_BYTES = 4,
130 SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
131 SATA_DWC_DMAC_TWIDTH_BYTES),
134 /* DMA Register Operation Bits */
135 enum {
136 DMA_EN = 0x00000001, /* Enable AHB DMA */
137 DMA_CTL_LLP_SRCEN = 0x10000000, /* Blk chain enable Src */
138 DMA_CTL_LLP_DSTEN = 0x08000000, /* Blk chain enable Dst */
141 #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */
142 #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */
143 /* Enable channel */
144 #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
145 ((0x000000001 << (ch)) << 8))
146 /* Disable channel */
147 #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8))
148 /* Transfer Type & Flow Controller */
149 #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20)
150 #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */
151 #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */
152 /* Src Burst Transaction Length */
153 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
154 /* Dst Burst Transaction Length */
155 #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
156 /* Source Transfer Width */
157 #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
158 /* Destination Transfer Width */
159 #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
161 /* Assign HW handshaking interface (x) to destination / source peripheral */
162 #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
163 #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
164 #define DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5)
165 #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
168 * This define is used to set block chaining disabled in the control low
169 * register. It is already in little endian format so it can be &'d dirctly.
170 * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
172 enum {
173 DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
174 DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */
175 DMA_CTL_TTFC_M2P_PER = 0x00000003, /* Mem to per, peripheral cntr */
176 DMA_CTL_SINC_INC = 0x00000000, /* Source Address Increment */
177 DMA_CTL_SINC_DEC = 0x00000200,
178 DMA_CTL_SINC_NOCHANGE = 0x00000400,
179 DMA_CTL_DINC_INC = 0x00000000, /* Destination Address Increment */
180 DMA_CTL_DINC_DEC = 0x00000080,
181 DMA_CTL_DINC_NOCHANGE = 0x00000100,
182 DMA_CTL_INT_EN = 0x00000001, /* Interrupt Enable */
184 /* Channel Configuration Register high bits */
185 DMA_CFG_FCMOD_REQ = 0x00000001, /* Flow Control - request based */
186 DMA_CFG_PROTCTL = (0x00000003 << 2),/* Protection Control */
188 /* Channel Configuration Register low bits */
189 DMA_CFG_RELD_DST = 0x80000000, /* Reload Dest / Src Addr */
190 DMA_CFG_RELD_SRC = 0x40000000,
191 DMA_CFG_HS_SELSRC = 0x00000800, /* Software handshake Src/ Dest */
192 DMA_CFG_HS_SELDST = 0x00000400,
193 DMA_CFG_FIFOEMPTY = (0x00000001 << 9), /* FIFO Empty bit */
195 /* Channel Linked List Pointer Register */
196 DMA_LLP_AHBMASTER1 = 0, /* List Master Select */
197 DMA_LLP_AHBMASTER2 = 1,
199 SATA_DWC_MAX_PORTS = 1,
201 SATA_DWC_SCR_OFFSET = 0x24,
202 SATA_DWC_REG_OFFSET = 0x64,
205 /* DWC SATA Registers */
206 struct sata_dwc_regs {
207 u32 fptagr; /* 1st party DMA tag */
208 u32 fpbor; /* 1st party DMA buffer offset */
209 u32 fptcr; /* 1st party DMA Xfr count */
210 u32 dmacr; /* DMA Control */
211 u32 dbtsr; /* DMA Burst Transac size */
212 u32 intpr; /* Interrupt Pending */
213 u32 intmr; /* Interrupt Mask */
214 u32 errmr; /* Error Mask */
215 u32 llcr; /* Link Layer Control */
216 u32 phycr; /* PHY Control */
217 u32 physr; /* PHY Status */
218 u32 rxbistpd; /* Recvd BIST pattern def register */
219 u32 rxbistpd1; /* Recvd BIST data dword1 */
220 u32 rxbistpd2; /* Recvd BIST pattern data dword2 */
221 u32 txbistpd; /* Trans BIST pattern def register */
222 u32 txbistpd1; /* Trans BIST data dword1 */
223 u32 txbistpd2; /* Trans BIST data dword2 */
224 u32 bistcr; /* BIST Control Register */
225 u32 bistfctr; /* BIST FIS Count Register */
226 u32 bistsr; /* BIST Status Register */
227 u32 bistdecr; /* BIST Dword Error count register */
228 u32 res[15]; /* Reserved locations */
229 u32 testr; /* Test Register */
230 u32 versionr; /* Version Register */
231 u32 idr; /* ID Register */
232 u32 unimpl[192]; /* Unimplemented */
233 u32 dmadr[256]; /* FIFO Locations in DMA Mode */
236 enum {
237 SCR_SCONTROL_DET_ENABLE = 0x00000001,
238 SCR_SSTATUS_DET_PRESENT = 0x00000001,
239 SCR_SERROR_DIAG_X = 0x04000000,
240 /* DWC SATA Register Operations */
241 SATA_DWC_TXFIFO_DEPTH = 0x01FF,
242 SATA_DWC_RXFIFO_DEPTH = 0x01FF,
243 SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004,
244 SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
245 SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
246 SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN,
247 SATA_DWC_INTPR_DMAT = 0x00000001,
248 SATA_DWC_INTPR_NEWFP = 0x00000002,
249 SATA_DWC_INTPR_PMABRT = 0x00000004,
250 SATA_DWC_INTPR_ERR = 0x00000008,
251 SATA_DWC_INTPR_NEWBIST = 0x00000010,
252 SATA_DWC_INTPR_IPF = 0x10000000,
253 SATA_DWC_INTMR_DMATM = 0x00000001,
254 SATA_DWC_INTMR_NEWFPM = 0x00000002,
255 SATA_DWC_INTMR_PMABRTM = 0x00000004,
256 SATA_DWC_INTMR_ERRM = 0x00000008,
257 SATA_DWC_INTMR_NEWBISTM = 0x00000010,
258 SATA_DWC_LLCR_SCRAMEN = 0x00000001,
259 SATA_DWC_LLCR_DESCRAMEN = 0x00000002,
260 SATA_DWC_LLCR_RPDEN = 0x00000004,
261 /* This is all error bits, zero's are reserved fields. */
262 SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03
265 #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
266 #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
267 SATA_DWC_DMACR_TMOD_TXCHEN)
268 #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
269 SATA_DWC_DMACR_TMOD_TXCHEN)
270 #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
271 #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
272 << 16)
273 struct sata_dwc_device {
274 struct device *dev; /* generic device struct */
275 struct ata_probe_ent *pe; /* ptr to probe-ent */
276 struct ata_host *host;
277 u8 *reg_base;
278 struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */
279 int irq_dma;
282 #define SATA_DWC_QCMD_MAX 32
284 struct sata_dwc_device_port {
285 struct sata_dwc_device *hsdev;
286 int cmd_issued[SATA_DWC_QCMD_MAX];
287 struct lli *llit[SATA_DWC_QCMD_MAX]; /* DMA LLI table */
288 dma_addr_t llit_dma[SATA_DWC_QCMD_MAX];
289 u32 dma_chan[SATA_DWC_QCMD_MAX];
290 int dma_pending[SATA_DWC_QCMD_MAX];
294 * Commonly used DWC SATA driver Macros
296 #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\
297 (host)->private_data)
298 #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\
299 (ap)->host->private_data)
300 #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\
301 (ap)->private_data)
302 #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\
303 (qc)->ap->host->private_data)
304 #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\
305 (hsdevp)->hsdev)
307 enum {
308 SATA_DWC_CMD_ISSUED_NOT = 0,
309 SATA_DWC_CMD_ISSUED_PEND = 1,
310 SATA_DWC_CMD_ISSUED_EXEC = 2,
311 SATA_DWC_CMD_ISSUED_NODATA = 3,
313 SATA_DWC_DMA_PENDING_NONE = 0,
314 SATA_DWC_DMA_PENDING_TX = 1,
315 SATA_DWC_DMA_PENDING_RX = 2,
318 struct sata_dwc_host_priv {
319 void __iomem *scr_addr_sstatus;
320 u32 sata_dwc_sactive_issued ;
321 u32 sata_dwc_sactive_queued ;
322 u32 dma_interrupt_count;
323 struct ahb_dma_regs *sata_dma_regs;
324 struct device *dwc_dev;
325 int dma_channel;
327 struct sata_dwc_host_priv host_pvt;
329 * Prototypes
331 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
332 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
333 u32 check_status);
334 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
335 static void sata_dwc_port_stop(struct ata_port *ap);
336 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
337 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
338 static void dma_dwc_exit(struct sata_dwc_device *hsdev);
339 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
340 struct lli *lli, dma_addr_t dma_lli,
341 void __iomem *addr, int dir);
342 static void dma_dwc_xfer_start(int dma_ch);
344 static const char *get_prot_descript(u8 protocol)
346 switch ((enum ata_tf_protocols)protocol) {
347 case ATA_PROT_NODATA:
348 return "ATA no data";
349 case ATA_PROT_PIO:
350 return "ATA PIO";
351 case ATA_PROT_DMA:
352 return "ATA DMA";
353 case ATA_PROT_NCQ:
354 return "ATA NCQ";
355 case ATAPI_PROT_NODATA:
356 return "ATAPI no data";
357 case ATAPI_PROT_PIO:
358 return "ATAPI PIO";
359 case ATAPI_PROT_DMA:
360 return "ATAPI DMA";
361 default:
362 return "unknown";
366 static const char *get_dma_dir_descript(int dma_dir)
368 switch ((enum dma_data_direction)dma_dir) {
369 case DMA_BIDIRECTIONAL:
370 return "bidirectional";
371 case DMA_TO_DEVICE:
372 return "to device";
373 case DMA_FROM_DEVICE:
374 return "from device";
375 default:
376 return "none";
380 static void sata_dwc_tf_dump(struct ata_taskfile *tf)
382 dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
383 "0x%lx device: %x\n", tf->command,
384 get_prot_descript(tf->protocol), tf->flags, tf->device);
385 dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
386 "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
387 tf->lbam, tf->lbah);
388 dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
389 "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
390 tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
391 tf->hob_lbah);
395 * Function: get_burst_length_encode
396 * arguments: datalength: length in bytes of data
397 * returns value to be programmed in register corresponding to data length
398 * This value is effectively the log(base 2) of the length
400 static int get_burst_length_encode(int datalength)
402 int items = datalength >> 2; /* div by 4 to get lword count */
404 if (items >= 64)
405 return 5;
407 if (items >= 32)
408 return 4;
410 if (items >= 16)
411 return 3;
413 if (items >= 8)
414 return 2;
416 if (items >= 4)
417 return 1;
419 return 0;
422 static void clear_chan_interrupts(int c)
424 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
425 DMA_CHANNEL(c));
426 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
427 DMA_CHANNEL(c));
428 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
429 DMA_CHANNEL(c));
430 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
431 DMA_CHANNEL(c));
432 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
433 DMA_CHANNEL(c));
437 * Function: dma_request_channel
438 * arguments: None
439 * returns channel number if available else -1
440 * This function assigns the next available DMA channel from the list to the
441 * requester
443 static int dma_request_channel(void)
445 /* Check if the channel is not currently in use */
446 if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &
447 DMA_CHANNEL(host_pvt.dma_channel)))
448 return host_pvt.dma_channel;
449 dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n",
450 __func__, host_pvt.dma_channel);
451 return -1;
455 * Function: dma_dwc_interrupt
456 * arguments: irq, dev_id, pt_regs
457 * returns channel number if available else -1
458 * Interrupt Handler for DW AHB SATA DMA
460 static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
462 int chan;
463 u32 tfr_reg, err_reg;
464 unsigned long flags;
465 struct sata_dwc_device *hsdev =
466 (struct sata_dwc_device *)hsdev_instance;
467 struct ata_host *host = (struct ata_host *)hsdev->host;
468 struct ata_port *ap;
469 struct sata_dwc_device_port *hsdevp;
470 u8 tag = 0;
471 unsigned int port = 0;
473 spin_lock_irqsave(&host->lock, flags);
474 ap = host->ports[port];
475 hsdevp = HSDEVP_FROM_AP(ap);
476 tag = ap->link.active_tag;
478 tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
479 .low));
480 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
481 .low));
483 dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
484 tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
486 chan = host_pvt.dma_channel;
487 if (chan >= 0) {
488 /* Check for end-of-transfer interrupt. */
489 if (tfr_reg & DMA_CHANNEL(chan)) {
491 * Each DMA command produces 2 interrupts. Only
492 * complete the command after both interrupts have been
493 * seen. (See sata_dwc_isr())
495 host_pvt.dma_interrupt_count++;
496 sata_dwc_clear_dmacr(hsdevp, tag);
498 if (hsdevp->dma_pending[tag] ==
499 SATA_DWC_DMA_PENDING_NONE) {
500 dev_err(ap->dev, "DMA not pending eot=0x%08x "
501 "err=0x%08x tag=0x%02x pending=%d\n",
502 tfr_reg, err_reg, tag,
503 hsdevp->dma_pending[tag]);
506 if ((host_pvt.dma_interrupt_count % 2) == 0)
507 sata_dwc_dma_xfer_complete(ap, 1);
509 /* Clear the interrupt */
510 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
511 .tfr.low),
512 DMA_CHANNEL(chan));
515 /* Check for error interrupt. */
516 if (err_reg & DMA_CHANNEL(chan)) {
517 /* TODO Need error handler ! */
518 dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
519 err_reg);
521 /* Clear the interrupt. */
522 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
523 .error.low),
524 DMA_CHANNEL(chan));
527 spin_unlock_irqrestore(&host->lock, flags);
528 return IRQ_HANDLED;
532 * Function: dma_request_interrupts
533 * arguments: hsdev
534 * returns status
535 * This function registers ISR for a particular DMA channel interrupt
537 static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
539 int retval = 0;
540 int chan = host_pvt.dma_channel;
542 if (chan >= 0) {
543 /* Unmask error interrupt */
544 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
545 DMA_ENABLE_CHAN(chan));
547 /* Unmask end-of-transfer interrupt */
548 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
549 DMA_ENABLE_CHAN(chan));
552 retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
553 if (retval) {
554 dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
555 __func__, irq);
556 return -ENODEV;
559 /* Mark this interrupt as requested */
560 hsdev->irq_dma = irq;
561 return 0;
565 * Function: map_sg_to_lli
566 * The Synopsis driver has a comment proposing that better performance
567 * is possible by only enabling interrupts on the last item in the linked list.
568 * However, it seems that could be a problem if an error happened on one of the
569 * first items. The transfer would halt, but no error interrupt would occur.
570 * Currently this function sets interrupts enabled for each linked list item:
571 * DMA_CTL_INT_EN.
573 static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
574 struct lli *lli, dma_addr_t dma_lli,
575 void __iomem *dmadr_addr, int dir)
577 int i, idx = 0;
578 int fis_len = 0;
579 dma_addr_t next_llp;
580 int bl;
581 int sms_val, dms_val;
583 sms_val = 0;
584 dms_val = 1 + host_pvt.dma_channel;
585 dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
586 " dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli,
587 (u32)dmadr_addr);
589 bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
591 for (i = 0; i < num_elems; i++, sg++) {
592 u32 addr, offset;
593 u32 sg_len, len;
595 addr = (u32) sg_dma_address(sg);
596 sg_len = sg_dma_len(sg);
598 dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
599 "=%d\n", __func__, i, addr, sg_len);
601 while (sg_len) {
602 if (idx >= SATA_DWC_DMAC_LLI_NUM) {
603 /* The LLI table is not large enough. */
604 dev_err(host_pvt.dwc_dev, "LLI table overrun "
605 "(idx=%d)\n", idx);
606 break;
608 len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
609 SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
611 offset = addr & 0xffff;
612 if ((offset + sg_len) > 0x10000)
613 len = 0x10000 - offset;
616 * Make sure a LLI block is not created that will span
617 * 8K max FIS boundary. If the block spans such a FIS
618 * boundary, there is a chance that a DMA burst will
619 * cross that boundary -- this results in an error in
620 * the host controller.
622 if (fis_len + len > 8192) {
623 dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
624 "%d(0x%x) len=%d(0x%x)\n", fis_len,
625 fis_len, len, len);
626 len = 8192 - fis_len;
627 fis_len = 0;
628 } else {
629 fis_len += len;
631 if (fis_len == 8192)
632 fis_len = 0;
635 * Set DMA addresses and lower half of control register
636 * based on direction.
638 if (dir == DMA_FROM_DEVICE) {
639 lli[idx].dar = cpu_to_le32(addr);
640 lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
642 lli[idx].ctl.low = cpu_to_le32(
643 DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
644 DMA_CTL_SMS(sms_val) |
645 DMA_CTL_DMS(dms_val) |
646 DMA_CTL_SRC_MSIZE(bl) |
647 DMA_CTL_DST_MSIZE(bl) |
648 DMA_CTL_SINC_NOCHANGE |
649 DMA_CTL_SRC_TRWID(2) |
650 DMA_CTL_DST_TRWID(2) |
651 DMA_CTL_INT_EN |
652 DMA_CTL_LLP_SRCEN |
653 DMA_CTL_LLP_DSTEN);
654 } else { /* DMA_TO_DEVICE */
655 lli[idx].sar = cpu_to_le32(addr);
656 lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
658 lli[idx].ctl.low = cpu_to_le32(
659 DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
660 DMA_CTL_SMS(dms_val) |
661 DMA_CTL_DMS(sms_val) |
662 DMA_CTL_SRC_MSIZE(bl) |
663 DMA_CTL_DST_MSIZE(bl) |
664 DMA_CTL_DINC_NOCHANGE |
665 DMA_CTL_SRC_TRWID(2) |
666 DMA_CTL_DST_TRWID(2) |
667 DMA_CTL_INT_EN |
668 DMA_CTL_LLP_SRCEN |
669 DMA_CTL_LLP_DSTEN);
672 dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
673 "0x%08x val: 0x%08x\n", __func__,
674 len, DMA_CTL_BLK_TS(len / 4));
676 /* Program the LLI CTL high register */
677 lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
678 (len / 4));
680 /* Program the next pointer. The next pointer must be
681 * the physical address, not the virtual address.
683 next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
684 lli)));
686 /* The last 2 bits encode the list master select. */
687 next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
689 lli[idx].llp = cpu_to_le32(next_llp);
690 idx++;
691 sg_len -= len;
692 addr += len;
697 * The last next ptr has to be zero and the last control low register
698 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
699 * and destination enable) set back to 0 (disabled.) This is what tells
700 * the core that this is the last item in the linked list.
702 if (idx) {
703 lli[idx-1].llp = 0x00000000;
704 lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
706 /* Flush cache to memory */
707 dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
708 DMA_BIDIRECTIONAL);
711 return idx;
715 * Function: dma_dwc_xfer_start
716 * arguments: Channel number
717 * Return : None
718 * Enables the DMA channel
720 static void dma_dwc_xfer_start(int dma_ch)
722 /* Enable the DMA channel */
723 out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
724 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
725 DMA_ENABLE_CHAN(dma_ch));
728 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
729 struct lli *lli, dma_addr_t dma_lli,
730 void __iomem *addr, int dir)
732 int dma_ch;
733 int num_lli;
734 /* Acquire DMA channel */
735 dma_ch = dma_request_channel();
736 if (dma_ch == -1) {
737 dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
738 __func__);
739 return -EAGAIN;
742 /* Convert SG list to linked list of items (LLIs) for AHB DMA */
743 num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
745 dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
746 " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
747 lli, (u32)dma_lli, addr, num_lli);
749 clear_chan_interrupts(dma_ch);
751 /* Program the CFG register. */
752 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
753 DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) |
754 DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
755 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low),
756 DMA_CFG_HW_CH_PRIOR(dma_ch));
758 /* Program the address of the linked list */
759 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
760 DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
762 /* Program the CTL register with src enable / dst enable */
763 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
764 DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
765 return dma_ch;
769 * Function: dma_dwc_exit
770 * arguments: None
771 * returns status
772 * This function exits the SATA DMA driver
774 static void dma_dwc_exit(struct sata_dwc_device *hsdev)
776 dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
777 if (host_pvt.sata_dma_regs) {
778 iounmap(host_pvt.sata_dma_regs);
779 host_pvt.sata_dma_regs = NULL;
782 if (hsdev->irq_dma) {
783 free_irq(hsdev->irq_dma, hsdev);
784 hsdev->irq_dma = 0;
789 * Function: dma_dwc_init
790 * arguments: hsdev
791 * returns status
792 * This function initializes the SATA DMA driver
794 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
796 int err;
798 err = dma_request_interrupts(hsdev, irq);
799 if (err) {
800 dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
801 " %d\n", __func__, err);
802 goto error_out;
805 /* Enabe DMA */
806 out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
808 dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
809 dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
810 sata_dma_regs);
812 return 0;
814 error_out:
815 dma_dwc_exit(hsdev);
817 return err;
820 static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
822 if (scr > SCR_NOTIFICATION) {
823 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
824 __func__, scr);
825 return -EINVAL;
828 *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4));
829 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
830 __func__, link->ap->print_id, scr, *val);
832 return 0;
835 static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
837 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
838 __func__, link->ap->print_id, scr, val);
839 if (scr > SCR_NOTIFICATION) {
840 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
841 __func__, scr);
842 return -EINVAL;
844 out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val);
846 return 0;
849 static u32 core_scr_read(unsigned int scr)
851 return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\
852 (scr * 4));
855 static void core_scr_write(unsigned int scr, u32 val)
857 out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4),
858 val);
861 static void clear_serror(void)
863 u32 val;
864 val = core_scr_read(SCR_ERROR);
865 core_scr_write(SCR_ERROR, val);
869 static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
871 out_le32(&hsdev->sata_dwc_regs->intpr,
872 in_le32(&hsdev->sata_dwc_regs->intpr));
875 static u32 qcmd_tag_to_mask(u8 tag)
877 return 0x00000001 << (tag & 0x1f);
880 /* See ahci.c */
881 static void sata_dwc_error_intr(struct ata_port *ap,
882 struct sata_dwc_device *hsdev, uint intpr)
884 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
885 struct ata_eh_info *ehi = &ap->link.eh_info;
886 unsigned int err_mask = 0, action = 0;
887 struct ata_queued_cmd *qc;
888 u32 serror;
889 u8 status, tag;
890 u32 err_reg;
892 ata_ehi_clear_desc(ehi);
894 serror = core_scr_read(SCR_ERROR);
895 status = ap->ops->sff_check_status(ap);
897 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
898 low));
899 tag = ap->link.active_tag;
901 dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
902 "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
903 __func__, serror, intpr, status, host_pvt.dma_interrupt_count,
904 hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
906 /* Clear error register and interrupt bit */
907 clear_serror();
908 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
910 /* This is the only error happening now. TODO check for exact error */
912 err_mask |= AC_ERR_HOST_BUS;
913 action |= ATA_EH_RESET;
915 /* Pass this on to EH */
916 ehi->serror |= serror;
917 ehi->action |= action;
919 qc = ata_qc_from_tag(ap, tag);
920 if (qc)
921 qc->err_mask |= err_mask;
922 else
923 ehi->err_mask |= err_mask;
925 ata_port_abort(ap);
929 * Function : sata_dwc_isr
930 * arguments : irq, void *dev_instance, struct pt_regs *regs
931 * Return value : irqreturn_t - status of IRQ
932 * This Interrupt handler called via port ops registered function.
933 * .irq_handler = sata_dwc_isr
935 static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
937 struct ata_host *host = (struct ata_host *)dev_instance;
938 struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
939 struct ata_port *ap;
940 struct ata_queued_cmd *qc;
941 unsigned long flags;
942 u8 status, tag;
943 int handled, num_processed, port = 0;
944 uint intpr, sactive, sactive2, tag_mask;
945 struct sata_dwc_device_port *hsdevp;
946 host_pvt.sata_dwc_sactive_issued = 0;
948 spin_lock_irqsave(&host->lock, flags);
950 /* Read the interrupt register */
951 intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
953 ap = host->ports[port];
954 hsdevp = HSDEVP_FROM_AP(ap);
956 dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
957 ap->link.active_tag);
959 /* Check for error interrupt */
960 if (intpr & SATA_DWC_INTPR_ERR) {
961 sata_dwc_error_intr(ap, hsdev, intpr);
962 handled = 1;
963 goto DONE;
966 /* Check for DMA SETUP FIS (FP DMA) interrupt */
967 if (intpr & SATA_DWC_INTPR_NEWFP) {
968 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
970 tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
971 dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
972 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
973 dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
975 host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
977 qc = ata_qc_from_tag(ap, tag);
979 * Start FP DMA for NCQ command. At this point the tag is the
980 * active tag. It is the tag that matches the command about to
981 * be completed.
983 qc->ap->link.active_tag = tag;
984 sata_dwc_bmdma_start_by_tag(qc, tag);
986 handled = 1;
987 goto DONE;
989 sactive = core_scr_read(SCR_ACTIVE);
990 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
992 /* If no sactive issued and tag_mask is zero then this is not NCQ */
993 if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
994 if (ap->link.active_tag == ATA_TAG_POISON)
995 tag = 0;
996 else
997 tag = ap->link.active_tag;
998 qc = ata_qc_from_tag(ap, tag);
1000 /* DEV interrupt w/ no active qc? */
1001 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
1002 dev_err(ap->dev, "%s interrupt with no active qc "
1003 "qc=%p\n", __func__, qc);
1004 ap->ops->sff_check_status(ap);
1005 handled = 1;
1006 goto DONE;
1008 status = ap->ops->sff_check_status(ap);
1010 qc->ap->link.active_tag = tag;
1011 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1013 if (status & ATA_ERR) {
1014 dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
1015 sata_dwc_qc_complete(ap, qc, 1);
1016 handled = 1;
1017 goto DONE;
1020 dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
1021 __func__, get_prot_descript(qc->tf.protocol));
1022 DRVSTILLBUSY:
1023 if (ata_is_dma(qc->tf.protocol)) {
1025 * Each DMA transaction produces 2 interrupts. The DMAC
1026 * transfer complete interrupt and the SATA controller
1027 * operation done interrupt. The command should be
1028 * completed only after both interrupts are seen.
1030 host_pvt.dma_interrupt_count++;
1031 if (hsdevp->dma_pending[tag] == \
1032 SATA_DWC_DMA_PENDING_NONE) {
1033 dev_err(ap->dev, "%s: DMA not pending "
1034 "intpr=0x%08x status=0x%08x pending"
1035 "=%d\n", __func__, intpr, status,
1036 hsdevp->dma_pending[tag]);
1039 if ((host_pvt.dma_interrupt_count % 2) == 0)
1040 sata_dwc_dma_xfer_complete(ap, 1);
1041 } else if (ata_is_pio(qc->tf.protocol)) {
1042 ata_sff_hsm_move(ap, qc, status, 0);
1043 handled = 1;
1044 goto DONE;
1045 } else {
1046 if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1047 goto DRVSTILLBUSY;
1050 handled = 1;
1051 goto DONE;
1055 * This is a NCQ command. At this point we need to figure out for which
1056 * tags we have gotten a completion interrupt. One interrupt may serve
1057 * as completion for more than one operation when commands are queued
1058 * (NCQ). We need to process each completed command.
1061 /* process completed commands */
1062 sactive = core_scr_read(SCR_ACTIVE);
1063 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
1065 if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
1066 tag_mask > 1) {
1067 dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x"
1068 "tag_mask=0x%08x\n", __func__, sactive,
1069 host_pvt.sata_dwc_sactive_issued, tag_mask);
1072 if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
1073 (host_pvt.sata_dwc_sactive_issued)) {
1074 dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x "
1075 "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask"
1076 "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
1077 tag_mask);
1080 /* read just to clear ... not bad if currently still busy */
1081 status = ap->ops->sff_check_status(ap);
1082 dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
1084 tag = 0;
1085 num_processed = 0;
1086 while (tag_mask) {
1087 num_processed++;
1088 while (!(tag_mask & 0x00000001)) {
1089 tag++;
1090 tag_mask <<= 1;
1093 tag_mask &= (~0x00000001);
1094 qc = ata_qc_from_tag(ap, tag);
1096 /* To be picked up by completion functions */
1097 qc->ap->link.active_tag = tag;
1098 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1100 /* Let libata/scsi layers handle error */
1101 if (status & ATA_ERR) {
1102 dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
1103 status);
1104 sata_dwc_qc_complete(ap, qc, 1);
1105 handled = 1;
1106 goto DONE;
1109 /* Process completed command */
1110 dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
1111 get_prot_descript(qc->tf.protocol));
1112 if (ata_is_dma(qc->tf.protocol)) {
1113 host_pvt.dma_interrupt_count++;
1114 if (hsdevp->dma_pending[tag] == \
1115 SATA_DWC_DMA_PENDING_NONE)
1116 dev_warn(ap->dev, "%s: DMA not pending?\n",
1117 __func__);
1118 if ((host_pvt.dma_interrupt_count % 2) == 0)
1119 sata_dwc_dma_xfer_complete(ap, 1);
1120 } else {
1121 if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1122 goto STILLBUSY;
1124 continue;
1126 STILLBUSY:
1127 ap->stats.idle_irq++;
1128 dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
1129 ap->print_id);
1130 } /* while tag_mask */
1133 * Check to see if any commands completed while we were processing our
1134 * initial set of completed commands (read status clears interrupts,
1135 * so we might miss a completed command interrupt if one came in while
1136 * we were processing --we read status as part of processing a completed
1137 * command).
1139 sactive2 = core_scr_read(SCR_ACTIVE);
1140 if (sactive2 != sactive) {
1141 dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
1142 "=0x%x\n", sactive, sactive2);
1144 handled = 1;
1146 DONE:
1147 spin_unlock_irqrestore(&host->lock, flags);
1148 return IRQ_RETVAL(handled);
1151 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
1153 struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
1155 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
1156 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1157 SATA_DWC_DMACR_RX_CLEAR(
1158 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1159 } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
1160 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1161 SATA_DWC_DMACR_TX_CLEAR(
1162 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1163 } else {
1165 * This should not happen, it indicates the driver is out of
1166 * sync. If it does happen, clear dmacr anyway.
1168 dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
1169 "TX DMA not pending tag=0x%02x pending=%d"
1170 " dmacr: 0x%08x\n", __func__, tag,
1171 hsdevp->dma_pending[tag],
1172 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1173 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1174 SATA_DWC_DMACR_TXRXCH_CLEAR);
1178 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
1180 struct ata_queued_cmd *qc;
1181 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1182 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1183 u8 tag = 0;
1185 tag = ap->link.active_tag;
1186 qc = ata_qc_from_tag(ap, tag);
1187 if (!qc) {
1188 dev_err(ap->dev, "failed to get qc");
1189 return;
1192 #ifdef DEBUG_NCQ
1193 if (tag > 0) {
1194 dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1195 "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
1196 get_dma_dir_descript(qc->dma_dir),
1197 get_prot_descript(qc->tf.protocol),
1198 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1200 #endif
1202 if (ata_is_dma(qc->tf.protocol)) {
1203 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
1204 dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
1205 "pending dmacr: 0x%08x\n", __func__,
1206 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1209 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
1210 sata_dwc_qc_complete(ap, qc, check_status);
1211 ap->link.active_tag = ATA_TAG_POISON;
1212 } else {
1213 sata_dwc_qc_complete(ap, qc, check_status);
1217 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
1218 u32 check_status)
1220 u8 status = 0;
1221 u32 mask = 0x0;
1222 u8 tag = qc->tag;
1223 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1224 host_pvt.sata_dwc_sactive_queued = 0;
1225 dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
1227 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
1228 dev_err(ap->dev, "TX DMA PENDING\n");
1229 else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
1230 dev_err(ap->dev, "RX DMA PENDING\n");
1231 dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1232 " protocol=%d\n", qc->tf.command, status, ap->print_id,
1233 qc->tf.protocol);
1235 /* clear active bit */
1236 mask = (~(qcmd_tag_to_mask(tag)));
1237 host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
1238 & mask;
1239 host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
1240 & mask;
1241 ata_qc_complete(qc);
1242 return 0;
1245 static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
1247 /* Enable selective interrupts by setting the interrupt maskregister*/
1248 out_le32(&hsdev->sata_dwc_regs->intmr,
1249 SATA_DWC_INTMR_ERRM |
1250 SATA_DWC_INTMR_NEWFPM |
1251 SATA_DWC_INTMR_PMABRTM |
1252 SATA_DWC_INTMR_DMATM);
1254 * Unmask the error bits that should trigger an error interrupt by
1255 * setting the error mask register.
1257 out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
1259 dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1260 __func__, in_le32(&hsdev->sata_dwc_regs->intmr),
1261 in_le32(&hsdev->sata_dwc_regs->errmr));
1264 static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
1266 port->cmd_addr = (void *)base + 0x00;
1267 port->data_addr = (void *)base + 0x00;
1269 port->error_addr = (void *)base + 0x04;
1270 port->feature_addr = (void *)base + 0x04;
1272 port->nsect_addr = (void *)base + 0x08;
1274 port->lbal_addr = (void *)base + 0x0c;
1275 port->lbam_addr = (void *)base + 0x10;
1276 port->lbah_addr = (void *)base + 0x14;
1278 port->device_addr = (void *)base + 0x18;
1279 port->command_addr = (void *)base + 0x1c;
1280 port->status_addr = (void *)base + 0x1c;
1282 port->altstatus_addr = (void *)base + 0x20;
1283 port->ctl_addr = (void *)base + 0x20;
1287 * Function : sata_dwc_port_start
1288 * arguments : struct ata_ioports *port
1289 * Return value : returns 0 if success, error code otherwise
1290 * This function allocates the scatter gather LLI table for AHB DMA
1292 static int sata_dwc_port_start(struct ata_port *ap)
1294 int err = 0;
1295 struct sata_dwc_device *hsdev;
1296 struct sata_dwc_device_port *hsdevp = NULL;
1297 struct device *pdev;
1298 int i;
1300 hsdev = HSDEV_FROM_AP(ap);
1302 dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
1304 hsdev->host = ap->host;
1305 pdev = ap->host->dev;
1306 if (!pdev) {
1307 dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
1308 err = -ENODEV;
1309 goto CLEANUP;
1312 /* Allocate Port Struct */
1313 hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
1314 if (!hsdevp) {
1315 dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
1316 err = -ENOMEM;
1317 goto CLEANUP;
1319 hsdevp->hsdev = hsdev;
1321 for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
1322 hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
1324 ap->bmdma_prd = 0; /* set these so libata doesn't use them */
1325 ap->bmdma_prd_dma = 0;
1328 * DMA - Assign scatter gather LLI table. We can't use the libata
1329 * version since it's PRD is IDE PCI specific.
1331 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1332 hsdevp->llit[i] = dma_alloc_coherent(pdev,
1333 SATA_DWC_DMAC_LLI_TBL_SZ,
1334 &(hsdevp->llit_dma[i]),
1335 GFP_ATOMIC);
1336 if (!hsdevp->llit[i]) {
1337 dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
1338 __func__);
1339 err = -ENOMEM;
1340 goto CLEANUP_ALLOC;
1344 if (ap->port_no == 0) {
1345 dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1346 __func__);
1347 out_le32(&hsdev->sata_dwc_regs->dmacr,
1348 SATA_DWC_DMACR_TXRXCH_CLEAR);
1350 dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
1351 __func__);
1352 out_le32(&hsdev->sata_dwc_regs->dbtsr,
1353 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1354 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
1357 /* Clear any error bits before libata starts issuing commands */
1358 clear_serror();
1359 ap->private_data = hsdevp;
1360 dev_dbg(ap->dev, "%s: done\n", __func__);
1361 return 0;
1363 CLEANUP_ALLOC:
1364 kfree(hsdevp);
1365 CLEANUP:
1366 dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
1367 return err;
1370 static void sata_dwc_port_stop(struct ata_port *ap)
1372 int i;
1373 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1374 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1376 dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
1378 if (hsdevp && hsdev) {
1379 /* deallocate LLI table */
1380 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1381 dma_free_coherent(ap->host->dev,
1382 SATA_DWC_DMAC_LLI_TBL_SZ,
1383 hsdevp->llit[i], hsdevp->llit_dma[i]);
1386 kfree(hsdevp);
1388 ap->private_data = NULL;
1392 * Function : sata_dwc_exec_command_by_tag
1393 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1394 * Return value : None
1395 * This function keeps track of individual command tag ids and calls
1396 * ata_exec_command in libata
1398 static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
1399 struct ata_taskfile *tf,
1400 u8 tag, u32 cmd_issued)
1402 unsigned long flags;
1403 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1405 dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
1406 ata_get_cmd_descript(tf->command), tag);
1408 spin_lock_irqsave(&ap->host->lock, flags);
1409 hsdevp->cmd_issued[tag] = cmd_issued;
1410 spin_unlock_irqrestore(&ap->host->lock, flags);
1412 * Clear SError before executing a new command.
1413 * sata_dwc_scr_write and read can not be used here. Clearing the PM
1414 * managed SError register for the disk needs to be done before the
1415 * task file is loaded.
1417 clear_serror();
1418 ata_sff_exec_command(ap, tf);
1421 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
1423 sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
1424 SATA_DWC_CMD_ISSUED_PEND);
1427 static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
1429 u8 tag = qc->tag;
1431 if (ata_is_ncq(qc->tf.protocol)) {
1432 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1433 __func__, qc->ap->link.sactive, tag);
1434 } else {
1435 tag = 0;
1437 sata_dwc_bmdma_setup_by_tag(qc, tag);
1440 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
1442 int start_dma;
1443 u32 reg, dma_chan;
1444 struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
1445 struct ata_port *ap = qc->ap;
1446 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1447 int dir = qc->dma_dir;
1448 dma_chan = hsdevp->dma_chan[tag];
1450 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
1451 start_dma = 1;
1452 if (dir == DMA_TO_DEVICE)
1453 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
1454 else
1455 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
1456 } else {
1457 dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
1458 "(tag=%d) DMA NOT started\n", __func__,
1459 hsdevp->cmd_issued[tag], tag);
1460 start_dma = 0;
1463 dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1464 "start_dma? %x\n", __func__, qc, tag, qc->tf.command,
1465 get_dma_dir_descript(qc->dma_dir), start_dma);
1466 sata_dwc_tf_dump(&(qc->tf));
1468 if (start_dma) {
1469 reg = core_scr_read(SCR_ERROR);
1470 if (reg & SATA_DWC_SERROR_ERR_BITS) {
1471 dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
1472 __func__, reg);
1475 if (dir == DMA_TO_DEVICE)
1476 out_le32(&hsdev->sata_dwc_regs->dmacr,
1477 SATA_DWC_DMACR_TXCHEN);
1478 else
1479 out_le32(&hsdev->sata_dwc_regs->dmacr,
1480 SATA_DWC_DMACR_RXCHEN);
1482 /* Enable AHB DMA transfer on the specified channel */
1483 dma_dwc_xfer_start(dma_chan);
1487 static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
1489 u8 tag = qc->tag;
1491 if (ata_is_ncq(qc->tf.protocol)) {
1492 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1493 __func__, qc->ap->link.sactive, tag);
1494 } else {
1495 tag = 0;
1497 dev_dbg(qc->ap->dev, "%s\n", __func__);
1498 sata_dwc_bmdma_start_by_tag(qc, tag);
1502 * Function : sata_dwc_qc_prep_by_tag
1503 * arguments : ata_queued_cmd *qc, u8 tag
1504 * Return value : None
1505 * qc_prep for a particular queued command based on tag
1507 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
1509 struct scatterlist *sg = qc->sg;
1510 struct ata_port *ap = qc->ap;
1511 int dma_chan;
1512 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1513 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1515 dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
1516 __func__, ap->port_no, get_dma_dir_descript(qc->dma_dir),
1517 qc->n_elem);
1519 dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
1520 hsdevp->llit_dma[tag],
1521 (void *__iomem)(&hsdev->sata_dwc_regs->\
1522 dmadr), qc->dma_dir);
1523 if (dma_chan < 0) {
1524 dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
1525 __func__, dma_chan);
1526 return;
1528 hsdevp->dma_chan[tag] = dma_chan;
1531 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
1533 u32 sactive;
1534 u8 tag = qc->tag;
1535 struct ata_port *ap = qc->ap;
1537 #ifdef DEBUG_NCQ
1538 if (qc->tag > 0 || ap->link.sactive > 1)
1539 dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1540 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1541 __func__, ap->print_id, qc->tf.command,
1542 ata_get_cmd_descript(qc->tf.command),
1543 qc->tag, get_prot_descript(qc->tf.protocol),
1544 ap->link.active_tag, ap->link.sactive);
1545 #endif
1547 if (!ata_is_ncq(qc->tf.protocol))
1548 tag = 0;
1549 sata_dwc_qc_prep_by_tag(qc, tag);
1551 if (ata_is_ncq(qc->tf.protocol)) {
1552 sactive = core_scr_read(SCR_ACTIVE);
1553 sactive |= (0x00000001 << tag);
1554 core_scr_write(SCR_ACTIVE, sactive);
1556 dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
1557 "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
1558 sactive);
1560 ap->ops->sff_tf_load(ap, &qc->tf);
1561 sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
1562 SATA_DWC_CMD_ISSUED_PEND);
1563 } else {
1564 ata_sff_qc_issue(qc);
1566 return 0;
1570 * Function : sata_dwc_qc_prep
1571 * arguments : ata_queued_cmd *qc
1572 * Return value : None
1573 * qc_prep for a particular queued command
1576 static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
1578 if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
1579 return;
1581 #ifdef DEBUG_NCQ
1582 if (qc->tag > 0)
1583 dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1584 __func__, qc->tag, qc->ap->link.active_tag);
1586 return ;
1587 #endif
1590 static void sata_dwc_error_handler(struct ata_port *ap)
1592 ata_sff_error_handler(ap);
1595 int sata_dwc_hardreset(struct ata_link *link, unsigned int *class,
1596 unsigned long deadline)
1598 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap);
1599 int ret;
1601 ret = sata_sff_hardreset(link, class, deadline);
1603 sata_dwc_enable_interrupts(hsdev);
1605 /* Reconfigure the DMA control register */
1606 out_le32(&hsdev->sata_dwc_regs->dmacr,
1607 SATA_DWC_DMACR_TXRXCH_CLEAR);
1609 /* Reconfigure the DMA Burst Transaction Size register */
1610 out_le32(&hsdev->sata_dwc_regs->dbtsr,
1611 SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1612 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT));
1614 return ret;
1618 * scsi mid-layer and libata interface structures
1620 static struct scsi_host_template sata_dwc_sht = {
1621 ATA_NCQ_SHT(DRV_NAME),
1623 * test-only: Currently this driver doesn't handle NCQ
1624 * correctly. We enable NCQ but set the queue depth to a
1625 * max of 1. This will get fixed in in a future release.
1627 .sg_tablesize = LIBATA_MAX_PRD,
1628 .can_queue = ATA_DEF_QUEUE, /* ATA_MAX_QUEUE */
1629 .dma_boundary = ATA_DMA_BOUNDARY,
1632 static struct ata_port_operations sata_dwc_ops = {
1633 .inherits = &ata_sff_port_ops,
1635 .error_handler = sata_dwc_error_handler,
1636 .hardreset = sata_dwc_hardreset,
1638 .qc_prep = sata_dwc_qc_prep,
1639 .qc_issue = sata_dwc_qc_issue,
1641 .scr_read = sata_dwc_scr_read,
1642 .scr_write = sata_dwc_scr_write,
1644 .port_start = sata_dwc_port_start,
1645 .port_stop = sata_dwc_port_stop,
1647 .bmdma_setup = sata_dwc_bmdma_setup,
1648 .bmdma_start = sata_dwc_bmdma_start,
1651 static const struct ata_port_info sata_dwc_port_info[] = {
1653 .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ,
1654 .pio_mask = ATA_PIO4,
1655 .udma_mask = ATA_UDMA6,
1656 .port_ops = &sata_dwc_ops,
1660 static int sata_dwc_probe(struct platform_device *ofdev)
1662 struct sata_dwc_device *hsdev;
1663 u32 idr, versionr;
1664 char *ver = (char *)&versionr;
1665 u8 *base = NULL;
1666 int err = 0;
1667 int irq, rc;
1668 struct ata_host *host;
1669 struct ata_port_info pi = sata_dwc_port_info[0];
1670 const struct ata_port_info *ppi[] = { &pi, NULL };
1671 struct device_node *np = ofdev->dev.of_node;
1672 u32 dma_chan;
1674 /* Allocate DWC SATA device */
1675 hsdev = kzalloc(sizeof(*hsdev), GFP_KERNEL);
1676 if (hsdev == NULL) {
1677 dev_err(&ofdev->dev, "kmalloc failed for hsdev\n");
1678 err = -ENOMEM;
1679 goto error;
1682 if (of_property_read_u32(np, "dma-channel", &dma_chan)) {
1683 dev_warn(&ofdev->dev, "no dma-channel property set."
1684 " Use channel 0\n");
1685 dma_chan = 0;
1687 host_pvt.dma_channel = dma_chan;
1689 /* Ioremap SATA registers */
1690 base = of_iomap(ofdev->dev.of_node, 0);
1691 if (!base) {
1692 dev_err(&ofdev->dev, "ioremap failed for SATA register"
1693 " address\n");
1694 err = -ENODEV;
1695 goto error_kmalloc;
1697 hsdev->reg_base = base;
1698 dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
1700 /* Synopsys DWC SATA specific Registers */
1701 hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
1703 /* Allocate and fill host */
1704 host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
1705 if (!host) {
1706 dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n");
1707 err = -ENOMEM;
1708 goto error_iomap;
1711 host->private_data = hsdev;
1713 /* Setup port */
1714 host->ports[0]->ioaddr.cmd_addr = base;
1715 host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1716 host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
1717 sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
1719 /* Read the ID and Version Registers */
1720 idr = in_le32(&hsdev->sata_dwc_regs->idr);
1721 versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
1722 dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
1723 idr, ver[0], ver[1], ver[2]);
1725 /* Get SATA DMA interrupt number */
1726 irq = irq_of_parse_and_map(ofdev->dev.of_node, 1);
1727 if (irq == NO_IRQ) {
1728 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1729 err = -ENODEV;
1730 goto error_out;
1733 /* Get physical SATA DMA register base address */
1734 host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1);
1735 if (!(host_pvt.sata_dma_regs)) {
1736 dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
1737 " address\n");
1738 err = -ENODEV;
1739 goto error_out;
1742 /* Save dev for later use in dev_xxx() routines */
1743 host_pvt.dwc_dev = &ofdev->dev;
1745 /* Initialize AHB DMAC */
1746 dma_dwc_init(hsdev, irq);
1748 /* Enable SATA Interrupts */
1749 sata_dwc_enable_interrupts(hsdev);
1751 /* Get SATA interrupt number */
1752 irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1753 if (irq == NO_IRQ) {
1754 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1755 err = -ENODEV;
1756 goto error_out;
1760 * Now, register with libATA core, this will also initiate the
1761 * device discovery process, invoking our port_start() handler &
1762 * error_handler() to execute a dummy Softreset EH session
1764 rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
1766 if (rc != 0)
1767 dev_err(&ofdev->dev, "failed to activate host");
1769 dev_set_drvdata(&ofdev->dev, host);
1770 return 0;
1772 error_out:
1773 /* Free SATA DMA resources */
1774 dma_dwc_exit(hsdev);
1776 error_iomap:
1777 iounmap(base);
1778 error_kmalloc:
1779 kfree(hsdev);
1780 error:
1781 return err;
1784 static int sata_dwc_remove(struct platform_device *ofdev)
1786 struct device *dev = &ofdev->dev;
1787 struct ata_host *host = dev_get_drvdata(dev);
1788 struct sata_dwc_device *hsdev = host->private_data;
1790 ata_host_detach(host);
1791 dev_set_drvdata(dev, NULL);
1793 /* Free SATA DMA resources */
1794 dma_dwc_exit(hsdev);
1796 iounmap(hsdev->reg_base);
1797 kfree(hsdev);
1798 kfree(host);
1799 dev_dbg(&ofdev->dev, "done\n");
1800 return 0;
1803 static const struct of_device_id sata_dwc_match[] = {
1804 { .compatible = "amcc,sata-460ex", },
1807 MODULE_DEVICE_TABLE(of, sata_dwc_match);
1809 static struct platform_driver sata_dwc_driver = {
1810 .driver = {
1811 .name = DRV_NAME,
1812 .owner = THIS_MODULE,
1813 .of_match_table = sata_dwc_match,
1815 .probe = sata_dwc_probe,
1816 .remove = sata_dwc_remove,
1819 module_platform_driver(sata_dwc_driver);
1821 MODULE_LICENSE("GPL");
1822 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1823 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1824 MODULE_VERSION(DRV_VERSION);