iwlwifi: split the regulatory rules when the bandwidth flags require it
[linux-2.6/btrfs-unstable.git] / fs / crypto / keyinfo.c
blob018c588c7ac3b7ac8fd78b4092332f771c6411c0
1 /*
2 * key management facility for FS encryption support.
4 * Copyright (C) 2015, Google, Inc.
6 * This contains encryption key functions.
8 * Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015.
9 */
11 #include <keys/user-type.h>
12 #include <linux/scatterlist.h>
13 #include <linux/ratelimit.h>
14 #include <crypto/aes.h>
15 #include <crypto/sha.h>
16 #include "fscrypt_private.h"
18 static struct crypto_shash *essiv_hash_tfm;
20 static void derive_crypt_complete(struct crypto_async_request *req, int rc)
22 struct fscrypt_completion_result *ecr = req->data;
24 if (rc == -EINPROGRESS)
25 return;
27 ecr->res = rc;
28 complete(&ecr->completion);
31 /**
32 * derive_key_aes() - Derive a key using AES-128-ECB
33 * @deriving_key: Encryption key used for derivation.
34 * @source_key: Source key to which to apply derivation.
35 * @derived_raw_key: Derived raw key.
37 * Return: Zero on success; non-zero otherwise.
39 static int derive_key_aes(u8 deriving_key[FS_AES_128_ECB_KEY_SIZE],
40 const struct fscrypt_key *source_key,
41 u8 derived_raw_key[FS_MAX_KEY_SIZE])
43 int res = 0;
44 struct skcipher_request *req = NULL;
45 DECLARE_FS_COMPLETION_RESULT(ecr);
46 struct scatterlist src_sg, dst_sg;
47 struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
49 if (IS_ERR(tfm)) {
50 res = PTR_ERR(tfm);
51 tfm = NULL;
52 goto out;
54 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
55 req = skcipher_request_alloc(tfm, GFP_NOFS);
56 if (!req) {
57 res = -ENOMEM;
58 goto out;
60 skcipher_request_set_callback(req,
61 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
62 derive_crypt_complete, &ecr);
63 res = crypto_skcipher_setkey(tfm, deriving_key,
64 FS_AES_128_ECB_KEY_SIZE);
65 if (res < 0)
66 goto out;
68 sg_init_one(&src_sg, source_key->raw, source_key->size);
69 sg_init_one(&dst_sg, derived_raw_key, source_key->size);
70 skcipher_request_set_crypt(req, &src_sg, &dst_sg, source_key->size,
71 NULL);
72 res = crypto_skcipher_encrypt(req);
73 if (res == -EINPROGRESS || res == -EBUSY) {
74 wait_for_completion(&ecr.completion);
75 res = ecr.res;
77 out:
78 skcipher_request_free(req);
79 crypto_free_skcipher(tfm);
80 return res;
83 static int validate_user_key(struct fscrypt_info *crypt_info,
84 struct fscrypt_context *ctx, u8 *raw_key,
85 const char *prefix, int min_keysize)
87 char *description;
88 struct key *keyring_key;
89 struct fscrypt_key *master_key;
90 const struct user_key_payload *ukp;
91 int res;
93 description = kasprintf(GFP_NOFS, "%s%*phN", prefix,
94 FS_KEY_DESCRIPTOR_SIZE,
95 ctx->master_key_descriptor);
96 if (!description)
97 return -ENOMEM;
99 keyring_key = request_key(&key_type_logon, description, NULL);
100 kfree(description);
101 if (IS_ERR(keyring_key))
102 return PTR_ERR(keyring_key);
103 down_read(&keyring_key->sem);
105 if (keyring_key->type != &key_type_logon) {
106 printk_once(KERN_WARNING
107 "%s: key type must be logon\n", __func__);
108 res = -ENOKEY;
109 goto out;
111 ukp = user_key_payload_locked(keyring_key);
112 if (ukp->datalen != sizeof(struct fscrypt_key)) {
113 res = -EINVAL;
114 goto out;
116 master_key = (struct fscrypt_key *)ukp->data;
117 BUILD_BUG_ON(FS_AES_128_ECB_KEY_SIZE != FS_KEY_DERIVATION_NONCE_SIZE);
119 if (master_key->size < min_keysize || master_key->size > FS_MAX_KEY_SIZE
120 || master_key->size % AES_BLOCK_SIZE != 0) {
121 printk_once(KERN_WARNING
122 "%s: key size incorrect: %d\n",
123 __func__, master_key->size);
124 res = -ENOKEY;
125 goto out;
127 res = derive_key_aes(ctx->nonce, master_key, raw_key);
128 out:
129 up_read(&keyring_key->sem);
130 key_put(keyring_key);
131 return res;
134 static const struct {
135 const char *cipher_str;
136 int keysize;
137 } available_modes[] = {
138 [FS_ENCRYPTION_MODE_AES_256_XTS] = { "xts(aes)",
139 FS_AES_256_XTS_KEY_SIZE },
140 [FS_ENCRYPTION_MODE_AES_256_CTS] = { "cts(cbc(aes))",
141 FS_AES_256_CTS_KEY_SIZE },
142 [FS_ENCRYPTION_MODE_AES_128_CBC] = { "cbc(aes)",
143 FS_AES_128_CBC_KEY_SIZE },
144 [FS_ENCRYPTION_MODE_AES_128_CTS] = { "cts(cbc(aes))",
145 FS_AES_128_CTS_KEY_SIZE },
148 static int determine_cipher_type(struct fscrypt_info *ci, struct inode *inode,
149 const char **cipher_str_ret, int *keysize_ret)
151 u32 mode;
153 if (!fscrypt_valid_enc_modes(ci->ci_data_mode, ci->ci_filename_mode)) {
154 pr_warn_ratelimited("fscrypt: inode %lu uses unsupported encryption modes (contents mode %d, filenames mode %d)\n",
155 inode->i_ino,
156 ci->ci_data_mode, ci->ci_filename_mode);
157 return -EINVAL;
160 if (S_ISREG(inode->i_mode)) {
161 mode = ci->ci_data_mode;
162 } else if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) {
163 mode = ci->ci_filename_mode;
164 } else {
165 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
166 inode->i_ino, (inode->i_mode & S_IFMT));
167 return -EINVAL;
170 *cipher_str_ret = available_modes[mode].cipher_str;
171 *keysize_ret = available_modes[mode].keysize;
172 return 0;
175 static void put_crypt_info(struct fscrypt_info *ci)
177 if (!ci)
178 return;
180 crypto_free_skcipher(ci->ci_ctfm);
181 crypto_free_cipher(ci->ci_essiv_tfm);
182 kmem_cache_free(fscrypt_info_cachep, ci);
185 static int derive_essiv_salt(const u8 *key, int keysize, u8 *salt)
187 struct crypto_shash *tfm = READ_ONCE(essiv_hash_tfm);
189 /* init hash transform on demand */
190 if (unlikely(!tfm)) {
191 struct crypto_shash *prev_tfm;
193 tfm = crypto_alloc_shash("sha256", 0, 0);
194 if (IS_ERR(tfm)) {
195 pr_warn_ratelimited("fscrypt: error allocating SHA-256 transform: %ld\n",
196 PTR_ERR(tfm));
197 return PTR_ERR(tfm);
199 prev_tfm = cmpxchg(&essiv_hash_tfm, NULL, tfm);
200 if (prev_tfm) {
201 crypto_free_shash(tfm);
202 tfm = prev_tfm;
207 SHASH_DESC_ON_STACK(desc, tfm);
208 desc->tfm = tfm;
209 desc->flags = 0;
211 return crypto_shash_digest(desc, key, keysize, salt);
215 static int init_essiv_generator(struct fscrypt_info *ci, const u8 *raw_key,
216 int keysize)
218 int err;
219 struct crypto_cipher *essiv_tfm;
220 u8 salt[SHA256_DIGEST_SIZE];
222 essiv_tfm = crypto_alloc_cipher("aes", 0, 0);
223 if (IS_ERR(essiv_tfm))
224 return PTR_ERR(essiv_tfm);
226 ci->ci_essiv_tfm = essiv_tfm;
228 err = derive_essiv_salt(raw_key, keysize, salt);
229 if (err)
230 goto out;
233 * Using SHA256 to derive the salt/key will result in AES-256 being
234 * used for IV generation. File contents encryption will still use the
235 * configured keysize (AES-128) nevertheless.
237 err = crypto_cipher_setkey(essiv_tfm, salt, sizeof(salt));
238 if (err)
239 goto out;
241 out:
242 memzero_explicit(salt, sizeof(salt));
243 return err;
246 void __exit fscrypt_essiv_cleanup(void)
248 crypto_free_shash(essiv_hash_tfm);
251 int fscrypt_get_encryption_info(struct inode *inode)
253 struct fscrypt_info *crypt_info;
254 struct fscrypt_context ctx;
255 struct crypto_skcipher *ctfm;
256 const char *cipher_str;
257 int keysize;
258 u8 *raw_key = NULL;
259 int res;
261 if (inode->i_crypt_info)
262 return 0;
264 res = fscrypt_initialize(inode->i_sb->s_cop->flags);
265 if (res)
266 return res;
268 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
269 if (res < 0) {
270 if (!fscrypt_dummy_context_enabled(inode) ||
271 inode->i_sb->s_cop->is_encrypted(inode))
272 return res;
273 /* Fake up a context for an unencrypted directory */
274 memset(&ctx, 0, sizeof(ctx));
275 ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1;
276 ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS;
277 ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS;
278 memset(ctx.master_key_descriptor, 0x42, FS_KEY_DESCRIPTOR_SIZE);
279 } else if (res != sizeof(ctx)) {
280 return -EINVAL;
283 if (ctx.format != FS_ENCRYPTION_CONTEXT_FORMAT_V1)
284 return -EINVAL;
286 if (ctx.flags & ~FS_POLICY_FLAGS_VALID)
287 return -EINVAL;
289 crypt_info = kmem_cache_alloc(fscrypt_info_cachep, GFP_NOFS);
290 if (!crypt_info)
291 return -ENOMEM;
293 crypt_info->ci_flags = ctx.flags;
294 crypt_info->ci_data_mode = ctx.contents_encryption_mode;
295 crypt_info->ci_filename_mode = ctx.filenames_encryption_mode;
296 crypt_info->ci_ctfm = NULL;
297 crypt_info->ci_essiv_tfm = NULL;
298 memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor,
299 sizeof(crypt_info->ci_master_key));
301 res = determine_cipher_type(crypt_info, inode, &cipher_str, &keysize);
302 if (res)
303 goto out;
306 * This cannot be a stack buffer because it is passed to the scatterlist
307 * crypto API as part of key derivation.
309 res = -ENOMEM;
310 raw_key = kmalloc(FS_MAX_KEY_SIZE, GFP_NOFS);
311 if (!raw_key)
312 goto out;
314 res = validate_user_key(crypt_info, &ctx, raw_key, FS_KEY_DESC_PREFIX,
315 keysize);
316 if (res && inode->i_sb->s_cop->key_prefix) {
317 int res2 = validate_user_key(crypt_info, &ctx, raw_key,
318 inode->i_sb->s_cop->key_prefix,
319 keysize);
320 if (res2) {
321 if (res2 == -ENOKEY)
322 res = -ENOKEY;
323 goto out;
325 } else if (res) {
326 goto out;
328 ctfm = crypto_alloc_skcipher(cipher_str, 0, 0);
329 if (!ctfm || IS_ERR(ctfm)) {
330 res = ctfm ? PTR_ERR(ctfm) : -ENOMEM;
331 pr_debug("%s: error %d (inode %lu) allocating crypto tfm\n",
332 __func__, res, inode->i_ino);
333 goto out;
335 crypt_info->ci_ctfm = ctfm;
336 crypto_skcipher_clear_flags(ctfm, ~0);
337 crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_REQ_WEAK_KEY);
339 * if the provided key is longer than keysize, we use the first
340 * keysize bytes of the derived key only
342 res = crypto_skcipher_setkey(ctfm, raw_key, keysize);
343 if (res)
344 goto out;
346 if (S_ISREG(inode->i_mode) &&
347 crypt_info->ci_data_mode == FS_ENCRYPTION_MODE_AES_128_CBC) {
348 res = init_essiv_generator(crypt_info, raw_key, keysize);
349 if (res) {
350 pr_debug("%s: error %d (inode %lu) allocating essiv tfm\n",
351 __func__, res, inode->i_ino);
352 goto out;
355 if (cmpxchg(&inode->i_crypt_info, NULL, crypt_info) == NULL)
356 crypt_info = NULL;
357 out:
358 if (res == -ENOKEY)
359 res = 0;
360 put_crypt_info(crypt_info);
361 kzfree(raw_key);
362 return res;
364 EXPORT_SYMBOL(fscrypt_get_encryption_info);
366 void fscrypt_put_encryption_info(struct inode *inode, struct fscrypt_info *ci)
368 struct fscrypt_info *prev;
370 if (ci == NULL)
371 ci = ACCESS_ONCE(inode->i_crypt_info);
372 if (ci == NULL)
373 return;
375 prev = cmpxchg(&inode->i_crypt_info, ci, NULL);
376 if (prev != ci)
377 return;
379 put_crypt_info(ci);
381 EXPORT_SYMBOL(fscrypt_put_encryption_info);