vxlan: leave multicast group when vxlan device down
[linux-2.6/btrfs-unstable.git] / net / mac80211 / rx.c
blob2dfa755227339533d2c105313ba8ab4ea3ba67b5
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
35 * monitor mode reception
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
56 if (status->vendor_radiotap_len)
57 __pskb_pull(skb, status->vendor_radiotap_len);
59 return skb;
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
67 hdr = (void *)(skb->data + status->vendor_radiotap_len);
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return 1;
73 if (unlikely(skb->len < 16 + present_fcs_len +
74 status->vendor_radiotap_len))
75 return 1;
76 if (ieee80211_is_ctl(hdr->frame_control) &&
77 !ieee80211_is_pspoll(hdr->frame_control) &&
78 !ieee80211_is_back_req(hdr->frame_control))
79 return 1;
80 return 0;
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 struct ieee80211_rx_status *status)
87 int len;
89 /* always present fields */
90 len = sizeof(struct ieee80211_radiotap_header) + 8;
92 /* allocate extra bitmaps */
93 if (status->vendor_radiotap_len)
94 len += 4;
95 if (status->chains)
96 len += 4 * hweight8(status->chains);
98 if (ieee80211_have_rx_timestamp(status)) {
99 len = ALIGN(len, 8);
100 len += 8;
102 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
103 len += 1;
105 /* antenna field, if we don't have per-chain info */
106 if (!status->chains)
107 len += 1;
109 /* padding for RX_FLAGS if necessary */
110 len = ALIGN(len, 2);
112 if (status->flag & RX_FLAG_HT) /* HT info */
113 len += 3;
115 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
116 len = ALIGN(len, 4);
117 len += 8;
120 if (status->flag & RX_FLAG_VHT) {
121 len = ALIGN(len, 2);
122 len += 12;
125 if (status->chains) {
126 /* antenna and antenna signal fields */
127 len += 2 * hweight8(status->chains);
130 if (status->vendor_radiotap_len) {
131 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
132 status->vendor_radiotap_align = 1;
133 /* align standard part of vendor namespace */
134 len = ALIGN(len, 2);
135 /* allocate standard part of vendor namespace */
136 len += 6;
137 /* align vendor-defined part */
138 len = ALIGN(len, status->vendor_radiotap_align);
139 /* vendor-defined part is already in skb */
142 return len;
146 * ieee80211_add_rx_radiotap_header - add radiotap header
148 * add a radiotap header containing all the fields which the hardware provided.
150 static void
151 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
152 struct sk_buff *skb,
153 struct ieee80211_rate *rate,
154 int rtap_len, bool has_fcs)
156 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
157 struct ieee80211_radiotap_header *rthdr;
158 unsigned char *pos;
159 __le32 *it_present;
160 u32 it_present_val;
161 u16 rx_flags = 0;
162 u16 channel_flags = 0;
163 int mpdulen, chain;
164 unsigned long chains = status->chains;
166 mpdulen = skb->len;
167 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
168 mpdulen += FCS_LEN;
170 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
171 memset(rthdr, 0, rtap_len);
172 it_present = &rthdr->it_present;
174 /* radiotap header, set always present flags */
175 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
176 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
177 BIT(IEEE80211_RADIOTAP_CHANNEL) |
178 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
180 if (!status->chains)
181 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
183 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
184 it_present_val |=
185 BIT(IEEE80211_RADIOTAP_EXT) |
186 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
187 put_unaligned_le32(it_present_val, it_present);
188 it_present++;
189 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
190 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
193 if (status->vendor_radiotap_len) {
194 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
195 BIT(IEEE80211_RADIOTAP_EXT);
196 put_unaligned_le32(it_present_val, it_present);
197 it_present++;
198 it_present_val = status->vendor_radiotap_bitmap;
201 put_unaligned_le32(it_present_val, it_present);
203 pos = (void *)(it_present + 1);
205 /* the order of the following fields is important */
207 /* IEEE80211_RADIOTAP_TSFT */
208 if (ieee80211_have_rx_timestamp(status)) {
209 /* padding */
210 while ((pos - (u8 *)rthdr) & 7)
211 *pos++ = 0;
212 put_unaligned_le64(
213 ieee80211_calculate_rx_timestamp(local, status,
214 mpdulen, 0),
215 pos);
216 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
217 pos += 8;
220 /* IEEE80211_RADIOTAP_FLAGS */
221 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
222 *pos |= IEEE80211_RADIOTAP_F_FCS;
223 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
224 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
225 if (status->flag & RX_FLAG_SHORTPRE)
226 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
227 pos++;
229 /* IEEE80211_RADIOTAP_RATE */
230 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
232 * Without rate information don't add it. If we have,
233 * MCS information is a separate field in radiotap,
234 * added below. The byte here is needed as padding
235 * for the channel though, so initialise it to 0.
237 *pos = 0;
238 } else {
239 int shift = 0;
240 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
241 if (status->flag & RX_FLAG_10MHZ)
242 shift = 1;
243 else if (status->flag & RX_FLAG_5MHZ)
244 shift = 2;
245 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
247 pos++;
249 /* IEEE80211_RADIOTAP_CHANNEL */
250 put_unaligned_le16(status->freq, pos);
251 pos += 2;
252 if (status->flag & RX_FLAG_10MHZ)
253 channel_flags |= IEEE80211_CHAN_HALF;
254 else if (status->flag & RX_FLAG_5MHZ)
255 channel_flags |= IEEE80211_CHAN_QUARTER;
257 if (status->band == IEEE80211_BAND_5GHZ)
258 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
259 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
260 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
261 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
262 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
263 else if (rate)
264 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
265 else
266 channel_flags |= IEEE80211_CHAN_2GHZ;
267 put_unaligned_le16(channel_flags, pos);
268 pos += 2;
270 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
271 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
272 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
273 *pos = status->signal;
274 rthdr->it_present |=
275 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
276 pos++;
279 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
281 if (!status->chains) {
282 /* IEEE80211_RADIOTAP_ANTENNA */
283 *pos = status->antenna;
284 pos++;
287 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
289 /* IEEE80211_RADIOTAP_RX_FLAGS */
290 /* ensure 2 byte alignment for the 2 byte field as required */
291 if ((pos - (u8 *)rthdr) & 1)
292 *pos++ = 0;
293 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
294 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
295 put_unaligned_le16(rx_flags, pos);
296 pos += 2;
298 if (status->flag & RX_FLAG_HT) {
299 unsigned int stbc;
301 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
302 *pos++ = local->hw.radiotap_mcs_details;
303 *pos = 0;
304 if (status->flag & RX_FLAG_SHORT_GI)
305 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
306 if (status->flag & RX_FLAG_40MHZ)
307 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
308 if (status->flag & RX_FLAG_HT_GF)
309 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
310 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
311 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
312 pos++;
313 *pos++ = status->rate_idx;
316 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
317 u16 flags = 0;
319 /* ensure 4 byte alignment */
320 while ((pos - (u8 *)rthdr) & 3)
321 pos++;
322 rthdr->it_present |=
323 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
324 put_unaligned_le32(status->ampdu_reference, pos);
325 pos += 4;
326 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
327 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
328 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
329 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
330 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
331 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
332 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
333 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
334 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
335 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
336 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
337 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
338 put_unaligned_le16(flags, pos);
339 pos += 2;
340 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
341 *pos++ = status->ampdu_delimiter_crc;
342 else
343 *pos++ = 0;
344 *pos++ = 0;
347 if (status->flag & RX_FLAG_VHT) {
348 u16 known = local->hw.radiotap_vht_details;
350 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
351 /* known field - how to handle 80+80? */
352 if (status->flag & RX_FLAG_80P80MHZ)
353 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
354 put_unaligned_le16(known, pos);
355 pos += 2;
356 /* flags */
357 if (status->flag & RX_FLAG_SHORT_GI)
358 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
359 pos++;
360 /* bandwidth */
361 if (status->flag & RX_FLAG_80MHZ)
362 *pos++ = 4;
363 else if (status->flag & RX_FLAG_80P80MHZ)
364 *pos++ = 0; /* marked not known above */
365 else if (status->flag & RX_FLAG_160MHZ)
366 *pos++ = 11;
367 else if (status->flag & RX_FLAG_40MHZ)
368 *pos++ = 1;
369 else /* 20 MHz */
370 *pos++ = 0;
371 /* MCS/NSS */
372 *pos = (status->rate_idx << 4) | status->vht_nss;
373 pos += 4;
374 /* coding field */
375 pos++;
376 /* group ID */
377 pos++;
378 /* partial_aid */
379 pos += 2;
382 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
383 *pos++ = status->chain_signal[chain];
384 *pos++ = chain;
387 if (status->vendor_radiotap_len) {
388 /* ensure 2 byte alignment for the vendor field as required */
389 if ((pos - (u8 *)rthdr) & 1)
390 *pos++ = 0;
391 *pos++ = status->vendor_radiotap_oui[0];
392 *pos++ = status->vendor_radiotap_oui[1];
393 *pos++ = status->vendor_radiotap_oui[2];
394 *pos++ = status->vendor_radiotap_subns;
395 put_unaligned_le16(status->vendor_radiotap_len, pos);
396 pos += 2;
397 /* align the actual payload as requested */
398 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
399 *pos++ = 0;
404 * This function copies a received frame to all monitor interfaces and
405 * returns a cleaned-up SKB that no longer includes the FCS nor the
406 * radiotap header the driver might have added.
408 static struct sk_buff *
409 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
410 struct ieee80211_rate *rate)
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
413 struct ieee80211_sub_if_data *sdata;
414 int needed_headroom;
415 struct sk_buff *skb, *skb2;
416 struct net_device *prev_dev = NULL;
417 int present_fcs_len = 0;
420 * First, we may need to make a copy of the skb because
421 * (1) we need to modify it for radiotap (if not present), and
422 * (2) the other RX handlers will modify the skb we got.
424 * We don't need to, of course, if we aren't going to return
425 * the SKB because it has a bad FCS/PLCP checksum.
428 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
429 present_fcs_len = FCS_LEN;
431 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
432 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
433 dev_kfree_skb(origskb);
434 return NULL;
437 if (!local->monitors) {
438 if (should_drop_frame(origskb, present_fcs_len)) {
439 dev_kfree_skb(origskb);
440 return NULL;
443 return remove_monitor_info(local, origskb);
446 /* room for the radiotap header based on driver features */
447 needed_headroom = ieee80211_rx_radiotap_space(local, status);
449 if (should_drop_frame(origskb, present_fcs_len)) {
450 /* only need to expand headroom if necessary */
451 skb = origskb;
452 origskb = NULL;
455 * This shouldn't trigger often because most devices have an
456 * RX header they pull before we get here, and that should
457 * be big enough for our radiotap information. We should
458 * probably export the length to drivers so that we can have
459 * them allocate enough headroom to start with.
461 if (skb_headroom(skb) < needed_headroom &&
462 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
463 dev_kfree_skb(skb);
464 return NULL;
466 } else {
468 * Need to make a copy and possibly remove radiotap header
469 * and FCS from the original.
471 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
473 origskb = remove_monitor_info(local, origskb);
475 if (!skb)
476 return origskb;
479 /* prepend radiotap information */
480 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
481 true);
483 skb_reset_mac_header(skb);
484 skb->ip_summed = CHECKSUM_UNNECESSARY;
485 skb->pkt_type = PACKET_OTHERHOST;
486 skb->protocol = htons(ETH_P_802_2);
488 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
489 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
490 continue;
492 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
493 continue;
495 if (!ieee80211_sdata_running(sdata))
496 continue;
498 if (prev_dev) {
499 skb2 = skb_clone(skb, GFP_ATOMIC);
500 if (skb2) {
501 skb2->dev = prev_dev;
502 netif_receive_skb(skb2);
506 prev_dev = sdata->dev;
507 sdata->dev->stats.rx_packets++;
508 sdata->dev->stats.rx_bytes += skb->len;
511 if (prev_dev) {
512 skb->dev = prev_dev;
513 netif_receive_skb(skb);
514 } else
515 dev_kfree_skb(skb);
517 return origskb;
520 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
523 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
524 int tid, seqno_idx, security_idx;
526 /* does the frame have a qos control field? */
527 if (ieee80211_is_data_qos(hdr->frame_control)) {
528 u8 *qc = ieee80211_get_qos_ctl(hdr);
529 /* frame has qos control */
530 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
531 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
532 status->rx_flags |= IEEE80211_RX_AMSDU;
534 seqno_idx = tid;
535 security_idx = tid;
536 } else {
538 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
540 * Sequence numbers for management frames, QoS data
541 * frames with a broadcast/multicast address in the
542 * Address 1 field, and all non-QoS data frames sent
543 * by QoS STAs are assigned using an additional single
544 * modulo-4096 counter, [...]
546 * We also use that counter for non-QoS STAs.
548 seqno_idx = IEEE80211_NUM_TIDS;
549 security_idx = 0;
550 if (ieee80211_is_mgmt(hdr->frame_control))
551 security_idx = IEEE80211_NUM_TIDS;
552 tid = 0;
555 rx->seqno_idx = seqno_idx;
556 rx->security_idx = security_idx;
557 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
558 * For now, set skb->priority to 0 for other cases. */
559 rx->skb->priority = (tid > 7) ? 0 : tid;
563 * DOC: Packet alignment
565 * Drivers always need to pass packets that are aligned to two-byte boundaries
566 * to the stack.
568 * Additionally, should, if possible, align the payload data in a way that
569 * guarantees that the contained IP header is aligned to a four-byte
570 * boundary. In the case of regular frames, this simply means aligning the
571 * payload to a four-byte boundary (because either the IP header is directly
572 * contained, or IV/RFC1042 headers that have a length divisible by four are
573 * in front of it). If the payload data is not properly aligned and the
574 * architecture doesn't support efficient unaligned operations, mac80211
575 * will align the data.
577 * With A-MSDU frames, however, the payload data address must yield two modulo
578 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
579 * push the IP header further back to a multiple of four again. Thankfully, the
580 * specs were sane enough this time around to require padding each A-MSDU
581 * subframe to a length that is a multiple of four.
583 * Padding like Atheros hardware adds which is between the 802.11 header and
584 * the payload is not supported, the driver is required to move the 802.11
585 * header to be directly in front of the payload in that case.
587 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
589 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
590 WARN_ONCE((unsigned long)rx->skb->data & 1,
591 "unaligned packet at 0x%p\n", rx->skb->data);
592 #endif
596 /* rx handlers */
598 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
602 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
603 return 0;
605 return ieee80211_is_robust_mgmt_frame(hdr);
609 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
613 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
614 return 0;
616 return ieee80211_is_robust_mgmt_frame(hdr);
620 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
621 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
623 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
624 struct ieee80211_mmie *mmie;
626 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
627 return -1;
629 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
630 return -1; /* not a robust management frame */
632 mmie = (struct ieee80211_mmie *)
633 (skb->data + skb->len - sizeof(*mmie));
634 if (mmie->element_id != WLAN_EID_MMIE ||
635 mmie->length != sizeof(*mmie) - 2)
636 return -1;
638 return le16_to_cpu(mmie->key_id);
641 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
642 struct sk_buff *skb)
644 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
645 __le16 fc;
646 int hdrlen;
647 u8 keyid;
649 fc = hdr->frame_control;
650 hdrlen = ieee80211_hdrlen(fc);
652 if (skb->len < hdrlen + cs->hdr_len)
653 return -EINVAL;
655 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
656 keyid &= cs->key_idx_mask;
657 keyid >>= cs->key_idx_shift;
659 return keyid;
662 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
664 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
665 char *dev_addr = rx->sdata->vif.addr;
667 if (ieee80211_is_data(hdr->frame_control)) {
668 if (is_multicast_ether_addr(hdr->addr1)) {
669 if (ieee80211_has_tods(hdr->frame_control) ||
670 !ieee80211_has_fromds(hdr->frame_control))
671 return RX_DROP_MONITOR;
672 if (ether_addr_equal(hdr->addr3, dev_addr))
673 return RX_DROP_MONITOR;
674 } else {
675 if (!ieee80211_has_a4(hdr->frame_control))
676 return RX_DROP_MONITOR;
677 if (ether_addr_equal(hdr->addr4, dev_addr))
678 return RX_DROP_MONITOR;
682 /* If there is not an established peer link and this is not a peer link
683 * establisment frame, beacon or probe, drop the frame.
686 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
687 struct ieee80211_mgmt *mgmt;
689 if (!ieee80211_is_mgmt(hdr->frame_control))
690 return RX_DROP_MONITOR;
692 if (ieee80211_is_action(hdr->frame_control)) {
693 u8 category;
695 /* make sure category field is present */
696 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
697 return RX_DROP_MONITOR;
699 mgmt = (struct ieee80211_mgmt *)hdr;
700 category = mgmt->u.action.category;
701 if (category != WLAN_CATEGORY_MESH_ACTION &&
702 category != WLAN_CATEGORY_SELF_PROTECTED)
703 return RX_DROP_MONITOR;
704 return RX_CONTINUE;
707 if (ieee80211_is_probe_req(hdr->frame_control) ||
708 ieee80211_is_probe_resp(hdr->frame_control) ||
709 ieee80211_is_beacon(hdr->frame_control) ||
710 ieee80211_is_auth(hdr->frame_control))
711 return RX_CONTINUE;
713 return RX_DROP_MONITOR;
716 return RX_CONTINUE;
719 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
720 struct tid_ampdu_rx *tid_agg_rx,
721 int index,
722 struct sk_buff_head *frames)
724 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
725 struct ieee80211_rx_status *status;
727 lockdep_assert_held(&tid_agg_rx->reorder_lock);
729 if (!skb)
730 goto no_frame;
732 /* release the frame from the reorder ring buffer */
733 tid_agg_rx->stored_mpdu_num--;
734 tid_agg_rx->reorder_buf[index] = NULL;
735 status = IEEE80211_SKB_RXCB(skb);
736 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
737 __skb_queue_tail(frames, skb);
739 no_frame:
740 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
743 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
744 struct tid_ampdu_rx *tid_agg_rx,
745 u16 head_seq_num,
746 struct sk_buff_head *frames)
748 int index;
750 lockdep_assert_held(&tid_agg_rx->reorder_lock);
752 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
753 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
754 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
755 frames);
760 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
761 * the skb was added to the buffer longer than this time ago, the earlier
762 * frames that have not yet been received are assumed to be lost and the skb
763 * can be released for processing. This may also release other skb's from the
764 * reorder buffer if there are no additional gaps between the frames.
766 * Callers must hold tid_agg_rx->reorder_lock.
768 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
770 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
771 struct tid_ampdu_rx *tid_agg_rx,
772 struct sk_buff_head *frames)
774 int index, j;
776 lockdep_assert_held(&tid_agg_rx->reorder_lock);
778 /* release the buffer until next missing frame */
779 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
780 if (!tid_agg_rx->reorder_buf[index] &&
781 tid_agg_rx->stored_mpdu_num) {
783 * No buffers ready to be released, but check whether any
784 * frames in the reorder buffer have timed out.
786 int skipped = 1;
787 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
788 j = (j + 1) % tid_agg_rx->buf_size) {
789 if (!tid_agg_rx->reorder_buf[j]) {
790 skipped++;
791 continue;
793 if (skipped &&
794 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
795 HT_RX_REORDER_BUF_TIMEOUT))
796 goto set_release_timer;
798 ht_dbg_ratelimited(sdata,
799 "release an RX reorder frame due to timeout on earlier frames\n");
800 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
801 frames);
804 * Increment the head seq# also for the skipped slots.
806 tid_agg_rx->head_seq_num =
807 (tid_agg_rx->head_seq_num +
808 skipped) & IEEE80211_SN_MASK;
809 skipped = 0;
811 } else while (tid_agg_rx->reorder_buf[index]) {
812 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
813 frames);
814 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
817 if (tid_agg_rx->stored_mpdu_num) {
818 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
820 for (; j != (index - 1) % tid_agg_rx->buf_size;
821 j = (j + 1) % tid_agg_rx->buf_size) {
822 if (tid_agg_rx->reorder_buf[j])
823 break;
826 set_release_timer:
828 mod_timer(&tid_agg_rx->reorder_timer,
829 tid_agg_rx->reorder_time[j] + 1 +
830 HT_RX_REORDER_BUF_TIMEOUT);
831 } else {
832 del_timer(&tid_agg_rx->reorder_timer);
837 * As this function belongs to the RX path it must be under
838 * rcu_read_lock protection. It returns false if the frame
839 * can be processed immediately, true if it was consumed.
841 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
842 struct tid_ampdu_rx *tid_agg_rx,
843 struct sk_buff *skb,
844 struct sk_buff_head *frames)
846 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
847 u16 sc = le16_to_cpu(hdr->seq_ctrl);
848 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
849 u16 head_seq_num, buf_size;
850 int index;
851 bool ret = true;
853 spin_lock(&tid_agg_rx->reorder_lock);
855 buf_size = tid_agg_rx->buf_size;
856 head_seq_num = tid_agg_rx->head_seq_num;
858 /* frame with out of date sequence number */
859 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
860 dev_kfree_skb(skb);
861 goto out;
865 * If frame the sequence number exceeds our buffering window
866 * size release some previous frames to make room for this one.
868 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
869 head_seq_num = ieee80211_sn_inc(
870 ieee80211_sn_sub(mpdu_seq_num, buf_size));
871 /* release stored frames up to new head to stack */
872 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
873 head_seq_num, frames);
876 /* Now the new frame is always in the range of the reordering buffer */
878 index = mpdu_seq_num % tid_agg_rx->buf_size;
880 /* check if we already stored this frame */
881 if (tid_agg_rx->reorder_buf[index]) {
882 dev_kfree_skb(skb);
883 goto out;
887 * If the current MPDU is in the right order and nothing else
888 * is stored we can process it directly, no need to buffer it.
889 * If it is first but there's something stored, we may be able
890 * to release frames after this one.
892 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
893 tid_agg_rx->stored_mpdu_num == 0) {
894 tid_agg_rx->head_seq_num =
895 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
896 ret = false;
897 goto out;
900 /* put the frame in the reordering buffer */
901 tid_agg_rx->reorder_buf[index] = skb;
902 tid_agg_rx->reorder_time[index] = jiffies;
903 tid_agg_rx->stored_mpdu_num++;
904 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
906 out:
907 spin_unlock(&tid_agg_rx->reorder_lock);
908 return ret;
912 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
913 * true if the MPDU was buffered, false if it should be processed.
915 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
916 struct sk_buff_head *frames)
918 struct sk_buff *skb = rx->skb;
919 struct ieee80211_local *local = rx->local;
920 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
921 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
922 struct sta_info *sta = rx->sta;
923 struct tid_ampdu_rx *tid_agg_rx;
924 u16 sc;
925 u8 tid, ack_policy;
927 if (!ieee80211_is_data_qos(hdr->frame_control) ||
928 is_multicast_ether_addr(hdr->addr1))
929 goto dont_reorder;
932 * filter the QoS data rx stream according to
933 * STA/TID and check if this STA/TID is on aggregation
936 if (!sta)
937 goto dont_reorder;
939 ack_policy = *ieee80211_get_qos_ctl(hdr) &
940 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
941 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
943 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
944 if (!tid_agg_rx)
945 goto dont_reorder;
947 /* qos null data frames are excluded */
948 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
949 goto dont_reorder;
951 /* not part of a BA session */
952 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
953 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
954 goto dont_reorder;
956 /* not actually part of this BA session */
957 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
958 goto dont_reorder;
960 /* new, potentially un-ordered, ampdu frame - process it */
962 /* reset session timer */
963 if (tid_agg_rx->timeout)
964 tid_agg_rx->last_rx = jiffies;
966 /* if this mpdu is fragmented - terminate rx aggregation session */
967 sc = le16_to_cpu(hdr->seq_ctrl);
968 if (sc & IEEE80211_SCTL_FRAG) {
969 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
970 skb_queue_tail(&rx->sdata->skb_queue, skb);
971 ieee80211_queue_work(&local->hw, &rx->sdata->work);
972 return;
976 * No locking needed -- we will only ever process one
977 * RX packet at a time, and thus own tid_agg_rx. All
978 * other code manipulating it needs to (and does) make
979 * sure that we cannot get to it any more before doing
980 * anything with it.
982 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
983 frames))
984 return;
986 dont_reorder:
987 __skb_queue_tail(frames, skb);
990 static ieee80211_rx_result debug_noinline
991 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
993 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
994 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
997 * Drop duplicate 802.11 retransmissions
998 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1000 if (rx->skb->len >= 24 && rx->sta &&
1001 !ieee80211_is_ctl(hdr->frame_control) &&
1002 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
1003 !is_multicast_ether_addr(hdr->addr1)) {
1004 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1005 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1006 hdr->seq_ctrl)) {
1007 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1008 rx->local->dot11FrameDuplicateCount++;
1009 rx->sta->num_duplicates++;
1011 return RX_DROP_UNUSABLE;
1012 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1013 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1017 if (unlikely(rx->skb->len < 16)) {
1018 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1019 return RX_DROP_MONITOR;
1022 /* Drop disallowed frame classes based on STA auth/assoc state;
1023 * IEEE 802.11, Chap 5.5.
1025 * mac80211 filters only based on association state, i.e. it drops
1026 * Class 3 frames from not associated stations. hostapd sends
1027 * deauth/disassoc frames when needed. In addition, hostapd is
1028 * responsible for filtering on both auth and assoc states.
1031 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1032 return ieee80211_rx_mesh_check(rx);
1034 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1035 ieee80211_is_pspoll(hdr->frame_control)) &&
1036 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1037 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1038 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1040 * accept port control frames from the AP even when it's not
1041 * yet marked ASSOC to prevent a race where we don't set the
1042 * assoc bit quickly enough before it sends the first frame
1044 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1045 ieee80211_is_data_present(hdr->frame_control)) {
1046 unsigned int hdrlen;
1047 __be16 ethertype;
1049 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1051 if (rx->skb->len < hdrlen + 8)
1052 return RX_DROP_MONITOR;
1054 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1055 if (ethertype == rx->sdata->control_port_protocol)
1056 return RX_CONTINUE;
1059 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1060 cfg80211_rx_spurious_frame(rx->sdata->dev,
1061 hdr->addr2,
1062 GFP_ATOMIC))
1063 return RX_DROP_UNUSABLE;
1065 return RX_DROP_MONITOR;
1068 return RX_CONTINUE;
1072 static ieee80211_rx_result debug_noinline
1073 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1075 struct ieee80211_local *local;
1076 struct ieee80211_hdr *hdr;
1077 struct sk_buff *skb;
1079 local = rx->local;
1080 skb = rx->skb;
1081 hdr = (struct ieee80211_hdr *) skb->data;
1083 if (!local->pspolling)
1084 return RX_CONTINUE;
1086 if (!ieee80211_has_fromds(hdr->frame_control))
1087 /* this is not from AP */
1088 return RX_CONTINUE;
1090 if (!ieee80211_is_data(hdr->frame_control))
1091 return RX_CONTINUE;
1093 if (!ieee80211_has_moredata(hdr->frame_control)) {
1094 /* AP has no more frames buffered for us */
1095 local->pspolling = false;
1096 return RX_CONTINUE;
1099 /* more data bit is set, let's request a new frame from the AP */
1100 ieee80211_send_pspoll(local, rx->sdata);
1102 return RX_CONTINUE;
1105 static void sta_ps_start(struct sta_info *sta)
1107 struct ieee80211_sub_if_data *sdata = sta->sdata;
1108 struct ieee80211_local *local = sdata->local;
1109 struct ps_data *ps;
1111 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1112 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1113 ps = &sdata->bss->ps;
1114 else
1115 return;
1117 atomic_inc(&ps->num_sta_ps);
1118 set_sta_flag(sta, WLAN_STA_PS_STA);
1119 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1120 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1121 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1122 sta->sta.addr, sta->sta.aid);
1125 static void sta_ps_end(struct sta_info *sta)
1127 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1128 sta->sta.addr, sta->sta.aid);
1130 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1131 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1132 sta->sta.addr, sta->sta.aid);
1133 return;
1136 ieee80211_sta_ps_deliver_wakeup(sta);
1139 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1141 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1142 bool in_ps;
1144 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1146 /* Don't let the same PS state be set twice */
1147 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1148 if ((start && in_ps) || (!start && !in_ps))
1149 return -EINVAL;
1151 if (start)
1152 sta_ps_start(sta_inf);
1153 else
1154 sta_ps_end(sta_inf);
1156 return 0;
1158 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1160 static ieee80211_rx_result debug_noinline
1161 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1163 struct ieee80211_sub_if_data *sdata = rx->sdata;
1164 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1165 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1166 int tid, ac;
1168 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1169 return RX_CONTINUE;
1171 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1172 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1173 return RX_CONTINUE;
1176 * The device handles station powersave, so don't do anything about
1177 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1178 * it to mac80211 since they're handled.)
1180 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1181 return RX_CONTINUE;
1184 * Don't do anything if the station isn't already asleep. In
1185 * the uAPSD case, the station will probably be marked asleep,
1186 * in the PS-Poll case the station must be confused ...
1188 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1189 return RX_CONTINUE;
1191 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1192 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1193 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1194 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1195 else
1196 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1199 /* Free PS Poll skb here instead of returning RX_DROP that would
1200 * count as an dropped frame. */
1201 dev_kfree_skb(rx->skb);
1203 return RX_QUEUED;
1204 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1205 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1206 ieee80211_has_pm(hdr->frame_control) &&
1207 (ieee80211_is_data_qos(hdr->frame_control) ||
1208 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1209 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1210 ac = ieee802_1d_to_ac[tid & 7];
1213 * If this AC is not trigger-enabled do nothing.
1215 * NB: This could/should check a separate bitmap of trigger-
1216 * enabled queues, but for now we only implement uAPSD w/o
1217 * TSPEC changes to the ACs, so they're always the same.
1219 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1220 return RX_CONTINUE;
1222 /* if we are in a service period, do nothing */
1223 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1224 return RX_CONTINUE;
1226 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1227 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1228 else
1229 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1232 return RX_CONTINUE;
1235 static ieee80211_rx_result debug_noinline
1236 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1238 struct sta_info *sta = rx->sta;
1239 struct sk_buff *skb = rx->skb;
1240 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1241 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1242 int i;
1244 if (!sta)
1245 return RX_CONTINUE;
1248 * Update last_rx only for IBSS packets which are for the current
1249 * BSSID and for station already AUTHORIZED to avoid keeping the
1250 * current IBSS network alive in cases where other STAs start
1251 * using different BSSID. This will also give the station another
1252 * chance to restart the authentication/authorization in case
1253 * something went wrong the first time.
1255 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1256 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1257 NL80211_IFTYPE_ADHOC);
1258 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1259 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1260 sta->last_rx = jiffies;
1261 if (ieee80211_is_data(hdr->frame_control)) {
1262 sta->last_rx_rate_idx = status->rate_idx;
1263 sta->last_rx_rate_flag = status->flag;
1264 sta->last_rx_rate_vht_nss = status->vht_nss;
1267 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1269 * Mesh beacons will update last_rx when if they are found to
1270 * match the current local configuration when processed.
1272 sta->last_rx = jiffies;
1273 if (ieee80211_is_data(hdr->frame_control)) {
1274 sta->last_rx_rate_idx = status->rate_idx;
1275 sta->last_rx_rate_flag = status->flag;
1276 sta->last_rx_rate_vht_nss = status->vht_nss;
1280 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1281 return RX_CONTINUE;
1283 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1284 ieee80211_sta_rx_notify(rx->sdata, hdr);
1286 sta->rx_fragments++;
1287 sta->rx_bytes += rx->skb->len;
1288 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1289 sta->last_signal = status->signal;
1290 ewma_add(&sta->avg_signal, -status->signal);
1293 if (status->chains) {
1294 sta->chains = status->chains;
1295 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1296 int signal = status->chain_signal[i];
1298 if (!(status->chains & BIT(i)))
1299 continue;
1301 sta->chain_signal_last[i] = signal;
1302 ewma_add(&sta->chain_signal_avg[i], -signal);
1307 * Change STA power saving mode only at the end of a frame
1308 * exchange sequence.
1310 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1311 !ieee80211_has_morefrags(hdr->frame_control) &&
1312 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1313 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1314 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1315 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1317 * Ignore doze->wake transitions that are
1318 * indicated by non-data frames, the standard
1319 * is unclear here, but for example going to
1320 * PS mode and then scanning would cause a
1321 * doze->wake transition for the probe request,
1322 * and that is clearly undesirable.
1324 if (ieee80211_is_data(hdr->frame_control) &&
1325 !ieee80211_has_pm(hdr->frame_control))
1326 sta_ps_end(sta);
1327 } else {
1328 if (ieee80211_has_pm(hdr->frame_control))
1329 sta_ps_start(sta);
1333 /* mesh power save support */
1334 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1335 ieee80211_mps_rx_h_sta_process(sta, hdr);
1338 * Drop (qos-)data::nullfunc frames silently, since they
1339 * are used only to control station power saving mode.
1341 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1342 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1343 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1346 * If we receive a 4-addr nullfunc frame from a STA
1347 * that was not moved to a 4-addr STA vlan yet send
1348 * the event to userspace and for older hostapd drop
1349 * the frame to the monitor interface.
1351 if (ieee80211_has_a4(hdr->frame_control) &&
1352 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1353 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1354 !rx->sdata->u.vlan.sta))) {
1355 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1356 cfg80211_rx_unexpected_4addr_frame(
1357 rx->sdata->dev, sta->sta.addr,
1358 GFP_ATOMIC);
1359 return RX_DROP_MONITOR;
1362 * Update counter and free packet here to avoid
1363 * counting this as a dropped packed.
1365 sta->rx_packets++;
1366 dev_kfree_skb(rx->skb);
1367 return RX_QUEUED;
1370 return RX_CONTINUE;
1371 } /* ieee80211_rx_h_sta_process */
1373 static ieee80211_rx_result debug_noinline
1374 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1376 struct sk_buff *skb = rx->skb;
1377 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1378 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1379 int keyidx;
1380 int hdrlen;
1381 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1382 struct ieee80211_key *sta_ptk = NULL;
1383 int mmie_keyidx = -1;
1384 __le16 fc;
1385 const struct ieee80211_cipher_scheme *cs = NULL;
1388 * Key selection 101
1390 * There are four types of keys:
1391 * - GTK (group keys)
1392 * - IGTK (group keys for management frames)
1393 * - PTK (pairwise keys)
1394 * - STK (station-to-station pairwise keys)
1396 * When selecting a key, we have to distinguish between multicast
1397 * (including broadcast) and unicast frames, the latter can only
1398 * use PTKs and STKs while the former always use GTKs and IGTKs.
1399 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1400 * unicast frames can also use key indices like GTKs. Hence, if we
1401 * don't have a PTK/STK we check the key index for a WEP key.
1403 * Note that in a regular BSS, multicast frames are sent by the
1404 * AP only, associated stations unicast the frame to the AP first
1405 * which then multicasts it on their behalf.
1407 * There is also a slight problem in IBSS mode: GTKs are negotiated
1408 * with each station, that is something we don't currently handle.
1409 * The spec seems to expect that one negotiates the same key with
1410 * every station but there's no such requirement; VLANs could be
1411 * possible.
1415 * No point in finding a key and decrypting if the frame is neither
1416 * addressed to us nor a multicast frame.
1418 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1419 return RX_CONTINUE;
1421 /* start without a key */
1422 rx->key = NULL;
1423 fc = hdr->frame_control;
1425 if (rx->sta) {
1426 int keyid = rx->sta->ptk_idx;
1428 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1429 cs = rx->sta->cipher_scheme;
1430 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1431 if (unlikely(keyid < 0))
1432 return RX_DROP_UNUSABLE;
1434 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1437 if (!ieee80211_has_protected(fc))
1438 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1440 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1441 rx->key = sta_ptk;
1442 if ((status->flag & RX_FLAG_DECRYPTED) &&
1443 (status->flag & RX_FLAG_IV_STRIPPED))
1444 return RX_CONTINUE;
1445 /* Skip decryption if the frame is not protected. */
1446 if (!ieee80211_has_protected(fc))
1447 return RX_CONTINUE;
1448 } else if (mmie_keyidx >= 0) {
1449 /* Broadcast/multicast robust management frame / BIP */
1450 if ((status->flag & RX_FLAG_DECRYPTED) &&
1451 (status->flag & RX_FLAG_IV_STRIPPED))
1452 return RX_CONTINUE;
1454 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1455 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1456 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1457 if (rx->sta)
1458 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1459 if (!rx->key)
1460 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1461 } else if (!ieee80211_has_protected(fc)) {
1463 * The frame was not protected, so skip decryption. However, we
1464 * need to set rx->key if there is a key that could have been
1465 * used so that the frame may be dropped if encryption would
1466 * have been expected.
1468 struct ieee80211_key *key = NULL;
1469 struct ieee80211_sub_if_data *sdata = rx->sdata;
1470 int i;
1472 if (ieee80211_is_mgmt(fc) &&
1473 is_multicast_ether_addr(hdr->addr1) &&
1474 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1475 rx->key = key;
1476 else {
1477 if (rx->sta) {
1478 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1479 key = rcu_dereference(rx->sta->gtk[i]);
1480 if (key)
1481 break;
1484 if (!key) {
1485 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1486 key = rcu_dereference(sdata->keys[i]);
1487 if (key)
1488 break;
1491 if (key)
1492 rx->key = key;
1494 return RX_CONTINUE;
1495 } else {
1496 u8 keyid;
1499 * The device doesn't give us the IV so we won't be
1500 * able to look up the key. That's ok though, we
1501 * don't need to decrypt the frame, we just won't
1502 * be able to keep statistics accurate.
1503 * Except for key threshold notifications, should
1504 * we somehow allow the driver to tell us which key
1505 * the hardware used if this flag is set?
1507 if ((status->flag & RX_FLAG_DECRYPTED) &&
1508 (status->flag & RX_FLAG_IV_STRIPPED))
1509 return RX_CONTINUE;
1511 hdrlen = ieee80211_hdrlen(fc);
1513 if (cs) {
1514 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1516 if (unlikely(keyidx < 0))
1517 return RX_DROP_UNUSABLE;
1518 } else {
1519 if (rx->skb->len < 8 + hdrlen)
1520 return RX_DROP_UNUSABLE; /* TODO: count this? */
1522 * no need to call ieee80211_wep_get_keyidx,
1523 * it verifies a bunch of things we've done already
1525 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1526 keyidx = keyid >> 6;
1529 /* check per-station GTK first, if multicast packet */
1530 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1531 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1533 /* if not found, try default key */
1534 if (!rx->key) {
1535 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1538 * RSNA-protected unicast frames should always be
1539 * sent with pairwise or station-to-station keys,
1540 * but for WEP we allow using a key index as well.
1542 if (rx->key &&
1543 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1544 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1545 !is_multicast_ether_addr(hdr->addr1))
1546 rx->key = NULL;
1550 if (rx->key) {
1551 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1552 return RX_DROP_MONITOR;
1554 rx->key->tx_rx_count++;
1555 /* TODO: add threshold stuff again */
1556 } else {
1557 return RX_DROP_MONITOR;
1560 switch (rx->key->conf.cipher) {
1561 case WLAN_CIPHER_SUITE_WEP40:
1562 case WLAN_CIPHER_SUITE_WEP104:
1563 result = ieee80211_crypto_wep_decrypt(rx);
1564 break;
1565 case WLAN_CIPHER_SUITE_TKIP:
1566 result = ieee80211_crypto_tkip_decrypt(rx);
1567 break;
1568 case WLAN_CIPHER_SUITE_CCMP:
1569 result = ieee80211_crypto_ccmp_decrypt(rx);
1570 break;
1571 case WLAN_CIPHER_SUITE_AES_CMAC:
1572 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1573 break;
1574 default:
1575 result = ieee80211_crypto_hw_decrypt(rx);
1578 /* the hdr variable is invalid after the decrypt handlers */
1580 /* either the frame has been decrypted or will be dropped */
1581 status->flag |= RX_FLAG_DECRYPTED;
1583 return result;
1586 static inline struct ieee80211_fragment_entry *
1587 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1588 unsigned int frag, unsigned int seq, int rx_queue,
1589 struct sk_buff **skb)
1591 struct ieee80211_fragment_entry *entry;
1593 entry = &sdata->fragments[sdata->fragment_next++];
1594 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1595 sdata->fragment_next = 0;
1597 if (!skb_queue_empty(&entry->skb_list))
1598 __skb_queue_purge(&entry->skb_list);
1600 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1601 *skb = NULL;
1602 entry->first_frag_time = jiffies;
1603 entry->seq = seq;
1604 entry->rx_queue = rx_queue;
1605 entry->last_frag = frag;
1606 entry->ccmp = 0;
1607 entry->extra_len = 0;
1609 return entry;
1612 static inline struct ieee80211_fragment_entry *
1613 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1614 unsigned int frag, unsigned int seq,
1615 int rx_queue, struct ieee80211_hdr *hdr)
1617 struct ieee80211_fragment_entry *entry;
1618 int i, idx;
1620 idx = sdata->fragment_next;
1621 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1622 struct ieee80211_hdr *f_hdr;
1624 idx--;
1625 if (idx < 0)
1626 idx = IEEE80211_FRAGMENT_MAX - 1;
1628 entry = &sdata->fragments[idx];
1629 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1630 entry->rx_queue != rx_queue ||
1631 entry->last_frag + 1 != frag)
1632 continue;
1634 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1637 * Check ftype and addresses are equal, else check next fragment
1639 if (((hdr->frame_control ^ f_hdr->frame_control) &
1640 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1641 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1642 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1643 continue;
1645 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1646 __skb_queue_purge(&entry->skb_list);
1647 continue;
1649 return entry;
1652 return NULL;
1655 static ieee80211_rx_result debug_noinline
1656 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1658 struct ieee80211_hdr *hdr;
1659 u16 sc;
1660 __le16 fc;
1661 unsigned int frag, seq;
1662 struct ieee80211_fragment_entry *entry;
1663 struct sk_buff *skb;
1664 struct ieee80211_rx_status *status;
1666 hdr = (struct ieee80211_hdr *)rx->skb->data;
1667 fc = hdr->frame_control;
1669 if (ieee80211_is_ctl(fc))
1670 return RX_CONTINUE;
1672 sc = le16_to_cpu(hdr->seq_ctrl);
1673 frag = sc & IEEE80211_SCTL_FRAG;
1675 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1676 is_multicast_ether_addr(hdr->addr1))) {
1677 /* not fragmented */
1678 goto out;
1680 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1682 if (skb_linearize(rx->skb))
1683 return RX_DROP_UNUSABLE;
1686 * skb_linearize() might change the skb->data and
1687 * previously cached variables (in this case, hdr) need to
1688 * be refreshed with the new data.
1690 hdr = (struct ieee80211_hdr *)rx->skb->data;
1691 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1693 if (frag == 0) {
1694 /* This is the first fragment of a new frame. */
1695 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1696 rx->seqno_idx, &(rx->skb));
1697 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1698 ieee80211_has_protected(fc)) {
1699 int queue = rx->security_idx;
1700 /* Store CCMP PN so that we can verify that the next
1701 * fragment has a sequential PN value. */
1702 entry->ccmp = 1;
1703 memcpy(entry->last_pn,
1704 rx->key->u.ccmp.rx_pn[queue],
1705 IEEE80211_CCMP_PN_LEN);
1707 return RX_QUEUED;
1710 /* This is a fragment for a frame that should already be pending in
1711 * fragment cache. Add this fragment to the end of the pending entry.
1713 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1714 rx->seqno_idx, hdr);
1715 if (!entry) {
1716 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1717 return RX_DROP_MONITOR;
1720 /* Verify that MPDUs within one MSDU have sequential PN values.
1721 * (IEEE 802.11i, 8.3.3.4.5) */
1722 if (entry->ccmp) {
1723 int i;
1724 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1725 int queue;
1726 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1727 return RX_DROP_UNUSABLE;
1728 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1729 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1730 pn[i]++;
1731 if (pn[i])
1732 break;
1734 queue = rx->security_idx;
1735 rpn = rx->key->u.ccmp.rx_pn[queue];
1736 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1737 return RX_DROP_UNUSABLE;
1738 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1741 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1742 __skb_queue_tail(&entry->skb_list, rx->skb);
1743 entry->last_frag = frag;
1744 entry->extra_len += rx->skb->len;
1745 if (ieee80211_has_morefrags(fc)) {
1746 rx->skb = NULL;
1747 return RX_QUEUED;
1750 rx->skb = __skb_dequeue(&entry->skb_list);
1751 if (skb_tailroom(rx->skb) < entry->extra_len) {
1752 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1753 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1754 GFP_ATOMIC))) {
1755 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1756 __skb_queue_purge(&entry->skb_list);
1757 return RX_DROP_UNUSABLE;
1760 while ((skb = __skb_dequeue(&entry->skb_list))) {
1761 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1762 dev_kfree_skb(skb);
1765 /* Complete frame has been reassembled - process it now */
1766 status = IEEE80211_SKB_RXCB(rx->skb);
1767 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1769 out:
1770 if (rx->sta)
1771 rx->sta->rx_packets++;
1772 if (is_multicast_ether_addr(hdr->addr1))
1773 rx->local->dot11MulticastReceivedFrameCount++;
1774 else
1775 ieee80211_led_rx(rx->local);
1776 return RX_CONTINUE;
1779 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1781 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1782 return -EACCES;
1784 return 0;
1787 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1789 struct sk_buff *skb = rx->skb;
1790 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1793 * Pass through unencrypted frames if the hardware has
1794 * decrypted them already.
1796 if (status->flag & RX_FLAG_DECRYPTED)
1797 return 0;
1799 /* Drop unencrypted frames if key is set. */
1800 if (unlikely(!ieee80211_has_protected(fc) &&
1801 !ieee80211_is_nullfunc(fc) &&
1802 ieee80211_is_data(fc) &&
1803 (rx->key || rx->sdata->drop_unencrypted)))
1804 return -EACCES;
1806 return 0;
1809 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1811 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1812 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1813 __le16 fc = hdr->frame_control;
1816 * Pass through unencrypted frames if the hardware has
1817 * decrypted them already.
1819 if (status->flag & RX_FLAG_DECRYPTED)
1820 return 0;
1822 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1823 if (unlikely(!ieee80211_has_protected(fc) &&
1824 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1825 rx->key)) {
1826 if (ieee80211_is_deauth(fc) ||
1827 ieee80211_is_disassoc(fc))
1828 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1829 rx->skb->data,
1830 rx->skb->len);
1831 return -EACCES;
1833 /* BIP does not use Protected field, so need to check MMIE */
1834 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1835 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1836 if (ieee80211_is_deauth(fc) ||
1837 ieee80211_is_disassoc(fc))
1838 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1839 rx->skb->data,
1840 rx->skb->len);
1841 return -EACCES;
1844 * When using MFP, Action frames are not allowed prior to
1845 * having configured keys.
1847 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1848 ieee80211_is_robust_mgmt_frame(
1849 (struct ieee80211_hdr *) rx->skb->data)))
1850 return -EACCES;
1853 return 0;
1856 static int
1857 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1859 struct ieee80211_sub_if_data *sdata = rx->sdata;
1860 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1861 bool check_port_control = false;
1862 struct ethhdr *ehdr;
1863 int ret;
1865 *port_control = false;
1866 if (ieee80211_has_a4(hdr->frame_control) &&
1867 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1868 return -1;
1870 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1871 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1873 if (!sdata->u.mgd.use_4addr)
1874 return -1;
1875 else
1876 check_port_control = true;
1879 if (is_multicast_ether_addr(hdr->addr1) &&
1880 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1881 return -1;
1883 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1884 if (ret < 0)
1885 return ret;
1887 ehdr = (struct ethhdr *) rx->skb->data;
1888 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1889 *port_control = true;
1890 else if (check_port_control)
1891 return -1;
1893 return 0;
1897 * requires that rx->skb is a frame with ethernet header
1899 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1901 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1902 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1903 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1906 * Allow EAPOL frames to us/the PAE group address regardless
1907 * of whether the frame was encrypted or not.
1909 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1910 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1911 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1912 return true;
1914 if (ieee80211_802_1x_port_control(rx) ||
1915 ieee80211_drop_unencrypted(rx, fc))
1916 return false;
1918 return true;
1922 * requires that rx->skb is a frame with ethernet header
1924 static void
1925 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1927 struct ieee80211_sub_if_data *sdata = rx->sdata;
1928 struct net_device *dev = sdata->dev;
1929 struct sk_buff *skb, *xmit_skb;
1930 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1931 struct sta_info *dsta;
1932 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1934 skb = rx->skb;
1935 xmit_skb = NULL;
1937 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1938 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1939 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1940 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1941 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1942 if (is_multicast_ether_addr(ehdr->h_dest)) {
1944 * send multicast frames both to higher layers in
1945 * local net stack and back to the wireless medium
1947 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1948 if (!xmit_skb)
1949 net_info_ratelimited("%s: failed to clone multicast frame\n",
1950 dev->name);
1951 } else {
1952 dsta = sta_info_get(sdata, skb->data);
1953 if (dsta) {
1955 * The destination station is associated to
1956 * this AP (in this VLAN), so send the frame
1957 * directly to it and do not pass it to local
1958 * net stack.
1960 xmit_skb = skb;
1961 skb = NULL;
1966 if (skb) {
1967 int align __maybe_unused;
1969 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1971 * 'align' will only take the values 0 or 2 here
1972 * since all frames are required to be aligned
1973 * to 2-byte boundaries when being passed to
1974 * mac80211; the code here works just as well if
1975 * that isn't true, but mac80211 assumes it can
1976 * access fields as 2-byte aligned (e.g. for
1977 * compare_ether_addr)
1979 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1980 if (align) {
1981 if (WARN_ON(skb_headroom(skb) < 3)) {
1982 dev_kfree_skb(skb);
1983 skb = NULL;
1984 } else {
1985 u8 *data = skb->data;
1986 size_t len = skb_headlen(skb);
1987 skb->data -= align;
1988 memmove(skb->data, data, len);
1989 skb_set_tail_pointer(skb, len);
1992 #endif
1994 if (skb) {
1995 /* deliver to local stack */
1996 skb->protocol = eth_type_trans(skb, dev);
1997 memset(skb->cb, 0, sizeof(skb->cb));
1998 netif_receive_skb(skb);
2002 if (xmit_skb) {
2004 * Send to wireless media and increase priority by 256 to
2005 * keep the received priority instead of reclassifying
2006 * the frame (see cfg80211_classify8021d).
2008 xmit_skb->priority += 256;
2009 xmit_skb->protocol = htons(ETH_P_802_3);
2010 skb_reset_network_header(xmit_skb);
2011 skb_reset_mac_header(xmit_skb);
2012 dev_queue_xmit(xmit_skb);
2016 static ieee80211_rx_result debug_noinline
2017 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2019 struct net_device *dev = rx->sdata->dev;
2020 struct sk_buff *skb = rx->skb;
2021 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2022 __le16 fc = hdr->frame_control;
2023 struct sk_buff_head frame_list;
2024 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2026 if (unlikely(!ieee80211_is_data(fc)))
2027 return RX_CONTINUE;
2029 if (unlikely(!ieee80211_is_data_present(fc)))
2030 return RX_DROP_MONITOR;
2032 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2033 return RX_CONTINUE;
2035 if (ieee80211_has_a4(hdr->frame_control) &&
2036 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2037 !rx->sdata->u.vlan.sta)
2038 return RX_DROP_UNUSABLE;
2040 if (is_multicast_ether_addr(hdr->addr1) &&
2041 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2042 rx->sdata->u.vlan.sta) ||
2043 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2044 rx->sdata->u.mgd.use_4addr)))
2045 return RX_DROP_UNUSABLE;
2047 skb->dev = dev;
2048 __skb_queue_head_init(&frame_list);
2050 if (skb_linearize(skb))
2051 return RX_DROP_UNUSABLE;
2053 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2054 rx->sdata->vif.type,
2055 rx->local->hw.extra_tx_headroom, true);
2057 while (!skb_queue_empty(&frame_list)) {
2058 rx->skb = __skb_dequeue(&frame_list);
2060 if (!ieee80211_frame_allowed(rx, fc)) {
2061 dev_kfree_skb(rx->skb);
2062 continue;
2064 dev->stats.rx_packets++;
2065 dev->stats.rx_bytes += rx->skb->len;
2067 ieee80211_deliver_skb(rx);
2070 return RX_QUEUED;
2073 #ifdef CONFIG_MAC80211_MESH
2074 static ieee80211_rx_result
2075 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2077 struct ieee80211_hdr *fwd_hdr, *hdr;
2078 struct ieee80211_tx_info *info;
2079 struct ieee80211s_hdr *mesh_hdr;
2080 struct sk_buff *skb = rx->skb, *fwd_skb;
2081 struct ieee80211_local *local = rx->local;
2082 struct ieee80211_sub_if_data *sdata = rx->sdata;
2083 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2084 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2085 u16 q, hdrlen;
2087 hdr = (struct ieee80211_hdr *) skb->data;
2088 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2090 /* make sure fixed part of mesh header is there, also checks skb len */
2091 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2092 return RX_DROP_MONITOR;
2094 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2096 /* make sure full mesh header is there, also checks skb len */
2097 if (!pskb_may_pull(rx->skb,
2098 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2099 return RX_DROP_MONITOR;
2101 /* reload pointers */
2102 hdr = (struct ieee80211_hdr *) skb->data;
2103 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2105 /* frame is in RMC, don't forward */
2106 if (ieee80211_is_data(hdr->frame_control) &&
2107 is_multicast_ether_addr(hdr->addr1) &&
2108 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2109 return RX_DROP_MONITOR;
2111 if (!ieee80211_is_data(hdr->frame_control) ||
2112 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2113 return RX_CONTINUE;
2115 if (!mesh_hdr->ttl)
2116 return RX_DROP_MONITOR;
2118 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2119 struct mesh_path *mppath;
2120 char *proxied_addr;
2121 char *mpp_addr;
2123 if (is_multicast_ether_addr(hdr->addr1)) {
2124 mpp_addr = hdr->addr3;
2125 proxied_addr = mesh_hdr->eaddr1;
2126 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2127 /* has_a4 already checked in ieee80211_rx_mesh_check */
2128 mpp_addr = hdr->addr4;
2129 proxied_addr = mesh_hdr->eaddr2;
2130 } else {
2131 return RX_DROP_MONITOR;
2134 rcu_read_lock();
2135 mppath = mpp_path_lookup(sdata, proxied_addr);
2136 if (!mppath) {
2137 mpp_path_add(sdata, proxied_addr, mpp_addr);
2138 } else {
2139 spin_lock_bh(&mppath->state_lock);
2140 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2141 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2142 spin_unlock_bh(&mppath->state_lock);
2144 rcu_read_unlock();
2147 /* Frame has reached destination. Don't forward */
2148 if (!is_multicast_ether_addr(hdr->addr1) &&
2149 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2150 return RX_CONTINUE;
2152 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2153 if (ieee80211_queue_stopped(&local->hw, q)) {
2154 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2155 return RX_DROP_MONITOR;
2157 skb_set_queue_mapping(skb, q);
2159 if (!--mesh_hdr->ttl) {
2160 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2161 goto out;
2164 if (!ifmsh->mshcfg.dot11MeshForwarding)
2165 goto out;
2167 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2168 if (!fwd_skb) {
2169 net_info_ratelimited("%s: failed to clone mesh frame\n",
2170 sdata->name);
2171 goto out;
2174 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2175 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2176 info = IEEE80211_SKB_CB(fwd_skb);
2177 memset(info, 0, sizeof(*info));
2178 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2179 info->control.vif = &rx->sdata->vif;
2180 info->control.jiffies = jiffies;
2181 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2182 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2183 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2184 /* update power mode indication when forwarding */
2185 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2186 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2187 /* mesh power mode flags updated in mesh_nexthop_lookup */
2188 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2189 } else {
2190 /* unable to resolve next hop */
2191 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2192 fwd_hdr->addr3, 0,
2193 WLAN_REASON_MESH_PATH_NOFORWARD,
2194 fwd_hdr->addr2);
2195 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2196 kfree_skb(fwd_skb);
2197 return RX_DROP_MONITOR;
2200 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2201 ieee80211_add_pending_skb(local, fwd_skb);
2202 out:
2203 if (is_multicast_ether_addr(hdr->addr1) ||
2204 sdata->dev->flags & IFF_PROMISC)
2205 return RX_CONTINUE;
2206 else
2207 return RX_DROP_MONITOR;
2209 #endif
2211 static ieee80211_rx_result debug_noinline
2212 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2214 struct ieee80211_sub_if_data *sdata = rx->sdata;
2215 struct ieee80211_local *local = rx->local;
2216 struct net_device *dev = sdata->dev;
2217 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2218 __le16 fc = hdr->frame_control;
2219 bool port_control;
2220 int err;
2222 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2223 return RX_CONTINUE;
2225 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2226 return RX_DROP_MONITOR;
2229 * Send unexpected-4addr-frame event to hostapd. For older versions,
2230 * also drop the frame to cooked monitor interfaces.
2232 if (ieee80211_has_a4(hdr->frame_control) &&
2233 sdata->vif.type == NL80211_IFTYPE_AP) {
2234 if (rx->sta &&
2235 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2236 cfg80211_rx_unexpected_4addr_frame(
2237 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2238 return RX_DROP_MONITOR;
2241 err = __ieee80211_data_to_8023(rx, &port_control);
2242 if (unlikely(err))
2243 return RX_DROP_UNUSABLE;
2245 if (!ieee80211_frame_allowed(rx, fc))
2246 return RX_DROP_MONITOR;
2248 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2249 unlikely(port_control) && sdata->bss) {
2250 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2251 u.ap);
2252 dev = sdata->dev;
2253 rx->sdata = sdata;
2256 rx->skb->dev = dev;
2258 dev->stats.rx_packets++;
2259 dev->stats.rx_bytes += rx->skb->len;
2261 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2262 !is_multicast_ether_addr(
2263 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2264 (!local->scanning &&
2265 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2266 mod_timer(&local->dynamic_ps_timer, jiffies +
2267 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2270 ieee80211_deliver_skb(rx);
2272 return RX_QUEUED;
2275 static ieee80211_rx_result debug_noinline
2276 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2278 struct sk_buff *skb = rx->skb;
2279 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2280 struct tid_ampdu_rx *tid_agg_rx;
2281 u16 start_seq_num;
2282 u16 tid;
2284 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2285 return RX_CONTINUE;
2287 if (ieee80211_is_back_req(bar->frame_control)) {
2288 struct {
2289 __le16 control, start_seq_num;
2290 } __packed bar_data;
2292 if (!rx->sta)
2293 return RX_DROP_MONITOR;
2295 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2296 &bar_data, sizeof(bar_data)))
2297 return RX_DROP_MONITOR;
2299 tid = le16_to_cpu(bar_data.control) >> 12;
2301 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2302 if (!tid_agg_rx)
2303 return RX_DROP_MONITOR;
2305 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2307 /* reset session timer */
2308 if (tid_agg_rx->timeout)
2309 mod_timer(&tid_agg_rx->session_timer,
2310 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2312 spin_lock(&tid_agg_rx->reorder_lock);
2313 /* release stored frames up to start of BAR */
2314 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2315 start_seq_num, frames);
2316 spin_unlock(&tid_agg_rx->reorder_lock);
2318 kfree_skb(skb);
2319 return RX_QUEUED;
2323 * After this point, we only want management frames,
2324 * so we can drop all remaining control frames to
2325 * cooked monitor interfaces.
2327 return RX_DROP_MONITOR;
2330 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2331 struct ieee80211_mgmt *mgmt,
2332 size_t len)
2334 struct ieee80211_local *local = sdata->local;
2335 struct sk_buff *skb;
2336 struct ieee80211_mgmt *resp;
2338 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2339 /* Not to own unicast address */
2340 return;
2343 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2344 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2345 /* Not from the current AP or not associated yet. */
2346 return;
2349 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2350 /* Too short SA Query request frame */
2351 return;
2354 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2355 if (skb == NULL)
2356 return;
2358 skb_reserve(skb, local->hw.extra_tx_headroom);
2359 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2360 memset(resp, 0, 24);
2361 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2362 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2363 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2364 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2365 IEEE80211_STYPE_ACTION);
2366 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2367 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2368 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2369 memcpy(resp->u.action.u.sa_query.trans_id,
2370 mgmt->u.action.u.sa_query.trans_id,
2371 WLAN_SA_QUERY_TR_ID_LEN);
2373 ieee80211_tx_skb(sdata, skb);
2376 static ieee80211_rx_result debug_noinline
2377 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2379 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2380 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2383 * From here on, look only at management frames.
2384 * Data and control frames are already handled,
2385 * and unknown (reserved) frames are useless.
2387 if (rx->skb->len < 24)
2388 return RX_DROP_MONITOR;
2390 if (!ieee80211_is_mgmt(mgmt->frame_control))
2391 return RX_DROP_MONITOR;
2393 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2394 ieee80211_is_beacon(mgmt->frame_control) &&
2395 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2396 int sig = 0;
2398 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2399 sig = status->signal;
2401 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2402 rx->skb->data, rx->skb->len,
2403 status->freq, sig);
2404 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2407 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2408 return RX_DROP_MONITOR;
2410 if (ieee80211_drop_unencrypted_mgmt(rx))
2411 return RX_DROP_UNUSABLE;
2413 return RX_CONTINUE;
2416 static ieee80211_rx_result debug_noinline
2417 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2419 struct ieee80211_local *local = rx->local;
2420 struct ieee80211_sub_if_data *sdata = rx->sdata;
2421 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2422 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2423 int len = rx->skb->len;
2425 if (!ieee80211_is_action(mgmt->frame_control))
2426 return RX_CONTINUE;
2428 /* drop too small frames */
2429 if (len < IEEE80211_MIN_ACTION_SIZE)
2430 return RX_DROP_UNUSABLE;
2432 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2433 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2434 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2435 return RX_DROP_UNUSABLE;
2437 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2438 return RX_DROP_UNUSABLE;
2440 switch (mgmt->u.action.category) {
2441 case WLAN_CATEGORY_HT:
2442 /* reject HT action frames from stations not supporting HT */
2443 if (!rx->sta->sta.ht_cap.ht_supported)
2444 goto invalid;
2446 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2447 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2448 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2449 sdata->vif.type != NL80211_IFTYPE_AP &&
2450 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2451 break;
2453 /* verify action & smps_control/chanwidth are present */
2454 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2455 goto invalid;
2457 switch (mgmt->u.action.u.ht_smps.action) {
2458 case WLAN_HT_ACTION_SMPS: {
2459 struct ieee80211_supported_band *sband;
2460 enum ieee80211_smps_mode smps_mode;
2462 /* convert to HT capability */
2463 switch (mgmt->u.action.u.ht_smps.smps_control) {
2464 case WLAN_HT_SMPS_CONTROL_DISABLED:
2465 smps_mode = IEEE80211_SMPS_OFF;
2466 break;
2467 case WLAN_HT_SMPS_CONTROL_STATIC:
2468 smps_mode = IEEE80211_SMPS_STATIC;
2469 break;
2470 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2471 smps_mode = IEEE80211_SMPS_DYNAMIC;
2472 break;
2473 default:
2474 goto invalid;
2477 /* if no change do nothing */
2478 if (rx->sta->sta.smps_mode == smps_mode)
2479 goto handled;
2480 rx->sta->sta.smps_mode = smps_mode;
2482 sband = rx->local->hw.wiphy->bands[status->band];
2484 rate_control_rate_update(local, sband, rx->sta,
2485 IEEE80211_RC_SMPS_CHANGED);
2486 goto handled;
2488 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2489 struct ieee80211_supported_band *sband;
2490 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2491 enum ieee80211_sta_rx_bandwidth new_bw;
2493 /* If it doesn't support 40 MHz it can't change ... */
2494 if (!(rx->sta->sta.ht_cap.cap &
2495 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2496 goto handled;
2498 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2499 new_bw = IEEE80211_STA_RX_BW_20;
2500 else
2501 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2503 if (rx->sta->sta.bandwidth == new_bw)
2504 goto handled;
2506 sband = rx->local->hw.wiphy->bands[status->band];
2508 rate_control_rate_update(local, sband, rx->sta,
2509 IEEE80211_RC_BW_CHANGED);
2510 goto handled;
2512 default:
2513 goto invalid;
2516 break;
2517 case WLAN_CATEGORY_PUBLIC:
2518 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2519 goto invalid;
2520 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2521 break;
2522 if (!rx->sta)
2523 break;
2524 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2525 break;
2526 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2527 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2528 break;
2529 if (len < offsetof(struct ieee80211_mgmt,
2530 u.action.u.ext_chan_switch.variable))
2531 goto invalid;
2532 goto queue;
2533 case WLAN_CATEGORY_VHT:
2534 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2535 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2536 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2537 sdata->vif.type != NL80211_IFTYPE_AP &&
2538 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2539 break;
2541 /* verify action code is present */
2542 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2543 goto invalid;
2545 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2546 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2547 u8 opmode;
2549 /* verify opmode is present */
2550 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2551 goto invalid;
2553 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2555 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2556 opmode, status->band,
2557 false);
2558 goto handled;
2560 default:
2561 break;
2563 break;
2564 case WLAN_CATEGORY_BACK:
2565 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2566 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2567 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2568 sdata->vif.type != NL80211_IFTYPE_AP &&
2569 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2570 break;
2572 /* verify action_code is present */
2573 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2574 break;
2576 switch (mgmt->u.action.u.addba_req.action_code) {
2577 case WLAN_ACTION_ADDBA_REQ:
2578 if (len < (IEEE80211_MIN_ACTION_SIZE +
2579 sizeof(mgmt->u.action.u.addba_req)))
2580 goto invalid;
2581 break;
2582 case WLAN_ACTION_ADDBA_RESP:
2583 if (len < (IEEE80211_MIN_ACTION_SIZE +
2584 sizeof(mgmt->u.action.u.addba_resp)))
2585 goto invalid;
2586 break;
2587 case WLAN_ACTION_DELBA:
2588 if (len < (IEEE80211_MIN_ACTION_SIZE +
2589 sizeof(mgmt->u.action.u.delba)))
2590 goto invalid;
2591 break;
2592 default:
2593 goto invalid;
2596 goto queue;
2597 case WLAN_CATEGORY_SPECTRUM_MGMT:
2598 /* verify action_code is present */
2599 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2600 break;
2602 switch (mgmt->u.action.u.measurement.action_code) {
2603 case WLAN_ACTION_SPCT_MSR_REQ:
2604 if (status->band != IEEE80211_BAND_5GHZ)
2605 break;
2607 if (len < (IEEE80211_MIN_ACTION_SIZE +
2608 sizeof(mgmt->u.action.u.measurement)))
2609 break;
2611 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2612 break;
2614 ieee80211_process_measurement_req(sdata, mgmt, len);
2615 goto handled;
2616 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2617 u8 *bssid;
2618 if (len < (IEEE80211_MIN_ACTION_SIZE +
2619 sizeof(mgmt->u.action.u.chan_switch)))
2620 break;
2622 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2623 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2624 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2625 break;
2627 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2628 bssid = sdata->u.mgd.bssid;
2629 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2630 bssid = sdata->u.ibss.bssid;
2631 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2632 bssid = mgmt->sa;
2633 else
2634 break;
2636 if (!ether_addr_equal(mgmt->bssid, bssid))
2637 break;
2639 goto queue;
2642 break;
2643 case WLAN_CATEGORY_SA_QUERY:
2644 if (len < (IEEE80211_MIN_ACTION_SIZE +
2645 sizeof(mgmt->u.action.u.sa_query)))
2646 break;
2648 switch (mgmt->u.action.u.sa_query.action) {
2649 case WLAN_ACTION_SA_QUERY_REQUEST:
2650 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2651 break;
2652 ieee80211_process_sa_query_req(sdata, mgmt, len);
2653 goto handled;
2655 break;
2656 case WLAN_CATEGORY_SELF_PROTECTED:
2657 if (len < (IEEE80211_MIN_ACTION_SIZE +
2658 sizeof(mgmt->u.action.u.self_prot.action_code)))
2659 break;
2661 switch (mgmt->u.action.u.self_prot.action_code) {
2662 case WLAN_SP_MESH_PEERING_OPEN:
2663 case WLAN_SP_MESH_PEERING_CLOSE:
2664 case WLAN_SP_MESH_PEERING_CONFIRM:
2665 if (!ieee80211_vif_is_mesh(&sdata->vif))
2666 goto invalid;
2667 if (sdata->u.mesh.user_mpm)
2668 /* userspace handles this frame */
2669 break;
2670 goto queue;
2671 case WLAN_SP_MGK_INFORM:
2672 case WLAN_SP_MGK_ACK:
2673 if (!ieee80211_vif_is_mesh(&sdata->vif))
2674 goto invalid;
2675 break;
2677 break;
2678 case WLAN_CATEGORY_MESH_ACTION:
2679 if (len < (IEEE80211_MIN_ACTION_SIZE +
2680 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2681 break;
2683 if (!ieee80211_vif_is_mesh(&sdata->vif))
2684 break;
2685 if (mesh_action_is_path_sel(mgmt) &&
2686 !mesh_path_sel_is_hwmp(sdata))
2687 break;
2688 goto queue;
2691 return RX_CONTINUE;
2693 invalid:
2694 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2695 /* will return in the next handlers */
2696 return RX_CONTINUE;
2698 handled:
2699 if (rx->sta)
2700 rx->sta->rx_packets++;
2701 dev_kfree_skb(rx->skb);
2702 return RX_QUEUED;
2704 queue:
2705 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2706 skb_queue_tail(&sdata->skb_queue, rx->skb);
2707 ieee80211_queue_work(&local->hw, &sdata->work);
2708 if (rx->sta)
2709 rx->sta->rx_packets++;
2710 return RX_QUEUED;
2713 static ieee80211_rx_result debug_noinline
2714 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2716 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2717 int sig = 0;
2719 /* skip known-bad action frames and return them in the next handler */
2720 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2721 return RX_CONTINUE;
2724 * Getting here means the kernel doesn't know how to handle
2725 * it, but maybe userspace does ... include returned frames
2726 * so userspace can register for those to know whether ones
2727 * it transmitted were processed or returned.
2730 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2731 sig = status->signal;
2733 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2734 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2735 if (rx->sta)
2736 rx->sta->rx_packets++;
2737 dev_kfree_skb(rx->skb);
2738 return RX_QUEUED;
2741 return RX_CONTINUE;
2744 static ieee80211_rx_result debug_noinline
2745 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2747 struct ieee80211_local *local = rx->local;
2748 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2749 struct sk_buff *nskb;
2750 struct ieee80211_sub_if_data *sdata = rx->sdata;
2751 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2753 if (!ieee80211_is_action(mgmt->frame_control))
2754 return RX_CONTINUE;
2757 * For AP mode, hostapd is responsible for handling any action
2758 * frames that we didn't handle, including returning unknown
2759 * ones. For all other modes we will return them to the sender,
2760 * setting the 0x80 bit in the action category, as required by
2761 * 802.11-2012 9.24.4.
2762 * Newer versions of hostapd shall also use the management frame
2763 * registration mechanisms, but older ones still use cooked
2764 * monitor interfaces so push all frames there.
2766 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2767 (sdata->vif.type == NL80211_IFTYPE_AP ||
2768 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2769 return RX_DROP_MONITOR;
2771 if (is_multicast_ether_addr(mgmt->da))
2772 return RX_DROP_MONITOR;
2774 /* do not return rejected action frames */
2775 if (mgmt->u.action.category & 0x80)
2776 return RX_DROP_UNUSABLE;
2778 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2779 GFP_ATOMIC);
2780 if (nskb) {
2781 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2783 nmgmt->u.action.category |= 0x80;
2784 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2785 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2787 memset(nskb->cb, 0, sizeof(nskb->cb));
2789 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2790 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2792 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2793 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2794 IEEE80211_TX_CTL_NO_CCK_RATE;
2795 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2796 info->hw_queue =
2797 local->hw.offchannel_tx_hw_queue;
2800 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2801 status->band);
2803 dev_kfree_skb(rx->skb);
2804 return RX_QUEUED;
2807 static ieee80211_rx_result debug_noinline
2808 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2810 struct ieee80211_sub_if_data *sdata = rx->sdata;
2811 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2812 __le16 stype;
2814 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2816 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2817 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2818 sdata->vif.type != NL80211_IFTYPE_STATION)
2819 return RX_DROP_MONITOR;
2821 switch (stype) {
2822 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2823 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2824 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2825 /* process for all: mesh, mlme, ibss */
2826 break;
2827 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2828 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2829 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2830 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2831 if (is_multicast_ether_addr(mgmt->da) &&
2832 !is_broadcast_ether_addr(mgmt->da))
2833 return RX_DROP_MONITOR;
2835 /* process only for station */
2836 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2837 return RX_DROP_MONITOR;
2838 break;
2839 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2840 /* process only for ibss and mesh */
2841 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2842 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2843 return RX_DROP_MONITOR;
2844 break;
2845 default:
2846 return RX_DROP_MONITOR;
2849 /* queue up frame and kick off work to process it */
2850 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2851 skb_queue_tail(&sdata->skb_queue, rx->skb);
2852 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2853 if (rx->sta)
2854 rx->sta->rx_packets++;
2856 return RX_QUEUED;
2859 /* TODO: use IEEE80211_RX_FRAGMENTED */
2860 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2861 struct ieee80211_rate *rate)
2863 struct ieee80211_sub_if_data *sdata;
2864 struct ieee80211_local *local = rx->local;
2865 struct sk_buff *skb = rx->skb, *skb2;
2866 struct net_device *prev_dev = NULL;
2867 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2868 int needed_headroom;
2871 * If cooked monitor has been processed already, then
2872 * don't do it again. If not, set the flag.
2874 if (rx->flags & IEEE80211_RX_CMNTR)
2875 goto out_free_skb;
2876 rx->flags |= IEEE80211_RX_CMNTR;
2878 /* If there are no cooked monitor interfaces, just free the SKB */
2879 if (!local->cooked_mntrs)
2880 goto out_free_skb;
2882 /* room for the radiotap header based on driver features */
2883 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2885 if (skb_headroom(skb) < needed_headroom &&
2886 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2887 goto out_free_skb;
2889 /* prepend radiotap information */
2890 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2891 false);
2893 skb_set_mac_header(skb, 0);
2894 skb->ip_summed = CHECKSUM_UNNECESSARY;
2895 skb->pkt_type = PACKET_OTHERHOST;
2896 skb->protocol = htons(ETH_P_802_2);
2898 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2899 if (!ieee80211_sdata_running(sdata))
2900 continue;
2902 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2903 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2904 continue;
2906 if (prev_dev) {
2907 skb2 = skb_clone(skb, GFP_ATOMIC);
2908 if (skb2) {
2909 skb2->dev = prev_dev;
2910 netif_receive_skb(skb2);
2914 prev_dev = sdata->dev;
2915 sdata->dev->stats.rx_packets++;
2916 sdata->dev->stats.rx_bytes += skb->len;
2919 if (prev_dev) {
2920 skb->dev = prev_dev;
2921 netif_receive_skb(skb);
2922 return;
2925 out_free_skb:
2926 dev_kfree_skb(skb);
2929 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2930 ieee80211_rx_result res)
2932 switch (res) {
2933 case RX_DROP_MONITOR:
2934 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2935 if (rx->sta)
2936 rx->sta->rx_dropped++;
2937 /* fall through */
2938 case RX_CONTINUE: {
2939 struct ieee80211_rate *rate = NULL;
2940 struct ieee80211_supported_band *sband;
2941 struct ieee80211_rx_status *status;
2943 status = IEEE80211_SKB_RXCB((rx->skb));
2945 sband = rx->local->hw.wiphy->bands[status->band];
2946 if (!(status->flag & RX_FLAG_HT) &&
2947 !(status->flag & RX_FLAG_VHT))
2948 rate = &sband->bitrates[status->rate_idx];
2950 ieee80211_rx_cooked_monitor(rx, rate);
2951 break;
2953 case RX_DROP_UNUSABLE:
2954 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2955 if (rx->sta)
2956 rx->sta->rx_dropped++;
2957 dev_kfree_skb(rx->skb);
2958 break;
2959 case RX_QUEUED:
2960 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2961 break;
2965 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2966 struct sk_buff_head *frames)
2968 ieee80211_rx_result res = RX_DROP_MONITOR;
2969 struct sk_buff *skb;
2971 #define CALL_RXH(rxh) \
2972 do { \
2973 res = rxh(rx); \
2974 if (res != RX_CONTINUE) \
2975 goto rxh_next; \
2976 } while (0);
2978 spin_lock_bh(&rx->local->rx_path_lock);
2980 while ((skb = __skb_dequeue(frames))) {
2982 * all the other fields are valid across frames
2983 * that belong to an aMPDU since they are on the
2984 * same TID from the same station
2986 rx->skb = skb;
2988 CALL_RXH(ieee80211_rx_h_check_more_data)
2989 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2990 CALL_RXH(ieee80211_rx_h_sta_process)
2991 CALL_RXH(ieee80211_rx_h_decrypt)
2992 CALL_RXH(ieee80211_rx_h_defragment)
2993 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2994 /* must be after MMIC verify so header is counted in MPDU mic */
2995 #ifdef CONFIG_MAC80211_MESH
2996 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2997 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2998 #endif
2999 CALL_RXH(ieee80211_rx_h_amsdu)
3000 CALL_RXH(ieee80211_rx_h_data)
3002 /* special treatment -- needs the queue */
3003 res = ieee80211_rx_h_ctrl(rx, frames);
3004 if (res != RX_CONTINUE)
3005 goto rxh_next;
3007 CALL_RXH(ieee80211_rx_h_mgmt_check)
3008 CALL_RXH(ieee80211_rx_h_action)
3009 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3010 CALL_RXH(ieee80211_rx_h_action_return)
3011 CALL_RXH(ieee80211_rx_h_mgmt)
3013 rxh_next:
3014 ieee80211_rx_handlers_result(rx, res);
3016 #undef CALL_RXH
3019 spin_unlock_bh(&rx->local->rx_path_lock);
3022 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3024 struct sk_buff_head reorder_release;
3025 ieee80211_rx_result res = RX_DROP_MONITOR;
3027 __skb_queue_head_init(&reorder_release);
3029 #define CALL_RXH(rxh) \
3030 do { \
3031 res = rxh(rx); \
3032 if (res != RX_CONTINUE) \
3033 goto rxh_next; \
3034 } while (0);
3036 CALL_RXH(ieee80211_rx_h_check)
3038 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3040 ieee80211_rx_handlers(rx, &reorder_release);
3041 return;
3043 rxh_next:
3044 ieee80211_rx_handlers_result(rx, res);
3046 #undef CALL_RXH
3050 * This function makes calls into the RX path, therefore
3051 * it has to be invoked under RCU read lock.
3053 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3055 struct sk_buff_head frames;
3056 struct ieee80211_rx_data rx = {
3057 .sta = sta,
3058 .sdata = sta->sdata,
3059 .local = sta->local,
3060 /* This is OK -- must be QoS data frame */
3061 .security_idx = tid,
3062 .seqno_idx = tid,
3063 .flags = 0,
3065 struct tid_ampdu_rx *tid_agg_rx;
3067 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3068 if (!tid_agg_rx)
3069 return;
3071 __skb_queue_head_init(&frames);
3073 spin_lock(&tid_agg_rx->reorder_lock);
3074 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3075 spin_unlock(&tid_agg_rx->reorder_lock);
3077 ieee80211_rx_handlers(&rx, &frames);
3080 /* main receive path */
3082 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
3083 struct ieee80211_hdr *hdr)
3085 struct ieee80211_sub_if_data *sdata = rx->sdata;
3086 struct sk_buff *skb = rx->skb;
3087 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3088 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3089 int multicast = is_multicast_ether_addr(hdr->addr1);
3091 switch (sdata->vif.type) {
3092 case NL80211_IFTYPE_STATION:
3093 if (!bssid && !sdata->u.mgd.use_4addr)
3094 return 0;
3095 if (!multicast &&
3096 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3097 if (!(sdata->dev->flags & IFF_PROMISC) ||
3098 sdata->u.mgd.use_4addr)
3099 return 0;
3100 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3102 break;
3103 case NL80211_IFTYPE_ADHOC:
3104 if (!bssid)
3105 return 0;
3106 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3107 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3108 return 0;
3109 if (ieee80211_is_beacon(hdr->frame_control)) {
3110 return 1;
3111 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3112 return 0;
3113 } else if (!multicast &&
3114 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3115 if (!(sdata->dev->flags & IFF_PROMISC))
3116 return 0;
3117 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3118 } else if (!rx->sta) {
3119 int rate_idx;
3120 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3121 rate_idx = 0; /* TODO: HT/VHT rates */
3122 else
3123 rate_idx = status->rate_idx;
3124 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3125 BIT(rate_idx));
3127 break;
3128 case NL80211_IFTYPE_MESH_POINT:
3129 if (!multicast &&
3130 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3131 if (!(sdata->dev->flags & IFF_PROMISC))
3132 return 0;
3134 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3136 break;
3137 case NL80211_IFTYPE_AP_VLAN:
3138 case NL80211_IFTYPE_AP:
3139 if (!bssid) {
3140 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3141 return 0;
3142 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3144 * Accept public action frames even when the
3145 * BSSID doesn't match, this is used for P2P
3146 * and location updates. Note that mac80211
3147 * itself never looks at these frames.
3149 if (!multicast &&
3150 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3151 return 0;
3152 if (ieee80211_is_public_action(hdr, skb->len))
3153 return 1;
3154 if (!ieee80211_is_beacon(hdr->frame_control))
3155 return 0;
3156 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3158 break;
3159 case NL80211_IFTYPE_WDS:
3160 if (bssid || !ieee80211_is_data(hdr->frame_control))
3161 return 0;
3162 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3163 return 0;
3164 break;
3165 case NL80211_IFTYPE_P2P_DEVICE:
3166 if (!ieee80211_is_public_action(hdr, skb->len) &&
3167 !ieee80211_is_probe_req(hdr->frame_control) &&
3168 !ieee80211_is_probe_resp(hdr->frame_control) &&
3169 !ieee80211_is_beacon(hdr->frame_control))
3170 return 0;
3171 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3172 !multicast)
3173 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3174 break;
3175 default:
3176 /* should never get here */
3177 WARN_ON_ONCE(1);
3178 break;
3181 return 1;
3185 * This function returns whether or not the SKB
3186 * was destined for RX processing or not, which,
3187 * if consume is true, is equivalent to whether
3188 * or not the skb was consumed.
3190 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3191 struct sk_buff *skb, bool consume)
3193 struct ieee80211_local *local = rx->local;
3194 struct ieee80211_sub_if_data *sdata = rx->sdata;
3195 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3196 struct ieee80211_hdr *hdr = (void *)skb->data;
3197 int prepares;
3199 rx->skb = skb;
3200 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3201 prepares = prepare_for_handlers(rx, hdr);
3203 if (!prepares)
3204 return false;
3206 if (!consume) {
3207 skb = skb_copy(skb, GFP_ATOMIC);
3208 if (!skb) {
3209 if (net_ratelimit())
3210 wiphy_debug(local->hw.wiphy,
3211 "failed to copy skb for %s\n",
3212 sdata->name);
3213 return true;
3216 rx->skb = skb;
3219 ieee80211_invoke_rx_handlers(rx);
3220 return true;
3224 * This is the actual Rx frames handler. as it blongs to Rx path it must
3225 * be called with rcu_read_lock protection.
3227 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3228 struct sk_buff *skb)
3230 struct ieee80211_local *local = hw_to_local(hw);
3231 struct ieee80211_sub_if_data *sdata;
3232 struct ieee80211_hdr *hdr;
3233 __le16 fc;
3234 struct ieee80211_rx_data rx;
3235 struct ieee80211_sub_if_data *prev;
3236 struct sta_info *sta, *tmp, *prev_sta;
3237 int err = 0;
3239 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3240 memset(&rx, 0, sizeof(rx));
3241 rx.skb = skb;
3242 rx.local = local;
3244 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3245 local->dot11ReceivedFragmentCount++;
3247 if (ieee80211_is_mgmt(fc)) {
3248 /* drop frame if too short for header */
3249 if (skb->len < ieee80211_hdrlen(fc))
3250 err = -ENOBUFS;
3251 else
3252 err = skb_linearize(skb);
3253 } else {
3254 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3257 if (err) {
3258 dev_kfree_skb(skb);
3259 return;
3262 hdr = (struct ieee80211_hdr *)skb->data;
3263 ieee80211_parse_qos(&rx);
3264 ieee80211_verify_alignment(&rx);
3266 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3267 ieee80211_is_beacon(hdr->frame_control)))
3268 ieee80211_scan_rx(local, skb);
3270 if (ieee80211_is_data(fc)) {
3271 prev_sta = NULL;
3273 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3274 if (!prev_sta) {
3275 prev_sta = sta;
3276 continue;
3279 rx.sta = prev_sta;
3280 rx.sdata = prev_sta->sdata;
3281 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3283 prev_sta = sta;
3286 if (prev_sta) {
3287 rx.sta = prev_sta;
3288 rx.sdata = prev_sta->sdata;
3290 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3291 return;
3292 goto out;
3296 prev = NULL;
3298 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3299 if (!ieee80211_sdata_running(sdata))
3300 continue;
3302 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3303 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3304 continue;
3307 * frame is destined for this interface, but if it's
3308 * not also for the previous one we handle that after
3309 * the loop to avoid copying the SKB once too much
3312 if (!prev) {
3313 prev = sdata;
3314 continue;
3317 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3318 rx.sdata = prev;
3319 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3321 prev = sdata;
3324 if (prev) {
3325 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3326 rx.sdata = prev;
3328 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3329 return;
3332 out:
3333 dev_kfree_skb(skb);
3337 * This is the receive path handler. It is called by a low level driver when an
3338 * 802.11 MPDU is received from the hardware.
3340 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3342 struct ieee80211_local *local = hw_to_local(hw);
3343 struct ieee80211_rate *rate = NULL;
3344 struct ieee80211_supported_band *sband;
3345 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3347 WARN_ON_ONCE(softirq_count() == 0);
3349 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3350 goto drop;
3352 sband = local->hw.wiphy->bands[status->band];
3353 if (WARN_ON(!sband))
3354 goto drop;
3357 * If we're suspending, it is possible although not too likely
3358 * that we'd be receiving frames after having already partially
3359 * quiesced the stack. We can't process such frames then since
3360 * that might, for example, cause stations to be added or other
3361 * driver callbacks be invoked.
3363 if (unlikely(local->quiescing || local->suspended))
3364 goto drop;
3366 /* We might be during a HW reconfig, prevent Rx for the same reason */
3367 if (unlikely(local->in_reconfig))
3368 goto drop;
3371 * The same happens when we're not even started,
3372 * but that's worth a warning.
3374 if (WARN_ON(!local->started))
3375 goto drop;
3377 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3379 * Validate the rate, unless a PLCP error means that
3380 * we probably can't have a valid rate here anyway.
3383 if (status->flag & RX_FLAG_HT) {
3385 * rate_idx is MCS index, which can be [0-76]
3386 * as documented on:
3388 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3390 * Anything else would be some sort of driver or
3391 * hardware error. The driver should catch hardware
3392 * errors.
3394 if (WARN(status->rate_idx > 76,
3395 "Rate marked as an HT rate but passed "
3396 "status->rate_idx is not "
3397 "an MCS index [0-76]: %d (0x%02x)\n",
3398 status->rate_idx,
3399 status->rate_idx))
3400 goto drop;
3401 } else if (status->flag & RX_FLAG_VHT) {
3402 if (WARN_ONCE(status->rate_idx > 9 ||
3403 !status->vht_nss ||
3404 status->vht_nss > 8,
3405 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3406 status->rate_idx, status->vht_nss))
3407 goto drop;
3408 } else {
3409 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3410 goto drop;
3411 rate = &sband->bitrates[status->rate_idx];
3415 status->rx_flags = 0;
3418 * key references and virtual interfaces are protected using RCU
3419 * and this requires that we are in a read-side RCU section during
3420 * receive processing
3422 rcu_read_lock();
3425 * Frames with failed FCS/PLCP checksum are not returned,
3426 * all other frames are returned without radiotap header
3427 * if it was previously present.
3428 * Also, frames with less than 16 bytes are dropped.
3430 skb = ieee80211_rx_monitor(local, skb, rate);
3431 if (!skb) {
3432 rcu_read_unlock();
3433 return;
3436 ieee80211_tpt_led_trig_rx(local,
3437 ((struct ieee80211_hdr *)skb->data)->frame_control,
3438 skb->len);
3439 __ieee80211_rx_handle_packet(hw, skb);
3441 rcu_read_unlock();
3443 return;
3444 drop:
3445 kfree_skb(skb);
3447 EXPORT_SYMBOL(ieee80211_rx);
3449 /* This is a version of the rx handler that can be called from hard irq
3450 * context. Post the skb on the queue and schedule the tasklet */
3451 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3453 struct ieee80211_local *local = hw_to_local(hw);
3455 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3457 skb->pkt_type = IEEE80211_RX_MSG;
3458 skb_queue_tail(&local->skb_queue, skb);
3459 tasklet_schedule(&local->tasklet);
3461 EXPORT_SYMBOL(ieee80211_rx_irqsafe);