hwmon: (nct6775) Fix loop limit
[linux-2.6/btrfs-unstable.git] / drivers / clocksource / arc_timer.c
blob20da9b1d7f7d01c0a537dd6a421b3eb7ea2e547e
1 /*
2 * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
3 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
10 /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
11 * programmed to go from @count to @limit and optionally interrupt.
12 * We've designated TIMER0 for clockevents and TIMER1 for clocksource
14 * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
15 * which are suitable for UP and SMP based clocksources respectively
18 #include <linux/interrupt.h>
19 #include <linux/clk.h>
20 #include <linux/clk-provider.h>
21 #include <linux/clocksource.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/of.h>
25 #include <linux/of_irq.h>
27 #include <soc/arc/timers.h>
28 #include <soc/arc/mcip.h>
31 static unsigned long arc_timer_freq;
33 static int noinline arc_get_timer_clk(struct device_node *node)
35 struct clk *clk;
36 int ret;
38 clk = of_clk_get(node, 0);
39 if (IS_ERR(clk)) {
40 pr_err("timer missing clk\n");
41 return PTR_ERR(clk);
44 ret = clk_prepare_enable(clk);
45 if (ret) {
46 pr_err("Couldn't enable parent clk\n");
47 return ret;
50 arc_timer_freq = clk_get_rate(clk);
52 return 0;
55 /********** Clock Source Device *********/
57 #ifdef CONFIG_ARC_TIMERS_64BIT
59 static u64 arc_read_gfrc(struct clocksource *cs)
61 unsigned long flags;
62 u32 l, h;
65 * From a programming model pov, there seems to be just one instance of
66 * MCIP_CMD/MCIP_READBACK however micro-architecturally there's
67 * an instance PER ARC CORE (not per cluster), and there are dedicated
68 * hardware decode logic (per core) inside ARConnect to handle
69 * simultaneous read/write accesses from cores via those two registers.
70 * So several concurrent commands to ARConnect are OK if they are
71 * trying to access two different sub-components (like GFRC,
72 * inter-core interrupt, etc...). HW also supports simultaneously
73 * accessing GFRC by multiple cores.
74 * That's why it is safe to disable hard interrupts on the local CPU
75 * before access to GFRC instead of taking global MCIP spinlock
76 * defined in arch/arc/kernel/mcip.c
78 local_irq_save(flags);
80 __mcip_cmd(CMD_GFRC_READ_LO, 0);
81 l = read_aux_reg(ARC_REG_MCIP_READBACK);
83 __mcip_cmd(CMD_GFRC_READ_HI, 0);
84 h = read_aux_reg(ARC_REG_MCIP_READBACK);
86 local_irq_restore(flags);
88 return (((u64)h) << 32) | l;
91 static struct clocksource arc_counter_gfrc = {
92 .name = "ARConnect GFRC",
93 .rating = 400,
94 .read = arc_read_gfrc,
95 .mask = CLOCKSOURCE_MASK(64),
96 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
99 static int __init arc_cs_setup_gfrc(struct device_node *node)
101 struct mcip_bcr mp;
102 int ret;
104 READ_BCR(ARC_REG_MCIP_BCR, mp);
105 if (!mp.gfrc) {
106 pr_warn("Global-64-bit-Ctr clocksource not detected\n");
107 return -ENXIO;
110 ret = arc_get_timer_clk(node);
111 if (ret)
112 return ret;
114 return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
116 TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
118 #define AUX_RTC_CTRL 0x103
119 #define AUX_RTC_LOW 0x104
120 #define AUX_RTC_HIGH 0x105
122 static u64 arc_read_rtc(struct clocksource *cs)
124 unsigned long status;
125 u32 l, h;
128 * hardware has an internal state machine which tracks readout of
129 * low/high and updates the CTRL.status if
130 * - interrupt/exception taken between the two reads
131 * - high increments after low has been read
133 do {
134 l = read_aux_reg(AUX_RTC_LOW);
135 h = read_aux_reg(AUX_RTC_HIGH);
136 status = read_aux_reg(AUX_RTC_CTRL);
137 } while (!(status & _BITUL(31)));
139 return (((u64)h) << 32) | l;
142 static struct clocksource arc_counter_rtc = {
143 .name = "ARCv2 RTC",
144 .rating = 350,
145 .read = arc_read_rtc,
146 .mask = CLOCKSOURCE_MASK(64),
147 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
150 static int __init arc_cs_setup_rtc(struct device_node *node)
152 struct bcr_timer timer;
153 int ret;
155 READ_BCR(ARC_REG_TIMERS_BCR, timer);
156 if (!timer.rtc) {
157 pr_warn("Local-64-bit-Ctr clocksource not detected\n");
158 return -ENXIO;
161 /* Local to CPU hence not usable in SMP */
162 if (IS_ENABLED(CONFIG_SMP)) {
163 pr_warn("Local-64-bit-Ctr not usable in SMP\n");
164 return -EINVAL;
167 ret = arc_get_timer_clk(node);
168 if (ret)
169 return ret;
171 write_aux_reg(AUX_RTC_CTRL, 1);
173 return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
175 TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
177 #endif
180 * 32bit TIMER1 to keep counting monotonically and wraparound
183 static u64 arc_read_timer1(struct clocksource *cs)
185 return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
188 static struct clocksource arc_counter_timer1 = {
189 .name = "ARC Timer1",
190 .rating = 300,
191 .read = arc_read_timer1,
192 .mask = CLOCKSOURCE_MASK(32),
193 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
196 static int __init arc_cs_setup_timer1(struct device_node *node)
198 int ret;
200 /* Local to CPU hence not usable in SMP */
201 if (IS_ENABLED(CONFIG_SMP))
202 return -EINVAL;
204 ret = arc_get_timer_clk(node);
205 if (ret)
206 return ret;
208 write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
209 write_aux_reg(ARC_REG_TIMER1_CNT, 0);
210 write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
212 return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
215 /********** Clock Event Device *********/
217 static int arc_timer_irq;
220 * Arm the timer to interrupt after @cycles
221 * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
223 static void arc_timer_event_setup(unsigned int cycles)
225 write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
226 write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */
228 write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
232 static int arc_clkevent_set_next_event(unsigned long delta,
233 struct clock_event_device *dev)
235 arc_timer_event_setup(delta);
236 return 0;
239 static int arc_clkevent_set_periodic(struct clock_event_device *dev)
242 * At X Hz, 1 sec = 1000ms -> X cycles;
243 * 10ms -> X / 100 cycles
245 arc_timer_event_setup(arc_timer_freq / HZ);
246 return 0;
249 static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
250 .name = "ARC Timer0",
251 .features = CLOCK_EVT_FEAT_ONESHOT |
252 CLOCK_EVT_FEAT_PERIODIC,
253 .rating = 300,
254 .set_next_event = arc_clkevent_set_next_event,
255 .set_state_periodic = arc_clkevent_set_periodic,
258 static irqreturn_t timer_irq_handler(int irq, void *dev_id)
261 * Note that generic IRQ core could have passed @evt for @dev_id if
262 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
264 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
265 int irq_reenable = clockevent_state_periodic(evt);
268 * 1. ACK the interrupt
269 * - For ARC700, any write to CTRL reg ACKs it, so just rewrite
270 * Count when [N]ot [H]alted bit.
271 * - For HS3x, it is a bit subtle. On taken count-down interrupt,
272 * IP bit [3] is set, which needs to be cleared for ACK'ing.
273 * The write below can only update the other two bits, hence
274 * explicitly clears IP bit
275 * 2. Re-arm interrupt if periodic by writing to IE bit [0]
277 write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
279 evt->event_handler(evt);
281 return IRQ_HANDLED;
285 static int arc_timer_starting_cpu(unsigned int cpu)
287 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
289 evt->cpumask = cpumask_of(smp_processor_id());
291 clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
292 enable_percpu_irq(arc_timer_irq, 0);
293 return 0;
296 static int arc_timer_dying_cpu(unsigned int cpu)
298 disable_percpu_irq(arc_timer_irq);
299 return 0;
303 * clockevent setup for boot CPU
305 static int __init arc_clockevent_setup(struct device_node *node)
307 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
308 int ret;
310 arc_timer_irq = irq_of_parse_and_map(node, 0);
311 if (arc_timer_irq <= 0) {
312 pr_err("clockevent: missing irq\n");
313 return -EINVAL;
316 ret = arc_get_timer_clk(node);
317 if (ret) {
318 pr_err("clockevent: missing clk\n");
319 return ret;
322 /* Needs apriori irq_set_percpu_devid() done in intc map function */
323 ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
324 "Timer0 (per-cpu-tick)", evt);
325 if (ret) {
326 pr_err("clockevent: unable to request irq\n");
327 return ret;
330 ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
331 "clockevents/arc/timer:starting",
332 arc_timer_starting_cpu,
333 arc_timer_dying_cpu);
334 if (ret) {
335 pr_err("Failed to setup hotplug state\n");
336 return ret;
338 return 0;
341 static int __init arc_of_timer_init(struct device_node *np)
343 static int init_count = 0;
344 int ret;
346 if (!init_count) {
347 init_count = 1;
348 ret = arc_clockevent_setup(np);
349 } else {
350 ret = arc_cs_setup_timer1(np);
353 return ret;
355 TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);