crypto: marvell/cesa - factor out adding an operation and launching it
[linux-2.6/btrfs-unstable.git] / drivers / crypto / marvell / hash.c
blobe7991cb3558256460fb1ee66ad5e2fb5bafc87ba
1 /*
2 * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
4 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
5 * Author: Arnaud Ebalard <arno@natisbad.org>
7 * This work is based on an initial version written by
8 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published
12 * by the Free Software Foundation.
15 #include <crypto/md5.h>
16 #include <crypto/sha.h>
18 #include "cesa.h"
20 struct mv_cesa_ahash_dma_iter {
21 struct mv_cesa_dma_iter base;
22 struct mv_cesa_sg_dma_iter src;
25 static inline void
26 mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
27 struct ahash_request *req)
29 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
30 unsigned int len = req->nbytes;
32 if (!creq->last_req)
33 len = (len + creq->cache_ptr) & ~CESA_HASH_BLOCK_SIZE_MSK;
35 mv_cesa_req_dma_iter_init(&iter->base, len);
36 mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
37 iter->src.op_offset = creq->cache_ptr;
40 static inline bool
41 mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
43 iter->src.op_offset = 0;
45 return mv_cesa_req_dma_iter_next_op(&iter->base);
48 static inline int mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_req *creq,
49 gfp_t flags)
51 struct mv_cesa_ahash_dma_req *dreq = &creq->req.dma;
53 creq->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
54 &dreq->cache_dma);
55 if (!creq->cache)
56 return -ENOMEM;
58 return 0;
61 static inline int mv_cesa_ahash_std_alloc_cache(struct mv_cesa_ahash_req *creq,
62 gfp_t flags)
64 creq->cache = kzalloc(CESA_MAX_HASH_BLOCK_SIZE, flags);
65 if (!creq->cache)
66 return -ENOMEM;
68 return 0;
71 static int mv_cesa_ahash_alloc_cache(struct ahash_request *req)
73 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
74 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
75 GFP_KERNEL : GFP_ATOMIC;
76 int ret;
78 if (creq->cache)
79 return 0;
81 if (creq->req.base.type == CESA_DMA_REQ)
82 ret = mv_cesa_ahash_dma_alloc_cache(creq, flags);
83 else
84 ret = mv_cesa_ahash_std_alloc_cache(creq, flags);
86 return ret;
89 static inline void mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_req *creq)
91 dma_pool_free(cesa_dev->dma->cache_pool, creq->cache,
92 creq->req.dma.cache_dma);
95 static inline void mv_cesa_ahash_std_free_cache(struct mv_cesa_ahash_req *creq)
97 kfree(creq->cache);
100 static void mv_cesa_ahash_free_cache(struct mv_cesa_ahash_req *creq)
102 if (!creq->cache)
103 return;
105 if (creq->req.base.type == CESA_DMA_REQ)
106 mv_cesa_ahash_dma_free_cache(creq);
107 else
108 mv_cesa_ahash_std_free_cache(creq);
110 creq->cache = NULL;
113 static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
114 gfp_t flags)
116 if (req->padding)
117 return 0;
119 req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
120 &req->padding_dma);
121 if (!req->padding)
122 return -ENOMEM;
124 return 0;
127 static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
129 if (!req->padding)
130 return;
132 dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
133 req->padding_dma);
134 req->padding = NULL;
137 static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
139 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
141 mv_cesa_ahash_dma_free_padding(&creq->req.dma);
144 static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
146 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
148 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
149 mv_cesa_dma_cleanup(&creq->req.dma.base);
152 static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
154 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
156 if (creq->req.base.type == CESA_DMA_REQ)
157 mv_cesa_ahash_dma_cleanup(req);
160 static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
162 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
164 mv_cesa_ahash_free_cache(creq);
166 if (creq->req.base.type == CESA_DMA_REQ)
167 mv_cesa_ahash_dma_last_cleanup(req);
170 static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
172 unsigned int index, padlen;
174 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
175 padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
177 return padlen;
180 static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
182 unsigned int index, padlen;
184 buf[0] = 0x80;
185 /* Pad out to 56 mod 64 */
186 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
187 padlen = mv_cesa_ahash_pad_len(creq);
188 memset(buf + 1, 0, padlen - 1);
190 if (creq->algo_le) {
191 __le64 bits = cpu_to_le64(creq->len << 3);
192 memcpy(buf + padlen, &bits, sizeof(bits));
193 } else {
194 __be64 bits = cpu_to_be64(creq->len << 3);
195 memcpy(buf + padlen, &bits, sizeof(bits));
198 return padlen + 8;
201 static void mv_cesa_ahash_std_step(struct ahash_request *req)
203 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
204 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
205 struct mv_cesa_engine *engine = sreq->base.engine;
206 struct mv_cesa_op_ctx *op;
207 unsigned int new_cache_ptr = 0;
208 u32 frag_mode;
209 size_t len;
211 if (creq->cache_ptr)
212 memcpy(engine->sram + CESA_SA_DATA_SRAM_OFFSET, creq->cache,
213 creq->cache_ptr);
215 len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
216 CESA_SA_SRAM_PAYLOAD_SIZE);
218 if (!creq->last_req) {
219 new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
220 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
223 if (len - creq->cache_ptr)
224 sreq->offset += sg_pcopy_to_buffer(req->src, creq->src_nents,
225 engine->sram +
226 CESA_SA_DATA_SRAM_OFFSET +
227 creq->cache_ptr,
228 len - creq->cache_ptr,
229 sreq->offset);
231 op = &creq->op_tmpl;
233 frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
235 if (creq->last_req && sreq->offset == req->nbytes &&
236 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
237 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
238 frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
239 else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
240 frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
243 if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
244 frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
245 if (len &&
246 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
247 mv_cesa_set_mac_op_total_len(op, creq->len);
248 } else {
249 int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
251 if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
252 len &= CESA_HASH_BLOCK_SIZE_MSK;
253 new_cache_ptr = 64 - trailerlen;
254 memcpy(creq->cache,
255 engine->sram +
256 CESA_SA_DATA_SRAM_OFFSET + len,
257 new_cache_ptr);
258 } else {
259 len += mv_cesa_ahash_pad_req(creq,
260 engine->sram + len +
261 CESA_SA_DATA_SRAM_OFFSET);
264 if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
265 frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
266 else
267 frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
271 mv_cesa_set_mac_op_frag_len(op, len);
272 mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
274 /* FIXME: only update enc_len field */
275 memcpy(engine->sram, op, sizeof(*op));
277 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
278 mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
279 CESA_SA_DESC_CFG_FRAG_MSK);
281 creq->cache_ptr = new_cache_ptr;
283 mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
284 writel(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
285 writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
288 static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
290 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
291 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
293 if (sreq->offset < (req->nbytes - creq->cache_ptr))
294 return -EINPROGRESS;
296 return 0;
299 static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
301 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
302 struct mv_cesa_tdma_req *dreq = &creq->req.dma.base;
304 mv_cesa_dma_prepare(dreq, dreq->base.engine);
307 static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
309 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
310 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
311 struct mv_cesa_engine *engine = sreq->base.engine;
313 sreq->offset = 0;
314 mv_cesa_adjust_op(engine, &creq->op_tmpl);
315 memcpy(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));
318 static void mv_cesa_ahash_step(struct crypto_async_request *req)
320 struct ahash_request *ahashreq = ahash_request_cast(req);
321 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
323 if (creq->req.base.type == CESA_DMA_REQ)
324 mv_cesa_dma_step(&creq->req.dma.base);
325 else
326 mv_cesa_ahash_std_step(ahashreq);
329 static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
331 struct ahash_request *ahashreq = ahash_request_cast(req);
332 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
333 struct mv_cesa_engine *engine = creq->req.base.engine;
334 unsigned int digsize;
335 int ret, i;
337 if (creq->req.base.type == CESA_DMA_REQ)
338 ret = mv_cesa_dma_process(&creq->req.dma.base, status);
339 else
340 ret = mv_cesa_ahash_std_process(ahashreq, status);
342 if (ret == -EINPROGRESS)
343 return ret;
345 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
346 for (i = 0; i < digsize / 4; i++)
347 creq->state[i] = readl(engine->regs + CESA_IVDIG(i));
349 if (creq->cache_ptr)
350 sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
351 creq->cache,
352 creq->cache_ptr,
353 ahashreq->nbytes - creq->cache_ptr);
355 if (creq->last_req) {
357 * Hardware's MD5 digest is in little endian format, but
358 * SHA in big endian format
360 if (creq->algo_le) {
361 __le32 *result = (void *)ahashreq->result;
363 for (i = 0; i < digsize / 4; i++)
364 result[i] = cpu_to_le32(creq->state[i]);
365 } else {
366 __be32 *result = (void *)ahashreq->result;
368 for (i = 0; i < digsize / 4; i++)
369 result[i] = cpu_to_be32(creq->state[i]);
373 return ret;
376 static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
377 struct mv_cesa_engine *engine)
379 struct ahash_request *ahashreq = ahash_request_cast(req);
380 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
381 unsigned int digsize;
382 int i;
384 creq->req.base.engine = engine;
386 if (creq->req.base.type == CESA_DMA_REQ)
387 mv_cesa_ahash_dma_prepare(ahashreq);
388 else
389 mv_cesa_ahash_std_prepare(ahashreq);
391 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
392 for (i = 0; i < digsize / 4; i++)
393 writel(creq->state[i],
394 engine->regs + CESA_IVDIG(i));
397 static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
399 struct ahash_request *ahashreq = ahash_request_cast(req);
400 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
402 if (creq->last_req)
403 mv_cesa_ahash_last_cleanup(ahashreq);
405 mv_cesa_ahash_cleanup(ahashreq);
408 static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
409 .step = mv_cesa_ahash_step,
410 .process = mv_cesa_ahash_process,
411 .prepare = mv_cesa_ahash_prepare,
412 .cleanup = mv_cesa_ahash_req_cleanup,
415 static int mv_cesa_ahash_init(struct ahash_request *req,
416 struct mv_cesa_op_ctx *tmpl, bool algo_le)
418 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
420 memset(creq, 0, sizeof(*creq));
421 mv_cesa_update_op_cfg(tmpl,
422 CESA_SA_DESC_CFG_OP_MAC_ONLY |
423 CESA_SA_DESC_CFG_FIRST_FRAG,
424 CESA_SA_DESC_CFG_OP_MSK |
425 CESA_SA_DESC_CFG_FRAG_MSK);
426 mv_cesa_set_mac_op_total_len(tmpl, 0);
427 mv_cesa_set_mac_op_frag_len(tmpl, 0);
428 creq->op_tmpl = *tmpl;
429 creq->len = 0;
430 creq->algo_le = algo_le;
432 return 0;
435 static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
437 struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
439 ctx->base.ops = &mv_cesa_ahash_req_ops;
441 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
442 sizeof(struct mv_cesa_ahash_req));
443 return 0;
446 static int mv_cesa_ahash_cache_req(struct ahash_request *req, bool *cached)
448 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
449 int ret;
451 if (((creq->cache_ptr + req->nbytes) & CESA_HASH_BLOCK_SIZE_MSK) &&
452 !creq->last_req) {
453 ret = mv_cesa_ahash_alloc_cache(req);
454 if (ret)
455 return ret;
458 if (creq->cache_ptr + req->nbytes < 64 && !creq->last_req) {
459 *cached = true;
461 if (!req->nbytes)
462 return 0;
464 sg_pcopy_to_buffer(req->src, creq->src_nents,
465 creq->cache + creq->cache_ptr,
466 req->nbytes, 0);
468 creq->cache_ptr += req->nbytes;
471 return 0;
474 static struct mv_cesa_op_ctx *
475 mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
476 struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
477 gfp_t flags)
479 struct mv_cesa_op_ctx *op;
480 int ret;
482 op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
483 if (IS_ERR(op))
484 return op;
486 /* Set the operation block fragment length. */
487 mv_cesa_set_mac_op_frag_len(op, frag_len);
489 /* Append dummy desc to launch operation */
490 ret = mv_cesa_dma_add_dummy_launch(chain, flags);
491 if (ret)
492 return ERR_PTR(ret);
494 return op;
497 static struct mv_cesa_op_ctx *
498 mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
499 struct mv_cesa_ahash_dma_iter *dma_iter,
500 struct mv_cesa_ahash_req *creq,
501 gfp_t flags)
503 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
504 struct mv_cesa_op_ctx *op = NULL;
505 int ret;
507 if (!creq->cache_ptr)
508 return NULL;
510 ret = mv_cesa_dma_add_data_transfer(chain,
511 CESA_SA_DATA_SRAM_OFFSET,
512 ahashdreq->cache_dma,
513 creq->cache_ptr,
514 CESA_TDMA_DST_IN_SRAM,
515 flags);
516 if (ret)
517 return ERR_PTR(ret);
519 if (!dma_iter->base.op_len)
520 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl,
521 creq->cache_ptr, flags);
523 return op;
526 static struct mv_cesa_op_ctx *
527 mv_cesa_ahash_dma_add_data(struct mv_cesa_tdma_chain *chain,
528 struct mv_cesa_ahash_dma_iter *dma_iter,
529 struct mv_cesa_ahash_req *creq,
530 gfp_t flags)
532 struct mv_cesa_op_ctx *op;
533 int ret;
535 /* Add input transfers */
536 ret = mv_cesa_dma_add_op_transfers(chain, &dma_iter->base,
537 &dma_iter->src, flags);
538 if (ret)
539 return ERR_PTR(ret);
541 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, dma_iter->base.op_len,
542 flags);
543 if (IS_ERR(op))
544 return op;
546 if (mv_cesa_mac_op_is_first_frag(&creq->op_tmpl))
547 mv_cesa_update_op_cfg(&creq->op_tmpl,
548 CESA_SA_DESC_CFG_MID_FRAG,
549 CESA_SA_DESC_CFG_FRAG_MSK);
551 return op;
554 static struct mv_cesa_op_ctx *
555 mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
556 struct mv_cesa_ahash_dma_iter *dma_iter,
557 struct mv_cesa_ahash_req *creq,
558 struct mv_cesa_op_ctx *op,
559 gfp_t flags)
561 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
562 unsigned int len, trailerlen, padoff = 0;
563 int ret;
565 if (!creq->last_req)
566 return op;
568 if (op && creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
569 u32 frag = CESA_SA_DESC_CFG_NOT_FRAG;
571 if (!mv_cesa_mac_op_is_first_frag(op))
572 frag = CESA_SA_DESC_CFG_LAST_FRAG;
574 mv_cesa_update_op_cfg(op, frag, CESA_SA_DESC_CFG_FRAG_MSK);
576 return op;
579 ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
580 if (ret)
581 return ERR_PTR(ret);
583 trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
585 if (op) {
586 len = min(CESA_SA_SRAM_PAYLOAD_SIZE - dma_iter->base.op_len,
587 trailerlen);
588 if (len) {
589 ret = mv_cesa_dma_add_data_transfer(chain,
590 CESA_SA_DATA_SRAM_OFFSET +
591 dma_iter->base.op_len,
592 ahashdreq->padding_dma,
593 len, CESA_TDMA_DST_IN_SRAM,
594 flags);
595 if (ret)
596 return ERR_PTR(ret);
598 mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
599 CESA_SA_DESC_CFG_FRAG_MSK);
600 mv_cesa_set_mac_op_frag_len(op,
601 dma_iter->base.op_len + len);
602 padoff += len;
606 if (padoff >= trailerlen)
607 return op;
609 if (!mv_cesa_mac_op_is_first_frag(&creq->op_tmpl))
610 mv_cesa_update_op_cfg(&creq->op_tmpl,
611 CESA_SA_DESC_CFG_MID_FRAG,
612 CESA_SA_DESC_CFG_FRAG_MSK);
614 ret = mv_cesa_dma_add_data_transfer(chain,
615 CESA_SA_DATA_SRAM_OFFSET,
616 ahashdreq->padding_dma +
617 padoff,
618 trailerlen - padoff,
619 CESA_TDMA_DST_IN_SRAM,
620 flags);
621 if (ret)
622 return ERR_PTR(ret);
624 return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
625 flags);
628 static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
630 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
631 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
632 GFP_KERNEL : GFP_ATOMIC;
633 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
634 struct mv_cesa_tdma_req *dreq = &ahashdreq->base;
635 struct mv_cesa_tdma_chain chain;
636 struct mv_cesa_ahash_dma_iter iter;
637 struct mv_cesa_op_ctx *op = NULL;
638 int ret;
640 dreq->chain.first = NULL;
641 dreq->chain.last = NULL;
643 if (creq->src_nents) {
644 ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
645 DMA_TO_DEVICE);
646 if (!ret) {
647 ret = -ENOMEM;
648 goto err;
652 mv_cesa_tdma_desc_iter_init(&chain);
653 mv_cesa_ahash_req_iter_init(&iter, req);
655 op = mv_cesa_ahash_dma_add_cache(&chain, &iter,
656 creq, flags);
657 if (IS_ERR(op)) {
658 ret = PTR_ERR(op);
659 goto err_free_tdma;
662 do {
663 if (!iter.base.op_len)
664 break;
666 op = mv_cesa_ahash_dma_add_data(&chain, &iter,
667 creq, flags);
668 if (IS_ERR(op)) {
669 ret = PTR_ERR(op);
670 goto err_free_tdma;
672 } while (mv_cesa_ahash_req_iter_next_op(&iter));
674 op = mv_cesa_ahash_dma_last_req(&chain, &iter, creq, op, flags);
675 if (IS_ERR(op)) {
676 ret = PTR_ERR(op);
677 goto err_free_tdma;
680 if (op) {
681 /* Add dummy desc to wait for crypto operation end */
682 ret = mv_cesa_dma_add_dummy_end(&chain, flags);
683 if (ret)
684 goto err_free_tdma;
687 if (!creq->last_req)
688 creq->cache_ptr = req->nbytes + creq->cache_ptr -
689 iter.base.len;
690 else
691 creq->cache_ptr = 0;
693 dreq->chain = chain;
695 return 0;
697 err_free_tdma:
698 mv_cesa_dma_cleanup(dreq);
699 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
701 err:
702 mv_cesa_ahash_last_cleanup(req);
704 return ret;
707 static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
709 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
710 int ret;
712 if (cesa_dev->caps->has_tdma)
713 creq->req.base.type = CESA_DMA_REQ;
714 else
715 creq->req.base.type = CESA_STD_REQ;
717 creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
719 ret = mv_cesa_ahash_cache_req(req, cached);
720 if (ret)
721 return ret;
723 if (*cached)
724 return 0;
726 if (creq->req.base.type == CESA_DMA_REQ)
727 ret = mv_cesa_ahash_dma_req_init(req);
729 return ret;
732 static int mv_cesa_ahash_update(struct ahash_request *req)
734 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
735 bool cached = false;
736 int ret;
738 creq->len += req->nbytes;
739 ret = mv_cesa_ahash_req_init(req, &cached);
740 if (ret)
741 return ret;
743 if (cached)
744 return 0;
746 ret = mv_cesa_queue_req(&req->base);
747 if (ret && ret != -EINPROGRESS) {
748 mv_cesa_ahash_cleanup(req);
749 return ret;
752 return ret;
755 static int mv_cesa_ahash_final(struct ahash_request *req)
757 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
758 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
759 bool cached = false;
760 int ret;
762 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
763 creq->last_req = true;
764 req->nbytes = 0;
766 ret = mv_cesa_ahash_req_init(req, &cached);
767 if (ret)
768 return ret;
770 if (cached)
771 return 0;
773 ret = mv_cesa_queue_req(&req->base);
774 if (ret && ret != -EINPROGRESS)
775 mv_cesa_ahash_cleanup(req);
777 return ret;
780 static int mv_cesa_ahash_finup(struct ahash_request *req)
782 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
783 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
784 bool cached = false;
785 int ret;
787 creq->len += req->nbytes;
788 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
789 creq->last_req = true;
791 ret = mv_cesa_ahash_req_init(req, &cached);
792 if (ret)
793 return ret;
795 if (cached)
796 return 0;
798 ret = mv_cesa_queue_req(&req->base);
799 if (ret && ret != -EINPROGRESS)
800 mv_cesa_ahash_cleanup(req);
802 return ret;
805 static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
806 u64 *len, void *cache)
808 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
809 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
810 unsigned int digsize = crypto_ahash_digestsize(ahash);
811 unsigned int blocksize;
813 blocksize = crypto_ahash_blocksize(ahash);
815 *len = creq->len;
816 memcpy(hash, creq->state, digsize);
817 memset(cache, 0, blocksize);
818 if (creq->cache)
819 memcpy(cache, creq->cache, creq->cache_ptr);
821 return 0;
824 static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
825 u64 len, const void *cache)
827 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
828 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
829 unsigned int digsize = crypto_ahash_digestsize(ahash);
830 unsigned int blocksize;
831 unsigned int cache_ptr;
832 int ret;
834 ret = crypto_ahash_init(req);
835 if (ret)
836 return ret;
838 blocksize = crypto_ahash_blocksize(ahash);
839 if (len >= blocksize)
840 mv_cesa_update_op_cfg(&creq->op_tmpl,
841 CESA_SA_DESC_CFG_MID_FRAG,
842 CESA_SA_DESC_CFG_FRAG_MSK);
844 creq->len = len;
845 memcpy(creq->state, hash, digsize);
846 creq->cache_ptr = 0;
848 cache_ptr = do_div(len, blocksize);
849 if (!cache_ptr)
850 return 0;
852 ret = mv_cesa_ahash_alloc_cache(req);
853 if (ret)
854 return ret;
856 memcpy(creq->cache, cache, cache_ptr);
857 creq->cache_ptr = cache_ptr;
859 return 0;
862 static int mv_cesa_md5_init(struct ahash_request *req)
864 struct mv_cesa_op_ctx tmpl = { };
866 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
868 mv_cesa_ahash_init(req, &tmpl, true);
870 return 0;
873 static int mv_cesa_md5_export(struct ahash_request *req, void *out)
875 struct md5_state *out_state = out;
877 return mv_cesa_ahash_export(req, out_state->hash,
878 &out_state->byte_count, out_state->block);
881 static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
883 const struct md5_state *in_state = in;
885 return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
886 in_state->block);
889 static int mv_cesa_md5_digest(struct ahash_request *req)
891 int ret;
893 ret = mv_cesa_md5_init(req);
894 if (ret)
895 return ret;
897 return mv_cesa_ahash_finup(req);
900 struct ahash_alg mv_md5_alg = {
901 .init = mv_cesa_md5_init,
902 .update = mv_cesa_ahash_update,
903 .final = mv_cesa_ahash_final,
904 .finup = mv_cesa_ahash_finup,
905 .digest = mv_cesa_md5_digest,
906 .export = mv_cesa_md5_export,
907 .import = mv_cesa_md5_import,
908 .halg = {
909 .digestsize = MD5_DIGEST_SIZE,
910 .statesize = sizeof(struct md5_state),
911 .base = {
912 .cra_name = "md5",
913 .cra_driver_name = "mv-md5",
914 .cra_priority = 300,
915 .cra_flags = CRYPTO_ALG_ASYNC |
916 CRYPTO_ALG_KERN_DRIVER_ONLY,
917 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
918 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
919 .cra_init = mv_cesa_ahash_cra_init,
920 .cra_module = THIS_MODULE,
925 static int mv_cesa_sha1_init(struct ahash_request *req)
927 struct mv_cesa_op_ctx tmpl = { };
929 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
931 mv_cesa_ahash_init(req, &tmpl, false);
933 return 0;
936 static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
938 struct sha1_state *out_state = out;
940 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
941 out_state->buffer);
944 static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
946 const struct sha1_state *in_state = in;
948 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
949 in_state->buffer);
952 static int mv_cesa_sha1_digest(struct ahash_request *req)
954 int ret;
956 ret = mv_cesa_sha1_init(req);
957 if (ret)
958 return ret;
960 return mv_cesa_ahash_finup(req);
963 struct ahash_alg mv_sha1_alg = {
964 .init = mv_cesa_sha1_init,
965 .update = mv_cesa_ahash_update,
966 .final = mv_cesa_ahash_final,
967 .finup = mv_cesa_ahash_finup,
968 .digest = mv_cesa_sha1_digest,
969 .export = mv_cesa_sha1_export,
970 .import = mv_cesa_sha1_import,
971 .halg = {
972 .digestsize = SHA1_DIGEST_SIZE,
973 .statesize = sizeof(struct sha1_state),
974 .base = {
975 .cra_name = "sha1",
976 .cra_driver_name = "mv-sha1",
977 .cra_priority = 300,
978 .cra_flags = CRYPTO_ALG_ASYNC |
979 CRYPTO_ALG_KERN_DRIVER_ONLY,
980 .cra_blocksize = SHA1_BLOCK_SIZE,
981 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
982 .cra_init = mv_cesa_ahash_cra_init,
983 .cra_module = THIS_MODULE,
988 static int mv_cesa_sha256_init(struct ahash_request *req)
990 struct mv_cesa_op_ctx tmpl = { };
992 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
994 mv_cesa_ahash_init(req, &tmpl, false);
996 return 0;
999 static int mv_cesa_sha256_digest(struct ahash_request *req)
1001 int ret;
1003 ret = mv_cesa_sha256_init(req);
1004 if (ret)
1005 return ret;
1007 return mv_cesa_ahash_finup(req);
1010 static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
1012 struct sha256_state *out_state = out;
1014 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
1015 out_state->buf);
1018 static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
1020 const struct sha256_state *in_state = in;
1022 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
1023 in_state->buf);
1026 struct ahash_alg mv_sha256_alg = {
1027 .init = mv_cesa_sha256_init,
1028 .update = mv_cesa_ahash_update,
1029 .final = mv_cesa_ahash_final,
1030 .finup = mv_cesa_ahash_finup,
1031 .digest = mv_cesa_sha256_digest,
1032 .export = mv_cesa_sha256_export,
1033 .import = mv_cesa_sha256_import,
1034 .halg = {
1035 .digestsize = SHA256_DIGEST_SIZE,
1036 .statesize = sizeof(struct sha256_state),
1037 .base = {
1038 .cra_name = "sha256",
1039 .cra_driver_name = "mv-sha256",
1040 .cra_priority = 300,
1041 .cra_flags = CRYPTO_ALG_ASYNC |
1042 CRYPTO_ALG_KERN_DRIVER_ONLY,
1043 .cra_blocksize = SHA256_BLOCK_SIZE,
1044 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1045 .cra_init = mv_cesa_ahash_cra_init,
1046 .cra_module = THIS_MODULE,
1051 struct mv_cesa_ahash_result {
1052 struct completion completion;
1053 int error;
1056 static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
1057 int error)
1059 struct mv_cesa_ahash_result *result = req->data;
1061 if (error == -EINPROGRESS)
1062 return;
1064 result->error = error;
1065 complete(&result->completion);
1068 static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
1069 void *state, unsigned int blocksize)
1071 struct mv_cesa_ahash_result result;
1072 struct scatterlist sg;
1073 int ret;
1075 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1076 mv_cesa_hmac_ahash_complete, &result);
1077 sg_init_one(&sg, pad, blocksize);
1078 ahash_request_set_crypt(req, &sg, pad, blocksize);
1079 init_completion(&result.completion);
1081 ret = crypto_ahash_init(req);
1082 if (ret)
1083 return ret;
1085 ret = crypto_ahash_update(req);
1086 if (ret && ret != -EINPROGRESS)
1087 return ret;
1089 wait_for_completion_interruptible(&result.completion);
1090 if (result.error)
1091 return result.error;
1093 ret = crypto_ahash_export(req, state);
1094 if (ret)
1095 return ret;
1097 return 0;
1100 static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
1101 const u8 *key, unsigned int keylen,
1102 u8 *ipad, u8 *opad,
1103 unsigned int blocksize)
1105 struct mv_cesa_ahash_result result;
1106 struct scatterlist sg;
1107 int ret;
1108 int i;
1110 if (keylen <= blocksize) {
1111 memcpy(ipad, key, keylen);
1112 } else {
1113 u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
1115 if (!keydup)
1116 return -ENOMEM;
1118 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1119 mv_cesa_hmac_ahash_complete,
1120 &result);
1121 sg_init_one(&sg, keydup, keylen);
1122 ahash_request_set_crypt(req, &sg, ipad, keylen);
1123 init_completion(&result.completion);
1125 ret = crypto_ahash_digest(req);
1126 if (ret == -EINPROGRESS) {
1127 wait_for_completion_interruptible(&result.completion);
1128 ret = result.error;
1131 /* Set the memory region to 0 to avoid any leak. */
1132 memset(keydup, 0, keylen);
1133 kfree(keydup);
1135 if (ret)
1136 return ret;
1138 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
1141 memset(ipad + keylen, 0, blocksize - keylen);
1142 memcpy(opad, ipad, blocksize);
1144 for (i = 0; i < blocksize; i++) {
1145 ipad[i] ^= 0x36;
1146 opad[i] ^= 0x5c;
1149 return 0;
1152 static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
1153 const u8 *key, unsigned int keylen,
1154 void *istate, void *ostate)
1156 struct ahash_request *req;
1157 struct crypto_ahash *tfm;
1158 unsigned int blocksize;
1159 u8 *ipad = NULL;
1160 u8 *opad;
1161 int ret;
1163 tfm = crypto_alloc_ahash(hash_alg_name, CRYPTO_ALG_TYPE_AHASH,
1164 CRYPTO_ALG_TYPE_AHASH_MASK);
1165 if (IS_ERR(tfm))
1166 return PTR_ERR(tfm);
1168 req = ahash_request_alloc(tfm, GFP_KERNEL);
1169 if (!req) {
1170 ret = -ENOMEM;
1171 goto free_ahash;
1174 crypto_ahash_clear_flags(tfm, ~0);
1176 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
1178 ipad = kzalloc(2 * blocksize, GFP_KERNEL);
1179 if (!ipad) {
1180 ret = -ENOMEM;
1181 goto free_req;
1184 opad = ipad + blocksize;
1186 ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
1187 if (ret)
1188 goto free_ipad;
1190 ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
1191 if (ret)
1192 goto free_ipad;
1194 ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
1196 free_ipad:
1197 kfree(ipad);
1198 free_req:
1199 ahash_request_free(req);
1200 free_ahash:
1201 crypto_free_ahash(tfm);
1203 return ret;
1206 static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
1208 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
1210 ctx->base.ops = &mv_cesa_ahash_req_ops;
1212 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1213 sizeof(struct mv_cesa_ahash_req));
1214 return 0;
1217 static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
1219 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1220 struct mv_cesa_op_ctx tmpl = { };
1222 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
1223 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1225 mv_cesa_ahash_init(req, &tmpl, true);
1227 return 0;
1230 static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1231 unsigned int keylen)
1233 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1234 struct md5_state istate, ostate;
1235 int ret, i;
1237 ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
1238 if (ret)
1239 return ret;
1241 for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
1242 ctx->iv[i] = be32_to_cpu(istate.hash[i]);
1244 for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
1245 ctx->iv[i + 8] = be32_to_cpu(ostate.hash[i]);
1247 return 0;
1250 static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
1252 int ret;
1254 ret = mv_cesa_ahmac_md5_init(req);
1255 if (ret)
1256 return ret;
1258 return mv_cesa_ahash_finup(req);
1261 struct ahash_alg mv_ahmac_md5_alg = {
1262 .init = mv_cesa_ahmac_md5_init,
1263 .update = mv_cesa_ahash_update,
1264 .final = mv_cesa_ahash_final,
1265 .finup = mv_cesa_ahash_finup,
1266 .digest = mv_cesa_ahmac_md5_digest,
1267 .setkey = mv_cesa_ahmac_md5_setkey,
1268 .export = mv_cesa_md5_export,
1269 .import = mv_cesa_md5_import,
1270 .halg = {
1271 .digestsize = MD5_DIGEST_SIZE,
1272 .statesize = sizeof(struct md5_state),
1273 .base = {
1274 .cra_name = "hmac(md5)",
1275 .cra_driver_name = "mv-hmac-md5",
1276 .cra_priority = 300,
1277 .cra_flags = CRYPTO_ALG_ASYNC |
1278 CRYPTO_ALG_KERN_DRIVER_ONLY,
1279 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1280 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1281 .cra_init = mv_cesa_ahmac_cra_init,
1282 .cra_module = THIS_MODULE,
1287 static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
1289 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1290 struct mv_cesa_op_ctx tmpl = { };
1292 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
1293 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1295 mv_cesa_ahash_init(req, &tmpl, false);
1297 return 0;
1300 static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1301 unsigned int keylen)
1303 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1304 struct sha1_state istate, ostate;
1305 int ret, i;
1307 ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
1308 if (ret)
1309 return ret;
1311 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1312 ctx->iv[i] = be32_to_cpu(istate.state[i]);
1314 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1315 ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
1317 return 0;
1320 static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
1322 int ret;
1324 ret = mv_cesa_ahmac_sha1_init(req);
1325 if (ret)
1326 return ret;
1328 return mv_cesa_ahash_finup(req);
1331 struct ahash_alg mv_ahmac_sha1_alg = {
1332 .init = mv_cesa_ahmac_sha1_init,
1333 .update = mv_cesa_ahash_update,
1334 .final = mv_cesa_ahash_final,
1335 .finup = mv_cesa_ahash_finup,
1336 .digest = mv_cesa_ahmac_sha1_digest,
1337 .setkey = mv_cesa_ahmac_sha1_setkey,
1338 .export = mv_cesa_sha1_export,
1339 .import = mv_cesa_sha1_import,
1340 .halg = {
1341 .digestsize = SHA1_DIGEST_SIZE,
1342 .statesize = sizeof(struct sha1_state),
1343 .base = {
1344 .cra_name = "hmac(sha1)",
1345 .cra_driver_name = "mv-hmac-sha1",
1346 .cra_priority = 300,
1347 .cra_flags = CRYPTO_ALG_ASYNC |
1348 CRYPTO_ALG_KERN_DRIVER_ONLY,
1349 .cra_blocksize = SHA1_BLOCK_SIZE,
1350 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1351 .cra_init = mv_cesa_ahmac_cra_init,
1352 .cra_module = THIS_MODULE,
1357 static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1358 unsigned int keylen)
1360 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1361 struct sha256_state istate, ostate;
1362 int ret, i;
1364 ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
1365 if (ret)
1366 return ret;
1368 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1369 ctx->iv[i] = be32_to_cpu(istate.state[i]);
1371 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1372 ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
1374 return 0;
1377 static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
1379 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1380 struct mv_cesa_op_ctx tmpl = { };
1382 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
1383 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1385 mv_cesa_ahash_init(req, &tmpl, false);
1387 return 0;
1390 static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
1392 int ret;
1394 ret = mv_cesa_ahmac_sha256_init(req);
1395 if (ret)
1396 return ret;
1398 return mv_cesa_ahash_finup(req);
1401 struct ahash_alg mv_ahmac_sha256_alg = {
1402 .init = mv_cesa_ahmac_sha256_init,
1403 .update = mv_cesa_ahash_update,
1404 .final = mv_cesa_ahash_final,
1405 .finup = mv_cesa_ahash_finup,
1406 .digest = mv_cesa_ahmac_sha256_digest,
1407 .setkey = mv_cesa_ahmac_sha256_setkey,
1408 .export = mv_cesa_sha256_export,
1409 .import = mv_cesa_sha256_import,
1410 .halg = {
1411 .digestsize = SHA256_DIGEST_SIZE,
1412 .statesize = sizeof(struct sha256_state),
1413 .base = {
1414 .cra_name = "hmac(sha256)",
1415 .cra_driver_name = "mv-hmac-sha256",
1416 .cra_priority = 300,
1417 .cra_flags = CRYPTO_ALG_ASYNC |
1418 CRYPTO_ALG_KERN_DRIVER_ONLY,
1419 .cra_blocksize = SHA256_BLOCK_SIZE,
1420 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1421 .cra_init = mv_cesa_ahmac_cra_init,
1422 .cra_module = THIS_MODULE,