bpf: remove redundant variable old_flags
[linux-2.6/btrfs-unstable.git] / net / vmw_vsock / af_vsock.c
blob98359c19522f6ecbc3cd052f4389a6884bbff0cc
1 /*
2 * VMware vSockets Driver
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
16 /* Implementation notes:
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the TCP_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
64 * - Lock ordering for pending or accept queue sockets is:
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
86 * - sk->sk_state uses the TCP state constants because they are widely used by
87 * other address families and exposed to userspace tools like ss(8):
89 * TCP_CLOSE - unconnected
90 * TCP_SYN_SENT - connecting
91 * TCP_ESTABLISHED - connected
92 * TCP_CLOSING - disconnecting
93 * TCP_LISTEN - listening
96 #include <linux/types.h>
97 #include <linux/bitops.h>
98 #include <linux/cred.h>
99 #include <linux/init.h>
100 #include <linux/io.h>
101 #include <linux/kernel.h>
102 #include <linux/sched/signal.h>
103 #include <linux/kmod.h>
104 #include <linux/list.h>
105 #include <linux/miscdevice.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/net.h>
109 #include <linux/poll.h>
110 #include <linux/skbuff.h>
111 #include <linux/smp.h>
112 #include <linux/socket.h>
113 #include <linux/stddef.h>
114 #include <linux/unistd.h>
115 #include <linux/wait.h>
116 #include <linux/workqueue.h>
117 #include <net/sock.h>
118 #include <net/af_vsock.h>
120 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
121 static void vsock_sk_destruct(struct sock *sk);
122 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
124 /* Protocol family. */
125 static struct proto vsock_proto = {
126 .name = "AF_VSOCK",
127 .owner = THIS_MODULE,
128 .obj_size = sizeof(struct vsock_sock),
131 /* The default peer timeout indicates how long we will wait for a peer response
132 * to a control message.
134 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136 static const struct vsock_transport *transport;
137 static DEFINE_MUTEX(vsock_register_mutex);
139 /**** EXPORTS ****/
141 /* Get the ID of the local context. This is transport dependent. */
143 int vm_sockets_get_local_cid(void)
145 return transport->get_local_cid();
147 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
149 /**** UTILS ****/
151 /* Each bound VSocket is stored in the bind hash table and each connected
152 * VSocket is stored in the connected hash table.
154 * Unbound sockets are all put on the same list attached to the end of the hash
155 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
156 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
157 * represents the list that addr hashes to).
159 * Specifically, we initialize the vsock_bind_table array to a size of
160 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
161 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
162 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
163 * mods with VSOCK_HASH_SIZE to ensure this.
165 #define MAX_PORT_RETRIES 24
167 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
168 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
169 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
171 /* XXX This can probably be implemented in a better way. */
172 #define VSOCK_CONN_HASH(src, dst) \
173 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
174 #define vsock_connected_sockets(src, dst) \
175 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
176 #define vsock_connected_sockets_vsk(vsk) \
177 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
179 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
180 EXPORT_SYMBOL_GPL(vsock_bind_table);
181 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
182 EXPORT_SYMBOL_GPL(vsock_connected_table);
183 DEFINE_SPINLOCK(vsock_table_lock);
184 EXPORT_SYMBOL_GPL(vsock_table_lock);
186 /* Autobind this socket to the local address if necessary. */
187 static int vsock_auto_bind(struct vsock_sock *vsk)
189 struct sock *sk = sk_vsock(vsk);
190 struct sockaddr_vm local_addr;
192 if (vsock_addr_bound(&vsk->local_addr))
193 return 0;
194 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
195 return __vsock_bind(sk, &local_addr);
198 static void vsock_init_tables(void)
200 int i;
202 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
203 INIT_LIST_HEAD(&vsock_bind_table[i]);
205 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
206 INIT_LIST_HEAD(&vsock_connected_table[i]);
209 static void __vsock_insert_bound(struct list_head *list,
210 struct vsock_sock *vsk)
212 sock_hold(&vsk->sk);
213 list_add(&vsk->bound_table, list);
216 static void __vsock_insert_connected(struct list_head *list,
217 struct vsock_sock *vsk)
219 sock_hold(&vsk->sk);
220 list_add(&vsk->connected_table, list);
223 static void __vsock_remove_bound(struct vsock_sock *vsk)
225 list_del_init(&vsk->bound_table);
226 sock_put(&vsk->sk);
229 static void __vsock_remove_connected(struct vsock_sock *vsk)
231 list_del_init(&vsk->connected_table);
232 sock_put(&vsk->sk);
235 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
237 struct vsock_sock *vsk;
239 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
240 if (addr->svm_port == vsk->local_addr.svm_port)
241 return sk_vsock(vsk);
243 return NULL;
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 struct sockaddr_vm *dst)
249 struct vsock_sock *vsk;
251 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 connected_table) {
253 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 dst->svm_port == vsk->local_addr.svm_port) {
255 return sk_vsock(vsk);
259 return NULL;
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
264 spin_lock_bh(&vsock_table_lock);
265 __vsock_insert_bound(vsock_unbound_sockets, vsk);
266 spin_unlock_bh(&vsock_table_lock);
269 void vsock_insert_connected(struct vsock_sock *vsk)
271 struct list_head *list = vsock_connected_sockets(
272 &vsk->remote_addr, &vsk->local_addr);
274 spin_lock_bh(&vsock_table_lock);
275 __vsock_insert_connected(list, vsk);
276 spin_unlock_bh(&vsock_table_lock);
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
280 void vsock_remove_bound(struct vsock_sock *vsk)
282 spin_lock_bh(&vsock_table_lock);
283 __vsock_remove_bound(vsk);
284 spin_unlock_bh(&vsock_table_lock);
286 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288 void vsock_remove_connected(struct vsock_sock *vsk)
290 spin_lock_bh(&vsock_table_lock);
291 __vsock_remove_connected(vsk);
292 spin_unlock_bh(&vsock_table_lock);
294 EXPORT_SYMBOL_GPL(vsock_remove_connected);
296 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
298 struct sock *sk;
300 spin_lock_bh(&vsock_table_lock);
301 sk = __vsock_find_bound_socket(addr);
302 if (sk)
303 sock_hold(sk);
305 spin_unlock_bh(&vsock_table_lock);
307 return sk;
309 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
311 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
312 struct sockaddr_vm *dst)
314 struct sock *sk;
316 spin_lock_bh(&vsock_table_lock);
317 sk = __vsock_find_connected_socket(src, dst);
318 if (sk)
319 sock_hold(sk);
321 spin_unlock_bh(&vsock_table_lock);
323 return sk;
325 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
327 static bool vsock_in_bound_table(struct vsock_sock *vsk)
329 bool ret;
331 spin_lock_bh(&vsock_table_lock);
332 ret = __vsock_in_bound_table(vsk);
333 spin_unlock_bh(&vsock_table_lock);
335 return ret;
338 static bool vsock_in_connected_table(struct vsock_sock *vsk)
340 bool ret;
342 spin_lock_bh(&vsock_table_lock);
343 ret = __vsock_in_connected_table(vsk);
344 spin_unlock_bh(&vsock_table_lock);
346 return ret;
349 void vsock_remove_sock(struct vsock_sock *vsk)
351 if (vsock_in_bound_table(vsk))
352 vsock_remove_bound(vsk);
354 if (vsock_in_connected_table(vsk))
355 vsock_remove_connected(vsk);
357 EXPORT_SYMBOL_GPL(vsock_remove_sock);
359 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
361 int i;
363 spin_lock_bh(&vsock_table_lock);
365 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
366 struct vsock_sock *vsk;
367 list_for_each_entry(vsk, &vsock_connected_table[i],
368 connected_table)
369 fn(sk_vsock(vsk));
372 spin_unlock_bh(&vsock_table_lock);
374 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
376 void vsock_add_pending(struct sock *listener, struct sock *pending)
378 struct vsock_sock *vlistener;
379 struct vsock_sock *vpending;
381 vlistener = vsock_sk(listener);
382 vpending = vsock_sk(pending);
384 sock_hold(pending);
385 sock_hold(listener);
386 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
388 EXPORT_SYMBOL_GPL(vsock_add_pending);
390 void vsock_remove_pending(struct sock *listener, struct sock *pending)
392 struct vsock_sock *vpending = vsock_sk(pending);
394 list_del_init(&vpending->pending_links);
395 sock_put(listener);
396 sock_put(pending);
398 EXPORT_SYMBOL_GPL(vsock_remove_pending);
400 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
402 struct vsock_sock *vlistener;
403 struct vsock_sock *vconnected;
405 vlistener = vsock_sk(listener);
406 vconnected = vsock_sk(connected);
408 sock_hold(connected);
409 sock_hold(listener);
410 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
412 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
414 static struct sock *vsock_dequeue_accept(struct sock *listener)
416 struct vsock_sock *vlistener;
417 struct vsock_sock *vconnected;
419 vlistener = vsock_sk(listener);
421 if (list_empty(&vlistener->accept_queue))
422 return NULL;
424 vconnected = list_entry(vlistener->accept_queue.next,
425 struct vsock_sock, accept_queue);
427 list_del_init(&vconnected->accept_queue);
428 sock_put(listener);
429 /* The caller will need a reference on the connected socket so we let
430 * it call sock_put().
433 return sk_vsock(vconnected);
436 static bool vsock_is_accept_queue_empty(struct sock *sk)
438 struct vsock_sock *vsk = vsock_sk(sk);
439 return list_empty(&vsk->accept_queue);
442 static bool vsock_is_pending(struct sock *sk)
444 struct vsock_sock *vsk = vsock_sk(sk);
445 return !list_empty(&vsk->pending_links);
448 static int vsock_send_shutdown(struct sock *sk, int mode)
450 return transport->shutdown(vsock_sk(sk), mode);
453 void vsock_pending_work(struct work_struct *work)
455 struct sock *sk;
456 struct sock *listener;
457 struct vsock_sock *vsk;
458 bool cleanup;
460 vsk = container_of(work, struct vsock_sock, dwork.work);
461 sk = sk_vsock(vsk);
462 listener = vsk->listener;
463 cleanup = true;
465 lock_sock(listener);
466 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
468 if (vsock_is_pending(sk)) {
469 vsock_remove_pending(listener, sk);
471 listener->sk_ack_backlog--;
472 } else if (!vsk->rejected) {
473 /* We are not on the pending list and accept() did not reject
474 * us, so we must have been accepted by our user process. We
475 * just need to drop our references to the sockets and be on
476 * our way.
478 cleanup = false;
479 goto out;
482 /* We need to remove ourself from the global connected sockets list so
483 * incoming packets can't find this socket, and to reduce the reference
484 * count.
486 if (vsock_in_connected_table(vsk))
487 vsock_remove_connected(vsk);
489 sk->sk_state = TCP_CLOSE;
491 out:
492 release_sock(sk);
493 release_sock(listener);
494 if (cleanup)
495 sock_put(sk);
497 sock_put(sk);
498 sock_put(listener);
500 EXPORT_SYMBOL_GPL(vsock_pending_work);
502 /**** SOCKET OPERATIONS ****/
504 static int __vsock_bind_stream(struct vsock_sock *vsk,
505 struct sockaddr_vm *addr)
507 static u32 port = LAST_RESERVED_PORT + 1;
508 struct sockaddr_vm new_addr;
510 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
512 if (addr->svm_port == VMADDR_PORT_ANY) {
513 bool found = false;
514 unsigned int i;
516 for (i = 0; i < MAX_PORT_RETRIES; i++) {
517 if (port <= LAST_RESERVED_PORT)
518 port = LAST_RESERVED_PORT + 1;
520 new_addr.svm_port = port++;
522 if (!__vsock_find_bound_socket(&new_addr)) {
523 found = true;
524 break;
528 if (!found)
529 return -EADDRNOTAVAIL;
530 } else {
531 /* If port is in reserved range, ensure caller
532 * has necessary privileges.
534 if (addr->svm_port <= LAST_RESERVED_PORT &&
535 !capable(CAP_NET_BIND_SERVICE)) {
536 return -EACCES;
539 if (__vsock_find_bound_socket(&new_addr))
540 return -EADDRINUSE;
543 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
545 /* Remove stream sockets from the unbound list and add them to the hash
546 * table for easy lookup by its address. The unbound list is simply an
547 * extra entry at the end of the hash table, a trick used by AF_UNIX.
549 __vsock_remove_bound(vsk);
550 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
552 return 0;
555 static int __vsock_bind_dgram(struct vsock_sock *vsk,
556 struct sockaddr_vm *addr)
558 return transport->dgram_bind(vsk, addr);
561 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
563 struct vsock_sock *vsk = vsock_sk(sk);
564 u32 cid;
565 int retval;
567 /* First ensure this socket isn't already bound. */
568 if (vsock_addr_bound(&vsk->local_addr))
569 return -EINVAL;
571 /* Now bind to the provided address or select appropriate values if
572 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
573 * like AF_INET prevents binding to a non-local IP address (in most
574 * cases), we only allow binding to the local CID.
576 cid = transport->get_local_cid();
577 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
578 return -EADDRNOTAVAIL;
580 switch (sk->sk_socket->type) {
581 case SOCK_STREAM:
582 spin_lock_bh(&vsock_table_lock);
583 retval = __vsock_bind_stream(vsk, addr);
584 spin_unlock_bh(&vsock_table_lock);
585 break;
587 case SOCK_DGRAM:
588 retval = __vsock_bind_dgram(vsk, addr);
589 break;
591 default:
592 retval = -EINVAL;
593 break;
596 return retval;
599 struct sock *__vsock_create(struct net *net,
600 struct socket *sock,
601 struct sock *parent,
602 gfp_t priority,
603 unsigned short type,
604 int kern)
606 struct sock *sk;
607 struct vsock_sock *psk;
608 struct vsock_sock *vsk;
610 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
611 if (!sk)
612 return NULL;
614 sock_init_data(sock, sk);
616 /* sk->sk_type is normally set in sock_init_data, but only if sock is
617 * non-NULL. We make sure that our sockets always have a type by
618 * setting it here if needed.
620 if (!sock)
621 sk->sk_type = type;
623 vsk = vsock_sk(sk);
624 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
625 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
627 sk->sk_destruct = vsock_sk_destruct;
628 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
629 sock_reset_flag(sk, SOCK_DONE);
631 INIT_LIST_HEAD(&vsk->bound_table);
632 INIT_LIST_HEAD(&vsk->connected_table);
633 vsk->listener = NULL;
634 INIT_LIST_HEAD(&vsk->pending_links);
635 INIT_LIST_HEAD(&vsk->accept_queue);
636 vsk->rejected = false;
637 vsk->sent_request = false;
638 vsk->ignore_connecting_rst = false;
639 vsk->peer_shutdown = 0;
641 psk = parent ? vsock_sk(parent) : NULL;
642 if (parent) {
643 vsk->trusted = psk->trusted;
644 vsk->owner = get_cred(psk->owner);
645 vsk->connect_timeout = psk->connect_timeout;
646 } else {
647 vsk->trusted = capable(CAP_NET_ADMIN);
648 vsk->owner = get_current_cred();
649 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
652 if (transport->init(vsk, psk) < 0) {
653 sk_free(sk);
654 return NULL;
657 if (sock)
658 vsock_insert_unbound(vsk);
660 return sk;
662 EXPORT_SYMBOL_GPL(__vsock_create);
664 static void __vsock_release(struct sock *sk)
666 if (sk) {
667 struct sk_buff *skb;
668 struct sock *pending;
669 struct vsock_sock *vsk;
671 vsk = vsock_sk(sk);
672 pending = NULL; /* Compiler warning. */
674 transport->release(vsk);
676 lock_sock(sk);
677 sock_orphan(sk);
678 sk->sk_shutdown = SHUTDOWN_MASK;
680 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
681 kfree_skb(skb);
683 /* Clean up any sockets that never were accepted. */
684 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
685 __vsock_release(pending);
686 sock_put(pending);
689 release_sock(sk);
690 sock_put(sk);
694 static void vsock_sk_destruct(struct sock *sk)
696 struct vsock_sock *vsk = vsock_sk(sk);
698 transport->destruct(vsk);
700 /* When clearing these addresses, there's no need to set the family and
701 * possibly register the address family with the kernel.
703 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
704 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
706 put_cred(vsk->owner);
709 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
711 int err;
713 err = sock_queue_rcv_skb(sk, skb);
714 if (err)
715 kfree_skb(skb);
717 return err;
720 s64 vsock_stream_has_data(struct vsock_sock *vsk)
722 return transport->stream_has_data(vsk);
724 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
726 s64 vsock_stream_has_space(struct vsock_sock *vsk)
728 return transport->stream_has_space(vsk);
730 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
732 static int vsock_release(struct socket *sock)
734 __vsock_release(sock->sk);
735 sock->sk = NULL;
736 sock->state = SS_FREE;
738 return 0;
741 static int
742 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
744 int err;
745 struct sock *sk;
746 struct sockaddr_vm *vm_addr;
748 sk = sock->sk;
750 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
751 return -EINVAL;
753 lock_sock(sk);
754 err = __vsock_bind(sk, vm_addr);
755 release_sock(sk);
757 return err;
760 static int vsock_getname(struct socket *sock,
761 struct sockaddr *addr, int *addr_len, int peer)
763 int err;
764 struct sock *sk;
765 struct vsock_sock *vsk;
766 struct sockaddr_vm *vm_addr;
768 sk = sock->sk;
769 vsk = vsock_sk(sk);
770 err = 0;
772 lock_sock(sk);
774 if (peer) {
775 if (sock->state != SS_CONNECTED) {
776 err = -ENOTCONN;
777 goto out;
779 vm_addr = &vsk->remote_addr;
780 } else {
781 vm_addr = &vsk->local_addr;
784 if (!vm_addr) {
785 err = -EINVAL;
786 goto out;
789 /* sys_getsockname() and sys_getpeername() pass us a
790 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
791 * that macro is defined in socket.c instead of .h, so we hardcode its
792 * value here.
794 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
795 memcpy(addr, vm_addr, sizeof(*vm_addr));
796 *addr_len = sizeof(*vm_addr);
798 out:
799 release_sock(sk);
800 return err;
803 static int vsock_shutdown(struct socket *sock, int mode)
805 int err;
806 struct sock *sk;
808 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
809 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
810 * here like the other address families do. Note also that the
811 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
812 * which is what we want.
814 mode++;
816 if ((mode & ~SHUTDOWN_MASK) || !mode)
817 return -EINVAL;
819 /* If this is a STREAM socket and it is not connected then bail out
820 * immediately. If it is a DGRAM socket then we must first kick the
821 * socket so that it wakes up from any sleeping calls, for example
822 * recv(), and then afterwards return the error.
825 sk = sock->sk;
826 if (sock->state == SS_UNCONNECTED) {
827 err = -ENOTCONN;
828 if (sk->sk_type == SOCK_STREAM)
829 return err;
830 } else {
831 sock->state = SS_DISCONNECTING;
832 err = 0;
835 /* Receive and send shutdowns are treated alike. */
836 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
837 if (mode) {
838 lock_sock(sk);
839 sk->sk_shutdown |= mode;
840 sk->sk_state_change(sk);
841 release_sock(sk);
843 if (sk->sk_type == SOCK_STREAM) {
844 sock_reset_flag(sk, SOCK_DONE);
845 vsock_send_shutdown(sk, mode);
849 return err;
852 static unsigned int vsock_poll(struct file *file, struct socket *sock,
853 poll_table *wait)
855 struct sock *sk;
856 unsigned int mask;
857 struct vsock_sock *vsk;
859 sk = sock->sk;
860 vsk = vsock_sk(sk);
862 poll_wait(file, sk_sleep(sk), wait);
863 mask = 0;
865 if (sk->sk_err)
866 /* Signify that there has been an error on this socket. */
867 mask |= POLLERR;
869 /* INET sockets treat local write shutdown and peer write shutdown as a
870 * case of POLLHUP set.
872 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
873 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
874 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
875 mask |= POLLHUP;
878 if (sk->sk_shutdown & RCV_SHUTDOWN ||
879 vsk->peer_shutdown & SEND_SHUTDOWN) {
880 mask |= POLLRDHUP;
883 if (sock->type == SOCK_DGRAM) {
884 /* For datagram sockets we can read if there is something in
885 * the queue and write as long as the socket isn't shutdown for
886 * sending.
888 if (!skb_queue_empty(&sk->sk_receive_queue) ||
889 (sk->sk_shutdown & RCV_SHUTDOWN)) {
890 mask |= POLLIN | POLLRDNORM;
893 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
894 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
896 } else if (sock->type == SOCK_STREAM) {
897 lock_sock(sk);
899 /* Listening sockets that have connections in their accept
900 * queue can be read.
902 if (sk->sk_state == TCP_LISTEN
903 && !vsock_is_accept_queue_empty(sk))
904 mask |= POLLIN | POLLRDNORM;
906 /* If there is something in the queue then we can read. */
907 if (transport->stream_is_active(vsk) &&
908 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
909 bool data_ready_now = false;
910 int ret = transport->notify_poll_in(
911 vsk, 1, &data_ready_now);
912 if (ret < 0) {
913 mask |= POLLERR;
914 } else {
915 if (data_ready_now)
916 mask |= POLLIN | POLLRDNORM;
921 /* Sockets whose connections have been closed, reset, or
922 * terminated should also be considered read, and we check the
923 * shutdown flag for that.
925 if (sk->sk_shutdown & RCV_SHUTDOWN ||
926 vsk->peer_shutdown & SEND_SHUTDOWN) {
927 mask |= POLLIN | POLLRDNORM;
930 /* Connected sockets that can produce data can be written. */
931 if (sk->sk_state == TCP_ESTABLISHED) {
932 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
933 bool space_avail_now = false;
934 int ret = transport->notify_poll_out(
935 vsk, 1, &space_avail_now);
936 if (ret < 0) {
937 mask |= POLLERR;
938 } else {
939 if (space_avail_now)
940 /* Remove POLLWRBAND since INET
941 * sockets are not setting it.
943 mask |= POLLOUT | POLLWRNORM;
949 /* Simulate INET socket poll behaviors, which sets
950 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
951 * but local send is not shutdown.
953 if (sk->sk_state == TCP_CLOSE) {
954 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
955 mask |= POLLOUT | POLLWRNORM;
959 release_sock(sk);
962 return mask;
965 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
966 size_t len)
968 int err;
969 struct sock *sk;
970 struct vsock_sock *vsk;
971 struct sockaddr_vm *remote_addr;
973 if (msg->msg_flags & MSG_OOB)
974 return -EOPNOTSUPP;
976 /* For now, MSG_DONTWAIT is always assumed... */
977 err = 0;
978 sk = sock->sk;
979 vsk = vsock_sk(sk);
981 lock_sock(sk);
983 err = vsock_auto_bind(vsk);
984 if (err)
985 goto out;
988 /* If the provided message contains an address, use that. Otherwise
989 * fall back on the socket's remote handle (if it has been connected).
991 if (msg->msg_name &&
992 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
993 &remote_addr) == 0) {
994 /* Ensure this address is of the right type and is a valid
995 * destination.
998 if (remote_addr->svm_cid == VMADDR_CID_ANY)
999 remote_addr->svm_cid = transport->get_local_cid();
1001 if (!vsock_addr_bound(remote_addr)) {
1002 err = -EINVAL;
1003 goto out;
1005 } else if (sock->state == SS_CONNECTED) {
1006 remote_addr = &vsk->remote_addr;
1008 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1009 remote_addr->svm_cid = transport->get_local_cid();
1011 /* XXX Should connect() or this function ensure remote_addr is
1012 * bound?
1014 if (!vsock_addr_bound(&vsk->remote_addr)) {
1015 err = -EINVAL;
1016 goto out;
1018 } else {
1019 err = -EINVAL;
1020 goto out;
1023 if (!transport->dgram_allow(remote_addr->svm_cid,
1024 remote_addr->svm_port)) {
1025 err = -EINVAL;
1026 goto out;
1029 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1031 out:
1032 release_sock(sk);
1033 return err;
1036 static int vsock_dgram_connect(struct socket *sock,
1037 struct sockaddr *addr, int addr_len, int flags)
1039 int err;
1040 struct sock *sk;
1041 struct vsock_sock *vsk;
1042 struct sockaddr_vm *remote_addr;
1044 sk = sock->sk;
1045 vsk = vsock_sk(sk);
1047 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1048 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1049 lock_sock(sk);
1050 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1051 VMADDR_PORT_ANY);
1052 sock->state = SS_UNCONNECTED;
1053 release_sock(sk);
1054 return 0;
1055 } else if (err != 0)
1056 return -EINVAL;
1058 lock_sock(sk);
1060 err = vsock_auto_bind(vsk);
1061 if (err)
1062 goto out;
1064 if (!transport->dgram_allow(remote_addr->svm_cid,
1065 remote_addr->svm_port)) {
1066 err = -EINVAL;
1067 goto out;
1070 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1071 sock->state = SS_CONNECTED;
1073 out:
1074 release_sock(sk);
1075 return err;
1078 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1079 size_t len, int flags)
1081 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1084 static const struct proto_ops vsock_dgram_ops = {
1085 .family = PF_VSOCK,
1086 .owner = THIS_MODULE,
1087 .release = vsock_release,
1088 .bind = vsock_bind,
1089 .connect = vsock_dgram_connect,
1090 .socketpair = sock_no_socketpair,
1091 .accept = sock_no_accept,
1092 .getname = vsock_getname,
1093 .poll = vsock_poll,
1094 .ioctl = sock_no_ioctl,
1095 .listen = sock_no_listen,
1096 .shutdown = vsock_shutdown,
1097 .setsockopt = sock_no_setsockopt,
1098 .getsockopt = sock_no_getsockopt,
1099 .sendmsg = vsock_dgram_sendmsg,
1100 .recvmsg = vsock_dgram_recvmsg,
1101 .mmap = sock_no_mmap,
1102 .sendpage = sock_no_sendpage,
1105 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1107 if (!transport->cancel_pkt)
1108 return -EOPNOTSUPP;
1110 return transport->cancel_pkt(vsk);
1113 static void vsock_connect_timeout(struct work_struct *work)
1115 struct sock *sk;
1116 struct vsock_sock *vsk;
1117 int cancel = 0;
1119 vsk = container_of(work, struct vsock_sock, dwork.work);
1120 sk = sk_vsock(vsk);
1122 lock_sock(sk);
1123 if (sk->sk_state == TCP_SYN_SENT &&
1124 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1125 sk->sk_state = TCP_CLOSE;
1126 sk->sk_err = ETIMEDOUT;
1127 sk->sk_error_report(sk);
1128 cancel = 1;
1130 release_sock(sk);
1131 if (cancel)
1132 vsock_transport_cancel_pkt(vsk);
1134 sock_put(sk);
1137 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1138 int addr_len, int flags)
1140 int err;
1141 struct sock *sk;
1142 struct vsock_sock *vsk;
1143 struct sockaddr_vm *remote_addr;
1144 long timeout;
1145 DEFINE_WAIT(wait);
1147 err = 0;
1148 sk = sock->sk;
1149 vsk = vsock_sk(sk);
1151 lock_sock(sk);
1153 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1154 switch (sock->state) {
1155 case SS_CONNECTED:
1156 err = -EISCONN;
1157 goto out;
1158 case SS_DISCONNECTING:
1159 err = -EINVAL;
1160 goto out;
1161 case SS_CONNECTING:
1162 /* This continues on so we can move sock into the SS_CONNECTED
1163 * state once the connection has completed (at which point err
1164 * will be set to zero also). Otherwise, we will either wait
1165 * for the connection or return -EALREADY should this be a
1166 * non-blocking call.
1168 err = -EALREADY;
1169 break;
1170 default:
1171 if ((sk->sk_state == TCP_LISTEN) ||
1172 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1173 err = -EINVAL;
1174 goto out;
1177 /* The hypervisor and well-known contexts do not have socket
1178 * endpoints.
1180 if (!transport->stream_allow(remote_addr->svm_cid,
1181 remote_addr->svm_port)) {
1182 err = -ENETUNREACH;
1183 goto out;
1186 /* Set the remote address that we are connecting to. */
1187 memcpy(&vsk->remote_addr, remote_addr,
1188 sizeof(vsk->remote_addr));
1190 err = vsock_auto_bind(vsk);
1191 if (err)
1192 goto out;
1194 sk->sk_state = TCP_SYN_SENT;
1196 err = transport->connect(vsk);
1197 if (err < 0)
1198 goto out;
1200 /* Mark sock as connecting and set the error code to in
1201 * progress in case this is a non-blocking connect.
1203 sock->state = SS_CONNECTING;
1204 err = -EINPROGRESS;
1207 /* The receive path will handle all communication until we are able to
1208 * enter the connected state. Here we wait for the connection to be
1209 * completed or a notification of an error.
1211 timeout = vsk->connect_timeout;
1212 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1214 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1215 if (flags & O_NONBLOCK) {
1216 /* If we're not going to block, we schedule a timeout
1217 * function to generate a timeout on the connection
1218 * attempt, in case the peer doesn't respond in a
1219 * timely manner. We hold on to the socket until the
1220 * timeout fires.
1222 sock_hold(sk);
1223 INIT_DELAYED_WORK(&vsk->dwork,
1224 vsock_connect_timeout);
1225 schedule_delayed_work(&vsk->dwork, timeout);
1227 /* Skip ahead to preserve error code set above. */
1228 goto out_wait;
1231 release_sock(sk);
1232 timeout = schedule_timeout(timeout);
1233 lock_sock(sk);
1235 if (signal_pending(current)) {
1236 err = sock_intr_errno(timeout);
1237 sk->sk_state = TCP_CLOSE;
1238 sock->state = SS_UNCONNECTED;
1239 vsock_transport_cancel_pkt(vsk);
1240 goto out_wait;
1241 } else if (timeout == 0) {
1242 err = -ETIMEDOUT;
1243 sk->sk_state = TCP_CLOSE;
1244 sock->state = SS_UNCONNECTED;
1245 vsock_transport_cancel_pkt(vsk);
1246 goto out_wait;
1249 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1252 if (sk->sk_err) {
1253 err = -sk->sk_err;
1254 sk->sk_state = TCP_CLOSE;
1255 sock->state = SS_UNCONNECTED;
1256 } else {
1257 err = 0;
1260 out_wait:
1261 finish_wait(sk_sleep(sk), &wait);
1262 out:
1263 release_sock(sk);
1264 return err;
1267 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1268 bool kern)
1270 struct sock *listener;
1271 int err;
1272 struct sock *connected;
1273 struct vsock_sock *vconnected;
1274 long timeout;
1275 DEFINE_WAIT(wait);
1277 err = 0;
1278 listener = sock->sk;
1280 lock_sock(listener);
1282 if (sock->type != SOCK_STREAM) {
1283 err = -EOPNOTSUPP;
1284 goto out;
1287 if (listener->sk_state != TCP_LISTEN) {
1288 err = -EINVAL;
1289 goto out;
1292 /* Wait for children sockets to appear; these are the new sockets
1293 * created upon connection establishment.
1295 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1296 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1298 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1299 listener->sk_err == 0) {
1300 release_sock(listener);
1301 timeout = schedule_timeout(timeout);
1302 finish_wait(sk_sleep(listener), &wait);
1303 lock_sock(listener);
1305 if (signal_pending(current)) {
1306 err = sock_intr_errno(timeout);
1307 goto out;
1308 } else if (timeout == 0) {
1309 err = -EAGAIN;
1310 goto out;
1313 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1315 finish_wait(sk_sleep(listener), &wait);
1317 if (listener->sk_err)
1318 err = -listener->sk_err;
1320 if (connected) {
1321 listener->sk_ack_backlog--;
1323 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1324 vconnected = vsock_sk(connected);
1326 /* If the listener socket has received an error, then we should
1327 * reject this socket and return. Note that we simply mark the
1328 * socket rejected, drop our reference, and let the cleanup
1329 * function handle the cleanup; the fact that we found it in
1330 * the listener's accept queue guarantees that the cleanup
1331 * function hasn't run yet.
1333 if (err) {
1334 vconnected->rejected = true;
1335 } else {
1336 newsock->state = SS_CONNECTED;
1337 sock_graft(connected, newsock);
1340 release_sock(connected);
1341 sock_put(connected);
1344 out:
1345 release_sock(listener);
1346 return err;
1349 static int vsock_listen(struct socket *sock, int backlog)
1351 int err;
1352 struct sock *sk;
1353 struct vsock_sock *vsk;
1355 sk = sock->sk;
1357 lock_sock(sk);
1359 if (sock->type != SOCK_STREAM) {
1360 err = -EOPNOTSUPP;
1361 goto out;
1364 if (sock->state != SS_UNCONNECTED) {
1365 err = -EINVAL;
1366 goto out;
1369 vsk = vsock_sk(sk);
1371 if (!vsock_addr_bound(&vsk->local_addr)) {
1372 err = -EINVAL;
1373 goto out;
1376 sk->sk_max_ack_backlog = backlog;
1377 sk->sk_state = TCP_LISTEN;
1379 err = 0;
1381 out:
1382 release_sock(sk);
1383 return err;
1386 static int vsock_stream_setsockopt(struct socket *sock,
1387 int level,
1388 int optname,
1389 char __user *optval,
1390 unsigned int optlen)
1392 int err;
1393 struct sock *sk;
1394 struct vsock_sock *vsk;
1395 u64 val;
1397 if (level != AF_VSOCK)
1398 return -ENOPROTOOPT;
1400 #define COPY_IN(_v) \
1401 do { \
1402 if (optlen < sizeof(_v)) { \
1403 err = -EINVAL; \
1404 goto exit; \
1406 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1407 err = -EFAULT; \
1408 goto exit; \
1410 } while (0)
1412 err = 0;
1413 sk = sock->sk;
1414 vsk = vsock_sk(sk);
1416 lock_sock(sk);
1418 switch (optname) {
1419 case SO_VM_SOCKETS_BUFFER_SIZE:
1420 COPY_IN(val);
1421 transport->set_buffer_size(vsk, val);
1422 break;
1424 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1425 COPY_IN(val);
1426 transport->set_max_buffer_size(vsk, val);
1427 break;
1429 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1430 COPY_IN(val);
1431 transport->set_min_buffer_size(vsk, val);
1432 break;
1434 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1435 struct timeval tv;
1436 COPY_IN(tv);
1437 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1438 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1439 vsk->connect_timeout = tv.tv_sec * HZ +
1440 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1441 if (vsk->connect_timeout == 0)
1442 vsk->connect_timeout =
1443 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1445 } else {
1446 err = -ERANGE;
1448 break;
1451 default:
1452 err = -ENOPROTOOPT;
1453 break;
1456 #undef COPY_IN
1458 exit:
1459 release_sock(sk);
1460 return err;
1463 static int vsock_stream_getsockopt(struct socket *sock,
1464 int level, int optname,
1465 char __user *optval,
1466 int __user *optlen)
1468 int err;
1469 int len;
1470 struct sock *sk;
1471 struct vsock_sock *vsk;
1472 u64 val;
1474 if (level != AF_VSOCK)
1475 return -ENOPROTOOPT;
1477 err = get_user(len, optlen);
1478 if (err != 0)
1479 return err;
1481 #define COPY_OUT(_v) \
1482 do { \
1483 if (len < sizeof(_v)) \
1484 return -EINVAL; \
1486 len = sizeof(_v); \
1487 if (copy_to_user(optval, &_v, len) != 0) \
1488 return -EFAULT; \
1490 } while (0)
1492 err = 0;
1493 sk = sock->sk;
1494 vsk = vsock_sk(sk);
1496 switch (optname) {
1497 case SO_VM_SOCKETS_BUFFER_SIZE:
1498 val = transport->get_buffer_size(vsk);
1499 COPY_OUT(val);
1500 break;
1502 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1503 val = transport->get_max_buffer_size(vsk);
1504 COPY_OUT(val);
1505 break;
1507 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1508 val = transport->get_min_buffer_size(vsk);
1509 COPY_OUT(val);
1510 break;
1512 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1513 struct timeval tv;
1514 tv.tv_sec = vsk->connect_timeout / HZ;
1515 tv.tv_usec =
1516 (vsk->connect_timeout -
1517 tv.tv_sec * HZ) * (1000000 / HZ);
1518 COPY_OUT(tv);
1519 break;
1521 default:
1522 return -ENOPROTOOPT;
1525 err = put_user(len, optlen);
1526 if (err != 0)
1527 return -EFAULT;
1529 #undef COPY_OUT
1531 return 0;
1534 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1535 size_t len)
1537 struct sock *sk;
1538 struct vsock_sock *vsk;
1539 ssize_t total_written;
1540 long timeout;
1541 int err;
1542 struct vsock_transport_send_notify_data send_data;
1543 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1545 sk = sock->sk;
1546 vsk = vsock_sk(sk);
1547 total_written = 0;
1548 err = 0;
1550 if (msg->msg_flags & MSG_OOB)
1551 return -EOPNOTSUPP;
1553 lock_sock(sk);
1555 /* Callers should not provide a destination with stream sockets. */
1556 if (msg->msg_namelen) {
1557 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1558 goto out;
1561 /* Send data only if both sides are not shutdown in the direction. */
1562 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1563 vsk->peer_shutdown & RCV_SHUTDOWN) {
1564 err = -EPIPE;
1565 goto out;
1568 if (sk->sk_state != TCP_ESTABLISHED ||
1569 !vsock_addr_bound(&vsk->local_addr)) {
1570 err = -ENOTCONN;
1571 goto out;
1574 if (!vsock_addr_bound(&vsk->remote_addr)) {
1575 err = -EDESTADDRREQ;
1576 goto out;
1579 /* Wait for room in the produce queue to enqueue our user's data. */
1580 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1582 err = transport->notify_send_init(vsk, &send_data);
1583 if (err < 0)
1584 goto out;
1586 while (total_written < len) {
1587 ssize_t written;
1589 add_wait_queue(sk_sleep(sk), &wait);
1590 while (vsock_stream_has_space(vsk) == 0 &&
1591 sk->sk_err == 0 &&
1592 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1593 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1595 /* Don't wait for non-blocking sockets. */
1596 if (timeout == 0) {
1597 err = -EAGAIN;
1598 remove_wait_queue(sk_sleep(sk), &wait);
1599 goto out_err;
1602 err = transport->notify_send_pre_block(vsk, &send_data);
1603 if (err < 0) {
1604 remove_wait_queue(sk_sleep(sk), &wait);
1605 goto out_err;
1608 release_sock(sk);
1609 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1610 lock_sock(sk);
1611 if (signal_pending(current)) {
1612 err = sock_intr_errno(timeout);
1613 remove_wait_queue(sk_sleep(sk), &wait);
1614 goto out_err;
1615 } else if (timeout == 0) {
1616 err = -EAGAIN;
1617 remove_wait_queue(sk_sleep(sk), &wait);
1618 goto out_err;
1621 remove_wait_queue(sk_sleep(sk), &wait);
1623 /* These checks occur both as part of and after the loop
1624 * conditional since we need to check before and after
1625 * sleeping.
1627 if (sk->sk_err) {
1628 err = -sk->sk_err;
1629 goto out_err;
1630 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1631 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1632 err = -EPIPE;
1633 goto out_err;
1636 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1637 if (err < 0)
1638 goto out_err;
1640 /* Note that enqueue will only write as many bytes as are free
1641 * in the produce queue, so we don't need to ensure len is
1642 * smaller than the queue size. It is the caller's
1643 * responsibility to check how many bytes we were able to send.
1646 written = transport->stream_enqueue(
1647 vsk, msg,
1648 len - total_written);
1649 if (written < 0) {
1650 err = -ENOMEM;
1651 goto out_err;
1654 total_written += written;
1656 err = transport->notify_send_post_enqueue(
1657 vsk, written, &send_data);
1658 if (err < 0)
1659 goto out_err;
1663 out_err:
1664 if (total_written > 0)
1665 err = total_written;
1666 out:
1667 release_sock(sk);
1668 return err;
1672 static int
1673 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1674 int flags)
1676 struct sock *sk;
1677 struct vsock_sock *vsk;
1678 int err;
1679 size_t target;
1680 ssize_t copied;
1681 long timeout;
1682 struct vsock_transport_recv_notify_data recv_data;
1684 DEFINE_WAIT(wait);
1686 sk = sock->sk;
1687 vsk = vsock_sk(sk);
1688 err = 0;
1690 lock_sock(sk);
1692 if (sk->sk_state != TCP_ESTABLISHED) {
1693 /* Recvmsg is supposed to return 0 if a peer performs an
1694 * orderly shutdown. Differentiate between that case and when a
1695 * peer has not connected or a local shutdown occured with the
1696 * SOCK_DONE flag.
1698 if (sock_flag(sk, SOCK_DONE))
1699 err = 0;
1700 else
1701 err = -ENOTCONN;
1703 goto out;
1706 if (flags & MSG_OOB) {
1707 err = -EOPNOTSUPP;
1708 goto out;
1711 /* We don't check peer_shutdown flag here since peer may actually shut
1712 * down, but there can be data in the queue that a local socket can
1713 * receive.
1715 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1716 err = 0;
1717 goto out;
1720 /* It is valid on Linux to pass in a zero-length receive buffer. This
1721 * is not an error. We may as well bail out now.
1723 if (!len) {
1724 err = 0;
1725 goto out;
1728 /* We must not copy less than target bytes into the user's buffer
1729 * before returning successfully, so we wait for the consume queue to
1730 * have that much data to consume before dequeueing. Note that this
1731 * makes it impossible to handle cases where target is greater than the
1732 * queue size.
1734 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1735 if (target >= transport->stream_rcvhiwat(vsk)) {
1736 err = -ENOMEM;
1737 goto out;
1739 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1740 copied = 0;
1742 err = transport->notify_recv_init(vsk, target, &recv_data);
1743 if (err < 0)
1744 goto out;
1747 while (1) {
1748 s64 ready;
1750 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1751 ready = vsock_stream_has_data(vsk);
1753 if (ready == 0) {
1754 if (sk->sk_err != 0 ||
1755 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1756 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1757 finish_wait(sk_sleep(sk), &wait);
1758 break;
1760 /* Don't wait for non-blocking sockets. */
1761 if (timeout == 0) {
1762 err = -EAGAIN;
1763 finish_wait(sk_sleep(sk), &wait);
1764 break;
1767 err = transport->notify_recv_pre_block(
1768 vsk, target, &recv_data);
1769 if (err < 0) {
1770 finish_wait(sk_sleep(sk), &wait);
1771 break;
1773 release_sock(sk);
1774 timeout = schedule_timeout(timeout);
1775 lock_sock(sk);
1777 if (signal_pending(current)) {
1778 err = sock_intr_errno(timeout);
1779 finish_wait(sk_sleep(sk), &wait);
1780 break;
1781 } else if (timeout == 0) {
1782 err = -EAGAIN;
1783 finish_wait(sk_sleep(sk), &wait);
1784 break;
1786 } else {
1787 ssize_t read;
1789 finish_wait(sk_sleep(sk), &wait);
1791 if (ready < 0) {
1792 /* Invalid queue pair content. XXX This should
1793 * be changed to a connection reset in a later
1794 * change.
1797 err = -ENOMEM;
1798 goto out;
1801 err = transport->notify_recv_pre_dequeue(
1802 vsk, target, &recv_data);
1803 if (err < 0)
1804 break;
1806 read = transport->stream_dequeue(
1807 vsk, msg,
1808 len - copied, flags);
1809 if (read < 0) {
1810 err = -ENOMEM;
1811 break;
1814 copied += read;
1816 err = transport->notify_recv_post_dequeue(
1817 vsk, target, read,
1818 !(flags & MSG_PEEK), &recv_data);
1819 if (err < 0)
1820 goto out;
1822 if (read >= target || flags & MSG_PEEK)
1823 break;
1825 target -= read;
1829 if (sk->sk_err)
1830 err = -sk->sk_err;
1831 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1832 err = 0;
1834 if (copied > 0)
1835 err = copied;
1837 out:
1838 release_sock(sk);
1839 return err;
1842 static const struct proto_ops vsock_stream_ops = {
1843 .family = PF_VSOCK,
1844 .owner = THIS_MODULE,
1845 .release = vsock_release,
1846 .bind = vsock_bind,
1847 .connect = vsock_stream_connect,
1848 .socketpair = sock_no_socketpair,
1849 .accept = vsock_accept,
1850 .getname = vsock_getname,
1851 .poll = vsock_poll,
1852 .ioctl = sock_no_ioctl,
1853 .listen = vsock_listen,
1854 .shutdown = vsock_shutdown,
1855 .setsockopt = vsock_stream_setsockopt,
1856 .getsockopt = vsock_stream_getsockopt,
1857 .sendmsg = vsock_stream_sendmsg,
1858 .recvmsg = vsock_stream_recvmsg,
1859 .mmap = sock_no_mmap,
1860 .sendpage = sock_no_sendpage,
1863 static int vsock_create(struct net *net, struct socket *sock,
1864 int protocol, int kern)
1866 if (!sock)
1867 return -EINVAL;
1869 if (protocol && protocol != PF_VSOCK)
1870 return -EPROTONOSUPPORT;
1872 switch (sock->type) {
1873 case SOCK_DGRAM:
1874 sock->ops = &vsock_dgram_ops;
1875 break;
1876 case SOCK_STREAM:
1877 sock->ops = &vsock_stream_ops;
1878 break;
1879 default:
1880 return -ESOCKTNOSUPPORT;
1883 sock->state = SS_UNCONNECTED;
1885 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1888 static const struct net_proto_family vsock_family_ops = {
1889 .family = AF_VSOCK,
1890 .create = vsock_create,
1891 .owner = THIS_MODULE,
1894 static long vsock_dev_do_ioctl(struct file *filp,
1895 unsigned int cmd, void __user *ptr)
1897 u32 __user *p = ptr;
1898 int retval = 0;
1900 switch (cmd) {
1901 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1902 if (put_user(transport->get_local_cid(), p) != 0)
1903 retval = -EFAULT;
1904 break;
1906 default:
1907 pr_err("Unknown ioctl %d\n", cmd);
1908 retval = -EINVAL;
1911 return retval;
1914 static long vsock_dev_ioctl(struct file *filp,
1915 unsigned int cmd, unsigned long arg)
1917 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1920 #ifdef CONFIG_COMPAT
1921 static long vsock_dev_compat_ioctl(struct file *filp,
1922 unsigned int cmd, unsigned long arg)
1924 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1926 #endif
1928 static const struct file_operations vsock_device_ops = {
1929 .owner = THIS_MODULE,
1930 .unlocked_ioctl = vsock_dev_ioctl,
1931 #ifdef CONFIG_COMPAT
1932 .compat_ioctl = vsock_dev_compat_ioctl,
1933 #endif
1934 .open = nonseekable_open,
1937 static struct miscdevice vsock_device = {
1938 .name = "vsock",
1939 .fops = &vsock_device_ops,
1942 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1944 int err = mutex_lock_interruptible(&vsock_register_mutex);
1946 if (err)
1947 return err;
1949 if (transport) {
1950 err = -EBUSY;
1951 goto err_busy;
1954 /* Transport must be the owner of the protocol so that it can't
1955 * unload while there are open sockets.
1957 vsock_proto.owner = owner;
1958 transport = t;
1960 vsock_init_tables();
1962 vsock_device.minor = MISC_DYNAMIC_MINOR;
1963 err = misc_register(&vsock_device);
1964 if (err) {
1965 pr_err("Failed to register misc device\n");
1966 goto err_reset_transport;
1969 err = proto_register(&vsock_proto, 1); /* we want our slab */
1970 if (err) {
1971 pr_err("Cannot register vsock protocol\n");
1972 goto err_deregister_misc;
1975 err = sock_register(&vsock_family_ops);
1976 if (err) {
1977 pr_err("could not register af_vsock (%d) address family: %d\n",
1978 AF_VSOCK, err);
1979 goto err_unregister_proto;
1982 mutex_unlock(&vsock_register_mutex);
1983 return 0;
1985 err_unregister_proto:
1986 proto_unregister(&vsock_proto);
1987 err_deregister_misc:
1988 misc_deregister(&vsock_device);
1989 err_reset_transport:
1990 transport = NULL;
1991 err_busy:
1992 mutex_unlock(&vsock_register_mutex);
1993 return err;
1995 EXPORT_SYMBOL_GPL(__vsock_core_init);
1997 void vsock_core_exit(void)
1999 mutex_lock(&vsock_register_mutex);
2001 misc_deregister(&vsock_device);
2002 sock_unregister(AF_VSOCK);
2003 proto_unregister(&vsock_proto);
2005 /* We do not want the assignment below re-ordered. */
2006 mb();
2007 transport = NULL;
2009 mutex_unlock(&vsock_register_mutex);
2011 EXPORT_SYMBOL_GPL(vsock_core_exit);
2013 const struct vsock_transport *vsock_core_get_transport(void)
2015 /* vsock_register_mutex not taken since only the transport uses this
2016 * function and only while registered.
2018 return transport;
2020 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2022 MODULE_AUTHOR("VMware, Inc.");
2023 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2024 MODULE_VERSION("1.0.2.0-k");
2025 MODULE_LICENSE("GPL v2");