cxgb4: fix endian to test F_FW_PORT_CMD_DCBXDIS32
[linux-2.6/btrfs-unstable.git] / block / blk-core.c
blobf84a9b7b6f5aa167c5559079f095e3d3dff28f0d
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-wbt.h"
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57 DEFINE_IDA(blk_queue_ida);
60 * For the allocated request tables
62 struct kmem_cache *request_cachep;
65 * For queue allocation
67 struct kmem_cache *blk_requestq_cachep;
70 * Controlling structure to kblockd
72 static struct workqueue_struct *kblockd_workqueue;
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 unsigned long flags;
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
87 EXPORT_SYMBOL(blk_queue_flag_set);
89 /**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
96 unsigned long flags;
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
102 EXPORT_SYMBOL(blk_queue_flag_clear);
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
114 unsigned long flags;
115 bool res;
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
121 return res;
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
135 unsigned long flags;
136 bool res;
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
142 return res;
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
146 static void blk_clear_congested(struct request_list *rl, int sync)
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
155 if (rl == &rl->q->root_rl)
156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
160 static void blk_set_congested(struct request_list *rl, int sync)
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
171 void blk_queue_congestion_threshold(struct request_queue *q)
173 int nr;
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
186 void blk_rq_init(struct request_queue *q, struct request *rq)
188 memset(rq, 0, sizeof(*rq));
190 INIT_LIST_HEAD(&rq->queuelist);
191 INIT_LIST_HEAD(&rq->timeout_list);
192 rq->cpu = -1;
193 rq->q = q;
194 rq->__sector = (sector_t) -1;
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
197 rq->tag = -1;
198 rq->internal_tag = -1;
199 rq->start_time_ns = ktime_get_ns();
200 rq->part = NULL;
202 EXPORT_SYMBOL(blk_rq_init);
204 static const struct {
205 int errno;
206 const char *name;
207 } blk_errors[] = {
208 [BLK_STS_OK] = { 0, "" },
209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
221 /* device mapper special case, should not leak out: */
222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
224 /* everything else not covered above: */
225 [BLK_STS_IOERR] = { -EIO, "I/O" },
228 blk_status_t errno_to_blk_status(int errno)
230 int i;
232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 if (blk_errors[i].errno == errno)
234 return (__force blk_status_t)i;
237 return BLK_STS_IOERR;
239 EXPORT_SYMBOL_GPL(errno_to_blk_status);
241 int blk_status_to_errno(blk_status_t status)
243 int idx = (__force int)status;
245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
246 return -EIO;
247 return blk_errors[idx].errno;
249 EXPORT_SYMBOL_GPL(blk_status_to_errno);
251 static void print_req_error(struct request *req, blk_status_t status)
253 int idx = (__force int)status;
255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
256 return;
258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 __func__, blk_errors[idx].name, req->rq_disk ?
260 req->rq_disk->disk_name : "?",
261 (unsigned long long)blk_rq_pos(req));
264 static void req_bio_endio(struct request *rq, struct bio *bio,
265 unsigned int nbytes, blk_status_t error)
267 if (error)
268 bio->bi_status = error;
270 if (unlikely(rq->rq_flags & RQF_QUIET))
271 bio_set_flag(bio, BIO_QUIET);
273 bio_advance(bio, nbytes);
275 /* don't actually finish bio if it's part of flush sequence */
276 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
277 bio_endio(bio);
280 void blk_dump_rq_flags(struct request *rq, char *msg)
282 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
283 rq->rq_disk ? rq->rq_disk->disk_name : "?",
284 (unsigned long long) rq->cmd_flags);
286 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
287 (unsigned long long)blk_rq_pos(rq),
288 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
289 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
290 rq->bio, rq->biotail, blk_rq_bytes(rq));
292 EXPORT_SYMBOL(blk_dump_rq_flags);
294 static void blk_delay_work(struct work_struct *work)
296 struct request_queue *q;
298 q = container_of(work, struct request_queue, delay_work.work);
299 spin_lock_irq(q->queue_lock);
300 __blk_run_queue(q);
301 spin_unlock_irq(q->queue_lock);
305 * blk_delay_queue - restart queueing after defined interval
306 * @q: The &struct request_queue in question
307 * @msecs: Delay in msecs
309 * Description:
310 * Sometimes queueing needs to be postponed for a little while, to allow
311 * resources to come back. This function will make sure that queueing is
312 * restarted around the specified time.
314 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
316 lockdep_assert_held(q->queue_lock);
317 WARN_ON_ONCE(q->mq_ops);
319 if (likely(!blk_queue_dead(q)))
320 queue_delayed_work(kblockd_workqueue, &q->delay_work,
321 msecs_to_jiffies(msecs));
323 EXPORT_SYMBOL(blk_delay_queue);
326 * blk_start_queue_async - asynchronously restart a previously stopped queue
327 * @q: The &struct request_queue in question
329 * Description:
330 * blk_start_queue_async() will clear the stop flag on the queue, and
331 * ensure that the request_fn for the queue is run from an async
332 * context.
334 void blk_start_queue_async(struct request_queue *q)
336 lockdep_assert_held(q->queue_lock);
337 WARN_ON_ONCE(q->mq_ops);
339 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 blk_run_queue_async(q);
342 EXPORT_SYMBOL(blk_start_queue_async);
345 * blk_start_queue - restart a previously stopped queue
346 * @q: The &struct request_queue in question
348 * Description:
349 * blk_start_queue() will clear the stop flag on the queue, and call
350 * the request_fn for the queue if it was in a stopped state when
351 * entered. Also see blk_stop_queue().
353 void blk_start_queue(struct request_queue *q)
355 lockdep_assert_held(q->queue_lock);
356 WARN_ON_ONCE(q->mq_ops);
358 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
359 __blk_run_queue(q);
361 EXPORT_SYMBOL(blk_start_queue);
364 * blk_stop_queue - stop a queue
365 * @q: The &struct request_queue in question
367 * Description:
368 * The Linux block layer assumes that a block driver will consume all
369 * entries on the request queue when the request_fn strategy is called.
370 * Often this will not happen, because of hardware limitations (queue
371 * depth settings). If a device driver gets a 'queue full' response,
372 * or if it simply chooses not to queue more I/O at one point, it can
373 * call this function to prevent the request_fn from being called until
374 * the driver has signalled it's ready to go again. This happens by calling
375 * blk_start_queue() to restart queue operations.
377 void blk_stop_queue(struct request_queue *q)
379 lockdep_assert_held(q->queue_lock);
380 WARN_ON_ONCE(q->mq_ops);
382 cancel_delayed_work(&q->delay_work);
383 queue_flag_set(QUEUE_FLAG_STOPPED, q);
385 EXPORT_SYMBOL(blk_stop_queue);
388 * blk_sync_queue - cancel any pending callbacks on a queue
389 * @q: the queue
391 * Description:
392 * The block layer may perform asynchronous callback activity
393 * on a queue, such as calling the unplug function after a timeout.
394 * A block device may call blk_sync_queue to ensure that any
395 * such activity is cancelled, thus allowing it to release resources
396 * that the callbacks might use. The caller must already have made sure
397 * that its ->make_request_fn will not re-add plugging prior to calling
398 * this function.
400 * This function does not cancel any asynchronous activity arising
401 * out of elevator or throttling code. That would require elevator_exit()
402 * and blkcg_exit_queue() to be called with queue lock initialized.
405 void blk_sync_queue(struct request_queue *q)
407 del_timer_sync(&q->timeout);
408 cancel_work_sync(&q->timeout_work);
410 if (q->mq_ops) {
411 struct blk_mq_hw_ctx *hctx;
412 int i;
414 cancel_delayed_work_sync(&q->requeue_work);
415 queue_for_each_hw_ctx(q, hctx, i)
416 cancel_delayed_work_sync(&hctx->run_work);
417 } else {
418 cancel_delayed_work_sync(&q->delay_work);
421 EXPORT_SYMBOL(blk_sync_queue);
424 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
425 * @q: request queue pointer
427 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
428 * set and 1 if the flag was already set.
430 int blk_set_preempt_only(struct request_queue *q)
432 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
434 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
436 void blk_clear_preempt_only(struct request_queue *q)
438 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
439 wake_up_all(&q->mq_freeze_wq);
441 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
444 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
445 * @q: The queue to run
447 * Description:
448 * Invoke request handling on a queue if there are any pending requests.
449 * May be used to restart request handling after a request has completed.
450 * This variant runs the queue whether or not the queue has been
451 * stopped. Must be called with the queue lock held and interrupts
452 * disabled. See also @blk_run_queue.
454 inline void __blk_run_queue_uncond(struct request_queue *q)
456 lockdep_assert_held(q->queue_lock);
457 WARN_ON_ONCE(q->mq_ops);
459 if (unlikely(blk_queue_dead(q)))
460 return;
463 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
464 * the queue lock internally. As a result multiple threads may be
465 * running such a request function concurrently. Keep track of the
466 * number of active request_fn invocations such that blk_drain_queue()
467 * can wait until all these request_fn calls have finished.
469 q->request_fn_active++;
470 q->request_fn(q);
471 q->request_fn_active--;
473 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
476 * __blk_run_queue - run a single device queue
477 * @q: The queue to run
479 * Description:
480 * See @blk_run_queue.
482 void __blk_run_queue(struct request_queue *q)
484 lockdep_assert_held(q->queue_lock);
485 WARN_ON_ONCE(q->mq_ops);
487 if (unlikely(blk_queue_stopped(q)))
488 return;
490 __blk_run_queue_uncond(q);
492 EXPORT_SYMBOL(__blk_run_queue);
495 * blk_run_queue_async - run a single device queue in workqueue context
496 * @q: The queue to run
498 * Description:
499 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
500 * of us.
502 * Note:
503 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
504 * has canceled q->delay_work, callers must hold the queue lock to avoid
505 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
507 void blk_run_queue_async(struct request_queue *q)
509 lockdep_assert_held(q->queue_lock);
510 WARN_ON_ONCE(q->mq_ops);
512 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
513 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
515 EXPORT_SYMBOL(blk_run_queue_async);
518 * blk_run_queue - run a single device queue
519 * @q: The queue to run
521 * Description:
522 * Invoke request handling on this queue, if it has pending work to do.
523 * May be used to restart queueing when a request has completed.
525 void blk_run_queue(struct request_queue *q)
527 unsigned long flags;
529 WARN_ON_ONCE(q->mq_ops);
531 spin_lock_irqsave(q->queue_lock, flags);
532 __blk_run_queue(q);
533 spin_unlock_irqrestore(q->queue_lock, flags);
535 EXPORT_SYMBOL(blk_run_queue);
537 void blk_put_queue(struct request_queue *q)
539 kobject_put(&q->kobj);
541 EXPORT_SYMBOL(blk_put_queue);
544 * __blk_drain_queue - drain requests from request_queue
545 * @q: queue to drain
546 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
548 * Drain requests from @q. If @drain_all is set, all requests are drained.
549 * If not, only ELVPRIV requests are drained. The caller is responsible
550 * for ensuring that no new requests which need to be drained are queued.
552 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
553 __releases(q->queue_lock)
554 __acquires(q->queue_lock)
556 int i;
558 lockdep_assert_held(q->queue_lock);
559 WARN_ON_ONCE(q->mq_ops);
561 while (true) {
562 bool drain = false;
565 * The caller might be trying to drain @q before its
566 * elevator is initialized.
568 if (q->elevator)
569 elv_drain_elevator(q);
571 blkcg_drain_queue(q);
574 * This function might be called on a queue which failed
575 * driver init after queue creation or is not yet fully
576 * active yet. Some drivers (e.g. fd and loop) get unhappy
577 * in such cases. Kick queue iff dispatch queue has
578 * something on it and @q has request_fn set.
580 if (!list_empty(&q->queue_head) && q->request_fn)
581 __blk_run_queue(q);
583 drain |= q->nr_rqs_elvpriv;
584 drain |= q->request_fn_active;
587 * Unfortunately, requests are queued at and tracked from
588 * multiple places and there's no single counter which can
589 * be drained. Check all the queues and counters.
591 if (drain_all) {
592 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
593 drain |= !list_empty(&q->queue_head);
594 for (i = 0; i < 2; i++) {
595 drain |= q->nr_rqs[i];
596 drain |= q->in_flight[i];
597 if (fq)
598 drain |= !list_empty(&fq->flush_queue[i]);
602 if (!drain)
603 break;
605 spin_unlock_irq(q->queue_lock);
607 msleep(10);
609 spin_lock_irq(q->queue_lock);
613 * With queue marked dead, any woken up waiter will fail the
614 * allocation path, so the wakeup chaining is lost and we're
615 * left with hung waiters. We need to wake up those waiters.
617 if (q->request_fn) {
618 struct request_list *rl;
620 blk_queue_for_each_rl(rl, q)
621 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
622 wake_up_all(&rl->wait[i]);
626 void blk_drain_queue(struct request_queue *q)
628 spin_lock_irq(q->queue_lock);
629 __blk_drain_queue(q, true);
630 spin_unlock_irq(q->queue_lock);
634 * blk_queue_bypass_start - enter queue bypass mode
635 * @q: queue of interest
637 * In bypass mode, only the dispatch FIFO queue of @q is used. This
638 * function makes @q enter bypass mode and drains all requests which were
639 * throttled or issued before. On return, it's guaranteed that no request
640 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
641 * inside queue or RCU read lock.
643 void blk_queue_bypass_start(struct request_queue *q)
645 WARN_ON_ONCE(q->mq_ops);
647 spin_lock_irq(q->queue_lock);
648 q->bypass_depth++;
649 queue_flag_set(QUEUE_FLAG_BYPASS, q);
650 spin_unlock_irq(q->queue_lock);
653 * Queues start drained. Skip actual draining till init is
654 * complete. This avoids lenghty delays during queue init which
655 * can happen many times during boot.
657 if (blk_queue_init_done(q)) {
658 spin_lock_irq(q->queue_lock);
659 __blk_drain_queue(q, false);
660 spin_unlock_irq(q->queue_lock);
662 /* ensure blk_queue_bypass() is %true inside RCU read lock */
663 synchronize_rcu();
666 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
669 * blk_queue_bypass_end - leave queue bypass mode
670 * @q: queue of interest
672 * Leave bypass mode and restore the normal queueing behavior.
674 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
675 * this function is called for both blk-sq and blk-mq queues.
677 void blk_queue_bypass_end(struct request_queue *q)
679 spin_lock_irq(q->queue_lock);
680 if (!--q->bypass_depth)
681 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
682 WARN_ON_ONCE(q->bypass_depth < 0);
683 spin_unlock_irq(q->queue_lock);
685 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
687 void blk_set_queue_dying(struct request_queue *q)
689 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
692 * When queue DYING flag is set, we need to block new req
693 * entering queue, so we call blk_freeze_queue_start() to
694 * prevent I/O from crossing blk_queue_enter().
696 blk_freeze_queue_start(q);
698 if (q->mq_ops)
699 blk_mq_wake_waiters(q);
700 else {
701 struct request_list *rl;
703 spin_lock_irq(q->queue_lock);
704 blk_queue_for_each_rl(rl, q) {
705 if (rl->rq_pool) {
706 wake_up_all(&rl->wait[BLK_RW_SYNC]);
707 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
710 spin_unlock_irq(q->queue_lock);
713 /* Make blk_queue_enter() reexamine the DYING flag. */
714 wake_up_all(&q->mq_freeze_wq);
716 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
719 * blk_cleanup_queue - shutdown a request queue
720 * @q: request queue to shutdown
722 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
723 * put it. All future requests will be failed immediately with -ENODEV.
725 void blk_cleanup_queue(struct request_queue *q)
727 spinlock_t *lock = q->queue_lock;
729 /* mark @q DYING, no new request or merges will be allowed afterwards */
730 mutex_lock(&q->sysfs_lock);
731 blk_set_queue_dying(q);
732 spin_lock_irq(lock);
735 * A dying queue is permanently in bypass mode till released. Note
736 * that, unlike blk_queue_bypass_start(), we aren't performing
737 * synchronize_rcu() after entering bypass mode to avoid the delay
738 * as some drivers create and destroy a lot of queues while
739 * probing. This is still safe because blk_release_queue() will be
740 * called only after the queue refcnt drops to zero and nothing,
741 * RCU or not, would be traversing the queue by then.
743 q->bypass_depth++;
744 queue_flag_set(QUEUE_FLAG_BYPASS, q);
746 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
747 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
748 queue_flag_set(QUEUE_FLAG_DYING, q);
749 spin_unlock_irq(lock);
750 mutex_unlock(&q->sysfs_lock);
753 * Drain all requests queued before DYING marking. Set DEAD flag to
754 * prevent that q->request_fn() gets invoked after draining finished.
756 blk_freeze_queue(q);
757 spin_lock_irq(lock);
758 queue_flag_set(QUEUE_FLAG_DEAD, q);
759 spin_unlock_irq(lock);
762 * make sure all in-progress dispatch are completed because
763 * blk_freeze_queue() can only complete all requests, and
764 * dispatch may still be in-progress since we dispatch requests
765 * from more than one contexts
767 if (q->mq_ops)
768 blk_mq_quiesce_queue(q);
770 /* for synchronous bio-based driver finish in-flight integrity i/o */
771 blk_flush_integrity();
773 /* @q won't process any more request, flush async actions */
774 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
775 blk_sync_queue(q);
778 * I/O scheduler exit is only safe after the sysfs scheduler attribute
779 * has been removed.
781 WARN_ON_ONCE(q->kobj.state_in_sysfs);
784 * Since the I/O scheduler exit code may access cgroup information,
785 * perform I/O scheduler exit before disassociating from the block
786 * cgroup controller.
788 if (q->elevator) {
789 ioc_clear_queue(q);
790 elevator_exit(q, q->elevator);
791 q->elevator = NULL;
795 * Remove all references to @q from the block cgroup controller before
796 * restoring @q->queue_lock to avoid that restoring this pointer causes
797 * e.g. blkcg_print_blkgs() to crash.
799 blkcg_exit_queue(q);
802 * Since the cgroup code may dereference the @q->backing_dev_info
803 * pointer, only decrease its reference count after having removed the
804 * association with the block cgroup controller.
806 bdi_put(q->backing_dev_info);
808 if (q->mq_ops)
809 blk_mq_free_queue(q);
810 percpu_ref_exit(&q->q_usage_counter);
812 spin_lock_irq(lock);
813 if (q->queue_lock != &q->__queue_lock)
814 q->queue_lock = &q->__queue_lock;
815 spin_unlock_irq(lock);
817 /* @q is and will stay empty, shutdown and put */
818 blk_put_queue(q);
820 EXPORT_SYMBOL(blk_cleanup_queue);
822 /* Allocate memory local to the request queue */
823 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
825 struct request_queue *q = data;
827 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
830 static void free_request_simple(void *element, void *data)
832 kmem_cache_free(request_cachep, element);
835 static void *alloc_request_size(gfp_t gfp_mask, void *data)
837 struct request_queue *q = data;
838 struct request *rq;
840 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
841 q->node);
842 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
843 kfree(rq);
844 rq = NULL;
846 return rq;
849 static void free_request_size(void *element, void *data)
851 struct request_queue *q = data;
853 if (q->exit_rq_fn)
854 q->exit_rq_fn(q, element);
855 kfree(element);
858 int blk_init_rl(struct request_list *rl, struct request_queue *q,
859 gfp_t gfp_mask)
861 if (unlikely(rl->rq_pool) || q->mq_ops)
862 return 0;
864 rl->q = q;
865 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
866 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
867 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
868 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
870 if (q->cmd_size) {
871 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
872 alloc_request_size, free_request_size,
873 q, gfp_mask, q->node);
874 } else {
875 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
876 alloc_request_simple, free_request_simple,
877 q, gfp_mask, q->node);
879 if (!rl->rq_pool)
880 return -ENOMEM;
882 if (rl != &q->root_rl)
883 WARN_ON_ONCE(!blk_get_queue(q));
885 return 0;
888 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
890 if (rl->rq_pool) {
891 mempool_destroy(rl->rq_pool);
892 if (rl != &q->root_rl)
893 blk_put_queue(q);
897 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
899 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
901 EXPORT_SYMBOL(blk_alloc_queue);
904 * blk_queue_enter() - try to increase q->q_usage_counter
905 * @q: request queue pointer
906 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
908 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
910 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
912 while (true) {
913 bool success = false;
915 rcu_read_lock();
916 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
918 * The code that sets the PREEMPT_ONLY flag is
919 * responsible for ensuring that that flag is globally
920 * visible before the queue is unfrozen.
922 if (preempt || !blk_queue_preempt_only(q)) {
923 success = true;
924 } else {
925 percpu_ref_put(&q->q_usage_counter);
928 rcu_read_unlock();
930 if (success)
931 return 0;
933 if (flags & BLK_MQ_REQ_NOWAIT)
934 return -EBUSY;
937 * read pair of barrier in blk_freeze_queue_start(),
938 * we need to order reading __PERCPU_REF_DEAD flag of
939 * .q_usage_counter and reading .mq_freeze_depth or
940 * queue dying flag, otherwise the following wait may
941 * never return if the two reads are reordered.
943 smp_rmb();
945 wait_event(q->mq_freeze_wq,
946 (atomic_read(&q->mq_freeze_depth) == 0 &&
947 (preempt || !blk_queue_preempt_only(q))) ||
948 blk_queue_dying(q));
949 if (blk_queue_dying(q))
950 return -ENODEV;
954 void blk_queue_exit(struct request_queue *q)
956 percpu_ref_put(&q->q_usage_counter);
959 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
961 struct request_queue *q =
962 container_of(ref, struct request_queue, q_usage_counter);
964 wake_up_all(&q->mq_freeze_wq);
967 static void blk_rq_timed_out_timer(struct timer_list *t)
969 struct request_queue *q = from_timer(q, t, timeout);
971 kblockd_schedule_work(&q->timeout_work);
975 * blk_alloc_queue_node - allocate a request queue
976 * @gfp_mask: memory allocation flags
977 * @node_id: NUMA node to allocate memory from
978 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
979 * serialize calls to the legacy .request_fn() callback. Ignored for
980 * blk-mq request queues.
982 * Note: pass the queue lock as the third argument to this function instead of
983 * setting the queue lock pointer explicitly to avoid triggering a sporadic
984 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
985 * the queue lock pointer must be set before blkcg_init_queue() is called.
987 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
988 spinlock_t *lock)
990 struct request_queue *q;
991 int ret;
993 q = kmem_cache_alloc_node(blk_requestq_cachep,
994 gfp_mask | __GFP_ZERO, node_id);
995 if (!q)
996 return NULL;
998 INIT_LIST_HEAD(&q->queue_head);
999 q->last_merge = NULL;
1000 q->end_sector = 0;
1001 q->boundary_rq = NULL;
1003 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1004 if (q->id < 0)
1005 goto fail_q;
1007 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1008 if (ret)
1009 goto fail_id;
1011 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1012 if (!q->backing_dev_info)
1013 goto fail_split;
1015 q->stats = blk_alloc_queue_stats();
1016 if (!q->stats)
1017 goto fail_stats;
1019 q->backing_dev_info->ra_pages =
1020 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1021 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1022 q->backing_dev_info->name = "block";
1023 q->node = node_id;
1025 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1026 laptop_mode_timer_fn, 0);
1027 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1028 INIT_WORK(&q->timeout_work, NULL);
1029 INIT_LIST_HEAD(&q->queue_head);
1030 INIT_LIST_HEAD(&q->timeout_list);
1031 INIT_LIST_HEAD(&q->icq_list);
1032 #ifdef CONFIG_BLK_CGROUP
1033 INIT_LIST_HEAD(&q->blkg_list);
1034 #endif
1035 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1037 kobject_init(&q->kobj, &blk_queue_ktype);
1039 #ifdef CONFIG_BLK_DEV_IO_TRACE
1040 mutex_init(&q->blk_trace_mutex);
1041 #endif
1042 mutex_init(&q->sysfs_lock);
1043 spin_lock_init(&q->__queue_lock);
1045 if (!q->mq_ops)
1046 q->queue_lock = lock ? : &q->__queue_lock;
1049 * A queue starts its life with bypass turned on to avoid
1050 * unnecessary bypass on/off overhead and nasty surprises during
1051 * init. The initial bypass will be finished when the queue is
1052 * registered by blk_register_queue().
1054 q->bypass_depth = 1;
1055 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1057 init_waitqueue_head(&q->mq_freeze_wq);
1060 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1061 * See blk_register_queue() for details.
1063 if (percpu_ref_init(&q->q_usage_counter,
1064 blk_queue_usage_counter_release,
1065 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1066 goto fail_bdi;
1068 if (blkcg_init_queue(q))
1069 goto fail_ref;
1071 return q;
1073 fail_ref:
1074 percpu_ref_exit(&q->q_usage_counter);
1075 fail_bdi:
1076 blk_free_queue_stats(q->stats);
1077 fail_stats:
1078 bdi_put(q->backing_dev_info);
1079 fail_split:
1080 bioset_exit(&q->bio_split);
1081 fail_id:
1082 ida_simple_remove(&blk_queue_ida, q->id);
1083 fail_q:
1084 kmem_cache_free(blk_requestq_cachep, q);
1085 return NULL;
1087 EXPORT_SYMBOL(blk_alloc_queue_node);
1090 * blk_init_queue - prepare a request queue for use with a block device
1091 * @rfn: The function to be called to process requests that have been
1092 * placed on the queue.
1093 * @lock: Request queue spin lock
1095 * Description:
1096 * If a block device wishes to use the standard request handling procedures,
1097 * which sorts requests and coalesces adjacent requests, then it must
1098 * call blk_init_queue(). The function @rfn will be called when there
1099 * are requests on the queue that need to be processed. If the device
1100 * supports plugging, then @rfn may not be called immediately when requests
1101 * are available on the queue, but may be called at some time later instead.
1102 * Plugged queues are generally unplugged when a buffer belonging to one
1103 * of the requests on the queue is needed, or due to memory pressure.
1105 * @rfn is not required, or even expected, to remove all requests off the
1106 * queue, but only as many as it can handle at a time. If it does leave
1107 * requests on the queue, it is responsible for arranging that the requests
1108 * get dealt with eventually.
1110 * The queue spin lock must be held while manipulating the requests on the
1111 * request queue; this lock will be taken also from interrupt context, so irq
1112 * disabling is needed for it.
1114 * Function returns a pointer to the initialized request queue, or %NULL if
1115 * it didn't succeed.
1117 * Note:
1118 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1119 * when the block device is deactivated (such as at module unload).
1122 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1124 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1126 EXPORT_SYMBOL(blk_init_queue);
1128 struct request_queue *
1129 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1131 struct request_queue *q;
1133 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1134 if (!q)
1135 return NULL;
1137 q->request_fn = rfn;
1138 if (blk_init_allocated_queue(q) < 0) {
1139 blk_cleanup_queue(q);
1140 return NULL;
1143 return q;
1145 EXPORT_SYMBOL(blk_init_queue_node);
1147 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1150 int blk_init_allocated_queue(struct request_queue *q)
1152 WARN_ON_ONCE(q->mq_ops);
1154 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1155 if (!q->fq)
1156 return -ENOMEM;
1158 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1159 goto out_free_flush_queue;
1161 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1162 goto out_exit_flush_rq;
1164 INIT_WORK(&q->timeout_work, blk_timeout_work);
1165 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1168 * This also sets hw/phys segments, boundary and size
1170 blk_queue_make_request(q, blk_queue_bio);
1172 q->sg_reserved_size = INT_MAX;
1174 if (elevator_init(q))
1175 goto out_exit_flush_rq;
1176 return 0;
1178 out_exit_flush_rq:
1179 if (q->exit_rq_fn)
1180 q->exit_rq_fn(q, q->fq->flush_rq);
1181 out_free_flush_queue:
1182 blk_free_flush_queue(q->fq);
1183 return -ENOMEM;
1185 EXPORT_SYMBOL(blk_init_allocated_queue);
1187 bool blk_get_queue(struct request_queue *q)
1189 if (likely(!blk_queue_dying(q))) {
1190 __blk_get_queue(q);
1191 return true;
1194 return false;
1196 EXPORT_SYMBOL(blk_get_queue);
1198 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1200 if (rq->rq_flags & RQF_ELVPRIV) {
1201 elv_put_request(rl->q, rq);
1202 if (rq->elv.icq)
1203 put_io_context(rq->elv.icq->ioc);
1206 mempool_free(rq, rl->rq_pool);
1210 * ioc_batching returns true if the ioc is a valid batching request and
1211 * should be given priority access to a request.
1213 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1215 if (!ioc)
1216 return 0;
1219 * Make sure the process is able to allocate at least 1 request
1220 * even if the batch times out, otherwise we could theoretically
1221 * lose wakeups.
1223 return ioc->nr_batch_requests == q->nr_batching ||
1224 (ioc->nr_batch_requests > 0
1225 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1229 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1230 * will cause the process to be a "batcher" on all queues in the system. This
1231 * is the behaviour we want though - once it gets a wakeup it should be given
1232 * a nice run.
1234 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1236 if (!ioc || ioc_batching(q, ioc))
1237 return;
1239 ioc->nr_batch_requests = q->nr_batching;
1240 ioc->last_waited = jiffies;
1243 static void __freed_request(struct request_list *rl, int sync)
1245 struct request_queue *q = rl->q;
1247 if (rl->count[sync] < queue_congestion_off_threshold(q))
1248 blk_clear_congested(rl, sync);
1250 if (rl->count[sync] + 1 <= q->nr_requests) {
1251 if (waitqueue_active(&rl->wait[sync]))
1252 wake_up(&rl->wait[sync]);
1254 blk_clear_rl_full(rl, sync);
1259 * A request has just been released. Account for it, update the full and
1260 * congestion status, wake up any waiters. Called under q->queue_lock.
1262 static void freed_request(struct request_list *rl, bool sync,
1263 req_flags_t rq_flags)
1265 struct request_queue *q = rl->q;
1267 q->nr_rqs[sync]--;
1268 rl->count[sync]--;
1269 if (rq_flags & RQF_ELVPRIV)
1270 q->nr_rqs_elvpriv--;
1272 __freed_request(rl, sync);
1274 if (unlikely(rl->starved[sync ^ 1]))
1275 __freed_request(rl, sync ^ 1);
1278 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1280 struct request_list *rl;
1281 int on_thresh, off_thresh;
1283 WARN_ON_ONCE(q->mq_ops);
1285 spin_lock_irq(q->queue_lock);
1286 q->nr_requests = nr;
1287 blk_queue_congestion_threshold(q);
1288 on_thresh = queue_congestion_on_threshold(q);
1289 off_thresh = queue_congestion_off_threshold(q);
1291 blk_queue_for_each_rl(rl, q) {
1292 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1293 blk_set_congested(rl, BLK_RW_SYNC);
1294 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1295 blk_clear_congested(rl, BLK_RW_SYNC);
1297 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1298 blk_set_congested(rl, BLK_RW_ASYNC);
1299 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1300 blk_clear_congested(rl, BLK_RW_ASYNC);
1302 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1303 blk_set_rl_full(rl, BLK_RW_SYNC);
1304 } else {
1305 blk_clear_rl_full(rl, BLK_RW_SYNC);
1306 wake_up(&rl->wait[BLK_RW_SYNC]);
1309 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1310 blk_set_rl_full(rl, BLK_RW_ASYNC);
1311 } else {
1312 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1313 wake_up(&rl->wait[BLK_RW_ASYNC]);
1317 spin_unlock_irq(q->queue_lock);
1318 return 0;
1322 * __get_request - get a free request
1323 * @rl: request list to allocate from
1324 * @op: operation and flags
1325 * @bio: bio to allocate request for (can be %NULL)
1326 * @flags: BLQ_MQ_REQ_* flags
1327 * @gfp_mask: allocator flags
1329 * Get a free request from @q. This function may fail under memory
1330 * pressure or if @q is dead.
1332 * Must be called with @q->queue_lock held and,
1333 * Returns ERR_PTR on failure, with @q->queue_lock held.
1334 * Returns request pointer on success, with @q->queue_lock *not held*.
1336 static struct request *__get_request(struct request_list *rl, unsigned int op,
1337 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1339 struct request_queue *q = rl->q;
1340 struct request *rq;
1341 struct elevator_type *et = q->elevator->type;
1342 struct io_context *ioc = rq_ioc(bio);
1343 struct io_cq *icq = NULL;
1344 const bool is_sync = op_is_sync(op);
1345 int may_queue;
1346 req_flags_t rq_flags = RQF_ALLOCED;
1348 lockdep_assert_held(q->queue_lock);
1350 if (unlikely(blk_queue_dying(q)))
1351 return ERR_PTR(-ENODEV);
1353 may_queue = elv_may_queue(q, op);
1354 if (may_queue == ELV_MQUEUE_NO)
1355 goto rq_starved;
1357 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1358 if (rl->count[is_sync]+1 >= q->nr_requests) {
1360 * The queue will fill after this allocation, so set
1361 * it as full, and mark this process as "batching".
1362 * This process will be allowed to complete a batch of
1363 * requests, others will be blocked.
1365 if (!blk_rl_full(rl, is_sync)) {
1366 ioc_set_batching(q, ioc);
1367 blk_set_rl_full(rl, is_sync);
1368 } else {
1369 if (may_queue != ELV_MQUEUE_MUST
1370 && !ioc_batching(q, ioc)) {
1372 * The queue is full and the allocating
1373 * process is not a "batcher", and not
1374 * exempted by the IO scheduler
1376 return ERR_PTR(-ENOMEM);
1380 blk_set_congested(rl, is_sync);
1384 * Only allow batching queuers to allocate up to 50% over the defined
1385 * limit of requests, otherwise we could have thousands of requests
1386 * allocated with any setting of ->nr_requests
1388 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1389 return ERR_PTR(-ENOMEM);
1391 q->nr_rqs[is_sync]++;
1392 rl->count[is_sync]++;
1393 rl->starved[is_sync] = 0;
1396 * Decide whether the new request will be managed by elevator. If
1397 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1398 * prevent the current elevator from being destroyed until the new
1399 * request is freed. This guarantees icq's won't be destroyed and
1400 * makes creating new ones safe.
1402 * Flush requests do not use the elevator so skip initialization.
1403 * This allows a request to share the flush and elevator data.
1405 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1406 * it will be created after releasing queue_lock.
1408 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1409 rq_flags |= RQF_ELVPRIV;
1410 q->nr_rqs_elvpriv++;
1411 if (et->icq_cache && ioc)
1412 icq = ioc_lookup_icq(ioc, q);
1415 if (blk_queue_io_stat(q))
1416 rq_flags |= RQF_IO_STAT;
1417 spin_unlock_irq(q->queue_lock);
1419 /* allocate and init request */
1420 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1421 if (!rq)
1422 goto fail_alloc;
1424 blk_rq_init(q, rq);
1425 blk_rq_set_rl(rq, rl);
1426 rq->cmd_flags = op;
1427 rq->rq_flags = rq_flags;
1428 if (flags & BLK_MQ_REQ_PREEMPT)
1429 rq->rq_flags |= RQF_PREEMPT;
1431 /* init elvpriv */
1432 if (rq_flags & RQF_ELVPRIV) {
1433 if (unlikely(et->icq_cache && !icq)) {
1434 if (ioc)
1435 icq = ioc_create_icq(ioc, q, gfp_mask);
1436 if (!icq)
1437 goto fail_elvpriv;
1440 rq->elv.icq = icq;
1441 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1442 goto fail_elvpriv;
1444 /* @rq->elv.icq holds io_context until @rq is freed */
1445 if (icq)
1446 get_io_context(icq->ioc);
1448 out:
1450 * ioc may be NULL here, and ioc_batching will be false. That's
1451 * OK, if the queue is under the request limit then requests need
1452 * not count toward the nr_batch_requests limit. There will always
1453 * be some limit enforced by BLK_BATCH_TIME.
1455 if (ioc_batching(q, ioc))
1456 ioc->nr_batch_requests--;
1458 trace_block_getrq(q, bio, op);
1459 return rq;
1461 fail_elvpriv:
1463 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1464 * and may fail indefinitely under memory pressure and thus
1465 * shouldn't stall IO. Treat this request as !elvpriv. This will
1466 * disturb iosched and blkcg but weird is bettern than dead.
1468 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1469 __func__, dev_name(q->backing_dev_info->dev));
1471 rq->rq_flags &= ~RQF_ELVPRIV;
1472 rq->elv.icq = NULL;
1474 spin_lock_irq(q->queue_lock);
1475 q->nr_rqs_elvpriv--;
1476 spin_unlock_irq(q->queue_lock);
1477 goto out;
1479 fail_alloc:
1481 * Allocation failed presumably due to memory. Undo anything we
1482 * might have messed up.
1484 * Allocating task should really be put onto the front of the wait
1485 * queue, but this is pretty rare.
1487 spin_lock_irq(q->queue_lock);
1488 freed_request(rl, is_sync, rq_flags);
1491 * in the very unlikely event that allocation failed and no
1492 * requests for this direction was pending, mark us starved so that
1493 * freeing of a request in the other direction will notice
1494 * us. another possible fix would be to split the rq mempool into
1495 * READ and WRITE
1497 rq_starved:
1498 if (unlikely(rl->count[is_sync] == 0))
1499 rl->starved[is_sync] = 1;
1500 return ERR_PTR(-ENOMEM);
1504 * get_request - get a free request
1505 * @q: request_queue to allocate request from
1506 * @op: operation and flags
1507 * @bio: bio to allocate request for (can be %NULL)
1508 * @flags: BLK_MQ_REQ_* flags.
1509 * @gfp: allocator flags
1511 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1512 * this function keeps retrying under memory pressure and fails iff @q is dead.
1514 * Must be called with @q->queue_lock held and,
1515 * Returns ERR_PTR on failure, with @q->queue_lock held.
1516 * Returns request pointer on success, with @q->queue_lock *not held*.
1518 static struct request *get_request(struct request_queue *q, unsigned int op,
1519 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1521 const bool is_sync = op_is_sync(op);
1522 DEFINE_WAIT(wait);
1523 struct request_list *rl;
1524 struct request *rq;
1526 lockdep_assert_held(q->queue_lock);
1527 WARN_ON_ONCE(q->mq_ops);
1529 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1530 retry:
1531 rq = __get_request(rl, op, bio, flags, gfp);
1532 if (!IS_ERR(rq))
1533 return rq;
1535 if (op & REQ_NOWAIT) {
1536 blk_put_rl(rl);
1537 return ERR_PTR(-EAGAIN);
1540 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1541 blk_put_rl(rl);
1542 return rq;
1545 /* wait on @rl and retry */
1546 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1547 TASK_UNINTERRUPTIBLE);
1549 trace_block_sleeprq(q, bio, op);
1551 spin_unlock_irq(q->queue_lock);
1552 io_schedule();
1555 * After sleeping, we become a "batching" process and will be able
1556 * to allocate at least one request, and up to a big batch of them
1557 * for a small period time. See ioc_batching, ioc_set_batching
1559 ioc_set_batching(q, current->io_context);
1561 spin_lock_irq(q->queue_lock);
1562 finish_wait(&rl->wait[is_sync], &wait);
1564 goto retry;
1567 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1568 static struct request *blk_old_get_request(struct request_queue *q,
1569 unsigned int op, blk_mq_req_flags_t flags)
1571 struct request *rq;
1572 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1573 int ret = 0;
1575 WARN_ON_ONCE(q->mq_ops);
1577 /* create ioc upfront */
1578 create_io_context(gfp_mask, q->node);
1580 ret = blk_queue_enter(q, flags);
1581 if (ret)
1582 return ERR_PTR(ret);
1583 spin_lock_irq(q->queue_lock);
1584 rq = get_request(q, op, NULL, flags, gfp_mask);
1585 if (IS_ERR(rq)) {
1586 spin_unlock_irq(q->queue_lock);
1587 blk_queue_exit(q);
1588 return rq;
1591 /* q->queue_lock is unlocked at this point */
1592 rq->__data_len = 0;
1593 rq->__sector = (sector_t) -1;
1594 rq->bio = rq->biotail = NULL;
1595 return rq;
1599 * blk_get_request - allocate a request
1600 * @q: request queue to allocate a request for
1601 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1602 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1604 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1605 blk_mq_req_flags_t flags)
1607 struct request *req;
1609 WARN_ON_ONCE(op & REQ_NOWAIT);
1610 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1612 if (q->mq_ops) {
1613 req = blk_mq_alloc_request(q, op, flags);
1614 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1615 q->mq_ops->initialize_rq_fn(req);
1616 } else {
1617 req = blk_old_get_request(q, op, flags);
1618 if (!IS_ERR(req) && q->initialize_rq_fn)
1619 q->initialize_rq_fn(req);
1622 return req;
1624 EXPORT_SYMBOL(blk_get_request);
1627 * blk_requeue_request - put a request back on queue
1628 * @q: request queue where request should be inserted
1629 * @rq: request to be inserted
1631 * Description:
1632 * Drivers often keep queueing requests until the hardware cannot accept
1633 * more, when that condition happens we need to put the request back
1634 * on the queue. Must be called with queue lock held.
1636 void blk_requeue_request(struct request_queue *q, struct request *rq)
1638 lockdep_assert_held(q->queue_lock);
1639 WARN_ON_ONCE(q->mq_ops);
1641 blk_delete_timer(rq);
1642 blk_clear_rq_complete(rq);
1643 trace_block_rq_requeue(q, rq);
1644 wbt_requeue(q->rq_wb, rq);
1646 if (rq->rq_flags & RQF_QUEUED)
1647 blk_queue_end_tag(q, rq);
1649 BUG_ON(blk_queued_rq(rq));
1651 elv_requeue_request(q, rq);
1653 EXPORT_SYMBOL(blk_requeue_request);
1655 static void add_acct_request(struct request_queue *q, struct request *rq,
1656 int where)
1658 blk_account_io_start(rq, true);
1659 __elv_add_request(q, rq, where);
1662 static void part_round_stats_single(struct request_queue *q, int cpu,
1663 struct hd_struct *part, unsigned long now,
1664 unsigned int inflight)
1666 if (inflight) {
1667 __part_stat_add(cpu, part, time_in_queue,
1668 inflight * (now - part->stamp));
1669 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1671 part->stamp = now;
1675 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1676 * @q: target block queue
1677 * @cpu: cpu number for stats access
1678 * @part: target partition
1680 * The average IO queue length and utilisation statistics are maintained
1681 * by observing the current state of the queue length and the amount of
1682 * time it has been in this state for.
1684 * Normally, that accounting is done on IO completion, but that can result
1685 * in more than a second's worth of IO being accounted for within any one
1686 * second, leading to >100% utilisation. To deal with that, we call this
1687 * function to do a round-off before returning the results when reading
1688 * /proc/diskstats. This accounts immediately for all queue usage up to
1689 * the current jiffies and restarts the counters again.
1691 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1693 struct hd_struct *part2 = NULL;
1694 unsigned long now = jiffies;
1695 unsigned int inflight[2];
1696 int stats = 0;
1698 if (part->stamp != now)
1699 stats |= 1;
1701 if (part->partno) {
1702 part2 = &part_to_disk(part)->part0;
1703 if (part2->stamp != now)
1704 stats |= 2;
1707 if (!stats)
1708 return;
1710 part_in_flight(q, part, inflight);
1712 if (stats & 2)
1713 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1714 if (stats & 1)
1715 part_round_stats_single(q, cpu, part, now, inflight[0]);
1717 EXPORT_SYMBOL_GPL(part_round_stats);
1719 #ifdef CONFIG_PM
1720 static void blk_pm_put_request(struct request *rq)
1722 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1723 pm_runtime_mark_last_busy(rq->q->dev);
1725 #else
1726 static inline void blk_pm_put_request(struct request *rq) {}
1727 #endif
1729 void __blk_put_request(struct request_queue *q, struct request *req)
1731 req_flags_t rq_flags = req->rq_flags;
1733 if (unlikely(!q))
1734 return;
1736 if (q->mq_ops) {
1737 blk_mq_free_request(req);
1738 return;
1741 lockdep_assert_held(q->queue_lock);
1743 blk_req_zone_write_unlock(req);
1744 blk_pm_put_request(req);
1746 elv_completed_request(q, req);
1748 /* this is a bio leak */
1749 WARN_ON(req->bio != NULL);
1751 wbt_done(q->rq_wb, req);
1754 * Request may not have originated from ll_rw_blk. if not,
1755 * it didn't come out of our reserved rq pools
1757 if (rq_flags & RQF_ALLOCED) {
1758 struct request_list *rl = blk_rq_rl(req);
1759 bool sync = op_is_sync(req->cmd_flags);
1761 BUG_ON(!list_empty(&req->queuelist));
1762 BUG_ON(ELV_ON_HASH(req));
1764 blk_free_request(rl, req);
1765 freed_request(rl, sync, rq_flags);
1766 blk_put_rl(rl);
1767 blk_queue_exit(q);
1770 EXPORT_SYMBOL_GPL(__blk_put_request);
1772 void blk_put_request(struct request *req)
1774 struct request_queue *q = req->q;
1776 if (q->mq_ops)
1777 blk_mq_free_request(req);
1778 else {
1779 unsigned long flags;
1781 spin_lock_irqsave(q->queue_lock, flags);
1782 __blk_put_request(q, req);
1783 spin_unlock_irqrestore(q->queue_lock, flags);
1786 EXPORT_SYMBOL(blk_put_request);
1788 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1789 struct bio *bio)
1791 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1793 if (!ll_back_merge_fn(q, req, bio))
1794 return false;
1796 trace_block_bio_backmerge(q, req, bio);
1798 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1799 blk_rq_set_mixed_merge(req);
1801 req->biotail->bi_next = bio;
1802 req->biotail = bio;
1803 req->__data_len += bio->bi_iter.bi_size;
1804 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1806 blk_account_io_start(req, false);
1807 return true;
1810 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1811 struct bio *bio)
1813 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1815 if (!ll_front_merge_fn(q, req, bio))
1816 return false;
1818 trace_block_bio_frontmerge(q, req, bio);
1820 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1821 blk_rq_set_mixed_merge(req);
1823 bio->bi_next = req->bio;
1824 req->bio = bio;
1826 req->__sector = bio->bi_iter.bi_sector;
1827 req->__data_len += bio->bi_iter.bi_size;
1828 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1830 blk_account_io_start(req, false);
1831 return true;
1834 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1835 struct bio *bio)
1837 unsigned short segments = blk_rq_nr_discard_segments(req);
1839 if (segments >= queue_max_discard_segments(q))
1840 goto no_merge;
1841 if (blk_rq_sectors(req) + bio_sectors(bio) >
1842 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1843 goto no_merge;
1845 req->biotail->bi_next = bio;
1846 req->biotail = bio;
1847 req->__data_len += bio->bi_iter.bi_size;
1848 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1849 req->nr_phys_segments = segments + 1;
1851 blk_account_io_start(req, false);
1852 return true;
1853 no_merge:
1854 req_set_nomerge(q, req);
1855 return false;
1859 * blk_attempt_plug_merge - try to merge with %current's plugged list
1860 * @q: request_queue new bio is being queued at
1861 * @bio: new bio being queued
1862 * @request_count: out parameter for number of traversed plugged requests
1863 * @same_queue_rq: pointer to &struct request that gets filled in when
1864 * another request associated with @q is found on the plug list
1865 * (optional, may be %NULL)
1867 * Determine whether @bio being queued on @q can be merged with a request
1868 * on %current's plugged list. Returns %true if merge was successful,
1869 * otherwise %false.
1871 * Plugging coalesces IOs from the same issuer for the same purpose without
1872 * going through @q->queue_lock. As such it's more of an issuing mechanism
1873 * than scheduling, and the request, while may have elvpriv data, is not
1874 * added on the elevator at this point. In addition, we don't have
1875 * reliable access to the elevator outside queue lock. Only check basic
1876 * merging parameters without querying the elevator.
1878 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1880 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1881 unsigned int *request_count,
1882 struct request **same_queue_rq)
1884 struct blk_plug *plug;
1885 struct request *rq;
1886 struct list_head *plug_list;
1888 plug = current->plug;
1889 if (!plug)
1890 return false;
1891 *request_count = 0;
1893 if (q->mq_ops)
1894 plug_list = &plug->mq_list;
1895 else
1896 plug_list = &plug->list;
1898 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1899 bool merged = false;
1901 if (rq->q == q) {
1902 (*request_count)++;
1904 * Only blk-mq multiple hardware queues case checks the
1905 * rq in the same queue, there should be only one such
1906 * rq in a queue
1908 if (same_queue_rq)
1909 *same_queue_rq = rq;
1912 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1913 continue;
1915 switch (blk_try_merge(rq, bio)) {
1916 case ELEVATOR_BACK_MERGE:
1917 merged = bio_attempt_back_merge(q, rq, bio);
1918 break;
1919 case ELEVATOR_FRONT_MERGE:
1920 merged = bio_attempt_front_merge(q, rq, bio);
1921 break;
1922 case ELEVATOR_DISCARD_MERGE:
1923 merged = bio_attempt_discard_merge(q, rq, bio);
1924 break;
1925 default:
1926 break;
1929 if (merged)
1930 return true;
1933 return false;
1936 unsigned int blk_plug_queued_count(struct request_queue *q)
1938 struct blk_plug *plug;
1939 struct request *rq;
1940 struct list_head *plug_list;
1941 unsigned int ret = 0;
1943 plug = current->plug;
1944 if (!plug)
1945 goto out;
1947 if (q->mq_ops)
1948 plug_list = &plug->mq_list;
1949 else
1950 plug_list = &plug->list;
1952 list_for_each_entry(rq, plug_list, queuelist) {
1953 if (rq->q == q)
1954 ret++;
1956 out:
1957 return ret;
1960 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1962 struct io_context *ioc = rq_ioc(bio);
1964 if (bio->bi_opf & REQ_RAHEAD)
1965 req->cmd_flags |= REQ_FAILFAST_MASK;
1967 req->__sector = bio->bi_iter.bi_sector;
1968 if (ioprio_valid(bio_prio(bio)))
1969 req->ioprio = bio_prio(bio);
1970 else if (ioc)
1971 req->ioprio = ioc->ioprio;
1972 else
1973 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1974 req->write_hint = bio->bi_write_hint;
1975 blk_rq_bio_prep(req->q, req, bio);
1977 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1979 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1981 struct blk_plug *plug;
1982 int where = ELEVATOR_INSERT_SORT;
1983 struct request *req, *free;
1984 unsigned int request_count = 0;
1985 unsigned int wb_acct;
1988 * low level driver can indicate that it wants pages above a
1989 * certain limit bounced to low memory (ie for highmem, or even
1990 * ISA dma in theory)
1992 blk_queue_bounce(q, &bio);
1994 blk_queue_split(q, &bio);
1996 if (!bio_integrity_prep(bio))
1997 return BLK_QC_T_NONE;
1999 if (op_is_flush(bio->bi_opf)) {
2000 spin_lock_irq(q->queue_lock);
2001 where = ELEVATOR_INSERT_FLUSH;
2002 goto get_rq;
2006 * Check if we can merge with the plugged list before grabbing
2007 * any locks.
2009 if (!blk_queue_nomerges(q)) {
2010 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2011 return BLK_QC_T_NONE;
2012 } else
2013 request_count = blk_plug_queued_count(q);
2015 spin_lock_irq(q->queue_lock);
2017 switch (elv_merge(q, &req, bio)) {
2018 case ELEVATOR_BACK_MERGE:
2019 if (!bio_attempt_back_merge(q, req, bio))
2020 break;
2021 elv_bio_merged(q, req, bio);
2022 free = attempt_back_merge(q, req);
2023 if (free)
2024 __blk_put_request(q, free);
2025 else
2026 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2027 goto out_unlock;
2028 case ELEVATOR_FRONT_MERGE:
2029 if (!bio_attempt_front_merge(q, req, bio))
2030 break;
2031 elv_bio_merged(q, req, bio);
2032 free = attempt_front_merge(q, req);
2033 if (free)
2034 __blk_put_request(q, free);
2035 else
2036 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2037 goto out_unlock;
2038 default:
2039 break;
2042 get_rq:
2043 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2046 * Grab a free request. This is might sleep but can not fail.
2047 * Returns with the queue unlocked.
2049 blk_queue_enter_live(q);
2050 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2051 if (IS_ERR(req)) {
2052 blk_queue_exit(q);
2053 __wbt_done(q->rq_wb, wb_acct);
2054 if (PTR_ERR(req) == -ENOMEM)
2055 bio->bi_status = BLK_STS_RESOURCE;
2056 else
2057 bio->bi_status = BLK_STS_IOERR;
2058 bio_endio(bio);
2059 goto out_unlock;
2062 wbt_track(req, wb_acct);
2065 * After dropping the lock and possibly sleeping here, our request
2066 * may now be mergeable after it had proven unmergeable (above).
2067 * We don't worry about that case for efficiency. It won't happen
2068 * often, and the elevators are able to handle it.
2070 blk_init_request_from_bio(req, bio);
2072 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2073 req->cpu = raw_smp_processor_id();
2075 plug = current->plug;
2076 if (plug) {
2078 * If this is the first request added after a plug, fire
2079 * of a plug trace.
2081 * @request_count may become stale because of schedule
2082 * out, so check plug list again.
2084 if (!request_count || list_empty(&plug->list))
2085 trace_block_plug(q);
2086 else {
2087 struct request *last = list_entry_rq(plug->list.prev);
2088 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2089 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2090 blk_flush_plug_list(plug, false);
2091 trace_block_plug(q);
2094 list_add_tail(&req->queuelist, &plug->list);
2095 blk_account_io_start(req, true);
2096 } else {
2097 spin_lock_irq(q->queue_lock);
2098 add_acct_request(q, req, where);
2099 __blk_run_queue(q);
2100 out_unlock:
2101 spin_unlock_irq(q->queue_lock);
2104 return BLK_QC_T_NONE;
2107 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2109 char b[BDEVNAME_SIZE];
2111 printk(KERN_INFO "attempt to access beyond end of device\n");
2112 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2113 bio_devname(bio, b), bio->bi_opf,
2114 (unsigned long long)bio_end_sector(bio),
2115 (long long)maxsector);
2118 #ifdef CONFIG_FAIL_MAKE_REQUEST
2120 static DECLARE_FAULT_ATTR(fail_make_request);
2122 static int __init setup_fail_make_request(char *str)
2124 return setup_fault_attr(&fail_make_request, str);
2126 __setup("fail_make_request=", setup_fail_make_request);
2128 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2130 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2133 static int __init fail_make_request_debugfs(void)
2135 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2136 NULL, &fail_make_request);
2138 return PTR_ERR_OR_ZERO(dir);
2141 late_initcall(fail_make_request_debugfs);
2143 #else /* CONFIG_FAIL_MAKE_REQUEST */
2145 static inline bool should_fail_request(struct hd_struct *part,
2146 unsigned int bytes)
2148 return false;
2151 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2153 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2155 if (part->policy && op_is_write(bio_op(bio))) {
2156 char b[BDEVNAME_SIZE];
2158 printk(KERN_ERR
2159 "generic_make_request: Trying to write "
2160 "to read-only block-device %s (partno %d)\n",
2161 bio_devname(bio, b), part->partno);
2162 return true;
2165 return false;
2168 static noinline int should_fail_bio(struct bio *bio)
2170 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2171 return -EIO;
2172 return 0;
2174 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2177 * Check whether this bio extends beyond the end of the device or partition.
2178 * This may well happen - the kernel calls bread() without checking the size of
2179 * the device, e.g., when mounting a file system.
2181 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2183 unsigned int nr_sectors = bio_sectors(bio);
2185 if (nr_sectors && maxsector &&
2186 (nr_sectors > maxsector ||
2187 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2188 handle_bad_sector(bio, maxsector);
2189 return -EIO;
2191 return 0;
2195 * Remap block n of partition p to block n+start(p) of the disk.
2197 static inline int blk_partition_remap(struct bio *bio)
2199 struct hd_struct *p;
2200 int ret = -EIO;
2202 rcu_read_lock();
2203 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2204 if (unlikely(!p))
2205 goto out;
2206 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2207 goto out;
2208 if (unlikely(bio_check_ro(bio, p)))
2209 goto out;
2212 * Zone reset does not include bi_size so bio_sectors() is always 0.
2213 * Include a test for the reset op code and perform the remap if needed.
2215 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2216 if (bio_check_eod(bio, part_nr_sects_read(p)))
2217 goto out;
2218 bio->bi_iter.bi_sector += p->start_sect;
2219 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2220 bio->bi_iter.bi_sector - p->start_sect);
2222 bio->bi_partno = 0;
2223 ret = 0;
2224 out:
2225 rcu_read_unlock();
2226 return ret;
2229 static noinline_for_stack bool
2230 generic_make_request_checks(struct bio *bio)
2232 struct request_queue *q;
2233 int nr_sectors = bio_sectors(bio);
2234 blk_status_t status = BLK_STS_IOERR;
2235 char b[BDEVNAME_SIZE];
2237 might_sleep();
2239 q = bio->bi_disk->queue;
2240 if (unlikely(!q)) {
2241 printk(KERN_ERR
2242 "generic_make_request: Trying to access "
2243 "nonexistent block-device %s (%Lu)\n",
2244 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2245 goto end_io;
2249 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2250 * if queue is not a request based queue.
2252 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2253 goto not_supported;
2255 if (should_fail_bio(bio))
2256 goto end_io;
2258 if (bio->bi_partno) {
2259 if (unlikely(blk_partition_remap(bio)))
2260 goto end_io;
2261 } else {
2262 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2263 goto end_io;
2264 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2265 goto end_io;
2269 * Filter flush bio's early so that make_request based
2270 * drivers without flush support don't have to worry
2271 * about them.
2273 if (op_is_flush(bio->bi_opf) &&
2274 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2275 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2276 if (!nr_sectors) {
2277 status = BLK_STS_OK;
2278 goto end_io;
2282 switch (bio_op(bio)) {
2283 case REQ_OP_DISCARD:
2284 if (!blk_queue_discard(q))
2285 goto not_supported;
2286 break;
2287 case REQ_OP_SECURE_ERASE:
2288 if (!blk_queue_secure_erase(q))
2289 goto not_supported;
2290 break;
2291 case REQ_OP_WRITE_SAME:
2292 if (!q->limits.max_write_same_sectors)
2293 goto not_supported;
2294 break;
2295 case REQ_OP_ZONE_REPORT:
2296 case REQ_OP_ZONE_RESET:
2297 if (!blk_queue_is_zoned(q))
2298 goto not_supported;
2299 break;
2300 case REQ_OP_WRITE_ZEROES:
2301 if (!q->limits.max_write_zeroes_sectors)
2302 goto not_supported;
2303 break;
2304 default:
2305 break;
2309 * Various block parts want %current->io_context and lazy ioc
2310 * allocation ends up trading a lot of pain for a small amount of
2311 * memory. Just allocate it upfront. This may fail and block
2312 * layer knows how to live with it.
2314 create_io_context(GFP_ATOMIC, q->node);
2316 if (!blkcg_bio_issue_check(q, bio))
2317 return false;
2319 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2320 trace_block_bio_queue(q, bio);
2321 /* Now that enqueuing has been traced, we need to trace
2322 * completion as well.
2324 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2326 return true;
2328 not_supported:
2329 status = BLK_STS_NOTSUPP;
2330 end_io:
2331 bio->bi_status = status;
2332 bio_endio(bio);
2333 return false;
2337 * generic_make_request - hand a buffer to its device driver for I/O
2338 * @bio: The bio describing the location in memory and on the device.
2340 * generic_make_request() is used to make I/O requests of block
2341 * devices. It is passed a &struct bio, which describes the I/O that needs
2342 * to be done.
2344 * generic_make_request() does not return any status. The
2345 * success/failure status of the request, along with notification of
2346 * completion, is delivered asynchronously through the bio->bi_end_io
2347 * function described (one day) else where.
2349 * The caller of generic_make_request must make sure that bi_io_vec
2350 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2351 * set to describe the device address, and the
2352 * bi_end_io and optionally bi_private are set to describe how
2353 * completion notification should be signaled.
2355 * generic_make_request and the drivers it calls may use bi_next if this
2356 * bio happens to be merged with someone else, and may resubmit the bio to
2357 * a lower device by calling into generic_make_request recursively, which
2358 * means the bio should NOT be touched after the call to ->make_request_fn.
2360 blk_qc_t generic_make_request(struct bio *bio)
2363 * bio_list_on_stack[0] contains bios submitted by the current
2364 * make_request_fn.
2365 * bio_list_on_stack[1] contains bios that were submitted before
2366 * the current make_request_fn, but that haven't been processed
2367 * yet.
2369 struct bio_list bio_list_on_stack[2];
2370 blk_mq_req_flags_t flags = 0;
2371 struct request_queue *q = bio->bi_disk->queue;
2372 blk_qc_t ret = BLK_QC_T_NONE;
2374 if (bio->bi_opf & REQ_NOWAIT)
2375 flags = BLK_MQ_REQ_NOWAIT;
2376 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2377 blk_queue_enter_live(q);
2378 else if (blk_queue_enter(q, flags) < 0) {
2379 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2380 bio_wouldblock_error(bio);
2381 else
2382 bio_io_error(bio);
2383 return ret;
2386 if (!generic_make_request_checks(bio))
2387 goto out;
2390 * We only want one ->make_request_fn to be active at a time, else
2391 * stack usage with stacked devices could be a problem. So use
2392 * current->bio_list to keep a list of requests submited by a
2393 * make_request_fn function. current->bio_list is also used as a
2394 * flag to say if generic_make_request is currently active in this
2395 * task or not. If it is NULL, then no make_request is active. If
2396 * it is non-NULL, then a make_request is active, and new requests
2397 * should be added at the tail
2399 if (current->bio_list) {
2400 bio_list_add(&current->bio_list[0], bio);
2401 goto out;
2404 /* following loop may be a bit non-obvious, and so deserves some
2405 * explanation.
2406 * Before entering the loop, bio->bi_next is NULL (as all callers
2407 * ensure that) so we have a list with a single bio.
2408 * We pretend that we have just taken it off a longer list, so
2409 * we assign bio_list to a pointer to the bio_list_on_stack,
2410 * thus initialising the bio_list of new bios to be
2411 * added. ->make_request() may indeed add some more bios
2412 * through a recursive call to generic_make_request. If it
2413 * did, we find a non-NULL value in bio_list and re-enter the loop
2414 * from the top. In this case we really did just take the bio
2415 * of the top of the list (no pretending) and so remove it from
2416 * bio_list, and call into ->make_request() again.
2418 BUG_ON(bio->bi_next);
2419 bio_list_init(&bio_list_on_stack[0]);
2420 current->bio_list = bio_list_on_stack;
2421 do {
2422 bool enter_succeeded = true;
2424 if (unlikely(q != bio->bi_disk->queue)) {
2425 if (q)
2426 blk_queue_exit(q);
2427 q = bio->bi_disk->queue;
2428 flags = 0;
2429 if (bio->bi_opf & REQ_NOWAIT)
2430 flags = BLK_MQ_REQ_NOWAIT;
2431 if (blk_queue_enter(q, flags) < 0) {
2432 enter_succeeded = false;
2433 q = NULL;
2437 if (enter_succeeded) {
2438 struct bio_list lower, same;
2440 /* Create a fresh bio_list for all subordinate requests */
2441 bio_list_on_stack[1] = bio_list_on_stack[0];
2442 bio_list_init(&bio_list_on_stack[0]);
2443 ret = q->make_request_fn(q, bio);
2445 /* sort new bios into those for a lower level
2446 * and those for the same level
2448 bio_list_init(&lower);
2449 bio_list_init(&same);
2450 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2451 if (q == bio->bi_disk->queue)
2452 bio_list_add(&same, bio);
2453 else
2454 bio_list_add(&lower, bio);
2455 /* now assemble so we handle the lowest level first */
2456 bio_list_merge(&bio_list_on_stack[0], &lower);
2457 bio_list_merge(&bio_list_on_stack[0], &same);
2458 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2459 } else {
2460 if (unlikely(!blk_queue_dying(q) &&
2461 (bio->bi_opf & REQ_NOWAIT)))
2462 bio_wouldblock_error(bio);
2463 else
2464 bio_io_error(bio);
2466 bio = bio_list_pop(&bio_list_on_stack[0]);
2467 } while (bio);
2468 current->bio_list = NULL; /* deactivate */
2470 out:
2471 if (q)
2472 blk_queue_exit(q);
2473 return ret;
2475 EXPORT_SYMBOL(generic_make_request);
2478 * direct_make_request - hand a buffer directly to its device driver for I/O
2479 * @bio: The bio describing the location in memory and on the device.
2481 * This function behaves like generic_make_request(), but does not protect
2482 * against recursion. Must only be used if the called driver is known
2483 * to not call generic_make_request (or direct_make_request) again from
2484 * its make_request function. (Calling direct_make_request again from
2485 * a workqueue is perfectly fine as that doesn't recurse).
2487 blk_qc_t direct_make_request(struct bio *bio)
2489 struct request_queue *q = bio->bi_disk->queue;
2490 bool nowait = bio->bi_opf & REQ_NOWAIT;
2491 blk_qc_t ret;
2493 if (!generic_make_request_checks(bio))
2494 return BLK_QC_T_NONE;
2496 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2497 if (nowait && !blk_queue_dying(q))
2498 bio->bi_status = BLK_STS_AGAIN;
2499 else
2500 bio->bi_status = BLK_STS_IOERR;
2501 bio_endio(bio);
2502 return BLK_QC_T_NONE;
2505 ret = q->make_request_fn(q, bio);
2506 blk_queue_exit(q);
2507 return ret;
2509 EXPORT_SYMBOL_GPL(direct_make_request);
2512 * submit_bio - submit a bio to the block device layer for I/O
2513 * @bio: The &struct bio which describes the I/O
2515 * submit_bio() is very similar in purpose to generic_make_request(), and
2516 * uses that function to do most of the work. Both are fairly rough
2517 * interfaces; @bio must be presetup and ready for I/O.
2520 blk_qc_t submit_bio(struct bio *bio)
2523 * If it's a regular read/write or a barrier with data attached,
2524 * go through the normal accounting stuff before submission.
2526 if (bio_has_data(bio)) {
2527 unsigned int count;
2529 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2530 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2531 else
2532 count = bio_sectors(bio);
2534 if (op_is_write(bio_op(bio))) {
2535 count_vm_events(PGPGOUT, count);
2536 } else {
2537 task_io_account_read(bio->bi_iter.bi_size);
2538 count_vm_events(PGPGIN, count);
2541 if (unlikely(block_dump)) {
2542 char b[BDEVNAME_SIZE];
2543 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2544 current->comm, task_pid_nr(current),
2545 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2546 (unsigned long long)bio->bi_iter.bi_sector,
2547 bio_devname(bio, b), count);
2551 return generic_make_request(bio);
2553 EXPORT_SYMBOL(submit_bio);
2555 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2557 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2558 return false;
2560 if (current->plug)
2561 blk_flush_plug_list(current->plug, false);
2562 return q->poll_fn(q, cookie);
2564 EXPORT_SYMBOL_GPL(blk_poll);
2567 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2568 * for new the queue limits
2569 * @q: the queue
2570 * @rq: the request being checked
2572 * Description:
2573 * @rq may have been made based on weaker limitations of upper-level queues
2574 * in request stacking drivers, and it may violate the limitation of @q.
2575 * Since the block layer and the underlying device driver trust @rq
2576 * after it is inserted to @q, it should be checked against @q before
2577 * the insertion using this generic function.
2579 * Request stacking drivers like request-based dm may change the queue
2580 * limits when retrying requests on other queues. Those requests need
2581 * to be checked against the new queue limits again during dispatch.
2583 static int blk_cloned_rq_check_limits(struct request_queue *q,
2584 struct request *rq)
2586 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2587 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2588 return -EIO;
2592 * queue's settings related to segment counting like q->bounce_pfn
2593 * may differ from that of other stacking queues.
2594 * Recalculate it to check the request correctly on this queue's
2595 * limitation.
2597 blk_recalc_rq_segments(rq);
2598 if (rq->nr_phys_segments > queue_max_segments(q)) {
2599 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2600 return -EIO;
2603 return 0;
2607 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2608 * @q: the queue to submit the request
2609 * @rq: the request being queued
2611 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2613 unsigned long flags;
2614 int where = ELEVATOR_INSERT_BACK;
2616 if (blk_cloned_rq_check_limits(q, rq))
2617 return BLK_STS_IOERR;
2619 if (rq->rq_disk &&
2620 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2621 return BLK_STS_IOERR;
2623 if (q->mq_ops) {
2624 if (blk_queue_io_stat(q))
2625 blk_account_io_start(rq, true);
2627 * Since we have a scheduler attached on the top device,
2628 * bypass a potential scheduler on the bottom device for
2629 * insert.
2631 return blk_mq_request_issue_directly(rq);
2634 spin_lock_irqsave(q->queue_lock, flags);
2635 if (unlikely(blk_queue_dying(q))) {
2636 spin_unlock_irqrestore(q->queue_lock, flags);
2637 return BLK_STS_IOERR;
2641 * Submitting request must be dequeued before calling this function
2642 * because it will be linked to another request_queue
2644 BUG_ON(blk_queued_rq(rq));
2646 if (op_is_flush(rq->cmd_flags))
2647 where = ELEVATOR_INSERT_FLUSH;
2649 add_acct_request(q, rq, where);
2650 if (where == ELEVATOR_INSERT_FLUSH)
2651 __blk_run_queue(q);
2652 spin_unlock_irqrestore(q->queue_lock, flags);
2654 return BLK_STS_OK;
2656 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2659 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2660 * @rq: request to examine
2662 * Description:
2663 * A request could be merge of IOs which require different failure
2664 * handling. This function determines the number of bytes which
2665 * can be failed from the beginning of the request without
2666 * crossing into area which need to be retried further.
2668 * Return:
2669 * The number of bytes to fail.
2671 unsigned int blk_rq_err_bytes(const struct request *rq)
2673 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2674 unsigned int bytes = 0;
2675 struct bio *bio;
2677 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2678 return blk_rq_bytes(rq);
2681 * Currently the only 'mixing' which can happen is between
2682 * different fastfail types. We can safely fail portions
2683 * which have all the failfast bits that the first one has -
2684 * the ones which are at least as eager to fail as the first
2685 * one.
2687 for (bio = rq->bio; bio; bio = bio->bi_next) {
2688 if ((bio->bi_opf & ff) != ff)
2689 break;
2690 bytes += bio->bi_iter.bi_size;
2693 /* this could lead to infinite loop */
2694 BUG_ON(blk_rq_bytes(rq) && !bytes);
2695 return bytes;
2697 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2699 void blk_account_io_completion(struct request *req, unsigned int bytes)
2701 if (blk_do_io_stat(req)) {
2702 const int rw = rq_data_dir(req);
2703 struct hd_struct *part;
2704 int cpu;
2706 cpu = part_stat_lock();
2707 part = req->part;
2708 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2709 part_stat_unlock();
2713 void blk_account_io_done(struct request *req, u64 now)
2716 * Account IO completion. flush_rq isn't accounted as a
2717 * normal IO on queueing nor completion. Accounting the
2718 * containing request is enough.
2720 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2721 unsigned long duration;
2722 const int rw = rq_data_dir(req);
2723 struct hd_struct *part;
2724 int cpu;
2726 duration = nsecs_to_jiffies(now - req->start_time_ns);
2727 cpu = part_stat_lock();
2728 part = req->part;
2730 part_stat_inc(cpu, part, ios[rw]);
2731 part_stat_add(cpu, part, ticks[rw], duration);
2732 part_round_stats(req->q, cpu, part);
2733 part_dec_in_flight(req->q, part, rw);
2735 hd_struct_put(part);
2736 part_stat_unlock();
2740 #ifdef CONFIG_PM
2742 * Don't process normal requests when queue is suspended
2743 * or in the process of suspending/resuming
2745 static bool blk_pm_allow_request(struct request *rq)
2747 switch (rq->q->rpm_status) {
2748 case RPM_RESUMING:
2749 case RPM_SUSPENDING:
2750 return rq->rq_flags & RQF_PM;
2751 case RPM_SUSPENDED:
2752 return false;
2755 return true;
2757 #else
2758 static bool blk_pm_allow_request(struct request *rq)
2760 return true;
2762 #endif
2764 void blk_account_io_start(struct request *rq, bool new_io)
2766 struct hd_struct *part;
2767 int rw = rq_data_dir(rq);
2768 int cpu;
2770 if (!blk_do_io_stat(rq))
2771 return;
2773 cpu = part_stat_lock();
2775 if (!new_io) {
2776 part = rq->part;
2777 part_stat_inc(cpu, part, merges[rw]);
2778 } else {
2779 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2780 if (!hd_struct_try_get(part)) {
2782 * The partition is already being removed,
2783 * the request will be accounted on the disk only
2785 * We take a reference on disk->part0 although that
2786 * partition will never be deleted, so we can treat
2787 * it as any other partition.
2789 part = &rq->rq_disk->part0;
2790 hd_struct_get(part);
2792 part_round_stats(rq->q, cpu, part);
2793 part_inc_in_flight(rq->q, part, rw);
2794 rq->part = part;
2797 part_stat_unlock();
2800 static struct request *elv_next_request(struct request_queue *q)
2802 struct request *rq;
2803 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2805 WARN_ON_ONCE(q->mq_ops);
2807 while (1) {
2808 list_for_each_entry(rq, &q->queue_head, queuelist) {
2809 if (blk_pm_allow_request(rq))
2810 return rq;
2812 if (rq->rq_flags & RQF_SOFTBARRIER)
2813 break;
2817 * Flush request is running and flush request isn't queueable
2818 * in the drive, we can hold the queue till flush request is
2819 * finished. Even we don't do this, driver can't dispatch next
2820 * requests and will requeue them. And this can improve
2821 * throughput too. For example, we have request flush1, write1,
2822 * flush 2. flush1 is dispatched, then queue is hold, write1
2823 * isn't inserted to queue. After flush1 is finished, flush2
2824 * will be dispatched. Since disk cache is already clean,
2825 * flush2 will be finished very soon, so looks like flush2 is
2826 * folded to flush1.
2827 * Since the queue is hold, a flag is set to indicate the queue
2828 * should be restarted later. Please see flush_end_io() for
2829 * details.
2831 if (fq->flush_pending_idx != fq->flush_running_idx &&
2832 !queue_flush_queueable(q)) {
2833 fq->flush_queue_delayed = 1;
2834 return NULL;
2836 if (unlikely(blk_queue_bypass(q)) ||
2837 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2838 return NULL;
2843 * blk_peek_request - peek at the top of a request queue
2844 * @q: request queue to peek at
2846 * Description:
2847 * Return the request at the top of @q. The returned request
2848 * should be started using blk_start_request() before LLD starts
2849 * processing it.
2851 * Return:
2852 * Pointer to the request at the top of @q if available. Null
2853 * otherwise.
2855 struct request *blk_peek_request(struct request_queue *q)
2857 struct request *rq;
2858 int ret;
2860 lockdep_assert_held(q->queue_lock);
2861 WARN_ON_ONCE(q->mq_ops);
2863 while ((rq = elv_next_request(q)) != NULL) {
2864 if (!(rq->rq_flags & RQF_STARTED)) {
2866 * This is the first time the device driver
2867 * sees this request (possibly after
2868 * requeueing). Notify IO scheduler.
2870 if (rq->rq_flags & RQF_SORTED)
2871 elv_activate_rq(q, rq);
2874 * just mark as started even if we don't start
2875 * it, a request that has been delayed should
2876 * not be passed by new incoming requests
2878 rq->rq_flags |= RQF_STARTED;
2879 trace_block_rq_issue(q, rq);
2882 if (!q->boundary_rq || q->boundary_rq == rq) {
2883 q->end_sector = rq_end_sector(rq);
2884 q->boundary_rq = NULL;
2887 if (rq->rq_flags & RQF_DONTPREP)
2888 break;
2890 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2892 * make sure space for the drain appears we
2893 * know we can do this because max_hw_segments
2894 * has been adjusted to be one fewer than the
2895 * device can handle
2897 rq->nr_phys_segments++;
2900 if (!q->prep_rq_fn)
2901 break;
2903 ret = q->prep_rq_fn(q, rq);
2904 if (ret == BLKPREP_OK) {
2905 break;
2906 } else if (ret == BLKPREP_DEFER) {
2908 * the request may have been (partially) prepped.
2909 * we need to keep this request in the front to
2910 * avoid resource deadlock. RQF_STARTED will
2911 * prevent other fs requests from passing this one.
2913 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2914 !(rq->rq_flags & RQF_DONTPREP)) {
2916 * remove the space for the drain we added
2917 * so that we don't add it again
2919 --rq->nr_phys_segments;
2922 rq = NULL;
2923 break;
2924 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2925 rq->rq_flags |= RQF_QUIET;
2927 * Mark this request as started so we don't trigger
2928 * any debug logic in the end I/O path.
2930 blk_start_request(rq);
2931 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2932 BLK_STS_TARGET : BLK_STS_IOERR);
2933 } else {
2934 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2935 break;
2939 return rq;
2941 EXPORT_SYMBOL(blk_peek_request);
2943 static void blk_dequeue_request(struct request *rq)
2945 struct request_queue *q = rq->q;
2947 BUG_ON(list_empty(&rq->queuelist));
2948 BUG_ON(ELV_ON_HASH(rq));
2950 list_del_init(&rq->queuelist);
2953 * the time frame between a request being removed from the lists
2954 * and to it is freed is accounted as io that is in progress at
2955 * the driver side.
2957 if (blk_account_rq(rq))
2958 q->in_flight[rq_is_sync(rq)]++;
2962 * blk_start_request - start request processing on the driver
2963 * @req: request to dequeue
2965 * Description:
2966 * Dequeue @req and start timeout timer on it. This hands off the
2967 * request to the driver.
2969 void blk_start_request(struct request *req)
2971 lockdep_assert_held(req->q->queue_lock);
2972 WARN_ON_ONCE(req->q->mq_ops);
2974 blk_dequeue_request(req);
2976 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2977 req->io_start_time_ns = ktime_get_ns();
2978 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2979 req->throtl_size = blk_rq_sectors(req);
2980 #endif
2981 req->rq_flags |= RQF_STATS;
2982 wbt_issue(req->q->rq_wb, req);
2985 BUG_ON(blk_rq_is_complete(req));
2986 blk_add_timer(req);
2988 EXPORT_SYMBOL(blk_start_request);
2991 * blk_fetch_request - fetch a request from a request queue
2992 * @q: request queue to fetch a request from
2994 * Description:
2995 * Return the request at the top of @q. The request is started on
2996 * return and LLD can start processing it immediately.
2998 * Return:
2999 * Pointer to the request at the top of @q if available. Null
3000 * otherwise.
3002 struct request *blk_fetch_request(struct request_queue *q)
3004 struct request *rq;
3006 lockdep_assert_held(q->queue_lock);
3007 WARN_ON_ONCE(q->mq_ops);
3009 rq = blk_peek_request(q);
3010 if (rq)
3011 blk_start_request(rq);
3012 return rq;
3014 EXPORT_SYMBOL(blk_fetch_request);
3017 * Steal bios from a request and add them to a bio list.
3018 * The request must not have been partially completed before.
3020 void blk_steal_bios(struct bio_list *list, struct request *rq)
3022 if (rq->bio) {
3023 if (list->tail)
3024 list->tail->bi_next = rq->bio;
3025 else
3026 list->head = rq->bio;
3027 list->tail = rq->biotail;
3029 rq->bio = NULL;
3030 rq->biotail = NULL;
3033 rq->__data_len = 0;
3035 EXPORT_SYMBOL_GPL(blk_steal_bios);
3038 * blk_update_request - Special helper function for request stacking drivers
3039 * @req: the request being processed
3040 * @error: block status code
3041 * @nr_bytes: number of bytes to complete @req
3043 * Description:
3044 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3045 * the request structure even if @req doesn't have leftover.
3046 * If @req has leftover, sets it up for the next range of segments.
3048 * This special helper function is only for request stacking drivers
3049 * (e.g. request-based dm) so that they can handle partial completion.
3050 * Actual device drivers should use blk_end_request instead.
3052 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3053 * %false return from this function.
3055 * Return:
3056 * %false - this request doesn't have any more data
3057 * %true - this request has more data
3059 bool blk_update_request(struct request *req, blk_status_t error,
3060 unsigned int nr_bytes)
3062 int total_bytes;
3064 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3066 if (!req->bio)
3067 return false;
3069 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3070 !(req->rq_flags & RQF_QUIET)))
3071 print_req_error(req, error);
3073 blk_account_io_completion(req, nr_bytes);
3075 total_bytes = 0;
3076 while (req->bio) {
3077 struct bio *bio = req->bio;
3078 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3080 if (bio_bytes == bio->bi_iter.bi_size)
3081 req->bio = bio->bi_next;
3083 /* Completion has already been traced */
3084 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3085 req_bio_endio(req, bio, bio_bytes, error);
3087 total_bytes += bio_bytes;
3088 nr_bytes -= bio_bytes;
3090 if (!nr_bytes)
3091 break;
3095 * completely done
3097 if (!req->bio) {
3099 * Reset counters so that the request stacking driver
3100 * can find how many bytes remain in the request
3101 * later.
3103 req->__data_len = 0;
3104 return false;
3107 req->__data_len -= total_bytes;
3109 /* update sector only for requests with clear definition of sector */
3110 if (!blk_rq_is_passthrough(req))
3111 req->__sector += total_bytes >> 9;
3113 /* mixed attributes always follow the first bio */
3114 if (req->rq_flags & RQF_MIXED_MERGE) {
3115 req->cmd_flags &= ~REQ_FAILFAST_MASK;
3116 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3119 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3121 * If total number of sectors is less than the first segment
3122 * size, something has gone terribly wrong.
3124 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3125 blk_dump_rq_flags(req, "request botched");
3126 req->__data_len = blk_rq_cur_bytes(req);
3129 /* recalculate the number of segments */
3130 blk_recalc_rq_segments(req);
3133 return true;
3135 EXPORT_SYMBOL_GPL(blk_update_request);
3137 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3138 unsigned int nr_bytes,
3139 unsigned int bidi_bytes)
3141 if (blk_update_request(rq, error, nr_bytes))
3142 return true;
3144 /* Bidi request must be completed as a whole */
3145 if (unlikely(blk_bidi_rq(rq)) &&
3146 blk_update_request(rq->next_rq, error, bidi_bytes))
3147 return true;
3149 if (blk_queue_add_random(rq->q))
3150 add_disk_randomness(rq->rq_disk);
3152 return false;
3156 * blk_unprep_request - unprepare a request
3157 * @req: the request
3159 * This function makes a request ready for complete resubmission (or
3160 * completion). It happens only after all error handling is complete,
3161 * so represents the appropriate moment to deallocate any resources
3162 * that were allocated to the request in the prep_rq_fn. The queue
3163 * lock is held when calling this.
3165 void blk_unprep_request(struct request *req)
3167 struct request_queue *q = req->q;
3169 req->rq_flags &= ~RQF_DONTPREP;
3170 if (q->unprep_rq_fn)
3171 q->unprep_rq_fn(q, req);
3173 EXPORT_SYMBOL_GPL(blk_unprep_request);
3175 void blk_finish_request(struct request *req, blk_status_t error)
3177 struct request_queue *q = req->q;
3178 u64 now = ktime_get_ns();
3180 lockdep_assert_held(req->q->queue_lock);
3181 WARN_ON_ONCE(q->mq_ops);
3183 if (req->rq_flags & RQF_STATS)
3184 blk_stat_add(req, now);
3186 if (req->rq_flags & RQF_QUEUED)
3187 blk_queue_end_tag(q, req);
3189 BUG_ON(blk_queued_rq(req));
3191 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3192 laptop_io_completion(req->q->backing_dev_info);
3194 blk_delete_timer(req);
3196 if (req->rq_flags & RQF_DONTPREP)
3197 blk_unprep_request(req);
3199 blk_account_io_done(req, now);
3201 if (req->end_io) {
3202 wbt_done(req->q->rq_wb, req);
3203 req->end_io(req, error);
3204 } else {
3205 if (blk_bidi_rq(req))
3206 __blk_put_request(req->next_rq->q, req->next_rq);
3208 __blk_put_request(q, req);
3211 EXPORT_SYMBOL(blk_finish_request);
3214 * blk_end_bidi_request - Complete a bidi request
3215 * @rq: the request to complete
3216 * @error: block status code
3217 * @nr_bytes: number of bytes to complete @rq
3218 * @bidi_bytes: number of bytes to complete @rq->next_rq
3220 * Description:
3221 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3222 * Drivers that supports bidi can safely call this member for any
3223 * type of request, bidi or uni. In the later case @bidi_bytes is
3224 * just ignored.
3226 * Return:
3227 * %false - we are done with this request
3228 * %true - still buffers pending for this request
3230 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3231 unsigned int nr_bytes, unsigned int bidi_bytes)
3233 struct request_queue *q = rq->q;
3234 unsigned long flags;
3236 WARN_ON_ONCE(q->mq_ops);
3238 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3239 return true;
3241 spin_lock_irqsave(q->queue_lock, flags);
3242 blk_finish_request(rq, error);
3243 spin_unlock_irqrestore(q->queue_lock, flags);
3245 return false;
3249 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3250 * @rq: the request to complete
3251 * @error: block status code
3252 * @nr_bytes: number of bytes to complete @rq
3253 * @bidi_bytes: number of bytes to complete @rq->next_rq
3255 * Description:
3256 * Identical to blk_end_bidi_request() except that queue lock is
3257 * assumed to be locked on entry and remains so on return.
3259 * Return:
3260 * %false - we are done with this request
3261 * %true - still buffers pending for this request
3263 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3264 unsigned int nr_bytes, unsigned int bidi_bytes)
3266 lockdep_assert_held(rq->q->queue_lock);
3267 WARN_ON_ONCE(rq->q->mq_ops);
3269 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3270 return true;
3272 blk_finish_request(rq, error);
3274 return false;
3278 * blk_end_request - Helper function for drivers to complete the request.
3279 * @rq: the request being processed
3280 * @error: block status code
3281 * @nr_bytes: number of bytes to complete
3283 * Description:
3284 * Ends I/O on a number of bytes attached to @rq.
3285 * If @rq has leftover, sets it up for the next range of segments.
3287 * Return:
3288 * %false - we are done with this request
3289 * %true - still buffers pending for this request
3291 bool blk_end_request(struct request *rq, blk_status_t error,
3292 unsigned int nr_bytes)
3294 WARN_ON_ONCE(rq->q->mq_ops);
3295 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3297 EXPORT_SYMBOL(blk_end_request);
3300 * blk_end_request_all - Helper function for drives to finish the request.
3301 * @rq: the request to finish
3302 * @error: block status code
3304 * Description:
3305 * Completely finish @rq.
3307 void blk_end_request_all(struct request *rq, blk_status_t error)
3309 bool pending;
3310 unsigned int bidi_bytes = 0;
3312 if (unlikely(blk_bidi_rq(rq)))
3313 bidi_bytes = blk_rq_bytes(rq->next_rq);
3315 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3316 BUG_ON(pending);
3318 EXPORT_SYMBOL(blk_end_request_all);
3321 * __blk_end_request - Helper function for drivers to complete the request.
3322 * @rq: the request being processed
3323 * @error: block status code
3324 * @nr_bytes: number of bytes to complete
3326 * Description:
3327 * Must be called with queue lock held unlike blk_end_request().
3329 * Return:
3330 * %false - we are done with this request
3331 * %true - still buffers pending for this request
3333 bool __blk_end_request(struct request *rq, blk_status_t error,
3334 unsigned int nr_bytes)
3336 lockdep_assert_held(rq->q->queue_lock);
3337 WARN_ON_ONCE(rq->q->mq_ops);
3339 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3341 EXPORT_SYMBOL(__blk_end_request);
3344 * __blk_end_request_all - Helper function for drives to finish the request.
3345 * @rq: the request to finish
3346 * @error: block status code
3348 * Description:
3349 * Completely finish @rq. Must be called with queue lock held.
3351 void __blk_end_request_all(struct request *rq, blk_status_t error)
3353 bool pending;
3354 unsigned int bidi_bytes = 0;
3356 lockdep_assert_held(rq->q->queue_lock);
3357 WARN_ON_ONCE(rq->q->mq_ops);
3359 if (unlikely(blk_bidi_rq(rq)))
3360 bidi_bytes = blk_rq_bytes(rq->next_rq);
3362 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3363 BUG_ON(pending);
3365 EXPORT_SYMBOL(__blk_end_request_all);
3368 * __blk_end_request_cur - Helper function to finish the current request chunk.
3369 * @rq: the request to finish the current chunk for
3370 * @error: block status code
3372 * Description:
3373 * Complete the current consecutively mapped chunk from @rq. Must
3374 * be called with queue lock held.
3376 * Return:
3377 * %false - we are done with this request
3378 * %true - still buffers pending for this request
3380 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3382 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3384 EXPORT_SYMBOL(__blk_end_request_cur);
3386 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3387 struct bio *bio)
3389 if (bio_has_data(bio))
3390 rq->nr_phys_segments = bio_phys_segments(q, bio);
3391 else if (bio_op(bio) == REQ_OP_DISCARD)
3392 rq->nr_phys_segments = 1;
3394 rq->__data_len = bio->bi_iter.bi_size;
3395 rq->bio = rq->biotail = bio;
3397 if (bio->bi_disk)
3398 rq->rq_disk = bio->bi_disk;
3401 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3403 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3404 * @rq: the request to be flushed
3406 * Description:
3407 * Flush all pages in @rq.
3409 void rq_flush_dcache_pages(struct request *rq)
3411 struct req_iterator iter;
3412 struct bio_vec bvec;
3414 rq_for_each_segment(bvec, rq, iter)
3415 flush_dcache_page(bvec.bv_page);
3417 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3418 #endif
3421 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3422 * @q : the queue of the device being checked
3424 * Description:
3425 * Check if underlying low-level drivers of a device are busy.
3426 * If the drivers want to export their busy state, they must set own
3427 * exporting function using blk_queue_lld_busy() first.
3429 * Basically, this function is used only by request stacking drivers
3430 * to stop dispatching requests to underlying devices when underlying
3431 * devices are busy. This behavior helps more I/O merging on the queue
3432 * of the request stacking driver and prevents I/O throughput regression
3433 * on burst I/O load.
3435 * Return:
3436 * 0 - Not busy (The request stacking driver should dispatch request)
3437 * 1 - Busy (The request stacking driver should stop dispatching request)
3439 int blk_lld_busy(struct request_queue *q)
3441 if (q->lld_busy_fn)
3442 return q->lld_busy_fn(q);
3444 return 0;
3446 EXPORT_SYMBOL_GPL(blk_lld_busy);
3449 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3450 * @rq: the clone request to be cleaned up
3452 * Description:
3453 * Free all bios in @rq for a cloned request.
3455 void blk_rq_unprep_clone(struct request *rq)
3457 struct bio *bio;
3459 while ((bio = rq->bio) != NULL) {
3460 rq->bio = bio->bi_next;
3462 bio_put(bio);
3465 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3468 * Copy attributes of the original request to the clone request.
3469 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3471 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3473 dst->cpu = src->cpu;
3474 dst->__sector = blk_rq_pos(src);
3475 dst->__data_len = blk_rq_bytes(src);
3476 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3477 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3478 dst->special_vec = src->special_vec;
3480 dst->nr_phys_segments = src->nr_phys_segments;
3481 dst->ioprio = src->ioprio;
3482 dst->extra_len = src->extra_len;
3486 * blk_rq_prep_clone - Helper function to setup clone request
3487 * @rq: the request to be setup
3488 * @rq_src: original request to be cloned
3489 * @bs: bio_set that bios for clone are allocated from
3490 * @gfp_mask: memory allocation mask for bio
3491 * @bio_ctr: setup function to be called for each clone bio.
3492 * Returns %0 for success, non %0 for failure.
3493 * @data: private data to be passed to @bio_ctr
3495 * Description:
3496 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3497 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3498 * are not copied, and copying such parts is the caller's responsibility.
3499 * Also, pages which the original bios are pointing to are not copied
3500 * and the cloned bios just point same pages.
3501 * So cloned bios must be completed before original bios, which means
3502 * the caller must complete @rq before @rq_src.
3504 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3505 struct bio_set *bs, gfp_t gfp_mask,
3506 int (*bio_ctr)(struct bio *, struct bio *, void *),
3507 void *data)
3509 struct bio *bio, *bio_src;
3511 if (!bs)
3512 bs = &fs_bio_set;
3514 __rq_for_each_bio(bio_src, rq_src) {
3515 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3516 if (!bio)
3517 goto free_and_out;
3519 if (bio_ctr && bio_ctr(bio, bio_src, data))
3520 goto free_and_out;
3522 if (rq->bio) {
3523 rq->biotail->bi_next = bio;
3524 rq->biotail = bio;
3525 } else
3526 rq->bio = rq->biotail = bio;
3529 __blk_rq_prep_clone(rq, rq_src);
3531 return 0;
3533 free_and_out:
3534 if (bio)
3535 bio_put(bio);
3536 blk_rq_unprep_clone(rq);
3538 return -ENOMEM;
3540 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3542 int kblockd_schedule_work(struct work_struct *work)
3544 return queue_work(kblockd_workqueue, work);
3546 EXPORT_SYMBOL(kblockd_schedule_work);
3548 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3550 return queue_work_on(cpu, kblockd_workqueue, work);
3552 EXPORT_SYMBOL(kblockd_schedule_work_on);
3554 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3555 unsigned long delay)
3557 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3559 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3562 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3563 * @plug: The &struct blk_plug that needs to be initialized
3565 * Description:
3566 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3567 * pending I/O should the task end up blocking between blk_start_plug() and
3568 * blk_finish_plug(). This is important from a performance perspective, but
3569 * also ensures that we don't deadlock. For instance, if the task is blocking
3570 * for a memory allocation, memory reclaim could end up wanting to free a
3571 * page belonging to that request that is currently residing in our private
3572 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3573 * this kind of deadlock.
3575 void blk_start_plug(struct blk_plug *plug)
3577 struct task_struct *tsk = current;
3580 * If this is a nested plug, don't actually assign it.
3582 if (tsk->plug)
3583 return;
3585 INIT_LIST_HEAD(&plug->list);
3586 INIT_LIST_HEAD(&plug->mq_list);
3587 INIT_LIST_HEAD(&plug->cb_list);
3589 * Store ordering should not be needed here, since a potential
3590 * preempt will imply a full memory barrier
3592 tsk->plug = plug;
3594 EXPORT_SYMBOL(blk_start_plug);
3596 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3598 struct request *rqa = container_of(a, struct request, queuelist);
3599 struct request *rqb = container_of(b, struct request, queuelist);
3601 return !(rqa->q < rqb->q ||
3602 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3606 * If 'from_schedule' is true, then postpone the dispatch of requests
3607 * until a safe kblockd context. We due this to avoid accidental big
3608 * additional stack usage in driver dispatch, in places where the originally
3609 * plugger did not intend it.
3611 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3612 bool from_schedule)
3613 __releases(q->queue_lock)
3615 lockdep_assert_held(q->queue_lock);
3617 trace_block_unplug(q, depth, !from_schedule);
3619 if (from_schedule)
3620 blk_run_queue_async(q);
3621 else
3622 __blk_run_queue(q);
3623 spin_unlock_irq(q->queue_lock);
3626 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3628 LIST_HEAD(callbacks);
3630 while (!list_empty(&plug->cb_list)) {
3631 list_splice_init(&plug->cb_list, &callbacks);
3633 while (!list_empty(&callbacks)) {
3634 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3635 struct blk_plug_cb,
3636 list);
3637 list_del(&cb->list);
3638 cb->callback(cb, from_schedule);
3643 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3644 int size)
3646 struct blk_plug *plug = current->plug;
3647 struct blk_plug_cb *cb;
3649 if (!plug)
3650 return NULL;
3652 list_for_each_entry(cb, &plug->cb_list, list)
3653 if (cb->callback == unplug && cb->data == data)
3654 return cb;
3656 /* Not currently on the callback list */
3657 BUG_ON(size < sizeof(*cb));
3658 cb = kzalloc(size, GFP_ATOMIC);
3659 if (cb) {
3660 cb->data = data;
3661 cb->callback = unplug;
3662 list_add(&cb->list, &plug->cb_list);
3664 return cb;
3666 EXPORT_SYMBOL(blk_check_plugged);
3668 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3670 struct request_queue *q;
3671 struct request *rq;
3672 LIST_HEAD(list);
3673 unsigned int depth;
3675 flush_plug_callbacks(plug, from_schedule);
3677 if (!list_empty(&plug->mq_list))
3678 blk_mq_flush_plug_list(plug, from_schedule);
3680 if (list_empty(&plug->list))
3681 return;
3683 list_splice_init(&plug->list, &list);
3685 list_sort(NULL, &list, plug_rq_cmp);
3687 q = NULL;
3688 depth = 0;
3690 while (!list_empty(&list)) {
3691 rq = list_entry_rq(list.next);
3692 list_del_init(&rq->queuelist);
3693 BUG_ON(!rq->q);
3694 if (rq->q != q) {
3696 * This drops the queue lock
3698 if (q)
3699 queue_unplugged(q, depth, from_schedule);
3700 q = rq->q;
3701 depth = 0;
3702 spin_lock_irq(q->queue_lock);
3706 * Short-circuit if @q is dead
3708 if (unlikely(blk_queue_dying(q))) {
3709 __blk_end_request_all(rq, BLK_STS_IOERR);
3710 continue;
3714 * rq is already accounted, so use raw insert
3716 if (op_is_flush(rq->cmd_flags))
3717 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3718 else
3719 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3721 depth++;
3725 * This drops the queue lock
3727 if (q)
3728 queue_unplugged(q, depth, from_schedule);
3731 void blk_finish_plug(struct blk_plug *plug)
3733 if (plug != current->plug)
3734 return;
3735 blk_flush_plug_list(plug, false);
3737 current->plug = NULL;
3739 EXPORT_SYMBOL(blk_finish_plug);
3741 #ifdef CONFIG_PM
3743 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3744 * @q: the queue of the device
3745 * @dev: the device the queue belongs to
3747 * Description:
3748 * Initialize runtime-PM-related fields for @q and start auto suspend for
3749 * @dev. Drivers that want to take advantage of request-based runtime PM
3750 * should call this function after @dev has been initialized, and its
3751 * request queue @q has been allocated, and runtime PM for it can not happen
3752 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3753 * cases, driver should call this function before any I/O has taken place.
3755 * This function takes care of setting up using auto suspend for the device,
3756 * the autosuspend delay is set to -1 to make runtime suspend impossible
3757 * until an updated value is either set by user or by driver. Drivers do
3758 * not need to touch other autosuspend settings.
3760 * The block layer runtime PM is request based, so only works for drivers
3761 * that use request as their IO unit instead of those directly use bio's.
3763 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3765 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3766 if (q->mq_ops)
3767 return;
3769 q->dev = dev;
3770 q->rpm_status = RPM_ACTIVE;
3771 pm_runtime_set_autosuspend_delay(q->dev, -1);
3772 pm_runtime_use_autosuspend(q->dev);
3774 EXPORT_SYMBOL(blk_pm_runtime_init);
3777 * blk_pre_runtime_suspend - Pre runtime suspend check
3778 * @q: the queue of the device
3780 * Description:
3781 * This function will check if runtime suspend is allowed for the device
3782 * by examining if there are any requests pending in the queue. If there
3783 * are requests pending, the device can not be runtime suspended; otherwise,
3784 * the queue's status will be updated to SUSPENDING and the driver can
3785 * proceed to suspend the device.
3787 * For the not allowed case, we mark last busy for the device so that
3788 * runtime PM core will try to autosuspend it some time later.
3790 * This function should be called near the start of the device's
3791 * runtime_suspend callback.
3793 * Return:
3794 * 0 - OK to runtime suspend the device
3795 * -EBUSY - Device should not be runtime suspended
3797 int blk_pre_runtime_suspend(struct request_queue *q)
3799 int ret = 0;
3801 if (!q->dev)
3802 return ret;
3804 spin_lock_irq(q->queue_lock);
3805 if (q->nr_pending) {
3806 ret = -EBUSY;
3807 pm_runtime_mark_last_busy(q->dev);
3808 } else {
3809 q->rpm_status = RPM_SUSPENDING;
3811 spin_unlock_irq(q->queue_lock);
3812 return ret;
3814 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3817 * blk_post_runtime_suspend - Post runtime suspend processing
3818 * @q: the queue of the device
3819 * @err: return value of the device's runtime_suspend function
3821 * Description:
3822 * Update the queue's runtime status according to the return value of the
3823 * device's runtime suspend function and mark last busy for the device so
3824 * that PM core will try to auto suspend the device at a later time.
3826 * This function should be called near the end of the device's
3827 * runtime_suspend callback.
3829 void blk_post_runtime_suspend(struct request_queue *q, int err)
3831 if (!q->dev)
3832 return;
3834 spin_lock_irq(q->queue_lock);
3835 if (!err) {
3836 q->rpm_status = RPM_SUSPENDED;
3837 } else {
3838 q->rpm_status = RPM_ACTIVE;
3839 pm_runtime_mark_last_busy(q->dev);
3841 spin_unlock_irq(q->queue_lock);
3843 EXPORT_SYMBOL(blk_post_runtime_suspend);
3846 * blk_pre_runtime_resume - Pre runtime resume processing
3847 * @q: the queue of the device
3849 * Description:
3850 * Update the queue's runtime status to RESUMING in preparation for the
3851 * runtime resume of the device.
3853 * This function should be called near the start of the device's
3854 * runtime_resume callback.
3856 void blk_pre_runtime_resume(struct request_queue *q)
3858 if (!q->dev)
3859 return;
3861 spin_lock_irq(q->queue_lock);
3862 q->rpm_status = RPM_RESUMING;
3863 spin_unlock_irq(q->queue_lock);
3865 EXPORT_SYMBOL(blk_pre_runtime_resume);
3868 * blk_post_runtime_resume - Post runtime resume processing
3869 * @q: the queue of the device
3870 * @err: return value of the device's runtime_resume function
3872 * Description:
3873 * Update the queue's runtime status according to the return value of the
3874 * device's runtime_resume function. If it is successfully resumed, process
3875 * the requests that are queued into the device's queue when it is resuming
3876 * and then mark last busy and initiate autosuspend for it.
3878 * This function should be called near the end of the device's
3879 * runtime_resume callback.
3881 void blk_post_runtime_resume(struct request_queue *q, int err)
3883 if (!q->dev)
3884 return;
3886 spin_lock_irq(q->queue_lock);
3887 if (!err) {
3888 q->rpm_status = RPM_ACTIVE;
3889 __blk_run_queue(q);
3890 pm_runtime_mark_last_busy(q->dev);
3891 pm_request_autosuspend(q->dev);
3892 } else {
3893 q->rpm_status = RPM_SUSPENDED;
3895 spin_unlock_irq(q->queue_lock);
3897 EXPORT_SYMBOL(blk_post_runtime_resume);
3900 * blk_set_runtime_active - Force runtime status of the queue to be active
3901 * @q: the queue of the device
3903 * If the device is left runtime suspended during system suspend the resume
3904 * hook typically resumes the device and corrects runtime status
3905 * accordingly. However, that does not affect the queue runtime PM status
3906 * which is still "suspended". This prevents processing requests from the
3907 * queue.
3909 * This function can be used in driver's resume hook to correct queue
3910 * runtime PM status and re-enable peeking requests from the queue. It
3911 * should be called before first request is added to the queue.
3913 void blk_set_runtime_active(struct request_queue *q)
3915 spin_lock_irq(q->queue_lock);
3916 q->rpm_status = RPM_ACTIVE;
3917 pm_runtime_mark_last_busy(q->dev);
3918 pm_request_autosuspend(q->dev);
3919 spin_unlock_irq(q->queue_lock);
3921 EXPORT_SYMBOL(blk_set_runtime_active);
3922 #endif
3924 int __init blk_dev_init(void)
3926 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3927 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3928 FIELD_SIZEOF(struct request, cmd_flags));
3929 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3930 FIELD_SIZEOF(struct bio, bi_opf));
3932 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3933 kblockd_workqueue = alloc_workqueue("kblockd",
3934 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3935 if (!kblockd_workqueue)
3936 panic("Failed to create kblockd\n");
3938 request_cachep = kmem_cache_create("blkdev_requests",
3939 sizeof(struct request), 0, SLAB_PANIC, NULL);
3941 blk_requestq_cachep = kmem_cache_create("request_queue",
3942 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3944 #ifdef CONFIG_DEBUG_FS
3945 blk_debugfs_root = debugfs_create_dir("block", NULL);
3946 #endif
3948 return 0;