usb: adutux: use irqsave() in USB's complete callback
[linux-2.6/btrfs-unstable.git] / kernel / auditsc.c
blobceb1c4596c511e9a291d27a1fe710eefde439284
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
79 #include "audit.h"
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
93 /* number of audit rules */
94 int audit_n_rules;
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
104 #define AUDIT_AUX_IPCPERM 0
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
133 static int audit_match_perm(struct audit_context *ctx, int mask)
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
176 static int audit_match_filetype(struct audit_context *ctx, int val)
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
181 if (unlikely(!ctx))
182 return 0;
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
190 return 0;
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
203 #ifdef CONFIG_AUDIT_TREE
204 static void audit_set_auditable(struct audit_context *ctx)
206 if (!ctx->prio) {
207 ctx->prio = 1;
208 ctx->current_state = AUDIT_RECORD_CONTEXT;
212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
214 struct audit_tree_refs *p = ctx->trees;
215 int left = ctx->tree_count;
216 if (likely(left)) {
217 p->c[--left] = chunk;
218 ctx->tree_count = left;
219 return 1;
221 if (!p)
222 return 0;
223 p = p->next;
224 if (p) {
225 p->c[30] = chunk;
226 ctx->trees = p;
227 ctx->tree_count = 30;
228 return 1;
230 return 0;
233 static int grow_tree_refs(struct audit_context *ctx)
235 struct audit_tree_refs *p = ctx->trees;
236 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 if (!ctx->trees) {
238 ctx->trees = p;
239 return 0;
241 if (p)
242 p->next = ctx->trees;
243 else
244 ctx->first_trees = ctx->trees;
245 ctx->tree_count = 31;
246 return 1;
248 #endif
250 static void unroll_tree_refs(struct audit_context *ctx,
251 struct audit_tree_refs *p, int count)
253 #ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs *q;
255 int n;
256 if (!p) {
257 /* we started with empty chain */
258 p = ctx->first_trees;
259 count = 31;
260 /* if the very first allocation has failed, nothing to do */
261 if (!p)
262 return;
264 n = count;
265 for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 while (n--) {
267 audit_put_chunk(q->c[n]);
268 q->c[n] = NULL;
271 while (n-- > ctx->tree_count) {
272 audit_put_chunk(q->c[n]);
273 q->c[n] = NULL;
275 ctx->trees = p;
276 ctx->tree_count = count;
277 #endif
280 static void free_tree_refs(struct audit_context *ctx)
282 struct audit_tree_refs *p, *q;
283 for (p = ctx->first_trees; p; p = q) {
284 q = p->next;
285 kfree(p);
289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
291 #ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs *p;
293 int n;
294 if (!tree)
295 return 0;
296 /* full ones */
297 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 for (n = 0; n < 31; n++)
299 if (audit_tree_match(p->c[n], tree))
300 return 1;
302 /* partial */
303 if (p) {
304 for (n = ctx->tree_count; n < 31; n++)
305 if (audit_tree_match(p->c[n], tree))
306 return 1;
308 #endif
309 return 0;
312 static int audit_compare_uid(kuid_t uid,
313 struct audit_names *name,
314 struct audit_field *f,
315 struct audit_context *ctx)
317 struct audit_names *n;
318 int rc;
320 if (name) {
321 rc = audit_uid_comparator(uid, f->op, name->uid);
322 if (rc)
323 return rc;
326 if (ctx) {
327 list_for_each_entry(n, &ctx->names_list, list) {
328 rc = audit_uid_comparator(uid, f->op, n->uid);
329 if (rc)
330 return rc;
333 return 0;
336 static int audit_compare_gid(kgid_t gid,
337 struct audit_names *name,
338 struct audit_field *f,
339 struct audit_context *ctx)
341 struct audit_names *n;
342 int rc;
344 if (name) {
345 rc = audit_gid_comparator(gid, f->op, name->gid);
346 if (rc)
347 return rc;
350 if (ctx) {
351 list_for_each_entry(n, &ctx->names_list, list) {
352 rc = audit_gid_comparator(gid, f->op, n->gid);
353 if (rc)
354 return rc;
357 return 0;
360 static int audit_field_compare(struct task_struct *tsk,
361 const struct cred *cred,
362 struct audit_field *f,
363 struct audit_context *ctx,
364 struct audit_names *name)
366 switch (f->val) {
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 return audit_compare_uid(cred->uid, name, f, ctx);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 return audit_compare_gid(cred->gid, name, f, ctx);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->euid, name, f, ctx);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->egid, name, f, ctx);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 return audit_compare_uid(cred->suid, name, f, ctx);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 return audit_compare_gid(cred->sgid, name, f, ctx);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->fsuid, name, f, ctx);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->fsgid, name, f, ctx);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID:
388 return audit_uid_comparator(cred->uid, f->op,
389 audit_get_loginuid(tsk));
390 case AUDIT_COMPARE_UID_TO_EUID:
391 return audit_uid_comparator(cred->uid, f->op, cred->euid);
392 case AUDIT_COMPARE_UID_TO_SUID:
393 return audit_uid_comparator(cred->uid, f->op, cred->suid);
394 case AUDIT_COMPARE_UID_TO_FSUID:
395 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
396 /* auid comparisons */
397 case AUDIT_COMPARE_AUID_TO_EUID:
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->euid);
400 case AUDIT_COMPARE_AUID_TO_SUID:
401 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
402 cred->suid);
403 case AUDIT_COMPARE_AUID_TO_FSUID:
404 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
405 cred->fsuid);
406 /* euid comparisons */
407 case AUDIT_COMPARE_EUID_TO_SUID:
408 return audit_uid_comparator(cred->euid, f->op, cred->suid);
409 case AUDIT_COMPARE_EUID_TO_FSUID:
410 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
411 /* suid comparisons */
412 case AUDIT_COMPARE_SUID_TO_FSUID:
413 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
414 /* gid comparisons */
415 case AUDIT_COMPARE_GID_TO_EGID:
416 return audit_gid_comparator(cred->gid, f->op, cred->egid);
417 case AUDIT_COMPARE_GID_TO_SGID:
418 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
419 case AUDIT_COMPARE_GID_TO_FSGID:
420 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
421 /* egid comparisons */
422 case AUDIT_COMPARE_EGID_TO_SGID:
423 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
424 case AUDIT_COMPARE_EGID_TO_FSGID:
425 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
426 /* sgid comparison */
427 case AUDIT_COMPARE_SGID_TO_FSGID:
428 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
429 default:
430 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
431 return 0;
433 return 0;
436 /* Determine if any context name data matches a rule's watch data */
437 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
438 * otherwise.
440 * If task_creation is true, this is an explicit indication that we are
441 * filtering a task rule at task creation time. This and tsk == current are
442 * the only situations where tsk->cred may be accessed without an rcu read lock.
444 static int audit_filter_rules(struct task_struct *tsk,
445 struct audit_krule *rule,
446 struct audit_context *ctx,
447 struct audit_names *name,
448 enum audit_state *state,
449 bool task_creation)
451 const struct cred *cred;
452 int i, need_sid = 1;
453 u32 sid;
454 unsigned int sessionid;
456 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
458 for (i = 0; i < rule->field_count; i++) {
459 struct audit_field *f = &rule->fields[i];
460 struct audit_names *n;
461 int result = 0;
462 pid_t pid;
464 switch (f->type) {
465 case AUDIT_PID:
466 pid = task_tgid_nr(tsk);
467 result = audit_comparator(pid, f->op, f->val);
468 break;
469 case AUDIT_PPID:
470 if (ctx) {
471 if (!ctx->ppid)
472 ctx->ppid = task_ppid_nr(tsk);
473 result = audit_comparator(ctx->ppid, f->op, f->val);
475 break;
476 case AUDIT_EXE:
477 result = audit_exe_compare(tsk, rule->exe);
478 if (f->op == Audit_not_equal)
479 result = !result;
480 break;
481 case AUDIT_UID:
482 result = audit_uid_comparator(cred->uid, f->op, f->uid);
483 break;
484 case AUDIT_EUID:
485 result = audit_uid_comparator(cred->euid, f->op, f->uid);
486 break;
487 case AUDIT_SUID:
488 result = audit_uid_comparator(cred->suid, f->op, f->uid);
489 break;
490 case AUDIT_FSUID:
491 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
492 break;
493 case AUDIT_GID:
494 result = audit_gid_comparator(cred->gid, f->op, f->gid);
495 if (f->op == Audit_equal) {
496 if (!result)
497 result = in_group_p(f->gid);
498 } else if (f->op == Audit_not_equal) {
499 if (result)
500 result = !in_group_p(f->gid);
502 break;
503 case AUDIT_EGID:
504 result = audit_gid_comparator(cred->egid, f->op, f->gid);
505 if (f->op == Audit_equal) {
506 if (!result)
507 result = in_egroup_p(f->gid);
508 } else if (f->op == Audit_not_equal) {
509 if (result)
510 result = !in_egroup_p(f->gid);
512 break;
513 case AUDIT_SGID:
514 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
515 break;
516 case AUDIT_FSGID:
517 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
518 break;
519 case AUDIT_SESSIONID:
520 sessionid = audit_get_sessionid(tsk);
521 result = audit_comparator(sessionid, f->op, f->val);
522 break;
523 case AUDIT_PERS:
524 result = audit_comparator(tsk->personality, f->op, f->val);
525 break;
526 case AUDIT_ARCH:
527 if (ctx)
528 result = audit_comparator(ctx->arch, f->op, f->val);
529 break;
531 case AUDIT_EXIT:
532 if (ctx && ctx->return_valid)
533 result = audit_comparator(ctx->return_code, f->op, f->val);
534 break;
535 case AUDIT_SUCCESS:
536 if (ctx && ctx->return_valid) {
537 if (f->val)
538 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
539 else
540 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
542 break;
543 case AUDIT_DEVMAJOR:
544 if (name) {
545 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
546 audit_comparator(MAJOR(name->rdev), f->op, f->val))
547 ++result;
548 } else if (ctx) {
549 list_for_each_entry(n, &ctx->names_list, list) {
550 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
551 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
552 ++result;
553 break;
557 break;
558 case AUDIT_DEVMINOR:
559 if (name) {
560 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
561 audit_comparator(MINOR(name->rdev), f->op, f->val))
562 ++result;
563 } else if (ctx) {
564 list_for_each_entry(n, &ctx->names_list, list) {
565 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
566 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
567 ++result;
568 break;
572 break;
573 case AUDIT_INODE:
574 if (name)
575 result = audit_comparator(name->ino, f->op, f->val);
576 else if (ctx) {
577 list_for_each_entry(n, &ctx->names_list, list) {
578 if (audit_comparator(n->ino, f->op, f->val)) {
579 ++result;
580 break;
584 break;
585 case AUDIT_OBJ_UID:
586 if (name) {
587 result = audit_uid_comparator(name->uid, f->op, f->uid);
588 } else if (ctx) {
589 list_for_each_entry(n, &ctx->names_list, list) {
590 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
591 ++result;
592 break;
596 break;
597 case AUDIT_OBJ_GID:
598 if (name) {
599 result = audit_gid_comparator(name->gid, f->op, f->gid);
600 } else if (ctx) {
601 list_for_each_entry(n, &ctx->names_list, list) {
602 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
603 ++result;
604 break;
608 break;
609 case AUDIT_WATCH:
610 if (name)
611 result = audit_watch_compare(rule->watch, name->ino, name->dev);
612 break;
613 case AUDIT_DIR:
614 if (ctx)
615 result = match_tree_refs(ctx, rule->tree);
616 break;
617 case AUDIT_LOGINUID:
618 result = audit_uid_comparator(audit_get_loginuid(tsk),
619 f->op, f->uid);
620 break;
621 case AUDIT_LOGINUID_SET:
622 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
623 break;
624 case AUDIT_SUBJ_USER:
625 case AUDIT_SUBJ_ROLE:
626 case AUDIT_SUBJ_TYPE:
627 case AUDIT_SUBJ_SEN:
628 case AUDIT_SUBJ_CLR:
629 /* NOTE: this may return negative values indicating
630 a temporary error. We simply treat this as a
631 match for now to avoid losing information that
632 may be wanted. An error message will also be
633 logged upon error */
634 if (f->lsm_rule) {
635 if (need_sid) {
636 security_task_getsecid(tsk, &sid);
637 need_sid = 0;
639 result = security_audit_rule_match(sid, f->type,
640 f->op,
641 f->lsm_rule,
642 ctx);
644 break;
645 case AUDIT_OBJ_USER:
646 case AUDIT_OBJ_ROLE:
647 case AUDIT_OBJ_TYPE:
648 case AUDIT_OBJ_LEV_LOW:
649 case AUDIT_OBJ_LEV_HIGH:
650 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
651 also applies here */
652 if (f->lsm_rule) {
653 /* Find files that match */
654 if (name) {
655 result = security_audit_rule_match(
656 name->osid, f->type, f->op,
657 f->lsm_rule, ctx);
658 } else if (ctx) {
659 list_for_each_entry(n, &ctx->names_list, list) {
660 if (security_audit_rule_match(n->osid, f->type,
661 f->op, f->lsm_rule,
662 ctx)) {
663 ++result;
664 break;
668 /* Find ipc objects that match */
669 if (!ctx || ctx->type != AUDIT_IPC)
670 break;
671 if (security_audit_rule_match(ctx->ipc.osid,
672 f->type, f->op,
673 f->lsm_rule, ctx))
674 ++result;
676 break;
677 case AUDIT_ARG0:
678 case AUDIT_ARG1:
679 case AUDIT_ARG2:
680 case AUDIT_ARG3:
681 if (ctx)
682 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
683 break;
684 case AUDIT_FILTERKEY:
685 /* ignore this field for filtering */
686 result = 1;
687 break;
688 case AUDIT_PERM:
689 result = audit_match_perm(ctx, f->val);
690 break;
691 case AUDIT_FILETYPE:
692 result = audit_match_filetype(ctx, f->val);
693 break;
694 case AUDIT_FIELD_COMPARE:
695 result = audit_field_compare(tsk, cred, f, ctx, name);
696 break;
698 if (!result)
699 return 0;
702 if (ctx) {
703 if (rule->prio <= ctx->prio)
704 return 0;
705 if (rule->filterkey) {
706 kfree(ctx->filterkey);
707 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
709 ctx->prio = rule->prio;
711 switch (rule->action) {
712 case AUDIT_NEVER:
713 *state = AUDIT_DISABLED;
714 break;
715 case AUDIT_ALWAYS:
716 *state = AUDIT_RECORD_CONTEXT;
717 break;
719 return 1;
722 /* At process creation time, we can determine if system-call auditing is
723 * completely disabled for this task. Since we only have the task
724 * structure at this point, we can only check uid and gid.
726 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
728 struct audit_entry *e;
729 enum audit_state state;
731 rcu_read_lock();
732 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
733 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
734 &state, true)) {
735 if (state == AUDIT_RECORD_CONTEXT)
736 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
737 rcu_read_unlock();
738 return state;
741 rcu_read_unlock();
742 return AUDIT_BUILD_CONTEXT;
745 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
747 int word, bit;
749 if (val > 0xffffffff)
750 return false;
752 word = AUDIT_WORD(val);
753 if (word >= AUDIT_BITMASK_SIZE)
754 return false;
756 bit = AUDIT_BIT(val);
758 return rule->mask[word] & bit;
761 /* At syscall entry and exit time, this filter is called if the
762 * audit_state is not low enough that auditing cannot take place, but is
763 * also not high enough that we already know we have to write an audit
764 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
766 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
767 struct audit_context *ctx,
768 struct list_head *list)
770 struct audit_entry *e;
771 enum audit_state state;
773 if (auditd_test_task(tsk))
774 return AUDIT_DISABLED;
776 rcu_read_lock();
777 if (!list_empty(list)) {
778 list_for_each_entry_rcu(e, list, list) {
779 if (audit_in_mask(&e->rule, ctx->major) &&
780 audit_filter_rules(tsk, &e->rule, ctx, NULL,
781 &state, false)) {
782 rcu_read_unlock();
783 ctx->current_state = state;
784 return state;
788 rcu_read_unlock();
789 return AUDIT_BUILD_CONTEXT;
793 * Given an audit_name check the inode hash table to see if they match.
794 * Called holding the rcu read lock to protect the use of audit_inode_hash
796 static int audit_filter_inode_name(struct task_struct *tsk,
797 struct audit_names *n,
798 struct audit_context *ctx) {
799 int h = audit_hash_ino((u32)n->ino);
800 struct list_head *list = &audit_inode_hash[h];
801 struct audit_entry *e;
802 enum audit_state state;
804 if (list_empty(list))
805 return 0;
807 list_for_each_entry_rcu(e, list, list) {
808 if (audit_in_mask(&e->rule, ctx->major) &&
809 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
810 ctx->current_state = state;
811 return 1;
815 return 0;
818 /* At syscall exit time, this filter is called if any audit_names have been
819 * collected during syscall processing. We only check rules in sublists at hash
820 * buckets applicable to the inode numbers in audit_names.
821 * Regarding audit_state, same rules apply as for audit_filter_syscall().
823 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
825 struct audit_names *n;
827 if (auditd_test_task(tsk))
828 return;
830 rcu_read_lock();
832 list_for_each_entry(n, &ctx->names_list, list) {
833 if (audit_filter_inode_name(tsk, n, ctx))
834 break;
836 rcu_read_unlock();
839 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
840 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
841 int return_valid,
842 long return_code)
844 struct audit_context *context = tsk->audit_context;
846 if (!context)
847 return NULL;
848 context->return_valid = return_valid;
851 * we need to fix up the return code in the audit logs if the actual
852 * return codes are later going to be fixed up by the arch specific
853 * signal handlers
855 * This is actually a test for:
856 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
857 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
859 * but is faster than a bunch of ||
861 if (unlikely(return_code <= -ERESTARTSYS) &&
862 (return_code >= -ERESTART_RESTARTBLOCK) &&
863 (return_code != -ENOIOCTLCMD))
864 context->return_code = -EINTR;
865 else
866 context->return_code = return_code;
868 if (context->in_syscall && !context->dummy) {
869 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
870 audit_filter_inodes(tsk, context);
873 audit_set_context(tsk, NULL);
874 return context;
877 static inline void audit_proctitle_free(struct audit_context *context)
879 kfree(context->proctitle.value);
880 context->proctitle.value = NULL;
881 context->proctitle.len = 0;
884 static inline void audit_free_names(struct audit_context *context)
886 struct audit_names *n, *next;
888 list_for_each_entry_safe(n, next, &context->names_list, list) {
889 list_del(&n->list);
890 if (n->name)
891 putname(n->name);
892 if (n->should_free)
893 kfree(n);
895 context->name_count = 0;
896 path_put(&context->pwd);
897 context->pwd.dentry = NULL;
898 context->pwd.mnt = NULL;
901 static inline void audit_free_aux(struct audit_context *context)
903 struct audit_aux_data *aux;
905 while ((aux = context->aux)) {
906 context->aux = aux->next;
907 kfree(aux);
909 while ((aux = context->aux_pids)) {
910 context->aux_pids = aux->next;
911 kfree(aux);
915 static inline struct audit_context *audit_alloc_context(enum audit_state state)
917 struct audit_context *context;
919 context = kzalloc(sizeof(*context), GFP_KERNEL);
920 if (!context)
921 return NULL;
922 context->state = state;
923 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
924 INIT_LIST_HEAD(&context->killed_trees);
925 INIT_LIST_HEAD(&context->names_list);
926 return context;
930 * audit_alloc - allocate an audit context block for a task
931 * @tsk: task
933 * Filter on the task information and allocate a per-task audit context
934 * if necessary. Doing so turns on system call auditing for the
935 * specified task. This is called from copy_process, so no lock is
936 * needed.
938 int audit_alloc(struct task_struct *tsk)
940 struct audit_context *context;
941 enum audit_state state;
942 char *key = NULL;
944 if (likely(!audit_ever_enabled))
945 return 0; /* Return if not auditing. */
947 state = audit_filter_task(tsk, &key);
948 if (state == AUDIT_DISABLED) {
949 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
950 return 0;
953 if (!(context = audit_alloc_context(state))) {
954 kfree(key);
955 audit_log_lost("out of memory in audit_alloc");
956 return -ENOMEM;
958 context->filterkey = key;
960 audit_set_context(tsk, context);
961 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
962 return 0;
965 static inline void audit_free_context(struct audit_context *context)
967 audit_free_names(context);
968 unroll_tree_refs(context, NULL, 0);
969 free_tree_refs(context);
970 audit_free_aux(context);
971 kfree(context->filterkey);
972 kfree(context->sockaddr);
973 audit_proctitle_free(context);
974 kfree(context);
977 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
978 kuid_t auid, kuid_t uid, unsigned int sessionid,
979 u32 sid, char *comm)
981 struct audit_buffer *ab;
982 char *ctx = NULL;
983 u32 len;
984 int rc = 0;
986 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
987 if (!ab)
988 return rc;
990 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
991 from_kuid(&init_user_ns, auid),
992 from_kuid(&init_user_ns, uid), sessionid);
993 if (sid) {
994 if (security_secid_to_secctx(sid, &ctx, &len)) {
995 audit_log_format(ab, " obj=(none)");
996 rc = 1;
997 } else {
998 audit_log_format(ab, " obj=%s", ctx);
999 security_release_secctx(ctx, len);
1002 audit_log_format(ab, " ocomm=");
1003 audit_log_untrustedstring(ab, comm);
1004 audit_log_end(ab);
1006 return rc;
1009 static void audit_log_execve_info(struct audit_context *context,
1010 struct audit_buffer **ab)
1012 long len_max;
1013 long len_rem;
1014 long len_full;
1015 long len_buf;
1016 long len_abuf = 0;
1017 long len_tmp;
1018 bool require_data;
1019 bool encode;
1020 unsigned int iter;
1021 unsigned int arg;
1022 char *buf_head;
1023 char *buf;
1024 const char __user *p = (const char __user *)current->mm->arg_start;
1026 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1027 * data we put in the audit record for this argument (see the
1028 * code below) ... at this point in time 96 is plenty */
1029 char abuf[96];
1031 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1032 * current value of 7500 is not as important as the fact that it
1033 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1034 * room if we go over a little bit in the logging below */
1035 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1036 len_max = MAX_EXECVE_AUDIT_LEN;
1038 /* scratch buffer to hold the userspace args */
1039 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1040 if (!buf_head) {
1041 audit_panic("out of memory for argv string");
1042 return;
1044 buf = buf_head;
1046 audit_log_format(*ab, "argc=%d", context->execve.argc);
1048 len_rem = len_max;
1049 len_buf = 0;
1050 len_full = 0;
1051 require_data = true;
1052 encode = false;
1053 iter = 0;
1054 arg = 0;
1055 do {
1056 /* NOTE: we don't ever want to trust this value for anything
1057 * serious, but the audit record format insists we
1058 * provide an argument length for really long arguments,
1059 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1060 * to use strncpy_from_user() to obtain this value for
1061 * recording in the log, although we don't use it
1062 * anywhere here to avoid a double-fetch problem */
1063 if (len_full == 0)
1064 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1066 /* read more data from userspace */
1067 if (require_data) {
1068 /* can we make more room in the buffer? */
1069 if (buf != buf_head) {
1070 memmove(buf_head, buf, len_buf);
1071 buf = buf_head;
1074 /* fetch as much as we can of the argument */
1075 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1076 len_max - len_buf);
1077 if (len_tmp == -EFAULT) {
1078 /* unable to copy from userspace */
1079 send_sig(SIGKILL, current, 0);
1080 goto out;
1081 } else if (len_tmp == (len_max - len_buf)) {
1082 /* buffer is not large enough */
1083 require_data = true;
1084 /* NOTE: if we are going to span multiple
1085 * buffers force the encoding so we stand
1086 * a chance at a sane len_full value and
1087 * consistent record encoding */
1088 encode = true;
1089 len_full = len_full * 2;
1090 p += len_tmp;
1091 } else {
1092 require_data = false;
1093 if (!encode)
1094 encode = audit_string_contains_control(
1095 buf, len_tmp);
1096 /* try to use a trusted value for len_full */
1097 if (len_full < len_max)
1098 len_full = (encode ?
1099 len_tmp * 2 : len_tmp);
1100 p += len_tmp + 1;
1102 len_buf += len_tmp;
1103 buf_head[len_buf] = '\0';
1105 /* length of the buffer in the audit record? */
1106 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1109 /* write as much as we can to the audit log */
1110 if (len_buf > 0) {
1111 /* NOTE: some magic numbers here - basically if we
1112 * can't fit a reasonable amount of data into the
1113 * existing audit buffer, flush it and start with
1114 * a new buffer */
1115 if ((sizeof(abuf) + 8) > len_rem) {
1116 len_rem = len_max;
1117 audit_log_end(*ab);
1118 *ab = audit_log_start(context,
1119 GFP_KERNEL, AUDIT_EXECVE);
1120 if (!*ab)
1121 goto out;
1124 /* create the non-arg portion of the arg record */
1125 len_tmp = 0;
1126 if (require_data || (iter > 0) ||
1127 ((len_abuf + sizeof(abuf)) > len_rem)) {
1128 if (iter == 0) {
1129 len_tmp += snprintf(&abuf[len_tmp],
1130 sizeof(abuf) - len_tmp,
1131 " a%d_len=%lu",
1132 arg, len_full);
1134 len_tmp += snprintf(&abuf[len_tmp],
1135 sizeof(abuf) - len_tmp,
1136 " a%d[%d]=", arg, iter++);
1137 } else
1138 len_tmp += snprintf(&abuf[len_tmp],
1139 sizeof(abuf) - len_tmp,
1140 " a%d=", arg);
1141 WARN_ON(len_tmp >= sizeof(abuf));
1142 abuf[sizeof(abuf) - 1] = '\0';
1144 /* log the arg in the audit record */
1145 audit_log_format(*ab, "%s", abuf);
1146 len_rem -= len_tmp;
1147 len_tmp = len_buf;
1148 if (encode) {
1149 if (len_abuf > len_rem)
1150 len_tmp = len_rem / 2; /* encoding */
1151 audit_log_n_hex(*ab, buf, len_tmp);
1152 len_rem -= len_tmp * 2;
1153 len_abuf -= len_tmp * 2;
1154 } else {
1155 if (len_abuf > len_rem)
1156 len_tmp = len_rem - 2; /* quotes */
1157 audit_log_n_string(*ab, buf, len_tmp);
1158 len_rem -= len_tmp + 2;
1159 /* don't subtract the "2" because we still need
1160 * to add quotes to the remaining string */
1161 len_abuf -= len_tmp;
1163 len_buf -= len_tmp;
1164 buf += len_tmp;
1167 /* ready to move to the next argument? */
1168 if ((len_buf == 0) && !require_data) {
1169 arg++;
1170 iter = 0;
1171 len_full = 0;
1172 require_data = true;
1173 encode = false;
1175 } while (arg < context->execve.argc);
1177 /* NOTE: the caller handles the final audit_log_end() call */
1179 out:
1180 kfree(buf_head);
1183 static void show_special(struct audit_context *context, int *call_panic)
1185 struct audit_buffer *ab;
1186 int i;
1188 ab = audit_log_start(context, GFP_KERNEL, context->type);
1189 if (!ab)
1190 return;
1192 switch (context->type) {
1193 case AUDIT_SOCKETCALL: {
1194 int nargs = context->socketcall.nargs;
1195 audit_log_format(ab, "nargs=%d", nargs);
1196 for (i = 0; i < nargs; i++)
1197 audit_log_format(ab, " a%d=%lx", i,
1198 context->socketcall.args[i]);
1199 break; }
1200 case AUDIT_IPC: {
1201 u32 osid = context->ipc.osid;
1203 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1204 from_kuid(&init_user_ns, context->ipc.uid),
1205 from_kgid(&init_user_ns, context->ipc.gid),
1206 context->ipc.mode);
1207 if (osid) {
1208 char *ctx = NULL;
1209 u32 len;
1210 if (security_secid_to_secctx(osid, &ctx, &len)) {
1211 audit_log_format(ab, " osid=%u", osid);
1212 *call_panic = 1;
1213 } else {
1214 audit_log_format(ab, " obj=%s", ctx);
1215 security_release_secctx(ctx, len);
1218 if (context->ipc.has_perm) {
1219 audit_log_end(ab);
1220 ab = audit_log_start(context, GFP_KERNEL,
1221 AUDIT_IPC_SET_PERM);
1222 if (unlikely(!ab))
1223 return;
1224 audit_log_format(ab,
1225 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1226 context->ipc.qbytes,
1227 context->ipc.perm_uid,
1228 context->ipc.perm_gid,
1229 context->ipc.perm_mode);
1231 break; }
1232 case AUDIT_MQ_OPEN:
1233 audit_log_format(ab,
1234 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1235 "mq_msgsize=%ld mq_curmsgs=%ld",
1236 context->mq_open.oflag, context->mq_open.mode,
1237 context->mq_open.attr.mq_flags,
1238 context->mq_open.attr.mq_maxmsg,
1239 context->mq_open.attr.mq_msgsize,
1240 context->mq_open.attr.mq_curmsgs);
1241 break;
1242 case AUDIT_MQ_SENDRECV:
1243 audit_log_format(ab,
1244 "mqdes=%d msg_len=%zd msg_prio=%u "
1245 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1246 context->mq_sendrecv.mqdes,
1247 context->mq_sendrecv.msg_len,
1248 context->mq_sendrecv.msg_prio,
1249 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1250 context->mq_sendrecv.abs_timeout.tv_nsec);
1251 break;
1252 case AUDIT_MQ_NOTIFY:
1253 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1254 context->mq_notify.mqdes,
1255 context->mq_notify.sigev_signo);
1256 break;
1257 case AUDIT_MQ_GETSETATTR: {
1258 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1259 audit_log_format(ab,
1260 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1261 "mq_curmsgs=%ld ",
1262 context->mq_getsetattr.mqdes,
1263 attr->mq_flags, attr->mq_maxmsg,
1264 attr->mq_msgsize, attr->mq_curmsgs);
1265 break; }
1266 case AUDIT_CAPSET:
1267 audit_log_format(ab, "pid=%d", context->capset.pid);
1268 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1269 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1270 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1271 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1272 break;
1273 case AUDIT_MMAP:
1274 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1275 context->mmap.flags);
1276 break;
1277 case AUDIT_EXECVE:
1278 audit_log_execve_info(context, &ab);
1279 break;
1280 case AUDIT_KERN_MODULE:
1281 audit_log_format(ab, "name=");
1282 audit_log_untrustedstring(ab, context->module.name);
1283 kfree(context->module.name);
1284 break;
1286 audit_log_end(ab);
1289 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1291 char *end = proctitle + len - 1;
1292 while (end > proctitle && !isprint(*end))
1293 end--;
1295 /* catch the case where proctitle is only 1 non-print character */
1296 len = end - proctitle + 1;
1297 len -= isprint(proctitle[len-1]) == 0;
1298 return len;
1301 static void audit_log_proctitle(struct task_struct *tsk,
1302 struct audit_context *context)
1304 int res;
1305 char *buf;
1306 char *msg = "(null)";
1307 int len = strlen(msg);
1308 struct audit_buffer *ab;
1310 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1311 if (!ab)
1312 return; /* audit_panic or being filtered */
1314 audit_log_format(ab, "proctitle=");
1316 /* Not cached */
1317 if (!context->proctitle.value) {
1318 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1319 if (!buf)
1320 goto out;
1321 /* Historically called this from procfs naming */
1322 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1323 if (res == 0) {
1324 kfree(buf);
1325 goto out;
1327 res = audit_proctitle_rtrim(buf, res);
1328 if (res == 0) {
1329 kfree(buf);
1330 goto out;
1332 context->proctitle.value = buf;
1333 context->proctitle.len = res;
1335 msg = context->proctitle.value;
1336 len = context->proctitle.len;
1337 out:
1338 audit_log_n_untrustedstring(ab, msg, len);
1339 audit_log_end(ab);
1342 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1344 int i, call_panic = 0;
1345 struct audit_buffer *ab;
1346 struct audit_aux_data *aux;
1347 struct audit_names *n;
1349 /* tsk == current */
1350 context->personality = tsk->personality;
1352 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1353 if (!ab)
1354 return; /* audit_panic has been called */
1355 audit_log_format(ab, "arch=%x syscall=%d",
1356 context->arch, context->major);
1357 if (context->personality != PER_LINUX)
1358 audit_log_format(ab, " per=%lx", context->personality);
1359 if (context->return_valid)
1360 audit_log_format(ab, " success=%s exit=%ld",
1361 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1362 context->return_code);
1364 audit_log_format(ab,
1365 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1366 context->argv[0],
1367 context->argv[1],
1368 context->argv[2],
1369 context->argv[3],
1370 context->name_count);
1372 audit_log_task_info(ab, tsk);
1373 audit_log_key(ab, context->filterkey);
1374 audit_log_end(ab);
1376 for (aux = context->aux; aux; aux = aux->next) {
1378 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1379 if (!ab)
1380 continue; /* audit_panic has been called */
1382 switch (aux->type) {
1384 case AUDIT_BPRM_FCAPS: {
1385 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1386 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1387 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1388 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1389 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1390 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1391 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1392 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1393 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1394 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1395 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1396 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1397 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1398 break; }
1401 audit_log_end(ab);
1404 if (context->type)
1405 show_special(context, &call_panic);
1407 if (context->fds[0] >= 0) {
1408 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1409 if (ab) {
1410 audit_log_format(ab, "fd0=%d fd1=%d",
1411 context->fds[0], context->fds[1]);
1412 audit_log_end(ab);
1416 if (context->sockaddr_len) {
1417 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1418 if (ab) {
1419 audit_log_format(ab, "saddr=");
1420 audit_log_n_hex(ab, (void *)context->sockaddr,
1421 context->sockaddr_len);
1422 audit_log_end(ab);
1426 for (aux = context->aux_pids; aux; aux = aux->next) {
1427 struct audit_aux_data_pids *axs = (void *)aux;
1429 for (i = 0; i < axs->pid_count; i++)
1430 if (audit_log_pid_context(context, axs->target_pid[i],
1431 axs->target_auid[i],
1432 axs->target_uid[i],
1433 axs->target_sessionid[i],
1434 axs->target_sid[i],
1435 axs->target_comm[i]))
1436 call_panic = 1;
1439 if (context->target_pid &&
1440 audit_log_pid_context(context, context->target_pid,
1441 context->target_auid, context->target_uid,
1442 context->target_sessionid,
1443 context->target_sid, context->target_comm))
1444 call_panic = 1;
1446 if (context->pwd.dentry && context->pwd.mnt) {
1447 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1448 if (ab) {
1449 audit_log_d_path(ab, "cwd=", &context->pwd);
1450 audit_log_end(ab);
1454 i = 0;
1455 list_for_each_entry(n, &context->names_list, list) {
1456 if (n->hidden)
1457 continue;
1458 audit_log_name(context, n, NULL, i++, &call_panic);
1461 audit_log_proctitle(tsk, context);
1463 /* Send end of event record to help user space know we are finished */
1464 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1465 if (ab)
1466 audit_log_end(ab);
1467 if (call_panic)
1468 audit_panic("error converting sid to string");
1472 * __audit_free - free a per-task audit context
1473 * @tsk: task whose audit context block to free
1475 * Called from copy_process and do_exit
1477 void __audit_free(struct task_struct *tsk)
1479 struct audit_context *context;
1481 context = audit_take_context(tsk, 0, 0);
1482 if (!context)
1483 return;
1485 /* Check for system calls that do not go through the exit
1486 * function (e.g., exit_group), then free context block.
1487 * We use GFP_ATOMIC here because we might be doing this
1488 * in the context of the idle thread */
1489 /* that can happen only if we are called from do_exit() */
1490 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1491 audit_log_exit(context, tsk);
1492 if (!list_empty(&context->killed_trees))
1493 audit_kill_trees(&context->killed_trees);
1495 audit_free_context(context);
1499 * __audit_syscall_entry - fill in an audit record at syscall entry
1500 * @major: major syscall type (function)
1501 * @a1: additional syscall register 1
1502 * @a2: additional syscall register 2
1503 * @a3: additional syscall register 3
1504 * @a4: additional syscall register 4
1506 * Fill in audit context at syscall entry. This only happens if the
1507 * audit context was created when the task was created and the state or
1508 * filters demand the audit context be built. If the state from the
1509 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1510 * then the record will be written at syscall exit time (otherwise, it
1511 * will only be written if another part of the kernel requests that it
1512 * be written).
1514 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1515 unsigned long a3, unsigned long a4)
1517 struct audit_context *context = audit_context();
1518 enum audit_state state;
1520 if (!audit_enabled || !context)
1521 return;
1523 BUG_ON(context->in_syscall || context->name_count);
1525 state = context->state;
1526 if (state == AUDIT_DISABLED)
1527 return;
1529 context->dummy = !audit_n_rules;
1530 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1531 context->prio = 0;
1532 if (auditd_test_task(current))
1533 return;
1536 context->arch = syscall_get_arch();
1537 context->major = major;
1538 context->argv[0] = a1;
1539 context->argv[1] = a2;
1540 context->argv[2] = a3;
1541 context->argv[3] = a4;
1542 context->serial = 0;
1543 context->ctime = current_kernel_time64();
1544 context->in_syscall = 1;
1545 context->current_state = state;
1546 context->ppid = 0;
1550 * __audit_syscall_exit - deallocate audit context after a system call
1551 * @success: success value of the syscall
1552 * @return_code: return value of the syscall
1554 * Tear down after system call. If the audit context has been marked as
1555 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1556 * filtering, or because some other part of the kernel wrote an audit
1557 * message), then write out the syscall information. In call cases,
1558 * free the names stored from getname().
1560 void __audit_syscall_exit(int success, long return_code)
1562 struct audit_context *context;
1564 if (success)
1565 success = AUDITSC_SUCCESS;
1566 else
1567 success = AUDITSC_FAILURE;
1569 context = audit_take_context(current, success, return_code);
1570 if (!context)
1571 return;
1573 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1574 audit_log_exit(context, current);
1576 context->in_syscall = 0;
1577 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1579 if (!list_empty(&context->killed_trees))
1580 audit_kill_trees(&context->killed_trees);
1582 audit_free_names(context);
1583 unroll_tree_refs(context, NULL, 0);
1584 audit_free_aux(context);
1585 context->aux = NULL;
1586 context->aux_pids = NULL;
1587 context->target_pid = 0;
1588 context->target_sid = 0;
1589 context->sockaddr_len = 0;
1590 context->type = 0;
1591 context->fds[0] = -1;
1592 if (context->state != AUDIT_RECORD_CONTEXT) {
1593 kfree(context->filterkey);
1594 context->filterkey = NULL;
1596 audit_set_context(current, context);
1599 static inline void handle_one(const struct inode *inode)
1601 #ifdef CONFIG_AUDIT_TREE
1602 struct audit_context *context;
1603 struct audit_tree_refs *p;
1604 struct audit_chunk *chunk;
1605 int count;
1606 if (likely(!inode->i_fsnotify_marks))
1607 return;
1608 context = audit_context();
1609 p = context->trees;
1610 count = context->tree_count;
1611 rcu_read_lock();
1612 chunk = audit_tree_lookup(inode);
1613 rcu_read_unlock();
1614 if (!chunk)
1615 return;
1616 if (likely(put_tree_ref(context, chunk)))
1617 return;
1618 if (unlikely(!grow_tree_refs(context))) {
1619 pr_warn("out of memory, audit has lost a tree reference\n");
1620 audit_set_auditable(context);
1621 audit_put_chunk(chunk);
1622 unroll_tree_refs(context, p, count);
1623 return;
1625 put_tree_ref(context, chunk);
1626 #endif
1629 static void handle_path(const struct dentry *dentry)
1631 #ifdef CONFIG_AUDIT_TREE
1632 struct audit_context *context;
1633 struct audit_tree_refs *p;
1634 const struct dentry *d, *parent;
1635 struct audit_chunk *drop;
1636 unsigned long seq;
1637 int count;
1639 context = audit_context();
1640 p = context->trees;
1641 count = context->tree_count;
1642 retry:
1643 drop = NULL;
1644 d = dentry;
1645 rcu_read_lock();
1646 seq = read_seqbegin(&rename_lock);
1647 for(;;) {
1648 struct inode *inode = d_backing_inode(d);
1649 if (inode && unlikely(inode->i_fsnotify_marks)) {
1650 struct audit_chunk *chunk;
1651 chunk = audit_tree_lookup(inode);
1652 if (chunk) {
1653 if (unlikely(!put_tree_ref(context, chunk))) {
1654 drop = chunk;
1655 break;
1659 parent = d->d_parent;
1660 if (parent == d)
1661 break;
1662 d = parent;
1664 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1665 rcu_read_unlock();
1666 if (!drop) {
1667 /* just a race with rename */
1668 unroll_tree_refs(context, p, count);
1669 goto retry;
1671 audit_put_chunk(drop);
1672 if (grow_tree_refs(context)) {
1673 /* OK, got more space */
1674 unroll_tree_refs(context, p, count);
1675 goto retry;
1677 /* too bad */
1678 pr_warn("out of memory, audit has lost a tree reference\n");
1679 unroll_tree_refs(context, p, count);
1680 audit_set_auditable(context);
1681 return;
1683 rcu_read_unlock();
1684 #endif
1687 static struct audit_names *audit_alloc_name(struct audit_context *context,
1688 unsigned char type)
1690 struct audit_names *aname;
1692 if (context->name_count < AUDIT_NAMES) {
1693 aname = &context->preallocated_names[context->name_count];
1694 memset(aname, 0, sizeof(*aname));
1695 } else {
1696 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1697 if (!aname)
1698 return NULL;
1699 aname->should_free = true;
1702 aname->ino = AUDIT_INO_UNSET;
1703 aname->type = type;
1704 list_add_tail(&aname->list, &context->names_list);
1706 context->name_count++;
1707 return aname;
1711 * __audit_reusename - fill out filename with info from existing entry
1712 * @uptr: userland ptr to pathname
1714 * Search the audit_names list for the current audit context. If there is an
1715 * existing entry with a matching "uptr" then return the filename
1716 * associated with that audit_name. If not, return NULL.
1718 struct filename *
1719 __audit_reusename(const __user char *uptr)
1721 struct audit_context *context = audit_context();
1722 struct audit_names *n;
1724 list_for_each_entry(n, &context->names_list, list) {
1725 if (!n->name)
1726 continue;
1727 if (n->name->uptr == uptr) {
1728 n->name->refcnt++;
1729 return n->name;
1732 return NULL;
1736 * __audit_getname - add a name to the list
1737 * @name: name to add
1739 * Add a name to the list of audit names for this context.
1740 * Called from fs/namei.c:getname().
1742 void __audit_getname(struct filename *name)
1744 struct audit_context *context = audit_context();
1745 struct audit_names *n;
1747 if (!context->in_syscall)
1748 return;
1750 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1751 if (!n)
1752 return;
1754 n->name = name;
1755 n->name_len = AUDIT_NAME_FULL;
1756 name->aname = n;
1757 name->refcnt++;
1759 if (!context->pwd.dentry)
1760 get_fs_pwd(current->fs, &context->pwd);
1764 * __audit_inode - store the inode and device from a lookup
1765 * @name: name being audited
1766 * @dentry: dentry being audited
1767 * @flags: attributes for this particular entry
1769 void __audit_inode(struct filename *name, const struct dentry *dentry,
1770 unsigned int flags)
1772 struct audit_context *context = audit_context();
1773 struct inode *inode = d_backing_inode(dentry);
1774 struct audit_names *n;
1775 bool parent = flags & AUDIT_INODE_PARENT;
1777 if (!context->in_syscall)
1778 return;
1780 if (!name)
1781 goto out_alloc;
1784 * If we have a pointer to an audit_names entry already, then we can
1785 * just use it directly if the type is correct.
1787 n = name->aname;
1788 if (n) {
1789 if (parent) {
1790 if (n->type == AUDIT_TYPE_PARENT ||
1791 n->type == AUDIT_TYPE_UNKNOWN)
1792 goto out;
1793 } else {
1794 if (n->type != AUDIT_TYPE_PARENT)
1795 goto out;
1799 list_for_each_entry_reverse(n, &context->names_list, list) {
1800 if (n->ino) {
1801 /* valid inode number, use that for the comparison */
1802 if (n->ino != inode->i_ino ||
1803 n->dev != inode->i_sb->s_dev)
1804 continue;
1805 } else if (n->name) {
1806 /* inode number has not been set, check the name */
1807 if (strcmp(n->name->name, name->name))
1808 continue;
1809 } else
1810 /* no inode and no name (?!) ... this is odd ... */
1811 continue;
1813 /* match the correct record type */
1814 if (parent) {
1815 if (n->type == AUDIT_TYPE_PARENT ||
1816 n->type == AUDIT_TYPE_UNKNOWN)
1817 goto out;
1818 } else {
1819 if (n->type != AUDIT_TYPE_PARENT)
1820 goto out;
1824 out_alloc:
1825 /* unable to find an entry with both a matching name and type */
1826 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1827 if (!n)
1828 return;
1829 if (name) {
1830 n->name = name;
1831 name->refcnt++;
1834 out:
1835 if (parent) {
1836 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1837 n->type = AUDIT_TYPE_PARENT;
1838 if (flags & AUDIT_INODE_HIDDEN)
1839 n->hidden = true;
1840 } else {
1841 n->name_len = AUDIT_NAME_FULL;
1842 n->type = AUDIT_TYPE_NORMAL;
1844 handle_path(dentry);
1845 audit_copy_inode(n, dentry, inode);
1848 void __audit_file(const struct file *file)
1850 __audit_inode(NULL, file->f_path.dentry, 0);
1854 * __audit_inode_child - collect inode info for created/removed objects
1855 * @parent: inode of dentry parent
1856 * @dentry: dentry being audited
1857 * @type: AUDIT_TYPE_* value that we're looking for
1859 * For syscalls that create or remove filesystem objects, audit_inode
1860 * can only collect information for the filesystem object's parent.
1861 * This call updates the audit context with the child's information.
1862 * Syscalls that create a new filesystem object must be hooked after
1863 * the object is created. Syscalls that remove a filesystem object
1864 * must be hooked prior, in order to capture the target inode during
1865 * unsuccessful attempts.
1867 void __audit_inode_child(struct inode *parent,
1868 const struct dentry *dentry,
1869 const unsigned char type)
1871 struct audit_context *context = audit_context();
1872 struct inode *inode = d_backing_inode(dentry);
1873 const char *dname = dentry->d_name.name;
1874 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1875 struct audit_entry *e;
1876 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1877 int i;
1879 if (!context->in_syscall)
1880 return;
1882 rcu_read_lock();
1883 if (!list_empty(list)) {
1884 list_for_each_entry_rcu(e, list, list) {
1885 for (i = 0; i < e->rule.field_count; i++) {
1886 struct audit_field *f = &e->rule.fields[i];
1888 if (f->type == AUDIT_FSTYPE) {
1889 if (audit_comparator(parent->i_sb->s_magic,
1890 f->op, f->val)) {
1891 if (e->rule.action == AUDIT_NEVER) {
1892 rcu_read_unlock();
1893 return;
1900 rcu_read_unlock();
1902 if (inode)
1903 handle_one(inode);
1905 /* look for a parent entry first */
1906 list_for_each_entry(n, &context->names_list, list) {
1907 if (!n->name ||
1908 (n->type != AUDIT_TYPE_PARENT &&
1909 n->type != AUDIT_TYPE_UNKNOWN))
1910 continue;
1912 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1913 !audit_compare_dname_path(dname,
1914 n->name->name, n->name_len)) {
1915 if (n->type == AUDIT_TYPE_UNKNOWN)
1916 n->type = AUDIT_TYPE_PARENT;
1917 found_parent = n;
1918 break;
1922 /* is there a matching child entry? */
1923 list_for_each_entry(n, &context->names_list, list) {
1924 /* can only match entries that have a name */
1925 if (!n->name ||
1926 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1927 continue;
1929 if (!strcmp(dname, n->name->name) ||
1930 !audit_compare_dname_path(dname, n->name->name,
1931 found_parent ?
1932 found_parent->name_len :
1933 AUDIT_NAME_FULL)) {
1934 if (n->type == AUDIT_TYPE_UNKNOWN)
1935 n->type = type;
1936 found_child = n;
1937 break;
1941 if (!found_parent) {
1942 /* create a new, "anonymous" parent record */
1943 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1944 if (!n)
1945 return;
1946 audit_copy_inode(n, NULL, parent);
1949 if (!found_child) {
1950 found_child = audit_alloc_name(context, type);
1951 if (!found_child)
1952 return;
1954 /* Re-use the name belonging to the slot for a matching parent
1955 * directory. All names for this context are relinquished in
1956 * audit_free_names() */
1957 if (found_parent) {
1958 found_child->name = found_parent->name;
1959 found_child->name_len = AUDIT_NAME_FULL;
1960 found_child->name->refcnt++;
1964 if (inode)
1965 audit_copy_inode(found_child, dentry, inode);
1966 else
1967 found_child->ino = AUDIT_INO_UNSET;
1969 EXPORT_SYMBOL_GPL(__audit_inode_child);
1972 * auditsc_get_stamp - get local copies of audit_context values
1973 * @ctx: audit_context for the task
1974 * @t: timespec64 to store time recorded in the audit_context
1975 * @serial: serial value that is recorded in the audit_context
1977 * Also sets the context as auditable.
1979 int auditsc_get_stamp(struct audit_context *ctx,
1980 struct timespec64 *t, unsigned int *serial)
1982 if (!ctx->in_syscall)
1983 return 0;
1984 if (!ctx->serial)
1985 ctx->serial = audit_serial();
1986 t->tv_sec = ctx->ctime.tv_sec;
1987 t->tv_nsec = ctx->ctime.tv_nsec;
1988 *serial = ctx->serial;
1989 if (!ctx->prio) {
1990 ctx->prio = 1;
1991 ctx->current_state = AUDIT_RECORD_CONTEXT;
1993 return 1;
1996 /* global counter which is incremented every time something logs in */
1997 static atomic_t session_id = ATOMIC_INIT(0);
1999 static int audit_set_loginuid_perm(kuid_t loginuid)
2001 /* if we are unset, we don't need privs */
2002 if (!audit_loginuid_set(current))
2003 return 0;
2004 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2005 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2006 return -EPERM;
2007 /* it is set, you need permission */
2008 if (!capable(CAP_AUDIT_CONTROL))
2009 return -EPERM;
2010 /* reject if this is not an unset and we don't allow that */
2011 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2012 return -EPERM;
2013 return 0;
2016 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2017 unsigned int oldsessionid, unsigned int sessionid,
2018 int rc)
2020 struct audit_buffer *ab;
2021 uid_t uid, oldloginuid, loginuid;
2022 struct tty_struct *tty;
2024 if (!audit_enabled)
2025 return;
2027 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2028 if (!ab)
2029 return;
2031 uid = from_kuid(&init_user_ns, task_uid(current));
2032 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2033 loginuid = from_kuid(&init_user_ns, kloginuid),
2034 tty = audit_get_tty(current);
2036 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2037 audit_log_task_context(ab);
2038 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2039 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2040 oldsessionid, sessionid, !rc);
2041 audit_put_tty(tty);
2042 audit_log_end(ab);
2046 * audit_set_loginuid - set current task's audit_context loginuid
2047 * @loginuid: loginuid value
2049 * Returns 0.
2051 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2053 int audit_set_loginuid(kuid_t loginuid)
2055 struct task_struct *task = current;
2056 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2057 kuid_t oldloginuid;
2058 int rc;
2060 oldloginuid = audit_get_loginuid(current);
2061 oldsessionid = audit_get_sessionid(current);
2063 rc = audit_set_loginuid_perm(loginuid);
2064 if (rc)
2065 goto out;
2067 /* are we setting or clearing? */
2068 if (uid_valid(loginuid)) {
2069 sessionid = (unsigned int)atomic_inc_return(&session_id);
2070 if (unlikely(sessionid == AUDIT_SID_UNSET))
2071 sessionid = (unsigned int)atomic_inc_return(&session_id);
2074 task->sessionid = sessionid;
2075 task->loginuid = loginuid;
2076 out:
2077 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2078 return rc;
2082 * __audit_mq_open - record audit data for a POSIX MQ open
2083 * @oflag: open flag
2084 * @mode: mode bits
2085 * @attr: queue attributes
2088 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2090 struct audit_context *context = audit_context();
2092 if (attr)
2093 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2094 else
2095 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2097 context->mq_open.oflag = oflag;
2098 context->mq_open.mode = mode;
2100 context->type = AUDIT_MQ_OPEN;
2104 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2105 * @mqdes: MQ descriptor
2106 * @msg_len: Message length
2107 * @msg_prio: Message priority
2108 * @abs_timeout: Message timeout in absolute time
2111 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2112 const struct timespec64 *abs_timeout)
2114 struct audit_context *context = audit_context();
2115 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2117 if (abs_timeout)
2118 memcpy(p, abs_timeout, sizeof(*p));
2119 else
2120 memset(p, 0, sizeof(*p));
2122 context->mq_sendrecv.mqdes = mqdes;
2123 context->mq_sendrecv.msg_len = msg_len;
2124 context->mq_sendrecv.msg_prio = msg_prio;
2126 context->type = AUDIT_MQ_SENDRECV;
2130 * __audit_mq_notify - record audit data for a POSIX MQ notify
2131 * @mqdes: MQ descriptor
2132 * @notification: Notification event
2136 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2138 struct audit_context *context = audit_context();
2140 if (notification)
2141 context->mq_notify.sigev_signo = notification->sigev_signo;
2142 else
2143 context->mq_notify.sigev_signo = 0;
2145 context->mq_notify.mqdes = mqdes;
2146 context->type = AUDIT_MQ_NOTIFY;
2150 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2151 * @mqdes: MQ descriptor
2152 * @mqstat: MQ flags
2155 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2157 struct audit_context *context = audit_context();
2158 context->mq_getsetattr.mqdes = mqdes;
2159 context->mq_getsetattr.mqstat = *mqstat;
2160 context->type = AUDIT_MQ_GETSETATTR;
2164 * __audit_ipc_obj - record audit data for ipc object
2165 * @ipcp: ipc permissions
2168 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2170 struct audit_context *context = audit_context();
2171 context->ipc.uid = ipcp->uid;
2172 context->ipc.gid = ipcp->gid;
2173 context->ipc.mode = ipcp->mode;
2174 context->ipc.has_perm = 0;
2175 security_ipc_getsecid(ipcp, &context->ipc.osid);
2176 context->type = AUDIT_IPC;
2180 * __audit_ipc_set_perm - record audit data for new ipc permissions
2181 * @qbytes: msgq bytes
2182 * @uid: msgq user id
2183 * @gid: msgq group id
2184 * @mode: msgq mode (permissions)
2186 * Called only after audit_ipc_obj().
2188 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2190 struct audit_context *context = audit_context();
2192 context->ipc.qbytes = qbytes;
2193 context->ipc.perm_uid = uid;
2194 context->ipc.perm_gid = gid;
2195 context->ipc.perm_mode = mode;
2196 context->ipc.has_perm = 1;
2199 void __audit_bprm(struct linux_binprm *bprm)
2201 struct audit_context *context = audit_context();
2203 context->type = AUDIT_EXECVE;
2204 context->execve.argc = bprm->argc;
2209 * __audit_socketcall - record audit data for sys_socketcall
2210 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2211 * @args: args array
2214 int __audit_socketcall(int nargs, unsigned long *args)
2216 struct audit_context *context = audit_context();
2218 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2219 return -EINVAL;
2220 context->type = AUDIT_SOCKETCALL;
2221 context->socketcall.nargs = nargs;
2222 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2223 return 0;
2227 * __audit_fd_pair - record audit data for pipe and socketpair
2228 * @fd1: the first file descriptor
2229 * @fd2: the second file descriptor
2232 void __audit_fd_pair(int fd1, int fd2)
2234 struct audit_context *context = audit_context();
2235 context->fds[0] = fd1;
2236 context->fds[1] = fd2;
2240 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2241 * @len: data length in user space
2242 * @a: data address in kernel space
2244 * Returns 0 for success or NULL context or < 0 on error.
2246 int __audit_sockaddr(int len, void *a)
2248 struct audit_context *context = audit_context();
2250 if (!context->sockaddr) {
2251 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2252 if (!p)
2253 return -ENOMEM;
2254 context->sockaddr = p;
2257 context->sockaddr_len = len;
2258 memcpy(context->sockaddr, a, len);
2259 return 0;
2262 void __audit_ptrace(struct task_struct *t)
2264 struct audit_context *context = audit_context();
2266 context->target_pid = task_tgid_nr(t);
2267 context->target_auid = audit_get_loginuid(t);
2268 context->target_uid = task_uid(t);
2269 context->target_sessionid = audit_get_sessionid(t);
2270 security_task_getsecid(t, &context->target_sid);
2271 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2275 * audit_signal_info - record signal info for shutting down audit subsystem
2276 * @sig: signal value
2277 * @t: task being signaled
2279 * If the audit subsystem is being terminated, record the task (pid)
2280 * and uid that is doing that.
2282 int audit_signal_info(int sig, struct task_struct *t)
2284 struct audit_aux_data_pids *axp;
2285 struct audit_context *ctx = audit_context();
2286 kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
2288 if (auditd_test_task(t) &&
2289 (sig == SIGTERM || sig == SIGHUP ||
2290 sig == SIGUSR1 || sig == SIGUSR2)) {
2291 audit_sig_pid = task_tgid_nr(current);
2292 auid = audit_get_loginuid(current);
2293 if (uid_valid(auid))
2294 audit_sig_uid = auid;
2295 else
2296 audit_sig_uid = uid;
2297 security_task_getsecid(current, &audit_sig_sid);
2300 if (!audit_signals || audit_dummy_context())
2301 return 0;
2303 /* optimize the common case by putting first signal recipient directly
2304 * in audit_context */
2305 if (!ctx->target_pid) {
2306 ctx->target_pid = task_tgid_nr(t);
2307 ctx->target_auid = audit_get_loginuid(t);
2308 ctx->target_uid = t_uid;
2309 ctx->target_sessionid = audit_get_sessionid(t);
2310 security_task_getsecid(t, &ctx->target_sid);
2311 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2312 return 0;
2315 axp = (void *)ctx->aux_pids;
2316 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2317 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2318 if (!axp)
2319 return -ENOMEM;
2321 axp->d.type = AUDIT_OBJ_PID;
2322 axp->d.next = ctx->aux_pids;
2323 ctx->aux_pids = (void *)axp;
2325 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2327 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2328 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2329 axp->target_uid[axp->pid_count] = t_uid;
2330 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2331 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2332 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2333 axp->pid_count++;
2335 return 0;
2339 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2340 * @bprm: pointer to the bprm being processed
2341 * @new: the proposed new credentials
2342 * @old: the old credentials
2344 * Simply check if the proc already has the caps given by the file and if not
2345 * store the priv escalation info for later auditing at the end of the syscall
2347 * -Eric
2349 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2350 const struct cred *new, const struct cred *old)
2352 struct audit_aux_data_bprm_fcaps *ax;
2353 struct audit_context *context = audit_context();
2354 struct cpu_vfs_cap_data vcaps;
2356 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2357 if (!ax)
2358 return -ENOMEM;
2360 ax->d.type = AUDIT_BPRM_FCAPS;
2361 ax->d.next = context->aux;
2362 context->aux = (void *)ax;
2364 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2366 ax->fcap.permitted = vcaps.permitted;
2367 ax->fcap.inheritable = vcaps.inheritable;
2368 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2369 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2371 ax->old_pcap.permitted = old->cap_permitted;
2372 ax->old_pcap.inheritable = old->cap_inheritable;
2373 ax->old_pcap.effective = old->cap_effective;
2374 ax->old_pcap.ambient = old->cap_ambient;
2376 ax->new_pcap.permitted = new->cap_permitted;
2377 ax->new_pcap.inheritable = new->cap_inheritable;
2378 ax->new_pcap.effective = new->cap_effective;
2379 ax->new_pcap.ambient = new->cap_ambient;
2380 return 0;
2384 * __audit_log_capset - store information about the arguments to the capset syscall
2385 * @new: the new credentials
2386 * @old: the old (current) credentials
2388 * Record the arguments userspace sent to sys_capset for later printing by the
2389 * audit system if applicable
2391 void __audit_log_capset(const struct cred *new, const struct cred *old)
2393 struct audit_context *context = audit_context();
2394 context->capset.pid = task_tgid_nr(current);
2395 context->capset.cap.effective = new->cap_effective;
2396 context->capset.cap.inheritable = new->cap_effective;
2397 context->capset.cap.permitted = new->cap_permitted;
2398 context->capset.cap.ambient = new->cap_ambient;
2399 context->type = AUDIT_CAPSET;
2402 void __audit_mmap_fd(int fd, int flags)
2404 struct audit_context *context = audit_context();
2405 context->mmap.fd = fd;
2406 context->mmap.flags = flags;
2407 context->type = AUDIT_MMAP;
2410 void __audit_log_kern_module(char *name)
2412 struct audit_context *context = audit_context();
2414 context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL);
2415 strcpy(context->module.name, name);
2416 context->type = AUDIT_KERN_MODULE;
2419 void __audit_fanotify(unsigned int response)
2421 audit_log(audit_context(), GFP_KERNEL,
2422 AUDIT_FANOTIFY, "resp=%u", response);
2425 static void audit_log_task(struct audit_buffer *ab)
2427 kuid_t auid, uid;
2428 kgid_t gid;
2429 unsigned int sessionid;
2430 char comm[sizeof(current->comm)];
2432 auid = audit_get_loginuid(current);
2433 sessionid = audit_get_sessionid(current);
2434 current_uid_gid(&uid, &gid);
2436 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2437 from_kuid(&init_user_ns, auid),
2438 from_kuid(&init_user_ns, uid),
2439 from_kgid(&init_user_ns, gid),
2440 sessionid);
2441 audit_log_task_context(ab);
2442 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2443 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2444 audit_log_d_path_exe(ab, current->mm);
2448 * audit_core_dumps - record information about processes that end abnormally
2449 * @signr: signal value
2451 * If a process ends with a core dump, something fishy is going on and we
2452 * should record the event for investigation.
2454 void audit_core_dumps(long signr)
2456 struct audit_buffer *ab;
2458 if (!audit_enabled)
2459 return;
2461 if (signr == SIGQUIT) /* don't care for those */
2462 return;
2464 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2465 if (unlikely(!ab))
2466 return;
2467 audit_log_task(ab);
2468 audit_log_format(ab, " sig=%ld res=1", signr);
2469 audit_log_end(ab);
2473 * audit_seccomp - record information about a seccomp action
2474 * @syscall: syscall number
2475 * @signr: signal value
2476 * @code: the seccomp action
2478 * Record the information associated with a seccomp action. Event filtering for
2479 * seccomp actions that are not to be logged is done in seccomp_log().
2480 * Therefore, this function forces auditing independent of the audit_enabled
2481 * and dummy context state because seccomp actions should be logged even when
2482 * audit is not in use.
2484 void audit_seccomp(unsigned long syscall, long signr, int code)
2486 struct audit_buffer *ab;
2488 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2489 if (unlikely(!ab))
2490 return;
2491 audit_log_task(ab);
2492 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2493 signr, syscall_get_arch(), syscall,
2494 in_compat_syscall(), KSTK_EIP(current), code);
2495 audit_log_end(ab);
2498 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2499 int res)
2501 struct audit_buffer *ab;
2503 if (!audit_enabled)
2504 return;
2506 ab = audit_log_start(audit_context(), GFP_KERNEL,
2507 AUDIT_CONFIG_CHANGE);
2508 if (unlikely(!ab))
2509 return;
2511 audit_log_format(ab, "op=seccomp-logging");
2512 audit_log_format(ab, " actions=%s", names);
2513 audit_log_format(ab, " old-actions=%s", old_names);
2514 audit_log_format(ab, " res=%d", res);
2515 audit_log_end(ab);
2518 struct list_head *audit_killed_trees(void)
2520 struct audit_context *ctx = audit_context();
2521 if (likely(!ctx || !ctx->in_syscall))
2522 return NULL;
2523 return &ctx->killed_trees;