slub: Fix slub_lock down/up imbalance
[linux-2.6/btrfs-unstable.git] / mm / slub.c
blob7796a0446b3f28fce176dac24270f1d89cb160fc
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
31 #include <trace/events/kmem.h>
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache *s)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
138 #define MIN_PARTIAL 5
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
145 #define MAX_PARTIAL 10
147 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
155 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
158 * Set of flags that will prevent slab merging
160 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
164 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165 SLAB_CACHE_DMA | SLAB_NOTRACK)
167 #define OO_SHIFT 16
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000UL /* Poison object */
174 static int kmem_size = sizeof(struct kmem_cache);
176 #ifdef CONFIG_SMP
177 static struct notifier_block slab_notifier;
178 #endif
180 static enum {
181 DOWN, /* No slab functionality available */
182 PARTIAL, /* Kmem_cache_node works */
183 UP, /* Everything works but does not show up in sysfs */
184 SYSFS /* Sysfs up */
185 } slab_state = DOWN;
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
192 * Tracking user of a slab.
194 struct track {
195 unsigned long addr; /* Called from address */
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
203 #ifdef CONFIG_SYSFS
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 kfree(s->name);
215 kfree(s);
218 #endif
220 static inline void stat(struct kmem_cache *s, enum stat_item si)
222 #ifdef CONFIG_SLUB_STATS
223 __this_cpu_inc(s->cpu_slab->stat[si]);
224 #endif
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
231 int slab_is_available(void)
233 return slab_state >= UP;
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238 return s->node[node];
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
245 void *base;
247 if (!object)
248 return 1;
250 base = page_address(page);
251 if (object < base || object >= base + page->objects * s->size ||
252 (object - base) % s->size) {
253 return 0;
256 return 1;
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
261 return *(void **)(object + s->offset);
264 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
266 *(void **)(object + s->offset) = fp;
269 /* Loop over all objects in a slab */
270 #define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
272 __p += (__s)->size)
274 /* Scan freelist */
275 #define for_each_free_object(__p, __s, __free) \
276 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
278 /* Determine object index from a given position */
279 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
281 return (p - addr) / s->size;
284 static inline struct kmem_cache_order_objects oo_make(int order,
285 unsigned long size)
287 struct kmem_cache_order_objects x = {
288 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
291 return x;
294 static inline int oo_order(struct kmem_cache_order_objects x)
296 return x.x >> OO_SHIFT;
299 static inline int oo_objects(struct kmem_cache_order_objects x)
301 return x.x & OO_MASK;
304 #ifdef CONFIG_SLUB_DEBUG
306 * Debug settings:
308 #ifdef CONFIG_SLUB_DEBUG_ON
309 static int slub_debug = DEBUG_DEFAULT_FLAGS;
310 #else
311 static int slub_debug;
312 #endif
314 static char *slub_debug_slabs;
315 static int disable_higher_order_debug;
318 * Object debugging
320 static void print_section(char *text, u8 *addr, unsigned int length)
322 int i, offset;
323 int newline = 1;
324 char ascii[17];
326 ascii[16] = 0;
328 for (i = 0; i < length; i++) {
329 if (newline) {
330 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
331 newline = 0;
333 printk(KERN_CONT " %02x", addr[i]);
334 offset = i % 16;
335 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
336 if (offset == 15) {
337 printk(KERN_CONT " %s\n", ascii);
338 newline = 1;
341 if (!newline) {
342 i %= 16;
343 while (i < 16) {
344 printk(KERN_CONT " ");
345 ascii[i] = ' ';
346 i++;
348 printk(KERN_CONT " %s\n", ascii);
352 static struct track *get_track(struct kmem_cache *s, void *object,
353 enum track_item alloc)
355 struct track *p;
357 if (s->offset)
358 p = object + s->offset + sizeof(void *);
359 else
360 p = object + s->inuse;
362 return p + alloc;
365 static void set_track(struct kmem_cache *s, void *object,
366 enum track_item alloc, unsigned long addr)
368 struct track *p = get_track(s, object, alloc);
370 if (addr) {
371 p->addr = addr;
372 p->cpu = smp_processor_id();
373 p->pid = current->pid;
374 p->when = jiffies;
375 } else
376 memset(p, 0, sizeof(struct track));
379 static void init_tracking(struct kmem_cache *s, void *object)
381 if (!(s->flags & SLAB_STORE_USER))
382 return;
384 set_track(s, object, TRACK_FREE, 0UL);
385 set_track(s, object, TRACK_ALLOC, 0UL);
388 static void print_track(const char *s, struct track *t)
390 if (!t->addr)
391 return;
393 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
394 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
397 static void print_tracking(struct kmem_cache *s, void *object)
399 if (!(s->flags & SLAB_STORE_USER))
400 return;
402 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
403 print_track("Freed", get_track(s, object, TRACK_FREE));
406 static void print_page_info(struct page *page)
408 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
409 page, page->objects, page->inuse, page->freelist, page->flags);
413 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
415 va_list args;
416 char buf[100];
418 va_start(args, fmt);
419 vsnprintf(buf, sizeof(buf), fmt, args);
420 va_end(args);
421 printk(KERN_ERR "========================================"
422 "=====================================\n");
423 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
424 printk(KERN_ERR "----------------------------------------"
425 "-------------------------------------\n\n");
428 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
430 va_list args;
431 char buf[100];
433 va_start(args, fmt);
434 vsnprintf(buf, sizeof(buf), fmt, args);
435 va_end(args);
436 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
439 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
441 unsigned int off; /* Offset of last byte */
442 u8 *addr = page_address(page);
444 print_tracking(s, p);
446 print_page_info(page);
448 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
449 p, p - addr, get_freepointer(s, p));
451 if (p > addr + 16)
452 print_section("Bytes b4", p - 16, 16);
454 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
456 if (s->flags & SLAB_RED_ZONE)
457 print_section("Redzone", p + s->objsize,
458 s->inuse - s->objsize);
460 if (s->offset)
461 off = s->offset + sizeof(void *);
462 else
463 off = s->inuse;
465 if (s->flags & SLAB_STORE_USER)
466 off += 2 * sizeof(struct track);
468 if (off != s->size)
469 /* Beginning of the filler is the free pointer */
470 print_section("Padding", p + off, s->size - off);
472 dump_stack();
475 static void object_err(struct kmem_cache *s, struct page *page,
476 u8 *object, char *reason)
478 slab_bug(s, "%s", reason);
479 print_trailer(s, page, object);
482 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
484 va_list args;
485 char buf[100];
487 va_start(args, fmt);
488 vsnprintf(buf, sizeof(buf), fmt, args);
489 va_end(args);
490 slab_bug(s, "%s", buf);
491 print_page_info(page);
492 dump_stack();
495 static void init_object(struct kmem_cache *s, void *object, u8 val)
497 u8 *p = object;
499 if (s->flags & __OBJECT_POISON) {
500 memset(p, POISON_FREE, s->objsize - 1);
501 p[s->objsize - 1] = POISON_END;
504 if (s->flags & SLAB_RED_ZONE)
505 memset(p + s->objsize, val, s->inuse - s->objsize);
508 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
510 while (bytes) {
511 if (*start != (u8)value)
512 return start;
513 start++;
514 bytes--;
516 return NULL;
519 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
520 void *from, void *to)
522 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
523 memset(from, data, to - from);
526 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
527 u8 *object, char *what,
528 u8 *start, unsigned int value, unsigned int bytes)
530 u8 *fault;
531 u8 *end;
533 fault = check_bytes(start, value, bytes);
534 if (!fault)
535 return 1;
537 end = start + bytes;
538 while (end > fault && end[-1] == value)
539 end--;
541 slab_bug(s, "%s overwritten", what);
542 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
543 fault, end - 1, fault[0], value);
544 print_trailer(s, page, object);
546 restore_bytes(s, what, value, fault, end);
547 return 0;
551 * Object layout:
553 * object address
554 * Bytes of the object to be managed.
555 * If the freepointer may overlay the object then the free
556 * pointer is the first word of the object.
558 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
559 * 0xa5 (POISON_END)
561 * object + s->objsize
562 * Padding to reach word boundary. This is also used for Redzoning.
563 * Padding is extended by another word if Redzoning is enabled and
564 * objsize == inuse.
566 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
567 * 0xcc (RED_ACTIVE) for objects in use.
569 * object + s->inuse
570 * Meta data starts here.
572 * A. Free pointer (if we cannot overwrite object on free)
573 * B. Tracking data for SLAB_STORE_USER
574 * C. Padding to reach required alignment boundary or at mininum
575 * one word if debugging is on to be able to detect writes
576 * before the word boundary.
578 * Padding is done using 0x5a (POISON_INUSE)
580 * object + s->size
581 * Nothing is used beyond s->size.
583 * If slabcaches are merged then the objsize and inuse boundaries are mostly
584 * ignored. And therefore no slab options that rely on these boundaries
585 * may be used with merged slabcaches.
588 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
590 unsigned long off = s->inuse; /* The end of info */
592 if (s->offset)
593 /* Freepointer is placed after the object. */
594 off += sizeof(void *);
596 if (s->flags & SLAB_STORE_USER)
597 /* We also have user information there */
598 off += 2 * sizeof(struct track);
600 if (s->size == off)
601 return 1;
603 return check_bytes_and_report(s, page, p, "Object padding",
604 p + off, POISON_INUSE, s->size - off);
607 /* Check the pad bytes at the end of a slab page */
608 static int slab_pad_check(struct kmem_cache *s, struct page *page)
610 u8 *start;
611 u8 *fault;
612 u8 *end;
613 int length;
614 int remainder;
616 if (!(s->flags & SLAB_POISON))
617 return 1;
619 start = page_address(page);
620 length = (PAGE_SIZE << compound_order(page));
621 end = start + length;
622 remainder = length % s->size;
623 if (!remainder)
624 return 1;
626 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
627 if (!fault)
628 return 1;
629 while (end > fault && end[-1] == POISON_INUSE)
630 end--;
632 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
633 print_section("Padding", end - remainder, remainder);
635 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
636 return 0;
639 static int check_object(struct kmem_cache *s, struct page *page,
640 void *object, u8 val)
642 u8 *p = object;
643 u8 *endobject = object + s->objsize;
645 if (s->flags & SLAB_RED_ZONE) {
646 if (!check_bytes_and_report(s, page, object, "Redzone",
647 endobject, val, s->inuse - s->objsize))
648 return 0;
649 } else {
650 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
651 check_bytes_and_report(s, page, p, "Alignment padding",
652 endobject, POISON_INUSE, s->inuse - s->objsize);
656 if (s->flags & SLAB_POISON) {
657 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
658 (!check_bytes_and_report(s, page, p, "Poison", p,
659 POISON_FREE, s->objsize - 1) ||
660 !check_bytes_and_report(s, page, p, "Poison",
661 p + s->objsize - 1, POISON_END, 1)))
662 return 0;
664 * check_pad_bytes cleans up on its own.
666 check_pad_bytes(s, page, p);
669 if (!s->offset && val == SLUB_RED_ACTIVE)
671 * Object and freepointer overlap. Cannot check
672 * freepointer while object is allocated.
674 return 1;
676 /* Check free pointer validity */
677 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
678 object_err(s, page, p, "Freepointer corrupt");
680 * No choice but to zap it and thus lose the remainder
681 * of the free objects in this slab. May cause
682 * another error because the object count is now wrong.
684 set_freepointer(s, p, NULL);
685 return 0;
687 return 1;
690 static int check_slab(struct kmem_cache *s, struct page *page)
692 int maxobj;
694 VM_BUG_ON(!irqs_disabled());
696 if (!PageSlab(page)) {
697 slab_err(s, page, "Not a valid slab page");
698 return 0;
701 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
702 if (page->objects > maxobj) {
703 slab_err(s, page, "objects %u > max %u",
704 s->name, page->objects, maxobj);
705 return 0;
707 if (page->inuse > page->objects) {
708 slab_err(s, page, "inuse %u > max %u",
709 s->name, page->inuse, page->objects);
710 return 0;
712 /* Slab_pad_check fixes things up after itself */
713 slab_pad_check(s, page);
714 return 1;
718 * Determine if a certain object on a page is on the freelist. Must hold the
719 * slab lock to guarantee that the chains are in a consistent state.
721 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
723 int nr = 0;
724 void *fp = page->freelist;
725 void *object = NULL;
726 unsigned long max_objects;
728 while (fp && nr <= page->objects) {
729 if (fp == search)
730 return 1;
731 if (!check_valid_pointer(s, page, fp)) {
732 if (object) {
733 object_err(s, page, object,
734 "Freechain corrupt");
735 set_freepointer(s, object, NULL);
736 break;
737 } else {
738 slab_err(s, page, "Freepointer corrupt");
739 page->freelist = NULL;
740 page->inuse = page->objects;
741 slab_fix(s, "Freelist cleared");
742 return 0;
744 break;
746 object = fp;
747 fp = get_freepointer(s, object);
748 nr++;
751 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
752 if (max_objects > MAX_OBJS_PER_PAGE)
753 max_objects = MAX_OBJS_PER_PAGE;
755 if (page->objects != max_objects) {
756 slab_err(s, page, "Wrong number of objects. Found %d but "
757 "should be %d", page->objects, max_objects);
758 page->objects = max_objects;
759 slab_fix(s, "Number of objects adjusted.");
761 if (page->inuse != page->objects - nr) {
762 slab_err(s, page, "Wrong object count. Counter is %d but "
763 "counted were %d", page->inuse, page->objects - nr);
764 page->inuse = page->objects - nr;
765 slab_fix(s, "Object count adjusted.");
767 return search == NULL;
770 static void trace(struct kmem_cache *s, struct page *page, void *object,
771 int alloc)
773 if (s->flags & SLAB_TRACE) {
774 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
775 s->name,
776 alloc ? "alloc" : "free",
777 object, page->inuse,
778 page->freelist);
780 if (!alloc)
781 print_section("Object", (void *)object, s->objsize);
783 dump_stack();
788 * Hooks for other subsystems that check memory allocations. In a typical
789 * production configuration these hooks all should produce no code at all.
791 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
793 flags &= gfp_allowed_mask;
794 lockdep_trace_alloc(flags);
795 might_sleep_if(flags & __GFP_WAIT);
797 return should_failslab(s->objsize, flags, s->flags);
800 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
802 flags &= gfp_allowed_mask;
803 kmemcheck_slab_alloc(s, flags, object, s->objsize);
804 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
807 static inline void slab_free_hook(struct kmem_cache *s, void *x)
809 kmemleak_free_recursive(x, s->flags);
812 static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
814 kmemcheck_slab_free(s, object, s->objsize);
815 debug_check_no_locks_freed(object, s->objsize);
816 if (!(s->flags & SLAB_DEBUG_OBJECTS))
817 debug_check_no_obj_freed(object, s->objsize);
821 * Tracking of fully allocated slabs for debugging purposes.
823 static void add_full(struct kmem_cache_node *n, struct page *page)
825 spin_lock(&n->list_lock);
826 list_add(&page->lru, &n->full);
827 spin_unlock(&n->list_lock);
830 static void remove_full(struct kmem_cache *s, struct page *page)
832 struct kmem_cache_node *n;
834 if (!(s->flags & SLAB_STORE_USER))
835 return;
837 n = get_node(s, page_to_nid(page));
839 spin_lock(&n->list_lock);
840 list_del(&page->lru);
841 spin_unlock(&n->list_lock);
844 /* Tracking of the number of slabs for debugging purposes */
845 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
847 struct kmem_cache_node *n = get_node(s, node);
849 return atomic_long_read(&n->nr_slabs);
852 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
854 return atomic_long_read(&n->nr_slabs);
857 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
859 struct kmem_cache_node *n = get_node(s, node);
862 * May be called early in order to allocate a slab for the
863 * kmem_cache_node structure. Solve the chicken-egg
864 * dilemma by deferring the increment of the count during
865 * bootstrap (see early_kmem_cache_node_alloc).
867 if (n) {
868 atomic_long_inc(&n->nr_slabs);
869 atomic_long_add(objects, &n->total_objects);
872 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
874 struct kmem_cache_node *n = get_node(s, node);
876 atomic_long_dec(&n->nr_slabs);
877 atomic_long_sub(objects, &n->total_objects);
880 /* Object debug checks for alloc/free paths */
881 static void setup_object_debug(struct kmem_cache *s, struct page *page,
882 void *object)
884 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
885 return;
887 init_object(s, object, SLUB_RED_INACTIVE);
888 init_tracking(s, object);
891 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
892 void *object, unsigned long addr)
894 if (!check_slab(s, page))
895 goto bad;
897 if (!on_freelist(s, page, object)) {
898 object_err(s, page, object, "Object already allocated");
899 goto bad;
902 if (!check_valid_pointer(s, page, object)) {
903 object_err(s, page, object, "Freelist Pointer check fails");
904 goto bad;
907 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
908 goto bad;
910 /* Success perform special debug activities for allocs */
911 if (s->flags & SLAB_STORE_USER)
912 set_track(s, object, TRACK_ALLOC, addr);
913 trace(s, page, object, 1);
914 init_object(s, object, SLUB_RED_ACTIVE);
915 return 1;
917 bad:
918 if (PageSlab(page)) {
920 * If this is a slab page then lets do the best we can
921 * to avoid issues in the future. Marking all objects
922 * as used avoids touching the remaining objects.
924 slab_fix(s, "Marking all objects used");
925 page->inuse = page->objects;
926 page->freelist = NULL;
928 return 0;
931 static noinline int free_debug_processing(struct kmem_cache *s,
932 struct page *page, void *object, unsigned long addr)
934 if (!check_slab(s, page))
935 goto fail;
937 if (!check_valid_pointer(s, page, object)) {
938 slab_err(s, page, "Invalid object pointer 0x%p", object);
939 goto fail;
942 if (on_freelist(s, page, object)) {
943 object_err(s, page, object, "Object already free");
944 goto fail;
947 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
948 return 0;
950 if (unlikely(s != page->slab)) {
951 if (!PageSlab(page)) {
952 slab_err(s, page, "Attempt to free object(0x%p) "
953 "outside of slab", object);
954 } else if (!page->slab) {
955 printk(KERN_ERR
956 "SLUB <none>: no slab for object 0x%p.\n",
957 object);
958 dump_stack();
959 } else
960 object_err(s, page, object,
961 "page slab pointer corrupt.");
962 goto fail;
965 /* Special debug activities for freeing objects */
966 if (!PageSlubFrozen(page) && !page->freelist)
967 remove_full(s, page);
968 if (s->flags & SLAB_STORE_USER)
969 set_track(s, object, TRACK_FREE, addr);
970 trace(s, page, object, 0);
971 init_object(s, object, SLUB_RED_INACTIVE);
972 return 1;
974 fail:
975 slab_fix(s, "Object at 0x%p not freed", object);
976 return 0;
979 static int __init setup_slub_debug(char *str)
981 slub_debug = DEBUG_DEFAULT_FLAGS;
982 if (*str++ != '=' || !*str)
984 * No options specified. Switch on full debugging.
986 goto out;
988 if (*str == ',')
990 * No options but restriction on slabs. This means full
991 * debugging for slabs matching a pattern.
993 goto check_slabs;
995 if (tolower(*str) == 'o') {
997 * Avoid enabling debugging on caches if its minimum order
998 * would increase as a result.
1000 disable_higher_order_debug = 1;
1001 goto out;
1004 slub_debug = 0;
1005 if (*str == '-')
1007 * Switch off all debugging measures.
1009 goto out;
1012 * Determine which debug features should be switched on
1014 for (; *str && *str != ','; str++) {
1015 switch (tolower(*str)) {
1016 case 'f':
1017 slub_debug |= SLAB_DEBUG_FREE;
1018 break;
1019 case 'z':
1020 slub_debug |= SLAB_RED_ZONE;
1021 break;
1022 case 'p':
1023 slub_debug |= SLAB_POISON;
1024 break;
1025 case 'u':
1026 slub_debug |= SLAB_STORE_USER;
1027 break;
1028 case 't':
1029 slub_debug |= SLAB_TRACE;
1030 break;
1031 case 'a':
1032 slub_debug |= SLAB_FAILSLAB;
1033 break;
1034 default:
1035 printk(KERN_ERR "slub_debug option '%c' "
1036 "unknown. skipped\n", *str);
1040 check_slabs:
1041 if (*str == ',')
1042 slub_debug_slabs = str + 1;
1043 out:
1044 return 1;
1047 __setup("slub_debug", setup_slub_debug);
1049 static unsigned long kmem_cache_flags(unsigned long objsize,
1050 unsigned long flags, const char *name,
1051 void (*ctor)(void *))
1054 * Enable debugging if selected on the kernel commandline.
1056 if (slub_debug && (!slub_debug_slabs ||
1057 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1058 flags |= slub_debug;
1060 return flags;
1062 #else
1063 static inline void setup_object_debug(struct kmem_cache *s,
1064 struct page *page, void *object) {}
1066 static inline int alloc_debug_processing(struct kmem_cache *s,
1067 struct page *page, void *object, unsigned long addr) { return 0; }
1069 static inline int free_debug_processing(struct kmem_cache *s,
1070 struct page *page, void *object, unsigned long addr) { return 0; }
1072 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1073 { return 1; }
1074 static inline int check_object(struct kmem_cache *s, struct page *page,
1075 void *object, u8 val) { return 1; }
1076 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1077 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1078 unsigned long flags, const char *name,
1079 void (*ctor)(void *))
1081 return flags;
1083 #define slub_debug 0
1085 #define disable_higher_order_debug 0
1087 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1088 { return 0; }
1089 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1090 { return 0; }
1091 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1092 int objects) {}
1093 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1094 int objects) {}
1096 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1097 { return 0; }
1099 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1100 void *object) {}
1102 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1104 static inline void slab_free_hook_irq(struct kmem_cache *s,
1105 void *object) {}
1107 #endif /* CONFIG_SLUB_DEBUG */
1110 * Slab allocation and freeing
1112 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1113 struct kmem_cache_order_objects oo)
1115 int order = oo_order(oo);
1117 flags |= __GFP_NOTRACK;
1119 if (node == NUMA_NO_NODE)
1120 return alloc_pages(flags, order);
1121 else
1122 return alloc_pages_exact_node(node, flags, order);
1125 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1127 struct page *page;
1128 struct kmem_cache_order_objects oo = s->oo;
1129 gfp_t alloc_gfp;
1131 flags |= s->allocflags;
1134 * Let the initial higher-order allocation fail under memory pressure
1135 * so we fall-back to the minimum order allocation.
1137 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1139 page = alloc_slab_page(alloc_gfp, node, oo);
1140 if (unlikely(!page)) {
1141 oo = s->min;
1143 * Allocation may have failed due to fragmentation.
1144 * Try a lower order alloc if possible
1146 page = alloc_slab_page(flags, node, oo);
1147 if (!page)
1148 return NULL;
1150 stat(s, ORDER_FALLBACK);
1153 if (kmemcheck_enabled
1154 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1155 int pages = 1 << oo_order(oo);
1157 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1160 * Objects from caches that have a constructor don't get
1161 * cleared when they're allocated, so we need to do it here.
1163 if (s->ctor)
1164 kmemcheck_mark_uninitialized_pages(page, pages);
1165 else
1166 kmemcheck_mark_unallocated_pages(page, pages);
1169 page->objects = oo_objects(oo);
1170 mod_zone_page_state(page_zone(page),
1171 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1172 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1173 1 << oo_order(oo));
1175 return page;
1178 static void setup_object(struct kmem_cache *s, struct page *page,
1179 void *object)
1181 setup_object_debug(s, page, object);
1182 if (unlikely(s->ctor))
1183 s->ctor(object);
1186 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1188 struct page *page;
1189 void *start;
1190 void *last;
1191 void *p;
1193 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1195 page = allocate_slab(s,
1196 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1197 if (!page)
1198 goto out;
1200 inc_slabs_node(s, page_to_nid(page), page->objects);
1201 page->slab = s;
1202 page->flags |= 1 << PG_slab;
1204 start = page_address(page);
1206 if (unlikely(s->flags & SLAB_POISON))
1207 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1209 last = start;
1210 for_each_object(p, s, start, page->objects) {
1211 setup_object(s, page, last);
1212 set_freepointer(s, last, p);
1213 last = p;
1215 setup_object(s, page, last);
1216 set_freepointer(s, last, NULL);
1218 page->freelist = start;
1219 page->inuse = 0;
1220 out:
1221 return page;
1224 static void __free_slab(struct kmem_cache *s, struct page *page)
1226 int order = compound_order(page);
1227 int pages = 1 << order;
1229 if (kmem_cache_debug(s)) {
1230 void *p;
1232 slab_pad_check(s, page);
1233 for_each_object(p, s, page_address(page),
1234 page->objects)
1235 check_object(s, page, p, SLUB_RED_INACTIVE);
1238 kmemcheck_free_shadow(page, compound_order(page));
1240 mod_zone_page_state(page_zone(page),
1241 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1242 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1243 -pages);
1245 __ClearPageSlab(page);
1246 reset_page_mapcount(page);
1247 if (current->reclaim_state)
1248 current->reclaim_state->reclaimed_slab += pages;
1249 __free_pages(page, order);
1252 static void rcu_free_slab(struct rcu_head *h)
1254 struct page *page;
1256 page = container_of((struct list_head *)h, struct page, lru);
1257 __free_slab(page->slab, page);
1260 static void free_slab(struct kmem_cache *s, struct page *page)
1262 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1264 * RCU free overloads the RCU head over the LRU
1266 struct rcu_head *head = (void *)&page->lru;
1268 call_rcu(head, rcu_free_slab);
1269 } else
1270 __free_slab(s, page);
1273 static void discard_slab(struct kmem_cache *s, struct page *page)
1275 dec_slabs_node(s, page_to_nid(page), page->objects);
1276 free_slab(s, page);
1280 * Per slab locking using the pagelock
1282 static __always_inline void slab_lock(struct page *page)
1284 bit_spin_lock(PG_locked, &page->flags);
1287 static __always_inline void slab_unlock(struct page *page)
1289 __bit_spin_unlock(PG_locked, &page->flags);
1292 static __always_inline int slab_trylock(struct page *page)
1294 int rc = 1;
1296 rc = bit_spin_trylock(PG_locked, &page->flags);
1297 return rc;
1301 * Management of partially allocated slabs
1303 static void add_partial(struct kmem_cache_node *n,
1304 struct page *page, int tail)
1306 spin_lock(&n->list_lock);
1307 n->nr_partial++;
1308 if (tail)
1309 list_add_tail(&page->lru, &n->partial);
1310 else
1311 list_add(&page->lru, &n->partial);
1312 spin_unlock(&n->list_lock);
1315 static inline void __remove_partial(struct kmem_cache_node *n,
1316 struct page *page)
1318 list_del(&page->lru);
1319 n->nr_partial--;
1322 static void remove_partial(struct kmem_cache *s, struct page *page)
1324 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1326 spin_lock(&n->list_lock);
1327 __remove_partial(n, page);
1328 spin_unlock(&n->list_lock);
1332 * Lock slab and remove from the partial list.
1334 * Must hold list_lock.
1336 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1337 struct page *page)
1339 if (slab_trylock(page)) {
1340 __remove_partial(n, page);
1341 __SetPageSlubFrozen(page);
1342 return 1;
1344 return 0;
1348 * Try to allocate a partial slab from a specific node.
1350 static struct page *get_partial_node(struct kmem_cache_node *n)
1352 struct page *page;
1355 * Racy check. If we mistakenly see no partial slabs then we
1356 * just allocate an empty slab. If we mistakenly try to get a
1357 * partial slab and there is none available then get_partials()
1358 * will return NULL.
1360 if (!n || !n->nr_partial)
1361 return NULL;
1363 spin_lock(&n->list_lock);
1364 list_for_each_entry(page, &n->partial, lru)
1365 if (lock_and_freeze_slab(n, page))
1366 goto out;
1367 page = NULL;
1368 out:
1369 spin_unlock(&n->list_lock);
1370 return page;
1374 * Get a page from somewhere. Search in increasing NUMA distances.
1376 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1378 #ifdef CONFIG_NUMA
1379 struct zonelist *zonelist;
1380 struct zoneref *z;
1381 struct zone *zone;
1382 enum zone_type high_zoneidx = gfp_zone(flags);
1383 struct page *page;
1386 * The defrag ratio allows a configuration of the tradeoffs between
1387 * inter node defragmentation and node local allocations. A lower
1388 * defrag_ratio increases the tendency to do local allocations
1389 * instead of attempting to obtain partial slabs from other nodes.
1391 * If the defrag_ratio is set to 0 then kmalloc() always
1392 * returns node local objects. If the ratio is higher then kmalloc()
1393 * may return off node objects because partial slabs are obtained
1394 * from other nodes and filled up.
1396 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1397 * defrag_ratio = 1000) then every (well almost) allocation will
1398 * first attempt to defrag slab caches on other nodes. This means
1399 * scanning over all nodes to look for partial slabs which may be
1400 * expensive if we do it every time we are trying to find a slab
1401 * with available objects.
1403 if (!s->remote_node_defrag_ratio ||
1404 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1405 return NULL;
1407 get_mems_allowed();
1408 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1409 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1410 struct kmem_cache_node *n;
1412 n = get_node(s, zone_to_nid(zone));
1414 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1415 n->nr_partial > s->min_partial) {
1416 page = get_partial_node(n);
1417 if (page) {
1418 put_mems_allowed();
1419 return page;
1423 put_mems_allowed();
1424 #endif
1425 return NULL;
1429 * Get a partial page, lock it and return it.
1431 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1433 struct page *page;
1434 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1436 page = get_partial_node(get_node(s, searchnode));
1437 if (page || node != -1)
1438 return page;
1440 return get_any_partial(s, flags);
1444 * Move a page back to the lists.
1446 * Must be called with the slab lock held.
1448 * On exit the slab lock will have been dropped.
1450 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1451 __releases(bitlock)
1453 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1455 __ClearPageSlubFrozen(page);
1456 if (page->inuse) {
1458 if (page->freelist) {
1459 add_partial(n, page, tail);
1460 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1461 } else {
1462 stat(s, DEACTIVATE_FULL);
1463 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1464 add_full(n, page);
1466 slab_unlock(page);
1467 } else {
1468 stat(s, DEACTIVATE_EMPTY);
1469 if (n->nr_partial < s->min_partial) {
1471 * Adding an empty slab to the partial slabs in order
1472 * to avoid page allocator overhead. This slab needs
1473 * to come after the other slabs with objects in
1474 * so that the others get filled first. That way the
1475 * size of the partial list stays small.
1477 * kmem_cache_shrink can reclaim any empty slabs from
1478 * the partial list.
1480 add_partial(n, page, 1);
1481 slab_unlock(page);
1482 } else {
1483 slab_unlock(page);
1484 stat(s, FREE_SLAB);
1485 discard_slab(s, page);
1491 * Remove the cpu slab
1493 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1494 __releases(bitlock)
1496 struct page *page = c->page;
1497 int tail = 1;
1499 if (page->freelist)
1500 stat(s, DEACTIVATE_REMOTE_FREES);
1502 * Merge cpu freelist into slab freelist. Typically we get here
1503 * because both freelists are empty. So this is unlikely
1504 * to occur.
1506 while (unlikely(c->freelist)) {
1507 void **object;
1509 tail = 0; /* Hot objects. Put the slab first */
1511 /* Retrieve object from cpu_freelist */
1512 object = c->freelist;
1513 c->freelist = get_freepointer(s, c->freelist);
1515 /* And put onto the regular freelist */
1516 set_freepointer(s, object, page->freelist);
1517 page->freelist = object;
1518 page->inuse--;
1520 c->page = NULL;
1521 unfreeze_slab(s, page, tail);
1524 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1526 stat(s, CPUSLAB_FLUSH);
1527 slab_lock(c->page);
1528 deactivate_slab(s, c);
1532 * Flush cpu slab.
1534 * Called from IPI handler with interrupts disabled.
1536 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1538 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1540 if (likely(c && c->page))
1541 flush_slab(s, c);
1544 static void flush_cpu_slab(void *d)
1546 struct kmem_cache *s = d;
1548 __flush_cpu_slab(s, smp_processor_id());
1551 static void flush_all(struct kmem_cache *s)
1553 on_each_cpu(flush_cpu_slab, s, 1);
1557 * Check if the objects in a per cpu structure fit numa
1558 * locality expectations.
1560 static inline int node_match(struct kmem_cache_cpu *c, int node)
1562 #ifdef CONFIG_NUMA
1563 if (node != NUMA_NO_NODE && c->node != node)
1564 return 0;
1565 #endif
1566 return 1;
1569 static int count_free(struct page *page)
1571 return page->objects - page->inuse;
1574 static unsigned long count_partial(struct kmem_cache_node *n,
1575 int (*get_count)(struct page *))
1577 unsigned long flags;
1578 unsigned long x = 0;
1579 struct page *page;
1581 spin_lock_irqsave(&n->list_lock, flags);
1582 list_for_each_entry(page, &n->partial, lru)
1583 x += get_count(page);
1584 spin_unlock_irqrestore(&n->list_lock, flags);
1585 return x;
1588 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1590 #ifdef CONFIG_SLUB_DEBUG
1591 return atomic_long_read(&n->total_objects);
1592 #else
1593 return 0;
1594 #endif
1597 static noinline void
1598 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1600 int node;
1602 printk(KERN_WARNING
1603 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1604 nid, gfpflags);
1605 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1606 "default order: %d, min order: %d\n", s->name, s->objsize,
1607 s->size, oo_order(s->oo), oo_order(s->min));
1609 if (oo_order(s->min) > get_order(s->objsize))
1610 printk(KERN_WARNING " %s debugging increased min order, use "
1611 "slub_debug=O to disable.\n", s->name);
1613 for_each_online_node(node) {
1614 struct kmem_cache_node *n = get_node(s, node);
1615 unsigned long nr_slabs;
1616 unsigned long nr_objs;
1617 unsigned long nr_free;
1619 if (!n)
1620 continue;
1622 nr_free = count_partial(n, count_free);
1623 nr_slabs = node_nr_slabs(n);
1624 nr_objs = node_nr_objs(n);
1626 printk(KERN_WARNING
1627 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1628 node, nr_slabs, nr_objs, nr_free);
1633 * Slow path. The lockless freelist is empty or we need to perform
1634 * debugging duties.
1636 * Interrupts are disabled.
1638 * Processing is still very fast if new objects have been freed to the
1639 * regular freelist. In that case we simply take over the regular freelist
1640 * as the lockless freelist and zap the regular freelist.
1642 * If that is not working then we fall back to the partial lists. We take the
1643 * first element of the freelist as the object to allocate now and move the
1644 * rest of the freelist to the lockless freelist.
1646 * And if we were unable to get a new slab from the partial slab lists then
1647 * we need to allocate a new slab. This is the slowest path since it involves
1648 * a call to the page allocator and the setup of a new slab.
1650 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1651 unsigned long addr, struct kmem_cache_cpu *c)
1653 void **object;
1654 struct page *new;
1656 /* We handle __GFP_ZERO in the caller */
1657 gfpflags &= ~__GFP_ZERO;
1659 if (!c->page)
1660 goto new_slab;
1662 slab_lock(c->page);
1663 if (unlikely(!node_match(c, node)))
1664 goto another_slab;
1666 stat(s, ALLOC_REFILL);
1668 load_freelist:
1669 object = c->page->freelist;
1670 if (unlikely(!object))
1671 goto another_slab;
1672 if (kmem_cache_debug(s))
1673 goto debug;
1675 c->freelist = get_freepointer(s, object);
1676 c->page->inuse = c->page->objects;
1677 c->page->freelist = NULL;
1678 c->node = page_to_nid(c->page);
1679 unlock_out:
1680 slab_unlock(c->page);
1681 stat(s, ALLOC_SLOWPATH);
1682 return object;
1684 another_slab:
1685 deactivate_slab(s, c);
1687 new_slab:
1688 new = get_partial(s, gfpflags, node);
1689 if (new) {
1690 c->page = new;
1691 stat(s, ALLOC_FROM_PARTIAL);
1692 goto load_freelist;
1695 gfpflags &= gfp_allowed_mask;
1696 if (gfpflags & __GFP_WAIT)
1697 local_irq_enable();
1699 new = new_slab(s, gfpflags, node);
1701 if (gfpflags & __GFP_WAIT)
1702 local_irq_disable();
1704 if (new) {
1705 c = __this_cpu_ptr(s->cpu_slab);
1706 stat(s, ALLOC_SLAB);
1707 if (c->page)
1708 flush_slab(s, c);
1709 slab_lock(new);
1710 __SetPageSlubFrozen(new);
1711 c->page = new;
1712 goto load_freelist;
1714 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1715 slab_out_of_memory(s, gfpflags, node);
1716 return NULL;
1717 debug:
1718 if (!alloc_debug_processing(s, c->page, object, addr))
1719 goto another_slab;
1721 c->page->inuse++;
1722 c->page->freelist = get_freepointer(s, object);
1723 c->node = NUMA_NO_NODE;
1724 goto unlock_out;
1728 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1729 * have the fastpath folded into their functions. So no function call
1730 * overhead for requests that can be satisfied on the fastpath.
1732 * The fastpath works by first checking if the lockless freelist can be used.
1733 * If not then __slab_alloc is called for slow processing.
1735 * Otherwise we can simply pick the next object from the lockless free list.
1737 static __always_inline void *slab_alloc(struct kmem_cache *s,
1738 gfp_t gfpflags, int node, unsigned long addr)
1740 void **object;
1741 struct kmem_cache_cpu *c;
1742 unsigned long flags;
1744 if (slab_pre_alloc_hook(s, gfpflags))
1745 return NULL;
1747 local_irq_save(flags);
1748 c = __this_cpu_ptr(s->cpu_slab);
1749 object = c->freelist;
1750 if (unlikely(!object || !node_match(c, node)))
1752 object = __slab_alloc(s, gfpflags, node, addr, c);
1754 else {
1755 c->freelist = get_freepointer(s, object);
1756 stat(s, ALLOC_FASTPATH);
1758 local_irq_restore(flags);
1760 if (unlikely(gfpflags & __GFP_ZERO) && object)
1761 memset(object, 0, s->objsize);
1763 slab_post_alloc_hook(s, gfpflags, object);
1765 return object;
1768 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1770 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1772 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1774 return ret;
1776 EXPORT_SYMBOL(kmem_cache_alloc);
1778 #ifdef CONFIG_TRACING
1779 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1781 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1782 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1783 return ret;
1785 EXPORT_SYMBOL(kmem_cache_alloc_trace);
1787 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1789 void *ret = kmalloc_order(size, flags, order);
1790 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1791 return ret;
1793 EXPORT_SYMBOL(kmalloc_order_trace);
1794 #endif
1796 #ifdef CONFIG_NUMA
1797 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1799 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1801 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1802 s->objsize, s->size, gfpflags, node);
1804 return ret;
1806 EXPORT_SYMBOL(kmem_cache_alloc_node);
1808 #ifdef CONFIG_TRACING
1809 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
1810 gfp_t gfpflags,
1811 int node, size_t size)
1813 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1815 trace_kmalloc_node(_RET_IP_, ret,
1816 size, s->size, gfpflags, node);
1817 return ret;
1819 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
1820 #endif
1821 #endif
1824 * Slow patch handling. This may still be called frequently since objects
1825 * have a longer lifetime than the cpu slabs in most processing loads.
1827 * So we still attempt to reduce cache line usage. Just take the slab
1828 * lock and free the item. If there is no additional partial page
1829 * handling required then we can return immediately.
1831 static void __slab_free(struct kmem_cache *s, struct page *page,
1832 void *x, unsigned long addr)
1834 void *prior;
1835 void **object = (void *)x;
1837 stat(s, FREE_SLOWPATH);
1838 slab_lock(page);
1840 if (kmem_cache_debug(s))
1841 goto debug;
1843 checks_ok:
1844 prior = page->freelist;
1845 set_freepointer(s, object, prior);
1846 page->freelist = object;
1847 page->inuse--;
1849 if (unlikely(PageSlubFrozen(page))) {
1850 stat(s, FREE_FROZEN);
1851 goto out_unlock;
1854 if (unlikely(!page->inuse))
1855 goto slab_empty;
1858 * Objects left in the slab. If it was not on the partial list before
1859 * then add it.
1861 if (unlikely(!prior)) {
1862 add_partial(get_node(s, page_to_nid(page)), page, 1);
1863 stat(s, FREE_ADD_PARTIAL);
1866 out_unlock:
1867 slab_unlock(page);
1868 return;
1870 slab_empty:
1871 if (prior) {
1873 * Slab still on the partial list.
1875 remove_partial(s, page);
1876 stat(s, FREE_REMOVE_PARTIAL);
1878 slab_unlock(page);
1879 stat(s, FREE_SLAB);
1880 discard_slab(s, page);
1881 return;
1883 debug:
1884 if (!free_debug_processing(s, page, x, addr))
1885 goto out_unlock;
1886 goto checks_ok;
1890 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1891 * can perform fastpath freeing without additional function calls.
1893 * The fastpath is only possible if we are freeing to the current cpu slab
1894 * of this processor. This typically the case if we have just allocated
1895 * the item before.
1897 * If fastpath is not possible then fall back to __slab_free where we deal
1898 * with all sorts of special processing.
1900 static __always_inline void slab_free(struct kmem_cache *s,
1901 struct page *page, void *x, unsigned long addr)
1903 void **object = (void *)x;
1904 struct kmem_cache_cpu *c;
1905 unsigned long flags;
1907 slab_free_hook(s, x);
1909 local_irq_save(flags);
1910 c = __this_cpu_ptr(s->cpu_slab);
1912 slab_free_hook_irq(s, x);
1914 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
1915 set_freepointer(s, object, c->freelist);
1916 c->freelist = object;
1917 stat(s, FREE_FASTPATH);
1918 } else
1919 __slab_free(s, page, x, addr);
1921 local_irq_restore(flags);
1924 void kmem_cache_free(struct kmem_cache *s, void *x)
1926 struct page *page;
1928 page = virt_to_head_page(x);
1930 slab_free(s, page, x, _RET_IP_);
1932 trace_kmem_cache_free(_RET_IP_, x);
1934 EXPORT_SYMBOL(kmem_cache_free);
1936 /* Figure out on which slab page the object resides */
1937 static struct page *get_object_page(const void *x)
1939 struct page *page = virt_to_head_page(x);
1941 if (!PageSlab(page))
1942 return NULL;
1944 return page;
1948 * Object placement in a slab is made very easy because we always start at
1949 * offset 0. If we tune the size of the object to the alignment then we can
1950 * get the required alignment by putting one properly sized object after
1951 * another.
1953 * Notice that the allocation order determines the sizes of the per cpu
1954 * caches. Each processor has always one slab available for allocations.
1955 * Increasing the allocation order reduces the number of times that slabs
1956 * must be moved on and off the partial lists and is therefore a factor in
1957 * locking overhead.
1961 * Mininum / Maximum order of slab pages. This influences locking overhead
1962 * and slab fragmentation. A higher order reduces the number of partial slabs
1963 * and increases the number of allocations possible without having to
1964 * take the list_lock.
1966 static int slub_min_order;
1967 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1968 static int slub_min_objects;
1971 * Merge control. If this is set then no merging of slab caches will occur.
1972 * (Could be removed. This was introduced to pacify the merge skeptics.)
1974 static int slub_nomerge;
1977 * Calculate the order of allocation given an slab object size.
1979 * The order of allocation has significant impact on performance and other
1980 * system components. Generally order 0 allocations should be preferred since
1981 * order 0 does not cause fragmentation in the page allocator. Larger objects
1982 * be problematic to put into order 0 slabs because there may be too much
1983 * unused space left. We go to a higher order if more than 1/16th of the slab
1984 * would be wasted.
1986 * In order to reach satisfactory performance we must ensure that a minimum
1987 * number of objects is in one slab. Otherwise we may generate too much
1988 * activity on the partial lists which requires taking the list_lock. This is
1989 * less a concern for large slabs though which are rarely used.
1991 * slub_max_order specifies the order where we begin to stop considering the
1992 * number of objects in a slab as critical. If we reach slub_max_order then
1993 * we try to keep the page order as low as possible. So we accept more waste
1994 * of space in favor of a small page order.
1996 * Higher order allocations also allow the placement of more objects in a
1997 * slab and thereby reduce object handling overhead. If the user has
1998 * requested a higher mininum order then we start with that one instead of
1999 * the smallest order which will fit the object.
2001 static inline int slab_order(int size, int min_objects,
2002 int max_order, int fract_leftover)
2004 int order;
2005 int rem;
2006 int min_order = slub_min_order;
2008 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
2009 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2011 for (order = max(min_order,
2012 fls(min_objects * size - 1) - PAGE_SHIFT);
2013 order <= max_order; order++) {
2015 unsigned long slab_size = PAGE_SIZE << order;
2017 if (slab_size < min_objects * size)
2018 continue;
2020 rem = slab_size % size;
2022 if (rem <= slab_size / fract_leftover)
2023 break;
2027 return order;
2030 static inline int calculate_order(int size)
2032 int order;
2033 int min_objects;
2034 int fraction;
2035 int max_objects;
2038 * Attempt to find best configuration for a slab. This
2039 * works by first attempting to generate a layout with
2040 * the best configuration and backing off gradually.
2042 * First we reduce the acceptable waste in a slab. Then
2043 * we reduce the minimum objects required in a slab.
2045 min_objects = slub_min_objects;
2046 if (!min_objects)
2047 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2048 max_objects = (PAGE_SIZE << slub_max_order)/size;
2049 min_objects = min(min_objects, max_objects);
2051 while (min_objects > 1) {
2052 fraction = 16;
2053 while (fraction >= 4) {
2054 order = slab_order(size, min_objects,
2055 slub_max_order, fraction);
2056 if (order <= slub_max_order)
2057 return order;
2058 fraction /= 2;
2060 min_objects--;
2064 * We were unable to place multiple objects in a slab. Now
2065 * lets see if we can place a single object there.
2067 order = slab_order(size, 1, slub_max_order, 1);
2068 if (order <= slub_max_order)
2069 return order;
2072 * Doh this slab cannot be placed using slub_max_order.
2074 order = slab_order(size, 1, MAX_ORDER, 1);
2075 if (order < MAX_ORDER)
2076 return order;
2077 return -ENOSYS;
2081 * Figure out what the alignment of the objects will be.
2083 static unsigned long calculate_alignment(unsigned long flags,
2084 unsigned long align, unsigned long size)
2087 * If the user wants hardware cache aligned objects then follow that
2088 * suggestion if the object is sufficiently large.
2090 * The hardware cache alignment cannot override the specified
2091 * alignment though. If that is greater then use it.
2093 if (flags & SLAB_HWCACHE_ALIGN) {
2094 unsigned long ralign = cache_line_size();
2095 while (size <= ralign / 2)
2096 ralign /= 2;
2097 align = max(align, ralign);
2100 if (align < ARCH_SLAB_MINALIGN)
2101 align = ARCH_SLAB_MINALIGN;
2103 return ALIGN(align, sizeof(void *));
2106 static void
2107 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2109 n->nr_partial = 0;
2110 spin_lock_init(&n->list_lock);
2111 INIT_LIST_HEAD(&n->partial);
2112 #ifdef CONFIG_SLUB_DEBUG
2113 atomic_long_set(&n->nr_slabs, 0);
2114 atomic_long_set(&n->total_objects, 0);
2115 INIT_LIST_HEAD(&n->full);
2116 #endif
2119 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2121 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2122 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2124 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2126 return s->cpu_slab != NULL;
2129 static struct kmem_cache *kmem_cache_node;
2132 * No kmalloc_node yet so do it by hand. We know that this is the first
2133 * slab on the node for this slabcache. There are no concurrent accesses
2134 * possible.
2136 * Note that this function only works on the kmalloc_node_cache
2137 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2138 * memory on a fresh node that has no slab structures yet.
2140 static void early_kmem_cache_node_alloc(int node)
2142 struct page *page;
2143 struct kmem_cache_node *n;
2144 unsigned long flags;
2146 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2148 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2150 BUG_ON(!page);
2151 if (page_to_nid(page) != node) {
2152 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2153 "node %d\n", node);
2154 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2155 "in order to be able to continue\n");
2158 n = page->freelist;
2159 BUG_ON(!n);
2160 page->freelist = get_freepointer(kmem_cache_node, n);
2161 page->inuse++;
2162 kmem_cache_node->node[node] = n;
2163 #ifdef CONFIG_SLUB_DEBUG
2164 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2165 init_tracking(kmem_cache_node, n);
2166 #endif
2167 init_kmem_cache_node(n, kmem_cache_node);
2168 inc_slabs_node(kmem_cache_node, node, page->objects);
2171 * lockdep requires consistent irq usage for each lock
2172 * so even though there cannot be a race this early in
2173 * the boot sequence, we still disable irqs.
2175 local_irq_save(flags);
2176 add_partial(n, page, 0);
2177 local_irq_restore(flags);
2180 static void free_kmem_cache_nodes(struct kmem_cache *s)
2182 int node;
2184 for_each_node_state(node, N_NORMAL_MEMORY) {
2185 struct kmem_cache_node *n = s->node[node];
2187 if (n)
2188 kmem_cache_free(kmem_cache_node, n);
2190 s->node[node] = NULL;
2194 static int init_kmem_cache_nodes(struct kmem_cache *s)
2196 int node;
2198 for_each_node_state(node, N_NORMAL_MEMORY) {
2199 struct kmem_cache_node *n;
2201 if (slab_state == DOWN) {
2202 early_kmem_cache_node_alloc(node);
2203 continue;
2205 n = kmem_cache_alloc_node(kmem_cache_node,
2206 GFP_KERNEL, node);
2208 if (!n) {
2209 free_kmem_cache_nodes(s);
2210 return 0;
2213 s->node[node] = n;
2214 init_kmem_cache_node(n, s);
2216 return 1;
2219 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2221 if (min < MIN_PARTIAL)
2222 min = MIN_PARTIAL;
2223 else if (min > MAX_PARTIAL)
2224 min = MAX_PARTIAL;
2225 s->min_partial = min;
2229 * calculate_sizes() determines the order and the distribution of data within
2230 * a slab object.
2232 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2234 unsigned long flags = s->flags;
2235 unsigned long size = s->objsize;
2236 unsigned long align = s->align;
2237 int order;
2240 * Round up object size to the next word boundary. We can only
2241 * place the free pointer at word boundaries and this determines
2242 * the possible location of the free pointer.
2244 size = ALIGN(size, sizeof(void *));
2246 #ifdef CONFIG_SLUB_DEBUG
2248 * Determine if we can poison the object itself. If the user of
2249 * the slab may touch the object after free or before allocation
2250 * then we should never poison the object itself.
2252 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2253 !s->ctor)
2254 s->flags |= __OBJECT_POISON;
2255 else
2256 s->flags &= ~__OBJECT_POISON;
2260 * If we are Redzoning then check if there is some space between the
2261 * end of the object and the free pointer. If not then add an
2262 * additional word to have some bytes to store Redzone information.
2264 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2265 size += sizeof(void *);
2266 #endif
2269 * With that we have determined the number of bytes in actual use
2270 * by the object. This is the potential offset to the free pointer.
2272 s->inuse = size;
2274 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2275 s->ctor)) {
2277 * Relocate free pointer after the object if it is not
2278 * permitted to overwrite the first word of the object on
2279 * kmem_cache_free.
2281 * This is the case if we do RCU, have a constructor or
2282 * destructor or are poisoning the objects.
2284 s->offset = size;
2285 size += sizeof(void *);
2288 #ifdef CONFIG_SLUB_DEBUG
2289 if (flags & SLAB_STORE_USER)
2291 * Need to store information about allocs and frees after
2292 * the object.
2294 size += 2 * sizeof(struct track);
2296 if (flags & SLAB_RED_ZONE)
2298 * Add some empty padding so that we can catch
2299 * overwrites from earlier objects rather than let
2300 * tracking information or the free pointer be
2301 * corrupted if a user writes before the start
2302 * of the object.
2304 size += sizeof(void *);
2305 #endif
2308 * Determine the alignment based on various parameters that the
2309 * user specified and the dynamic determination of cache line size
2310 * on bootup.
2312 align = calculate_alignment(flags, align, s->objsize);
2313 s->align = align;
2316 * SLUB stores one object immediately after another beginning from
2317 * offset 0. In order to align the objects we have to simply size
2318 * each object to conform to the alignment.
2320 size = ALIGN(size, align);
2321 s->size = size;
2322 if (forced_order >= 0)
2323 order = forced_order;
2324 else
2325 order = calculate_order(size);
2327 if (order < 0)
2328 return 0;
2330 s->allocflags = 0;
2331 if (order)
2332 s->allocflags |= __GFP_COMP;
2334 if (s->flags & SLAB_CACHE_DMA)
2335 s->allocflags |= SLUB_DMA;
2337 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2338 s->allocflags |= __GFP_RECLAIMABLE;
2341 * Determine the number of objects per slab
2343 s->oo = oo_make(order, size);
2344 s->min = oo_make(get_order(size), size);
2345 if (oo_objects(s->oo) > oo_objects(s->max))
2346 s->max = s->oo;
2348 return !!oo_objects(s->oo);
2352 static int kmem_cache_open(struct kmem_cache *s,
2353 const char *name, size_t size,
2354 size_t align, unsigned long flags,
2355 void (*ctor)(void *))
2357 memset(s, 0, kmem_size);
2358 s->name = name;
2359 s->ctor = ctor;
2360 s->objsize = size;
2361 s->align = align;
2362 s->flags = kmem_cache_flags(size, flags, name, ctor);
2364 if (!calculate_sizes(s, -1))
2365 goto error;
2366 if (disable_higher_order_debug) {
2368 * Disable debugging flags that store metadata if the min slab
2369 * order increased.
2371 if (get_order(s->size) > get_order(s->objsize)) {
2372 s->flags &= ~DEBUG_METADATA_FLAGS;
2373 s->offset = 0;
2374 if (!calculate_sizes(s, -1))
2375 goto error;
2380 * The larger the object size is, the more pages we want on the partial
2381 * list to avoid pounding the page allocator excessively.
2383 set_min_partial(s, ilog2(s->size));
2384 s->refcount = 1;
2385 #ifdef CONFIG_NUMA
2386 s->remote_node_defrag_ratio = 1000;
2387 #endif
2388 if (!init_kmem_cache_nodes(s))
2389 goto error;
2391 if (alloc_kmem_cache_cpus(s))
2392 return 1;
2394 free_kmem_cache_nodes(s);
2395 error:
2396 if (flags & SLAB_PANIC)
2397 panic("Cannot create slab %s size=%lu realsize=%u "
2398 "order=%u offset=%u flags=%lx\n",
2399 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2400 s->offset, flags);
2401 return 0;
2405 * Check if a given pointer is valid
2407 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2409 struct page *page;
2411 if (!kern_ptr_validate(object, s->size))
2412 return 0;
2414 page = get_object_page(object);
2416 if (!page || s != page->slab)
2417 /* No slab or wrong slab */
2418 return 0;
2420 if (!check_valid_pointer(s, page, object))
2421 return 0;
2424 * We could also check if the object is on the slabs freelist.
2425 * But this would be too expensive and it seems that the main
2426 * purpose of kmem_ptr_valid() is to check if the object belongs
2427 * to a certain slab.
2429 return 1;
2431 EXPORT_SYMBOL(kmem_ptr_validate);
2434 * Determine the size of a slab object
2436 unsigned int kmem_cache_size(struct kmem_cache *s)
2438 return s->objsize;
2440 EXPORT_SYMBOL(kmem_cache_size);
2442 const char *kmem_cache_name(struct kmem_cache *s)
2444 return s->name;
2446 EXPORT_SYMBOL(kmem_cache_name);
2448 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2449 const char *text)
2451 #ifdef CONFIG_SLUB_DEBUG
2452 void *addr = page_address(page);
2453 void *p;
2454 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2455 sizeof(long), GFP_ATOMIC);
2456 if (!map)
2457 return;
2458 slab_err(s, page, "%s", text);
2459 slab_lock(page);
2460 for_each_free_object(p, s, page->freelist)
2461 set_bit(slab_index(p, s, addr), map);
2463 for_each_object(p, s, addr, page->objects) {
2465 if (!test_bit(slab_index(p, s, addr), map)) {
2466 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2467 p, p - addr);
2468 print_tracking(s, p);
2471 slab_unlock(page);
2472 kfree(map);
2473 #endif
2477 * Attempt to free all partial slabs on a node.
2479 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2481 unsigned long flags;
2482 struct page *page, *h;
2484 spin_lock_irqsave(&n->list_lock, flags);
2485 list_for_each_entry_safe(page, h, &n->partial, lru) {
2486 if (!page->inuse) {
2487 __remove_partial(n, page);
2488 discard_slab(s, page);
2489 } else {
2490 list_slab_objects(s, page,
2491 "Objects remaining on kmem_cache_close()");
2494 spin_unlock_irqrestore(&n->list_lock, flags);
2498 * Release all resources used by a slab cache.
2500 static inline int kmem_cache_close(struct kmem_cache *s)
2502 int node;
2504 flush_all(s);
2505 free_percpu(s->cpu_slab);
2506 /* Attempt to free all objects */
2507 for_each_node_state(node, N_NORMAL_MEMORY) {
2508 struct kmem_cache_node *n = get_node(s, node);
2510 free_partial(s, n);
2511 if (n->nr_partial || slabs_node(s, node))
2512 return 1;
2514 free_kmem_cache_nodes(s);
2515 return 0;
2519 * Close a cache and release the kmem_cache structure
2520 * (must be used for caches created using kmem_cache_create)
2522 void kmem_cache_destroy(struct kmem_cache *s)
2524 down_write(&slub_lock);
2525 s->refcount--;
2526 if (!s->refcount) {
2527 list_del(&s->list);
2528 if (kmem_cache_close(s)) {
2529 printk(KERN_ERR "SLUB %s: %s called for cache that "
2530 "still has objects.\n", s->name, __func__);
2531 dump_stack();
2533 if (s->flags & SLAB_DESTROY_BY_RCU)
2534 rcu_barrier();
2535 sysfs_slab_remove(s);
2537 up_write(&slub_lock);
2539 EXPORT_SYMBOL(kmem_cache_destroy);
2541 /********************************************************************
2542 * Kmalloc subsystem
2543 *******************************************************************/
2545 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2546 EXPORT_SYMBOL(kmalloc_caches);
2548 static struct kmem_cache *kmem_cache;
2550 #ifdef CONFIG_ZONE_DMA
2551 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2552 #endif
2554 static int __init setup_slub_min_order(char *str)
2556 get_option(&str, &slub_min_order);
2558 return 1;
2561 __setup("slub_min_order=", setup_slub_min_order);
2563 static int __init setup_slub_max_order(char *str)
2565 get_option(&str, &slub_max_order);
2566 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2568 return 1;
2571 __setup("slub_max_order=", setup_slub_max_order);
2573 static int __init setup_slub_min_objects(char *str)
2575 get_option(&str, &slub_min_objects);
2577 return 1;
2580 __setup("slub_min_objects=", setup_slub_min_objects);
2582 static int __init setup_slub_nomerge(char *str)
2584 slub_nomerge = 1;
2585 return 1;
2588 __setup("slub_nomerge", setup_slub_nomerge);
2590 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2591 int size, unsigned int flags)
2593 struct kmem_cache *s;
2595 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2598 * This function is called with IRQs disabled during early-boot on
2599 * single CPU so there's no need to take slub_lock here.
2601 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2602 flags, NULL))
2603 goto panic;
2605 list_add(&s->list, &slab_caches);
2606 return s;
2608 panic:
2609 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2610 return NULL;
2614 * Conversion table for small slabs sizes / 8 to the index in the
2615 * kmalloc array. This is necessary for slabs < 192 since we have non power
2616 * of two cache sizes there. The size of larger slabs can be determined using
2617 * fls.
2619 static s8 size_index[24] = {
2620 3, /* 8 */
2621 4, /* 16 */
2622 5, /* 24 */
2623 5, /* 32 */
2624 6, /* 40 */
2625 6, /* 48 */
2626 6, /* 56 */
2627 6, /* 64 */
2628 1, /* 72 */
2629 1, /* 80 */
2630 1, /* 88 */
2631 1, /* 96 */
2632 7, /* 104 */
2633 7, /* 112 */
2634 7, /* 120 */
2635 7, /* 128 */
2636 2, /* 136 */
2637 2, /* 144 */
2638 2, /* 152 */
2639 2, /* 160 */
2640 2, /* 168 */
2641 2, /* 176 */
2642 2, /* 184 */
2643 2 /* 192 */
2646 static inline int size_index_elem(size_t bytes)
2648 return (bytes - 1) / 8;
2651 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2653 int index;
2655 if (size <= 192) {
2656 if (!size)
2657 return ZERO_SIZE_PTR;
2659 index = size_index[size_index_elem(size)];
2660 } else
2661 index = fls(size - 1);
2663 #ifdef CONFIG_ZONE_DMA
2664 if (unlikely((flags & SLUB_DMA)))
2665 return kmalloc_dma_caches[index];
2667 #endif
2668 return kmalloc_caches[index];
2671 void *__kmalloc(size_t size, gfp_t flags)
2673 struct kmem_cache *s;
2674 void *ret;
2676 if (unlikely(size > SLUB_MAX_SIZE))
2677 return kmalloc_large(size, flags);
2679 s = get_slab(size, flags);
2681 if (unlikely(ZERO_OR_NULL_PTR(s)))
2682 return s;
2684 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2686 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2688 return ret;
2690 EXPORT_SYMBOL(__kmalloc);
2692 #ifdef CONFIG_NUMA
2693 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2695 struct page *page;
2696 void *ptr = NULL;
2698 flags |= __GFP_COMP | __GFP_NOTRACK;
2699 page = alloc_pages_node(node, flags, get_order(size));
2700 if (page)
2701 ptr = page_address(page);
2703 kmemleak_alloc(ptr, size, 1, flags);
2704 return ptr;
2707 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2709 struct kmem_cache *s;
2710 void *ret;
2712 if (unlikely(size > SLUB_MAX_SIZE)) {
2713 ret = kmalloc_large_node(size, flags, node);
2715 trace_kmalloc_node(_RET_IP_, ret,
2716 size, PAGE_SIZE << get_order(size),
2717 flags, node);
2719 return ret;
2722 s = get_slab(size, flags);
2724 if (unlikely(ZERO_OR_NULL_PTR(s)))
2725 return s;
2727 ret = slab_alloc(s, flags, node, _RET_IP_);
2729 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2731 return ret;
2733 EXPORT_SYMBOL(__kmalloc_node);
2734 #endif
2736 size_t ksize(const void *object)
2738 struct page *page;
2739 struct kmem_cache *s;
2741 if (unlikely(object == ZERO_SIZE_PTR))
2742 return 0;
2744 page = virt_to_head_page(object);
2746 if (unlikely(!PageSlab(page))) {
2747 WARN_ON(!PageCompound(page));
2748 return PAGE_SIZE << compound_order(page);
2750 s = page->slab;
2752 #ifdef CONFIG_SLUB_DEBUG
2754 * Debugging requires use of the padding between object
2755 * and whatever may come after it.
2757 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2758 return s->objsize;
2760 #endif
2762 * If we have the need to store the freelist pointer
2763 * back there or track user information then we can
2764 * only use the space before that information.
2766 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2767 return s->inuse;
2769 * Else we can use all the padding etc for the allocation
2771 return s->size;
2773 EXPORT_SYMBOL(ksize);
2775 void kfree(const void *x)
2777 struct page *page;
2778 void *object = (void *)x;
2780 trace_kfree(_RET_IP_, x);
2782 if (unlikely(ZERO_OR_NULL_PTR(x)))
2783 return;
2785 page = virt_to_head_page(x);
2786 if (unlikely(!PageSlab(page))) {
2787 BUG_ON(!PageCompound(page));
2788 kmemleak_free(x);
2789 put_page(page);
2790 return;
2792 slab_free(page->slab, page, object, _RET_IP_);
2794 EXPORT_SYMBOL(kfree);
2797 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2798 * the remaining slabs by the number of items in use. The slabs with the
2799 * most items in use come first. New allocations will then fill those up
2800 * and thus they can be removed from the partial lists.
2802 * The slabs with the least items are placed last. This results in them
2803 * being allocated from last increasing the chance that the last objects
2804 * are freed in them.
2806 int kmem_cache_shrink(struct kmem_cache *s)
2808 int node;
2809 int i;
2810 struct kmem_cache_node *n;
2811 struct page *page;
2812 struct page *t;
2813 int objects = oo_objects(s->max);
2814 struct list_head *slabs_by_inuse =
2815 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2816 unsigned long flags;
2818 if (!slabs_by_inuse)
2819 return -ENOMEM;
2821 flush_all(s);
2822 for_each_node_state(node, N_NORMAL_MEMORY) {
2823 n = get_node(s, node);
2825 if (!n->nr_partial)
2826 continue;
2828 for (i = 0; i < objects; i++)
2829 INIT_LIST_HEAD(slabs_by_inuse + i);
2831 spin_lock_irqsave(&n->list_lock, flags);
2834 * Build lists indexed by the items in use in each slab.
2836 * Note that concurrent frees may occur while we hold the
2837 * list_lock. page->inuse here is the upper limit.
2839 list_for_each_entry_safe(page, t, &n->partial, lru) {
2840 if (!page->inuse && slab_trylock(page)) {
2842 * Must hold slab lock here because slab_free
2843 * may have freed the last object and be
2844 * waiting to release the slab.
2846 __remove_partial(n, page);
2847 slab_unlock(page);
2848 discard_slab(s, page);
2849 } else {
2850 list_move(&page->lru,
2851 slabs_by_inuse + page->inuse);
2856 * Rebuild the partial list with the slabs filled up most
2857 * first and the least used slabs at the end.
2859 for (i = objects - 1; i >= 0; i--)
2860 list_splice(slabs_by_inuse + i, n->partial.prev);
2862 spin_unlock_irqrestore(&n->list_lock, flags);
2865 kfree(slabs_by_inuse);
2866 return 0;
2868 EXPORT_SYMBOL(kmem_cache_shrink);
2870 #if defined(CONFIG_MEMORY_HOTPLUG)
2871 static int slab_mem_going_offline_callback(void *arg)
2873 struct kmem_cache *s;
2875 down_read(&slub_lock);
2876 list_for_each_entry(s, &slab_caches, list)
2877 kmem_cache_shrink(s);
2878 up_read(&slub_lock);
2880 return 0;
2883 static void slab_mem_offline_callback(void *arg)
2885 struct kmem_cache_node *n;
2886 struct kmem_cache *s;
2887 struct memory_notify *marg = arg;
2888 int offline_node;
2890 offline_node = marg->status_change_nid;
2893 * If the node still has available memory. we need kmem_cache_node
2894 * for it yet.
2896 if (offline_node < 0)
2897 return;
2899 down_read(&slub_lock);
2900 list_for_each_entry(s, &slab_caches, list) {
2901 n = get_node(s, offline_node);
2902 if (n) {
2904 * if n->nr_slabs > 0, slabs still exist on the node
2905 * that is going down. We were unable to free them,
2906 * and offline_pages() function shouldn't call this
2907 * callback. So, we must fail.
2909 BUG_ON(slabs_node(s, offline_node));
2911 s->node[offline_node] = NULL;
2912 kmem_cache_free(kmem_cache_node, n);
2915 up_read(&slub_lock);
2918 static int slab_mem_going_online_callback(void *arg)
2920 struct kmem_cache_node *n;
2921 struct kmem_cache *s;
2922 struct memory_notify *marg = arg;
2923 int nid = marg->status_change_nid;
2924 int ret = 0;
2927 * If the node's memory is already available, then kmem_cache_node is
2928 * already created. Nothing to do.
2930 if (nid < 0)
2931 return 0;
2934 * We are bringing a node online. No memory is available yet. We must
2935 * allocate a kmem_cache_node structure in order to bring the node
2936 * online.
2938 down_read(&slub_lock);
2939 list_for_each_entry(s, &slab_caches, list) {
2941 * XXX: kmem_cache_alloc_node will fallback to other nodes
2942 * since memory is not yet available from the node that
2943 * is brought up.
2945 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
2946 if (!n) {
2947 ret = -ENOMEM;
2948 goto out;
2950 init_kmem_cache_node(n, s);
2951 s->node[nid] = n;
2953 out:
2954 up_read(&slub_lock);
2955 return ret;
2958 static int slab_memory_callback(struct notifier_block *self,
2959 unsigned long action, void *arg)
2961 int ret = 0;
2963 switch (action) {
2964 case MEM_GOING_ONLINE:
2965 ret = slab_mem_going_online_callback(arg);
2966 break;
2967 case MEM_GOING_OFFLINE:
2968 ret = slab_mem_going_offline_callback(arg);
2969 break;
2970 case MEM_OFFLINE:
2971 case MEM_CANCEL_ONLINE:
2972 slab_mem_offline_callback(arg);
2973 break;
2974 case MEM_ONLINE:
2975 case MEM_CANCEL_OFFLINE:
2976 break;
2978 if (ret)
2979 ret = notifier_from_errno(ret);
2980 else
2981 ret = NOTIFY_OK;
2982 return ret;
2985 #endif /* CONFIG_MEMORY_HOTPLUG */
2987 /********************************************************************
2988 * Basic setup of slabs
2989 *******************************************************************/
2992 * Used for early kmem_cache structures that were allocated using
2993 * the page allocator
2996 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2998 int node;
3000 list_add(&s->list, &slab_caches);
3001 s->refcount = -1;
3003 for_each_node_state(node, N_NORMAL_MEMORY) {
3004 struct kmem_cache_node *n = get_node(s, node);
3005 struct page *p;
3007 if (n) {
3008 list_for_each_entry(p, &n->partial, lru)
3009 p->slab = s;
3011 #ifdef CONFIG_SLAB_DEBUG
3012 list_for_each_entry(p, &n->full, lru)
3013 p->slab = s;
3014 #endif
3019 void __init kmem_cache_init(void)
3021 int i;
3022 int caches = 0;
3023 struct kmem_cache *temp_kmem_cache;
3024 int order;
3025 struct kmem_cache *temp_kmem_cache_node;
3026 unsigned long kmalloc_size;
3028 kmem_size = offsetof(struct kmem_cache, node) +
3029 nr_node_ids * sizeof(struct kmem_cache_node *);
3031 /* Allocate two kmem_caches from the page allocator */
3032 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3033 order = get_order(2 * kmalloc_size);
3034 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3037 * Must first have the slab cache available for the allocations of the
3038 * struct kmem_cache_node's. There is special bootstrap code in
3039 * kmem_cache_open for slab_state == DOWN.
3041 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3043 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3044 sizeof(struct kmem_cache_node),
3045 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3047 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3049 /* Able to allocate the per node structures */
3050 slab_state = PARTIAL;
3052 temp_kmem_cache = kmem_cache;
3053 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3054 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3055 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3056 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3059 * Allocate kmem_cache_node properly from the kmem_cache slab.
3060 * kmem_cache_node is separately allocated so no need to
3061 * update any list pointers.
3063 temp_kmem_cache_node = kmem_cache_node;
3065 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3066 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3068 kmem_cache_bootstrap_fixup(kmem_cache_node);
3070 caches++;
3071 kmem_cache_bootstrap_fixup(kmem_cache);
3072 caches++;
3073 /* Free temporary boot structure */
3074 free_pages((unsigned long)temp_kmem_cache, order);
3076 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3079 * Patch up the size_index table if we have strange large alignment
3080 * requirements for the kmalloc array. This is only the case for
3081 * MIPS it seems. The standard arches will not generate any code here.
3083 * Largest permitted alignment is 256 bytes due to the way we
3084 * handle the index determination for the smaller caches.
3086 * Make sure that nothing crazy happens if someone starts tinkering
3087 * around with ARCH_KMALLOC_MINALIGN
3089 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3090 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3092 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3093 int elem = size_index_elem(i);
3094 if (elem >= ARRAY_SIZE(size_index))
3095 break;
3096 size_index[elem] = KMALLOC_SHIFT_LOW;
3099 if (KMALLOC_MIN_SIZE == 64) {
3101 * The 96 byte size cache is not used if the alignment
3102 * is 64 byte.
3104 for (i = 64 + 8; i <= 96; i += 8)
3105 size_index[size_index_elem(i)] = 7;
3106 } else if (KMALLOC_MIN_SIZE == 128) {
3108 * The 192 byte sized cache is not used if the alignment
3109 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3110 * instead.
3112 for (i = 128 + 8; i <= 192; i += 8)
3113 size_index[size_index_elem(i)] = 8;
3116 /* Caches that are not of the two-to-the-power-of size */
3117 if (KMALLOC_MIN_SIZE <= 32) {
3118 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3119 caches++;
3122 if (KMALLOC_MIN_SIZE <= 64) {
3123 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3124 caches++;
3127 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3128 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3129 caches++;
3132 slab_state = UP;
3134 /* Provide the correct kmalloc names now that the caches are up */
3135 if (KMALLOC_MIN_SIZE <= 32) {
3136 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3137 BUG_ON(!kmalloc_caches[1]->name);
3140 if (KMALLOC_MIN_SIZE <= 64) {
3141 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3142 BUG_ON(!kmalloc_caches[2]->name);
3145 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3146 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3148 BUG_ON(!s);
3149 kmalloc_caches[i]->name = s;
3152 #ifdef CONFIG_SMP
3153 register_cpu_notifier(&slab_notifier);
3154 #endif
3156 #ifdef CONFIG_ZONE_DMA
3157 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3158 struct kmem_cache *s = kmalloc_caches[i];
3160 if (s && s->size) {
3161 char *name = kasprintf(GFP_NOWAIT,
3162 "dma-kmalloc-%d", s->objsize);
3164 BUG_ON(!name);
3165 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3166 s->objsize, SLAB_CACHE_DMA);
3169 #endif
3170 printk(KERN_INFO
3171 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3172 " CPUs=%d, Nodes=%d\n",
3173 caches, cache_line_size(),
3174 slub_min_order, slub_max_order, slub_min_objects,
3175 nr_cpu_ids, nr_node_ids);
3178 void __init kmem_cache_init_late(void)
3183 * Find a mergeable slab cache
3185 static int slab_unmergeable(struct kmem_cache *s)
3187 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3188 return 1;
3190 if (s->ctor)
3191 return 1;
3194 * We may have set a slab to be unmergeable during bootstrap.
3196 if (s->refcount < 0)
3197 return 1;
3199 return 0;
3202 static struct kmem_cache *find_mergeable(size_t size,
3203 size_t align, unsigned long flags, const char *name,
3204 void (*ctor)(void *))
3206 struct kmem_cache *s;
3208 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3209 return NULL;
3211 if (ctor)
3212 return NULL;
3214 size = ALIGN(size, sizeof(void *));
3215 align = calculate_alignment(flags, align, size);
3216 size = ALIGN(size, align);
3217 flags = kmem_cache_flags(size, flags, name, NULL);
3219 list_for_each_entry(s, &slab_caches, list) {
3220 if (slab_unmergeable(s))
3221 continue;
3223 if (size > s->size)
3224 continue;
3226 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3227 continue;
3229 * Check if alignment is compatible.
3230 * Courtesy of Adrian Drzewiecki
3232 if ((s->size & ~(align - 1)) != s->size)
3233 continue;
3235 if (s->size - size >= sizeof(void *))
3236 continue;
3238 return s;
3240 return NULL;
3243 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3244 size_t align, unsigned long flags, void (*ctor)(void *))
3246 struct kmem_cache *s;
3247 char *n;
3249 if (WARN_ON(!name))
3250 return NULL;
3252 down_write(&slub_lock);
3253 s = find_mergeable(size, align, flags, name, ctor);
3254 if (s) {
3255 s->refcount++;
3257 * Adjust the object sizes so that we clear
3258 * the complete object on kzalloc.
3260 s->objsize = max(s->objsize, (int)size);
3261 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3263 if (sysfs_slab_alias(s, name)) {
3264 s->refcount--;
3265 goto err;
3267 up_write(&slub_lock);
3268 return s;
3271 n = kstrdup(name, GFP_KERNEL);
3272 if (!n)
3273 goto err;
3275 s = kmalloc(kmem_size, GFP_KERNEL);
3276 if (s) {
3277 if (kmem_cache_open(s, n,
3278 size, align, flags, ctor)) {
3279 list_add(&s->list, &slab_caches);
3280 if (sysfs_slab_add(s)) {
3281 list_del(&s->list);
3282 kfree(n);
3283 kfree(s);
3284 goto err;
3286 up_write(&slub_lock);
3287 return s;
3289 kfree(n);
3290 kfree(s);
3292 err:
3293 up_write(&slub_lock);
3295 if (flags & SLAB_PANIC)
3296 panic("Cannot create slabcache %s\n", name);
3297 else
3298 s = NULL;
3299 return s;
3301 EXPORT_SYMBOL(kmem_cache_create);
3303 #ifdef CONFIG_SMP
3305 * Use the cpu notifier to insure that the cpu slabs are flushed when
3306 * necessary.
3308 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3309 unsigned long action, void *hcpu)
3311 long cpu = (long)hcpu;
3312 struct kmem_cache *s;
3313 unsigned long flags;
3315 switch (action) {
3316 case CPU_UP_CANCELED:
3317 case CPU_UP_CANCELED_FROZEN:
3318 case CPU_DEAD:
3319 case CPU_DEAD_FROZEN:
3320 down_read(&slub_lock);
3321 list_for_each_entry(s, &slab_caches, list) {
3322 local_irq_save(flags);
3323 __flush_cpu_slab(s, cpu);
3324 local_irq_restore(flags);
3326 up_read(&slub_lock);
3327 break;
3328 default:
3329 break;
3331 return NOTIFY_OK;
3334 static struct notifier_block __cpuinitdata slab_notifier = {
3335 .notifier_call = slab_cpuup_callback
3338 #endif
3340 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3342 struct kmem_cache *s;
3343 void *ret;
3345 if (unlikely(size > SLUB_MAX_SIZE))
3346 return kmalloc_large(size, gfpflags);
3348 s = get_slab(size, gfpflags);
3350 if (unlikely(ZERO_OR_NULL_PTR(s)))
3351 return s;
3353 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3355 /* Honor the call site pointer we recieved. */
3356 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3358 return ret;
3361 #ifdef CONFIG_NUMA
3362 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3363 int node, unsigned long caller)
3365 struct kmem_cache *s;
3366 void *ret;
3368 if (unlikely(size > SLUB_MAX_SIZE)) {
3369 ret = kmalloc_large_node(size, gfpflags, node);
3371 trace_kmalloc_node(caller, ret,
3372 size, PAGE_SIZE << get_order(size),
3373 gfpflags, node);
3375 return ret;
3378 s = get_slab(size, gfpflags);
3380 if (unlikely(ZERO_OR_NULL_PTR(s)))
3381 return s;
3383 ret = slab_alloc(s, gfpflags, node, caller);
3385 /* Honor the call site pointer we recieved. */
3386 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3388 return ret;
3390 #endif
3392 #ifdef CONFIG_SYSFS
3393 static int count_inuse(struct page *page)
3395 return page->inuse;
3398 static int count_total(struct page *page)
3400 return page->objects;
3402 #endif
3404 #ifdef CONFIG_SLUB_DEBUG
3405 static int validate_slab(struct kmem_cache *s, struct page *page,
3406 unsigned long *map)
3408 void *p;
3409 void *addr = page_address(page);
3411 if (!check_slab(s, page) ||
3412 !on_freelist(s, page, NULL))
3413 return 0;
3415 /* Now we know that a valid freelist exists */
3416 bitmap_zero(map, page->objects);
3418 for_each_free_object(p, s, page->freelist) {
3419 set_bit(slab_index(p, s, addr), map);
3420 if (!check_object(s, page, p, 0))
3421 return 0;
3424 for_each_object(p, s, addr, page->objects)
3425 if (!test_bit(slab_index(p, s, addr), map))
3426 if (!check_object(s, page, p, 1))
3427 return 0;
3428 return 1;
3431 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3432 unsigned long *map)
3434 if (slab_trylock(page)) {
3435 validate_slab(s, page, map);
3436 slab_unlock(page);
3437 } else
3438 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3439 s->name, page);
3442 static int validate_slab_node(struct kmem_cache *s,
3443 struct kmem_cache_node *n, unsigned long *map)
3445 unsigned long count = 0;
3446 struct page *page;
3447 unsigned long flags;
3449 spin_lock_irqsave(&n->list_lock, flags);
3451 list_for_each_entry(page, &n->partial, lru) {
3452 validate_slab_slab(s, page, map);
3453 count++;
3455 if (count != n->nr_partial)
3456 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3457 "counter=%ld\n", s->name, count, n->nr_partial);
3459 if (!(s->flags & SLAB_STORE_USER))
3460 goto out;
3462 list_for_each_entry(page, &n->full, lru) {
3463 validate_slab_slab(s, page, map);
3464 count++;
3466 if (count != atomic_long_read(&n->nr_slabs))
3467 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3468 "counter=%ld\n", s->name, count,
3469 atomic_long_read(&n->nr_slabs));
3471 out:
3472 spin_unlock_irqrestore(&n->list_lock, flags);
3473 return count;
3476 static long validate_slab_cache(struct kmem_cache *s)
3478 int node;
3479 unsigned long count = 0;
3480 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3481 sizeof(unsigned long), GFP_KERNEL);
3483 if (!map)
3484 return -ENOMEM;
3486 flush_all(s);
3487 for_each_node_state(node, N_NORMAL_MEMORY) {
3488 struct kmem_cache_node *n = get_node(s, node);
3490 count += validate_slab_node(s, n, map);
3492 kfree(map);
3493 return count;
3496 * Generate lists of code addresses where slabcache objects are allocated
3497 * and freed.
3500 struct location {
3501 unsigned long count;
3502 unsigned long addr;
3503 long long sum_time;
3504 long min_time;
3505 long max_time;
3506 long min_pid;
3507 long max_pid;
3508 DECLARE_BITMAP(cpus, NR_CPUS);
3509 nodemask_t nodes;
3512 struct loc_track {
3513 unsigned long max;
3514 unsigned long count;
3515 struct location *loc;
3518 static void free_loc_track(struct loc_track *t)
3520 if (t->max)
3521 free_pages((unsigned long)t->loc,
3522 get_order(sizeof(struct location) * t->max));
3525 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3527 struct location *l;
3528 int order;
3530 order = get_order(sizeof(struct location) * max);
3532 l = (void *)__get_free_pages(flags, order);
3533 if (!l)
3534 return 0;
3536 if (t->count) {
3537 memcpy(l, t->loc, sizeof(struct location) * t->count);
3538 free_loc_track(t);
3540 t->max = max;
3541 t->loc = l;
3542 return 1;
3545 static int add_location(struct loc_track *t, struct kmem_cache *s,
3546 const struct track *track)
3548 long start, end, pos;
3549 struct location *l;
3550 unsigned long caddr;
3551 unsigned long age = jiffies - track->when;
3553 start = -1;
3554 end = t->count;
3556 for ( ; ; ) {
3557 pos = start + (end - start + 1) / 2;
3560 * There is nothing at "end". If we end up there
3561 * we need to add something to before end.
3563 if (pos == end)
3564 break;
3566 caddr = t->loc[pos].addr;
3567 if (track->addr == caddr) {
3569 l = &t->loc[pos];
3570 l->count++;
3571 if (track->when) {
3572 l->sum_time += age;
3573 if (age < l->min_time)
3574 l->min_time = age;
3575 if (age > l->max_time)
3576 l->max_time = age;
3578 if (track->pid < l->min_pid)
3579 l->min_pid = track->pid;
3580 if (track->pid > l->max_pid)
3581 l->max_pid = track->pid;
3583 cpumask_set_cpu(track->cpu,
3584 to_cpumask(l->cpus));
3586 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3587 return 1;
3590 if (track->addr < caddr)
3591 end = pos;
3592 else
3593 start = pos;
3597 * Not found. Insert new tracking element.
3599 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3600 return 0;
3602 l = t->loc + pos;
3603 if (pos < t->count)
3604 memmove(l + 1, l,
3605 (t->count - pos) * sizeof(struct location));
3606 t->count++;
3607 l->count = 1;
3608 l->addr = track->addr;
3609 l->sum_time = age;
3610 l->min_time = age;
3611 l->max_time = age;
3612 l->min_pid = track->pid;
3613 l->max_pid = track->pid;
3614 cpumask_clear(to_cpumask(l->cpus));
3615 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3616 nodes_clear(l->nodes);
3617 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3618 return 1;
3621 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3622 struct page *page, enum track_item alloc,
3623 unsigned long *map)
3625 void *addr = page_address(page);
3626 void *p;
3628 bitmap_zero(map, page->objects);
3629 for_each_free_object(p, s, page->freelist)
3630 set_bit(slab_index(p, s, addr), map);
3632 for_each_object(p, s, addr, page->objects)
3633 if (!test_bit(slab_index(p, s, addr), map))
3634 add_location(t, s, get_track(s, p, alloc));
3637 static int list_locations(struct kmem_cache *s, char *buf,
3638 enum track_item alloc)
3640 int len = 0;
3641 unsigned long i;
3642 struct loc_track t = { 0, 0, NULL };
3643 int node;
3644 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3645 sizeof(unsigned long), GFP_KERNEL);
3647 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3648 GFP_TEMPORARY)) {
3649 kfree(map);
3650 return sprintf(buf, "Out of memory\n");
3652 /* Push back cpu slabs */
3653 flush_all(s);
3655 for_each_node_state(node, N_NORMAL_MEMORY) {
3656 struct kmem_cache_node *n = get_node(s, node);
3657 unsigned long flags;
3658 struct page *page;
3660 if (!atomic_long_read(&n->nr_slabs))
3661 continue;
3663 spin_lock_irqsave(&n->list_lock, flags);
3664 list_for_each_entry(page, &n->partial, lru)
3665 process_slab(&t, s, page, alloc, map);
3666 list_for_each_entry(page, &n->full, lru)
3667 process_slab(&t, s, page, alloc, map);
3668 spin_unlock_irqrestore(&n->list_lock, flags);
3671 for (i = 0; i < t.count; i++) {
3672 struct location *l = &t.loc[i];
3674 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3675 break;
3676 len += sprintf(buf + len, "%7ld ", l->count);
3678 if (l->addr)
3679 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3680 else
3681 len += sprintf(buf + len, "<not-available>");
3683 if (l->sum_time != l->min_time) {
3684 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3685 l->min_time,
3686 (long)div_u64(l->sum_time, l->count),
3687 l->max_time);
3688 } else
3689 len += sprintf(buf + len, " age=%ld",
3690 l->min_time);
3692 if (l->min_pid != l->max_pid)
3693 len += sprintf(buf + len, " pid=%ld-%ld",
3694 l->min_pid, l->max_pid);
3695 else
3696 len += sprintf(buf + len, " pid=%ld",
3697 l->min_pid);
3699 if (num_online_cpus() > 1 &&
3700 !cpumask_empty(to_cpumask(l->cpus)) &&
3701 len < PAGE_SIZE - 60) {
3702 len += sprintf(buf + len, " cpus=");
3703 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3704 to_cpumask(l->cpus));
3707 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3708 len < PAGE_SIZE - 60) {
3709 len += sprintf(buf + len, " nodes=");
3710 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3711 l->nodes);
3714 len += sprintf(buf + len, "\n");
3717 free_loc_track(&t);
3718 kfree(map);
3719 if (!t.count)
3720 len += sprintf(buf, "No data\n");
3721 return len;
3723 #endif
3725 #ifdef SLUB_RESILIENCY_TEST
3726 static void resiliency_test(void)
3728 u8 *p;
3730 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3732 printk(KERN_ERR "SLUB resiliency testing\n");
3733 printk(KERN_ERR "-----------------------\n");
3734 printk(KERN_ERR "A. Corruption after allocation\n");
3736 p = kzalloc(16, GFP_KERNEL);
3737 p[16] = 0x12;
3738 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3739 " 0x12->0x%p\n\n", p + 16);
3741 validate_slab_cache(kmalloc_caches[4]);
3743 /* Hmmm... The next two are dangerous */
3744 p = kzalloc(32, GFP_KERNEL);
3745 p[32 + sizeof(void *)] = 0x34;
3746 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3747 " 0x34 -> -0x%p\n", p);
3748 printk(KERN_ERR
3749 "If allocated object is overwritten then not detectable\n\n");
3751 validate_slab_cache(kmalloc_caches[5]);
3752 p = kzalloc(64, GFP_KERNEL);
3753 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3754 *p = 0x56;
3755 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3757 printk(KERN_ERR
3758 "If allocated object is overwritten then not detectable\n\n");
3759 validate_slab_cache(kmalloc_caches[6]);
3761 printk(KERN_ERR "\nB. Corruption after free\n");
3762 p = kzalloc(128, GFP_KERNEL);
3763 kfree(p);
3764 *p = 0x78;
3765 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3766 validate_slab_cache(kmalloc_caches[7]);
3768 p = kzalloc(256, GFP_KERNEL);
3769 kfree(p);
3770 p[50] = 0x9a;
3771 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3773 validate_slab_cache(kmalloc_caches[8]);
3775 p = kzalloc(512, GFP_KERNEL);
3776 kfree(p);
3777 p[512] = 0xab;
3778 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3779 validate_slab_cache(kmalloc_caches[9]);
3781 #else
3782 #ifdef CONFIG_SYSFS
3783 static void resiliency_test(void) {};
3784 #endif
3785 #endif
3787 #ifdef CONFIG_SYSFS
3788 enum slab_stat_type {
3789 SL_ALL, /* All slabs */
3790 SL_PARTIAL, /* Only partially allocated slabs */
3791 SL_CPU, /* Only slabs used for cpu caches */
3792 SL_OBJECTS, /* Determine allocated objects not slabs */
3793 SL_TOTAL /* Determine object capacity not slabs */
3796 #define SO_ALL (1 << SL_ALL)
3797 #define SO_PARTIAL (1 << SL_PARTIAL)
3798 #define SO_CPU (1 << SL_CPU)
3799 #define SO_OBJECTS (1 << SL_OBJECTS)
3800 #define SO_TOTAL (1 << SL_TOTAL)
3802 static ssize_t show_slab_objects(struct kmem_cache *s,
3803 char *buf, unsigned long flags)
3805 unsigned long total = 0;
3806 int node;
3807 int x;
3808 unsigned long *nodes;
3809 unsigned long *per_cpu;
3811 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3812 if (!nodes)
3813 return -ENOMEM;
3814 per_cpu = nodes + nr_node_ids;
3816 if (flags & SO_CPU) {
3817 int cpu;
3819 for_each_possible_cpu(cpu) {
3820 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3822 if (!c || c->node < 0)
3823 continue;
3825 if (c->page) {
3826 if (flags & SO_TOTAL)
3827 x = c->page->objects;
3828 else if (flags & SO_OBJECTS)
3829 x = c->page->inuse;
3830 else
3831 x = 1;
3833 total += x;
3834 nodes[c->node] += x;
3836 per_cpu[c->node]++;
3840 down_read(&slub_lock);
3841 #ifdef CONFIG_SLUB_DEBUG
3842 if (flags & SO_ALL) {
3843 for_each_node_state(node, N_NORMAL_MEMORY) {
3844 struct kmem_cache_node *n = get_node(s, node);
3846 if (flags & SO_TOTAL)
3847 x = atomic_long_read(&n->total_objects);
3848 else if (flags & SO_OBJECTS)
3849 x = atomic_long_read(&n->total_objects) -
3850 count_partial(n, count_free);
3852 else
3853 x = atomic_long_read(&n->nr_slabs);
3854 total += x;
3855 nodes[node] += x;
3858 } else
3859 #endif
3860 if (flags & SO_PARTIAL) {
3861 for_each_node_state(node, N_NORMAL_MEMORY) {
3862 struct kmem_cache_node *n = get_node(s, node);
3864 if (flags & SO_TOTAL)
3865 x = count_partial(n, count_total);
3866 else if (flags & SO_OBJECTS)
3867 x = count_partial(n, count_inuse);
3868 else
3869 x = n->nr_partial;
3870 total += x;
3871 nodes[node] += x;
3874 x = sprintf(buf, "%lu", total);
3875 #ifdef CONFIG_NUMA
3876 for_each_node_state(node, N_NORMAL_MEMORY)
3877 if (nodes[node])
3878 x += sprintf(buf + x, " N%d=%lu",
3879 node, nodes[node]);
3880 #endif
3881 up_read(&slub_lock);
3882 kfree(nodes);
3883 return x + sprintf(buf + x, "\n");
3886 #ifdef CONFIG_SLUB_DEBUG
3887 static int any_slab_objects(struct kmem_cache *s)
3889 int node;
3891 for_each_online_node(node) {
3892 struct kmem_cache_node *n = get_node(s, node);
3894 if (!n)
3895 continue;
3897 if (atomic_long_read(&n->total_objects))
3898 return 1;
3900 return 0;
3902 #endif
3904 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3905 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3907 struct slab_attribute {
3908 struct attribute attr;
3909 ssize_t (*show)(struct kmem_cache *s, char *buf);
3910 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3913 #define SLAB_ATTR_RO(_name) \
3914 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3916 #define SLAB_ATTR(_name) \
3917 static struct slab_attribute _name##_attr = \
3918 __ATTR(_name, 0644, _name##_show, _name##_store)
3920 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3922 return sprintf(buf, "%d\n", s->size);
3924 SLAB_ATTR_RO(slab_size);
3926 static ssize_t align_show(struct kmem_cache *s, char *buf)
3928 return sprintf(buf, "%d\n", s->align);
3930 SLAB_ATTR_RO(align);
3932 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3934 return sprintf(buf, "%d\n", s->objsize);
3936 SLAB_ATTR_RO(object_size);
3938 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3940 return sprintf(buf, "%d\n", oo_objects(s->oo));
3942 SLAB_ATTR_RO(objs_per_slab);
3944 static ssize_t order_store(struct kmem_cache *s,
3945 const char *buf, size_t length)
3947 unsigned long order;
3948 int err;
3950 err = strict_strtoul(buf, 10, &order);
3951 if (err)
3952 return err;
3954 if (order > slub_max_order || order < slub_min_order)
3955 return -EINVAL;
3957 calculate_sizes(s, order);
3958 return length;
3961 static ssize_t order_show(struct kmem_cache *s, char *buf)
3963 return sprintf(buf, "%d\n", oo_order(s->oo));
3965 SLAB_ATTR(order);
3967 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3969 return sprintf(buf, "%lu\n", s->min_partial);
3972 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3973 size_t length)
3975 unsigned long min;
3976 int err;
3978 err = strict_strtoul(buf, 10, &min);
3979 if (err)
3980 return err;
3982 set_min_partial(s, min);
3983 return length;
3985 SLAB_ATTR(min_partial);
3987 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3989 if (s->ctor) {
3990 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3992 return n + sprintf(buf + n, "\n");
3994 return 0;
3996 SLAB_ATTR_RO(ctor);
3998 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4000 return sprintf(buf, "%d\n", s->refcount - 1);
4002 SLAB_ATTR_RO(aliases);
4004 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4006 return show_slab_objects(s, buf, SO_PARTIAL);
4008 SLAB_ATTR_RO(partial);
4010 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4012 return show_slab_objects(s, buf, SO_CPU);
4014 SLAB_ATTR_RO(cpu_slabs);
4016 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4018 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4020 SLAB_ATTR_RO(objects);
4022 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4024 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4026 SLAB_ATTR_RO(objects_partial);
4028 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4030 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4033 static ssize_t reclaim_account_store(struct kmem_cache *s,
4034 const char *buf, size_t length)
4036 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4037 if (buf[0] == '1')
4038 s->flags |= SLAB_RECLAIM_ACCOUNT;
4039 return length;
4041 SLAB_ATTR(reclaim_account);
4043 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4045 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4047 SLAB_ATTR_RO(hwcache_align);
4049 #ifdef CONFIG_ZONE_DMA
4050 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4052 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4054 SLAB_ATTR_RO(cache_dma);
4055 #endif
4057 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4059 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4061 SLAB_ATTR_RO(destroy_by_rcu);
4063 #ifdef CONFIG_SLUB_DEBUG
4064 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4066 return show_slab_objects(s, buf, SO_ALL);
4068 SLAB_ATTR_RO(slabs);
4070 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4072 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4074 SLAB_ATTR_RO(total_objects);
4076 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4078 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4081 static ssize_t sanity_checks_store(struct kmem_cache *s,
4082 const char *buf, size_t length)
4084 s->flags &= ~SLAB_DEBUG_FREE;
4085 if (buf[0] == '1')
4086 s->flags |= SLAB_DEBUG_FREE;
4087 return length;
4089 SLAB_ATTR(sanity_checks);
4091 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4093 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4096 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4097 size_t length)
4099 s->flags &= ~SLAB_TRACE;
4100 if (buf[0] == '1')
4101 s->flags |= SLAB_TRACE;
4102 return length;
4104 SLAB_ATTR(trace);
4106 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4108 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4111 static ssize_t red_zone_store(struct kmem_cache *s,
4112 const char *buf, size_t length)
4114 if (any_slab_objects(s))
4115 return -EBUSY;
4117 s->flags &= ~SLAB_RED_ZONE;
4118 if (buf[0] == '1')
4119 s->flags |= SLAB_RED_ZONE;
4120 calculate_sizes(s, -1);
4121 return length;
4123 SLAB_ATTR(red_zone);
4125 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4127 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4130 static ssize_t poison_store(struct kmem_cache *s,
4131 const char *buf, size_t length)
4133 if (any_slab_objects(s))
4134 return -EBUSY;
4136 s->flags &= ~SLAB_POISON;
4137 if (buf[0] == '1')
4138 s->flags |= SLAB_POISON;
4139 calculate_sizes(s, -1);
4140 return length;
4142 SLAB_ATTR(poison);
4144 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4146 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4149 static ssize_t store_user_store(struct kmem_cache *s,
4150 const char *buf, size_t length)
4152 if (any_slab_objects(s))
4153 return -EBUSY;
4155 s->flags &= ~SLAB_STORE_USER;
4156 if (buf[0] == '1')
4157 s->flags |= SLAB_STORE_USER;
4158 calculate_sizes(s, -1);
4159 return length;
4161 SLAB_ATTR(store_user);
4163 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4165 return 0;
4168 static ssize_t validate_store(struct kmem_cache *s,
4169 const char *buf, size_t length)
4171 int ret = -EINVAL;
4173 if (buf[0] == '1') {
4174 ret = validate_slab_cache(s);
4175 if (ret >= 0)
4176 ret = length;
4178 return ret;
4180 SLAB_ATTR(validate);
4182 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4184 if (!(s->flags & SLAB_STORE_USER))
4185 return -ENOSYS;
4186 return list_locations(s, buf, TRACK_ALLOC);
4188 SLAB_ATTR_RO(alloc_calls);
4190 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4192 if (!(s->flags & SLAB_STORE_USER))
4193 return -ENOSYS;
4194 return list_locations(s, buf, TRACK_FREE);
4196 SLAB_ATTR_RO(free_calls);
4197 #endif /* CONFIG_SLUB_DEBUG */
4199 #ifdef CONFIG_FAILSLAB
4200 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4202 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4205 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4206 size_t length)
4208 s->flags &= ~SLAB_FAILSLAB;
4209 if (buf[0] == '1')
4210 s->flags |= SLAB_FAILSLAB;
4211 return length;
4213 SLAB_ATTR(failslab);
4214 #endif
4216 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4218 return 0;
4221 static ssize_t shrink_store(struct kmem_cache *s,
4222 const char *buf, size_t length)
4224 if (buf[0] == '1') {
4225 int rc = kmem_cache_shrink(s);
4227 if (rc)
4228 return rc;
4229 } else
4230 return -EINVAL;
4231 return length;
4233 SLAB_ATTR(shrink);
4235 #ifdef CONFIG_NUMA
4236 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4238 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4241 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4242 const char *buf, size_t length)
4244 unsigned long ratio;
4245 int err;
4247 err = strict_strtoul(buf, 10, &ratio);
4248 if (err)
4249 return err;
4251 if (ratio <= 100)
4252 s->remote_node_defrag_ratio = ratio * 10;
4254 return length;
4256 SLAB_ATTR(remote_node_defrag_ratio);
4257 #endif
4259 #ifdef CONFIG_SLUB_STATS
4260 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4262 unsigned long sum = 0;
4263 int cpu;
4264 int len;
4265 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4267 if (!data)
4268 return -ENOMEM;
4270 for_each_online_cpu(cpu) {
4271 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4273 data[cpu] = x;
4274 sum += x;
4277 len = sprintf(buf, "%lu", sum);
4279 #ifdef CONFIG_SMP
4280 for_each_online_cpu(cpu) {
4281 if (data[cpu] && len < PAGE_SIZE - 20)
4282 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4284 #endif
4285 kfree(data);
4286 return len + sprintf(buf + len, "\n");
4289 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4291 int cpu;
4293 for_each_online_cpu(cpu)
4294 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4297 #define STAT_ATTR(si, text) \
4298 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4300 return show_stat(s, buf, si); \
4302 static ssize_t text##_store(struct kmem_cache *s, \
4303 const char *buf, size_t length) \
4305 if (buf[0] != '0') \
4306 return -EINVAL; \
4307 clear_stat(s, si); \
4308 return length; \
4310 SLAB_ATTR(text); \
4312 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4313 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4314 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4315 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4316 STAT_ATTR(FREE_FROZEN, free_frozen);
4317 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4318 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4319 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4320 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4321 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4322 STAT_ATTR(FREE_SLAB, free_slab);
4323 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4324 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4325 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4326 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4327 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4328 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4329 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4330 #endif
4332 static struct attribute *slab_attrs[] = {
4333 &slab_size_attr.attr,
4334 &object_size_attr.attr,
4335 &objs_per_slab_attr.attr,
4336 &order_attr.attr,
4337 &min_partial_attr.attr,
4338 &objects_attr.attr,
4339 &objects_partial_attr.attr,
4340 &partial_attr.attr,
4341 &cpu_slabs_attr.attr,
4342 &ctor_attr.attr,
4343 &aliases_attr.attr,
4344 &align_attr.attr,
4345 &hwcache_align_attr.attr,
4346 &reclaim_account_attr.attr,
4347 &destroy_by_rcu_attr.attr,
4348 &shrink_attr.attr,
4349 #ifdef CONFIG_SLUB_DEBUG
4350 &total_objects_attr.attr,
4351 &slabs_attr.attr,
4352 &sanity_checks_attr.attr,
4353 &trace_attr.attr,
4354 &red_zone_attr.attr,
4355 &poison_attr.attr,
4356 &store_user_attr.attr,
4357 &validate_attr.attr,
4358 &alloc_calls_attr.attr,
4359 &free_calls_attr.attr,
4360 #endif
4361 #ifdef CONFIG_ZONE_DMA
4362 &cache_dma_attr.attr,
4363 #endif
4364 #ifdef CONFIG_NUMA
4365 &remote_node_defrag_ratio_attr.attr,
4366 #endif
4367 #ifdef CONFIG_SLUB_STATS
4368 &alloc_fastpath_attr.attr,
4369 &alloc_slowpath_attr.attr,
4370 &free_fastpath_attr.attr,
4371 &free_slowpath_attr.attr,
4372 &free_frozen_attr.attr,
4373 &free_add_partial_attr.attr,
4374 &free_remove_partial_attr.attr,
4375 &alloc_from_partial_attr.attr,
4376 &alloc_slab_attr.attr,
4377 &alloc_refill_attr.attr,
4378 &free_slab_attr.attr,
4379 &cpuslab_flush_attr.attr,
4380 &deactivate_full_attr.attr,
4381 &deactivate_empty_attr.attr,
4382 &deactivate_to_head_attr.attr,
4383 &deactivate_to_tail_attr.attr,
4384 &deactivate_remote_frees_attr.attr,
4385 &order_fallback_attr.attr,
4386 #endif
4387 #ifdef CONFIG_FAILSLAB
4388 &failslab_attr.attr,
4389 #endif
4391 NULL
4394 static struct attribute_group slab_attr_group = {
4395 .attrs = slab_attrs,
4398 static ssize_t slab_attr_show(struct kobject *kobj,
4399 struct attribute *attr,
4400 char *buf)
4402 struct slab_attribute *attribute;
4403 struct kmem_cache *s;
4404 int err;
4406 attribute = to_slab_attr(attr);
4407 s = to_slab(kobj);
4409 if (!attribute->show)
4410 return -EIO;
4412 err = attribute->show(s, buf);
4414 return err;
4417 static ssize_t slab_attr_store(struct kobject *kobj,
4418 struct attribute *attr,
4419 const char *buf, size_t len)
4421 struct slab_attribute *attribute;
4422 struct kmem_cache *s;
4423 int err;
4425 attribute = to_slab_attr(attr);
4426 s = to_slab(kobj);
4428 if (!attribute->store)
4429 return -EIO;
4431 err = attribute->store(s, buf, len);
4433 return err;
4436 static void kmem_cache_release(struct kobject *kobj)
4438 struct kmem_cache *s = to_slab(kobj);
4440 kfree(s->name);
4441 kfree(s);
4444 static const struct sysfs_ops slab_sysfs_ops = {
4445 .show = slab_attr_show,
4446 .store = slab_attr_store,
4449 static struct kobj_type slab_ktype = {
4450 .sysfs_ops = &slab_sysfs_ops,
4451 .release = kmem_cache_release
4454 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4456 struct kobj_type *ktype = get_ktype(kobj);
4458 if (ktype == &slab_ktype)
4459 return 1;
4460 return 0;
4463 static const struct kset_uevent_ops slab_uevent_ops = {
4464 .filter = uevent_filter,
4467 static struct kset *slab_kset;
4469 #define ID_STR_LENGTH 64
4471 /* Create a unique string id for a slab cache:
4473 * Format :[flags-]size
4475 static char *create_unique_id(struct kmem_cache *s)
4477 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4478 char *p = name;
4480 BUG_ON(!name);
4482 *p++ = ':';
4484 * First flags affecting slabcache operations. We will only
4485 * get here for aliasable slabs so we do not need to support
4486 * too many flags. The flags here must cover all flags that
4487 * are matched during merging to guarantee that the id is
4488 * unique.
4490 if (s->flags & SLAB_CACHE_DMA)
4491 *p++ = 'd';
4492 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4493 *p++ = 'a';
4494 if (s->flags & SLAB_DEBUG_FREE)
4495 *p++ = 'F';
4496 if (!(s->flags & SLAB_NOTRACK))
4497 *p++ = 't';
4498 if (p != name + 1)
4499 *p++ = '-';
4500 p += sprintf(p, "%07d", s->size);
4501 BUG_ON(p > name + ID_STR_LENGTH - 1);
4502 return name;
4505 static int sysfs_slab_add(struct kmem_cache *s)
4507 int err;
4508 const char *name;
4509 int unmergeable;
4511 if (slab_state < SYSFS)
4512 /* Defer until later */
4513 return 0;
4515 unmergeable = slab_unmergeable(s);
4516 if (unmergeable) {
4518 * Slabcache can never be merged so we can use the name proper.
4519 * This is typically the case for debug situations. In that
4520 * case we can catch duplicate names easily.
4522 sysfs_remove_link(&slab_kset->kobj, s->name);
4523 name = s->name;
4524 } else {
4526 * Create a unique name for the slab as a target
4527 * for the symlinks.
4529 name = create_unique_id(s);
4532 s->kobj.kset = slab_kset;
4533 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4534 if (err) {
4535 kobject_put(&s->kobj);
4536 return err;
4539 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4540 if (err) {
4541 kobject_del(&s->kobj);
4542 kobject_put(&s->kobj);
4543 return err;
4545 kobject_uevent(&s->kobj, KOBJ_ADD);
4546 if (!unmergeable) {
4547 /* Setup first alias */
4548 sysfs_slab_alias(s, s->name);
4549 kfree(name);
4551 return 0;
4554 static void sysfs_slab_remove(struct kmem_cache *s)
4556 if (slab_state < SYSFS)
4558 * Sysfs has not been setup yet so no need to remove the
4559 * cache from sysfs.
4561 return;
4563 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4564 kobject_del(&s->kobj);
4565 kobject_put(&s->kobj);
4569 * Need to buffer aliases during bootup until sysfs becomes
4570 * available lest we lose that information.
4572 struct saved_alias {
4573 struct kmem_cache *s;
4574 const char *name;
4575 struct saved_alias *next;
4578 static struct saved_alias *alias_list;
4580 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4582 struct saved_alias *al;
4584 if (slab_state == SYSFS) {
4586 * If we have a leftover link then remove it.
4588 sysfs_remove_link(&slab_kset->kobj, name);
4589 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4592 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4593 if (!al)
4594 return -ENOMEM;
4596 al->s = s;
4597 al->name = name;
4598 al->next = alias_list;
4599 alias_list = al;
4600 return 0;
4603 static int __init slab_sysfs_init(void)
4605 struct kmem_cache *s;
4606 int err;
4608 down_write(&slub_lock);
4610 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4611 if (!slab_kset) {
4612 up_write(&slub_lock);
4613 printk(KERN_ERR "Cannot register slab subsystem.\n");
4614 return -ENOSYS;
4617 slab_state = SYSFS;
4619 list_for_each_entry(s, &slab_caches, list) {
4620 err = sysfs_slab_add(s);
4621 if (err)
4622 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4623 " to sysfs\n", s->name);
4626 while (alias_list) {
4627 struct saved_alias *al = alias_list;
4629 alias_list = alias_list->next;
4630 err = sysfs_slab_alias(al->s, al->name);
4631 if (err)
4632 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4633 " %s to sysfs\n", s->name);
4634 kfree(al);
4637 up_write(&slub_lock);
4638 resiliency_test();
4639 return 0;
4642 __initcall(slab_sysfs_init);
4643 #endif /* CONFIG_SYSFS */
4646 * The /proc/slabinfo ABI
4648 #ifdef CONFIG_SLABINFO
4649 static void print_slabinfo_header(struct seq_file *m)
4651 seq_puts(m, "slabinfo - version: 2.1\n");
4652 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4653 "<objperslab> <pagesperslab>");
4654 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4655 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4656 seq_putc(m, '\n');
4659 static void *s_start(struct seq_file *m, loff_t *pos)
4661 loff_t n = *pos;
4663 down_read(&slub_lock);
4664 if (!n)
4665 print_slabinfo_header(m);
4667 return seq_list_start(&slab_caches, *pos);
4670 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4672 return seq_list_next(p, &slab_caches, pos);
4675 static void s_stop(struct seq_file *m, void *p)
4677 up_read(&slub_lock);
4680 static int s_show(struct seq_file *m, void *p)
4682 unsigned long nr_partials = 0;
4683 unsigned long nr_slabs = 0;
4684 unsigned long nr_inuse = 0;
4685 unsigned long nr_objs = 0;
4686 unsigned long nr_free = 0;
4687 struct kmem_cache *s;
4688 int node;
4690 s = list_entry(p, struct kmem_cache, list);
4692 for_each_online_node(node) {
4693 struct kmem_cache_node *n = get_node(s, node);
4695 if (!n)
4696 continue;
4698 nr_partials += n->nr_partial;
4699 nr_slabs += atomic_long_read(&n->nr_slabs);
4700 nr_objs += atomic_long_read(&n->total_objects);
4701 nr_free += count_partial(n, count_free);
4704 nr_inuse = nr_objs - nr_free;
4706 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4707 nr_objs, s->size, oo_objects(s->oo),
4708 (1 << oo_order(s->oo)));
4709 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4710 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4711 0UL);
4712 seq_putc(m, '\n');
4713 return 0;
4716 static const struct seq_operations slabinfo_op = {
4717 .start = s_start,
4718 .next = s_next,
4719 .stop = s_stop,
4720 .show = s_show,
4723 static int slabinfo_open(struct inode *inode, struct file *file)
4725 return seq_open(file, &slabinfo_op);
4728 static const struct file_operations proc_slabinfo_operations = {
4729 .open = slabinfo_open,
4730 .read = seq_read,
4731 .llseek = seq_lseek,
4732 .release = seq_release,
4735 static int __init slab_proc_init(void)
4737 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4738 return 0;
4740 module_init(slab_proc_init);
4741 #endif /* CONFIG_SLABINFO */