iommu/ipmmu-vmsa: Rewrite page table management
[linux-2.6/btrfs-unstable.git] / drivers / vfio / vfio_iommu_type1.c
blob6673e7be507f403b5f50f7c96c537a74ccb33717
1 /*
2 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
15 * We arbitrarily define a Type1 IOMMU as one matching the below code.
16 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17 * VT-d, but that makes it harder to re-use as theoretically anyone
18 * implementing a similar IOMMU could make use of this. We expect the
19 * IOMMU to support the IOMMU API and have few to no restrictions around
20 * the IOVA range that can be mapped. The Type1 IOMMU is currently
21 * optimized for relatively static mappings of a userspace process with
22 * userpsace pages pinned into memory. We also assume devices and IOMMU
23 * domains are PCI based as the IOMMU API is still centered around a
24 * device/bus interface rather than a group interface.
27 #include <linux/compat.h>
28 #include <linux/device.h>
29 #include <linux/fs.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
32 #include <linux/mm.h>
33 #include <linux/rbtree.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
40 #define DRIVER_VERSION "0.2"
41 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
42 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
44 static bool allow_unsafe_interrupts;
45 module_param_named(allow_unsafe_interrupts,
46 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
47 MODULE_PARM_DESC(allow_unsafe_interrupts,
48 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
50 static bool disable_hugepages;
51 module_param_named(disable_hugepages,
52 disable_hugepages, bool, S_IRUGO | S_IWUSR);
53 MODULE_PARM_DESC(disable_hugepages,
54 "Disable VFIO IOMMU support for IOMMU hugepages.");
56 struct vfio_iommu {
57 struct list_head domain_list;
58 struct mutex lock;
59 struct rb_root dma_list;
60 bool v2;
63 struct vfio_domain {
64 struct iommu_domain *domain;
65 struct list_head next;
66 struct list_head group_list;
67 int prot; /* IOMMU_CACHE */
70 struct vfio_dma {
71 struct rb_node node;
72 dma_addr_t iova; /* Device address */
73 unsigned long vaddr; /* Process virtual addr */
74 size_t size; /* Map size (bytes) */
75 int prot; /* IOMMU_READ/WRITE */
78 struct vfio_group {
79 struct iommu_group *iommu_group;
80 struct list_head next;
84 * This code handles mapping and unmapping of user data buffers
85 * into DMA'ble space using the IOMMU
88 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
89 dma_addr_t start, size_t size)
91 struct rb_node *node = iommu->dma_list.rb_node;
93 while (node) {
94 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
96 if (start + size <= dma->iova)
97 node = node->rb_left;
98 else if (start >= dma->iova + dma->size)
99 node = node->rb_right;
100 else
101 return dma;
104 return NULL;
107 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
109 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
110 struct vfio_dma *dma;
112 while (*link) {
113 parent = *link;
114 dma = rb_entry(parent, struct vfio_dma, node);
116 if (new->iova + new->size <= dma->iova)
117 link = &(*link)->rb_left;
118 else
119 link = &(*link)->rb_right;
122 rb_link_node(&new->node, parent, link);
123 rb_insert_color(&new->node, &iommu->dma_list);
126 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
128 rb_erase(&old->node, &iommu->dma_list);
131 struct vwork {
132 struct mm_struct *mm;
133 long npage;
134 struct work_struct work;
137 /* delayed decrement/increment for locked_vm */
138 static void vfio_lock_acct_bg(struct work_struct *work)
140 struct vwork *vwork = container_of(work, struct vwork, work);
141 struct mm_struct *mm;
143 mm = vwork->mm;
144 down_write(&mm->mmap_sem);
145 mm->locked_vm += vwork->npage;
146 up_write(&mm->mmap_sem);
147 mmput(mm);
148 kfree(vwork);
151 static void vfio_lock_acct(long npage)
153 struct vwork *vwork;
154 struct mm_struct *mm;
156 if (!current->mm || !npage)
157 return; /* process exited or nothing to do */
159 if (down_write_trylock(&current->mm->mmap_sem)) {
160 current->mm->locked_vm += npage;
161 up_write(&current->mm->mmap_sem);
162 return;
166 * Couldn't get mmap_sem lock, so must setup to update
167 * mm->locked_vm later. If locked_vm were atomic, we
168 * wouldn't need this silliness
170 vwork = kmalloc(sizeof(struct vwork), GFP_KERNEL);
171 if (!vwork)
172 return;
173 mm = get_task_mm(current);
174 if (!mm) {
175 kfree(vwork);
176 return;
178 INIT_WORK(&vwork->work, vfio_lock_acct_bg);
179 vwork->mm = mm;
180 vwork->npage = npage;
181 schedule_work(&vwork->work);
185 * Some mappings aren't backed by a struct page, for example an mmap'd
186 * MMIO range for our own or another device. These use a different
187 * pfn conversion and shouldn't be tracked as locked pages.
189 static bool is_invalid_reserved_pfn(unsigned long pfn)
191 if (pfn_valid(pfn)) {
192 bool reserved;
193 struct page *tail = pfn_to_page(pfn);
194 struct page *head = compound_head(tail);
195 reserved = !!(PageReserved(head));
196 if (head != tail) {
198 * "head" is not a dangling pointer
199 * (compound_head takes care of that)
200 * but the hugepage may have been split
201 * from under us (and we may not hold a
202 * reference count on the head page so it can
203 * be reused before we run PageReferenced), so
204 * we've to check PageTail before returning
205 * what we just read.
207 smp_rmb();
208 if (PageTail(tail))
209 return reserved;
211 return PageReserved(tail);
214 return true;
217 static int put_pfn(unsigned long pfn, int prot)
219 if (!is_invalid_reserved_pfn(pfn)) {
220 struct page *page = pfn_to_page(pfn);
221 if (prot & IOMMU_WRITE)
222 SetPageDirty(page);
223 put_page(page);
224 return 1;
226 return 0;
229 static int vaddr_get_pfn(unsigned long vaddr, int prot, unsigned long *pfn)
231 struct page *page[1];
232 struct vm_area_struct *vma;
233 int ret = -EFAULT;
235 if (get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE), page) == 1) {
236 *pfn = page_to_pfn(page[0]);
237 return 0;
240 down_read(&current->mm->mmap_sem);
242 vma = find_vma_intersection(current->mm, vaddr, vaddr + 1);
244 if (vma && vma->vm_flags & VM_PFNMAP) {
245 *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
246 if (is_invalid_reserved_pfn(*pfn))
247 ret = 0;
250 up_read(&current->mm->mmap_sem);
252 return ret;
256 * Attempt to pin pages. We really don't want to track all the pfns and
257 * the iommu can only map chunks of consecutive pfns anyway, so get the
258 * first page and all consecutive pages with the same locking.
260 static long vfio_pin_pages(unsigned long vaddr, long npage,
261 int prot, unsigned long *pfn_base)
263 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
264 bool lock_cap = capable(CAP_IPC_LOCK);
265 long ret, i;
267 if (!current->mm)
268 return -ENODEV;
270 ret = vaddr_get_pfn(vaddr, prot, pfn_base);
271 if (ret)
272 return ret;
274 if (is_invalid_reserved_pfn(*pfn_base))
275 return 1;
277 if (!lock_cap && current->mm->locked_vm + 1 > limit) {
278 put_pfn(*pfn_base, prot);
279 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
280 limit << PAGE_SHIFT);
281 return -ENOMEM;
284 if (unlikely(disable_hugepages)) {
285 vfio_lock_acct(1);
286 return 1;
289 /* Lock all the consecutive pages from pfn_base */
290 for (i = 1, vaddr += PAGE_SIZE; i < npage; i++, vaddr += PAGE_SIZE) {
291 unsigned long pfn = 0;
293 ret = vaddr_get_pfn(vaddr, prot, &pfn);
294 if (ret)
295 break;
297 if (pfn != *pfn_base + i || is_invalid_reserved_pfn(pfn)) {
298 put_pfn(pfn, prot);
299 break;
302 if (!lock_cap && current->mm->locked_vm + i + 1 > limit) {
303 put_pfn(pfn, prot);
304 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
305 __func__, limit << PAGE_SHIFT);
306 break;
310 vfio_lock_acct(i);
312 return i;
315 static long vfio_unpin_pages(unsigned long pfn, long npage,
316 int prot, bool do_accounting)
318 unsigned long unlocked = 0;
319 long i;
321 for (i = 0; i < npage; i++)
322 unlocked += put_pfn(pfn++, prot);
324 if (do_accounting)
325 vfio_lock_acct(-unlocked);
327 return unlocked;
330 static void vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma)
332 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
333 struct vfio_domain *domain, *d;
334 long unlocked = 0;
336 if (!dma->size)
337 return;
339 * We use the IOMMU to track the physical addresses, otherwise we'd
340 * need a much more complicated tracking system. Unfortunately that
341 * means we need to use one of the iommu domains to figure out the
342 * pfns to unpin. The rest need to be unmapped in advance so we have
343 * no iommu translations remaining when the pages are unpinned.
345 domain = d = list_first_entry(&iommu->domain_list,
346 struct vfio_domain, next);
348 list_for_each_entry_continue(d, &iommu->domain_list, next)
349 iommu_unmap(d->domain, dma->iova, dma->size);
351 while (iova < end) {
352 size_t unmapped;
353 phys_addr_t phys;
355 phys = iommu_iova_to_phys(domain->domain, iova);
356 if (WARN_ON(!phys)) {
357 iova += PAGE_SIZE;
358 continue;
361 unmapped = iommu_unmap(domain->domain, iova, PAGE_SIZE);
362 if (WARN_ON(!unmapped))
363 break;
365 unlocked += vfio_unpin_pages(phys >> PAGE_SHIFT,
366 unmapped >> PAGE_SHIFT,
367 dma->prot, false);
368 iova += unmapped;
371 vfio_lock_acct(-unlocked);
374 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
376 vfio_unmap_unpin(iommu, dma);
377 vfio_unlink_dma(iommu, dma);
378 kfree(dma);
381 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
383 struct vfio_domain *domain;
384 unsigned long bitmap = PAGE_MASK;
386 mutex_lock(&iommu->lock);
387 list_for_each_entry(domain, &iommu->domain_list, next)
388 bitmap &= domain->domain->ops->pgsize_bitmap;
389 mutex_unlock(&iommu->lock);
391 return bitmap;
394 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
395 struct vfio_iommu_type1_dma_unmap *unmap)
397 uint64_t mask;
398 struct vfio_dma *dma;
399 size_t unmapped = 0;
400 int ret = 0;
402 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
404 if (unmap->iova & mask)
405 return -EINVAL;
406 if (!unmap->size || unmap->size & mask)
407 return -EINVAL;
409 WARN_ON(mask & PAGE_MASK);
411 mutex_lock(&iommu->lock);
414 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
415 * avoid tracking individual mappings. This means that the granularity
416 * of the original mapping was lost and the user was allowed to attempt
417 * to unmap any range. Depending on the contiguousness of physical
418 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
419 * or may not have worked. We only guaranteed unmap granularity
420 * matching the original mapping; even though it was untracked here,
421 * the original mappings are reflected in IOMMU mappings. This
422 * resulted in a couple unusual behaviors. First, if a range is not
423 * able to be unmapped, ex. a set of 4k pages that was mapped as a
424 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
425 * a zero sized unmap. Also, if an unmap request overlaps the first
426 * address of a hugepage, the IOMMU will unmap the entire hugepage.
427 * This also returns success and the returned unmap size reflects the
428 * actual size unmapped.
430 * We attempt to maintain compatibility with this "v1" interface, but
431 * we take control out of the hands of the IOMMU. Therefore, an unmap
432 * request offset from the beginning of the original mapping will
433 * return success with zero sized unmap. And an unmap request covering
434 * the first iova of mapping will unmap the entire range.
436 * The v2 version of this interface intends to be more deterministic.
437 * Unmap requests must fully cover previous mappings. Multiple
438 * mappings may still be unmaped by specifying large ranges, but there
439 * must not be any previous mappings bisected by the range. An error
440 * will be returned if these conditions are not met. The v2 interface
441 * will only return success and a size of zero if there were no
442 * mappings within the range.
444 if (iommu->v2) {
445 dma = vfio_find_dma(iommu, unmap->iova, 0);
446 if (dma && dma->iova != unmap->iova) {
447 ret = -EINVAL;
448 goto unlock;
450 dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
451 if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
452 ret = -EINVAL;
453 goto unlock;
457 while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
458 if (!iommu->v2 && unmap->iova > dma->iova)
459 break;
460 unmapped += dma->size;
461 vfio_remove_dma(iommu, dma);
464 unlock:
465 mutex_unlock(&iommu->lock);
467 /* Report how much was unmapped */
468 unmap->size = unmapped;
470 return ret;
474 * Turns out AMD IOMMU has a page table bug where it won't map large pages
475 * to a region that previously mapped smaller pages. This should be fixed
476 * soon, so this is just a temporary workaround to break mappings down into
477 * PAGE_SIZE. Better to map smaller pages than nothing.
479 static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova,
480 unsigned long pfn, long npage, int prot)
482 long i;
483 int ret;
485 for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
486 ret = iommu_map(domain->domain, iova,
487 (phys_addr_t)pfn << PAGE_SHIFT,
488 PAGE_SIZE, prot | domain->prot);
489 if (ret)
490 break;
493 for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
494 iommu_unmap(domain->domain, iova, PAGE_SIZE);
496 return ret;
499 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
500 unsigned long pfn, long npage, int prot)
502 struct vfio_domain *d;
503 int ret;
505 list_for_each_entry(d, &iommu->domain_list, next) {
506 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
507 npage << PAGE_SHIFT, prot | d->prot);
508 if (ret) {
509 if (ret != -EBUSY ||
510 map_try_harder(d, iova, pfn, npage, prot))
511 goto unwind;
515 return 0;
517 unwind:
518 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
519 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
521 return ret;
524 static int vfio_dma_do_map(struct vfio_iommu *iommu,
525 struct vfio_iommu_type1_dma_map *map)
527 dma_addr_t end, iova;
528 unsigned long vaddr = map->vaddr;
529 size_t size = map->size;
530 long npage;
531 int ret = 0, prot = 0;
532 uint64_t mask;
533 struct vfio_dma *dma;
534 unsigned long pfn;
536 end = map->iova + map->size;
538 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
540 /* READ/WRITE from device perspective */
541 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
542 prot |= IOMMU_WRITE;
543 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
544 prot |= IOMMU_READ;
546 if (!prot)
547 return -EINVAL; /* No READ/WRITE? */
549 if (vaddr & mask)
550 return -EINVAL;
551 if (map->iova & mask)
552 return -EINVAL;
553 if (!map->size || map->size & mask)
554 return -EINVAL;
556 WARN_ON(mask & PAGE_MASK);
558 /* Don't allow IOVA wrap */
559 if (end && end < map->iova)
560 return -EINVAL;
562 /* Don't allow virtual address wrap */
563 if (vaddr + map->size && vaddr + map->size < vaddr)
564 return -EINVAL;
566 mutex_lock(&iommu->lock);
568 if (vfio_find_dma(iommu, map->iova, map->size)) {
569 mutex_unlock(&iommu->lock);
570 return -EEXIST;
573 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
574 if (!dma) {
575 mutex_unlock(&iommu->lock);
576 return -ENOMEM;
579 dma->iova = map->iova;
580 dma->vaddr = map->vaddr;
581 dma->prot = prot;
583 /* Insert zero-sized and grow as we map chunks of it */
584 vfio_link_dma(iommu, dma);
586 for (iova = map->iova; iova < end; iova += size, vaddr += size) {
587 /* Pin a contiguous chunk of memory */
588 npage = vfio_pin_pages(vaddr, (end - iova) >> PAGE_SHIFT,
589 prot, &pfn);
590 if (npage <= 0) {
591 WARN_ON(!npage);
592 ret = (int)npage;
593 break;
596 /* Map it! */
597 ret = vfio_iommu_map(iommu, iova, pfn, npage, prot);
598 if (ret) {
599 vfio_unpin_pages(pfn, npage, prot, true);
600 break;
603 size = npage << PAGE_SHIFT;
604 dma->size += size;
607 if (ret)
608 vfio_remove_dma(iommu, dma);
610 mutex_unlock(&iommu->lock);
611 return ret;
614 static int vfio_bus_type(struct device *dev, void *data)
616 struct bus_type **bus = data;
618 if (*bus && *bus != dev->bus)
619 return -EINVAL;
621 *bus = dev->bus;
623 return 0;
626 static int vfio_iommu_replay(struct vfio_iommu *iommu,
627 struct vfio_domain *domain)
629 struct vfio_domain *d;
630 struct rb_node *n;
631 int ret;
633 /* Arbitrarily pick the first domain in the list for lookups */
634 d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
635 n = rb_first(&iommu->dma_list);
637 /* If there's not a domain, there better not be any mappings */
638 if (WARN_ON(n && !d))
639 return -EINVAL;
641 for (; n; n = rb_next(n)) {
642 struct vfio_dma *dma;
643 dma_addr_t iova;
645 dma = rb_entry(n, struct vfio_dma, node);
646 iova = dma->iova;
648 while (iova < dma->iova + dma->size) {
649 phys_addr_t phys = iommu_iova_to_phys(d->domain, iova);
650 size_t size;
652 if (WARN_ON(!phys)) {
653 iova += PAGE_SIZE;
654 continue;
657 size = PAGE_SIZE;
659 while (iova + size < dma->iova + dma->size &&
660 phys + size == iommu_iova_to_phys(d->domain,
661 iova + size))
662 size += PAGE_SIZE;
664 ret = iommu_map(domain->domain, iova, phys,
665 size, dma->prot | domain->prot);
666 if (ret)
667 return ret;
669 iova += size;
673 return 0;
676 static int vfio_iommu_type1_attach_group(void *iommu_data,
677 struct iommu_group *iommu_group)
679 struct vfio_iommu *iommu = iommu_data;
680 struct vfio_group *group, *g;
681 struct vfio_domain *domain, *d;
682 struct bus_type *bus = NULL;
683 int ret;
685 mutex_lock(&iommu->lock);
687 list_for_each_entry(d, &iommu->domain_list, next) {
688 list_for_each_entry(g, &d->group_list, next) {
689 if (g->iommu_group != iommu_group)
690 continue;
692 mutex_unlock(&iommu->lock);
693 return -EINVAL;
697 group = kzalloc(sizeof(*group), GFP_KERNEL);
698 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
699 if (!group || !domain) {
700 ret = -ENOMEM;
701 goto out_free;
704 group->iommu_group = iommu_group;
706 /* Determine bus_type in order to allocate a domain */
707 ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
708 if (ret)
709 goto out_free;
711 domain->domain = iommu_domain_alloc(bus);
712 if (!domain->domain) {
713 ret = -EIO;
714 goto out_free;
717 ret = iommu_attach_group(domain->domain, iommu_group);
718 if (ret)
719 goto out_domain;
721 INIT_LIST_HEAD(&domain->group_list);
722 list_add(&group->next, &domain->group_list);
724 if (!allow_unsafe_interrupts &&
725 !iommu_domain_has_cap(domain->domain, IOMMU_CAP_INTR_REMAP)) {
726 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
727 __func__);
728 ret = -EPERM;
729 goto out_detach;
732 if (iommu_domain_has_cap(domain->domain, IOMMU_CAP_CACHE_COHERENCY))
733 domain->prot |= IOMMU_CACHE;
736 * Try to match an existing compatible domain. We don't want to
737 * preclude an IOMMU driver supporting multiple bus_types and being
738 * able to include different bus_types in the same IOMMU domain, so
739 * we test whether the domains use the same iommu_ops rather than
740 * testing if they're on the same bus_type.
742 list_for_each_entry(d, &iommu->domain_list, next) {
743 if (d->domain->ops == domain->domain->ops &&
744 d->prot == domain->prot) {
745 iommu_detach_group(domain->domain, iommu_group);
746 if (!iommu_attach_group(d->domain, iommu_group)) {
747 list_add(&group->next, &d->group_list);
748 iommu_domain_free(domain->domain);
749 kfree(domain);
750 mutex_unlock(&iommu->lock);
751 return 0;
754 ret = iommu_attach_group(domain->domain, iommu_group);
755 if (ret)
756 goto out_domain;
760 /* replay mappings on new domains */
761 ret = vfio_iommu_replay(iommu, domain);
762 if (ret)
763 goto out_detach;
765 list_add(&domain->next, &iommu->domain_list);
767 mutex_unlock(&iommu->lock);
769 return 0;
771 out_detach:
772 iommu_detach_group(domain->domain, iommu_group);
773 out_domain:
774 iommu_domain_free(domain->domain);
775 out_free:
776 kfree(domain);
777 kfree(group);
778 mutex_unlock(&iommu->lock);
779 return ret;
782 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
784 struct rb_node *node;
786 while ((node = rb_first(&iommu->dma_list)))
787 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
790 static void vfio_iommu_type1_detach_group(void *iommu_data,
791 struct iommu_group *iommu_group)
793 struct vfio_iommu *iommu = iommu_data;
794 struct vfio_domain *domain;
795 struct vfio_group *group;
797 mutex_lock(&iommu->lock);
799 list_for_each_entry(domain, &iommu->domain_list, next) {
800 list_for_each_entry(group, &domain->group_list, next) {
801 if (group->iommu_group != iommu_group)
802 continue;
804 iommu_detach_group(domain->domain, iommu_group);
805 list_del(&group->next);
806 kfree(group);
808 * Group ownership provides privilege, if the group
809 * list is empty, the domain goes away. If it's the
810 * last domain, then all the mappings go away too.
812 if (list_empty(&domain->group_list)) {
813 if (list_is_singular(&iommu->domain_list))
814 vfio_iommu_unmap_unpin_all(iommu);
815 iommu_domain_free(domain->domain);
816 list_del(&domain->next);
817 kfree(domain);
819 goto done;
823 done:
824 mutex_unlock(&iommu->lock);
827 static void *vfio_iommu_type1_open(unsigned long arg)
829 struct vfio_iommu *iommu;
831 if (arg != VFIO_TYPE1_IOMMU && arg != VFIO_TYPE1v2_IOMMU)
832 return ERR_PTR(-EINVAL);
834 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
835 if (!iommu)
836 return ERR_PTR(-ENOMEM);
838 INIT_LIST_HEAD(&iommu->domain_list);
839 iommu->dma_list = RB_ROOT;
840 mutex_init(&iommu->lock);
841 iommu->v2 = (arg == VFIO_TYPE1v2_IOMMU);
843 return iommu;
846 static void vfio_iommu_type1_release(void *iommu_data)
848 struct vfio_iommu *iommu = iommu_data;
849 struct vfio_domain *domain, *domain_tmp;
850 struct vfio_group *group, *group_tmp;
852 vfio_iommu_unmap_unpin_all(iommu);
854 list_for_each_entry_safe(domain, domain_tmp,
855 &iommu->domain_list, next) {
856 list_for_each_entry_safe(group, group_tmp,
857 &domain->group_list, next) {
858 iommu_detach_group(domain->domain, group->iommu_group);
859 list_del(&group->next);
860 kfree(group);
862 iommu_domain_free(domain->domain);
863 list_del(&domain->next);
864 kfree(domain);
867 kfree(iommu);
870 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
872 struct vfio_domain *domain;
873 int ret = 1;
875 mutex_lock(&iommu->lock);
876 list_for_each_entry(domain, &iommu->domain_list, next) {
877 if (!(domain->prot & IOMMU_CACHE)) {
878 ret = 0;
879 break;
882 mutex_unlock(&iommu->lock);
884 return ret;
887 static long vfio_iommu_type1_ioctl(void *iommu_data,
888 unsigned int cmd, unsigned long arg)
890 struct vfio_iommu *iommu = iommu_data;
891 unsigned long minsz;
893 if (cmd == VFIO_CHECK_EXTENSION) {
894 switch (arg) {
895 case VFIO_TYPE1_IOMMU:
896 case VFIO_TYPE1v2_IOMMU:
897 return 1;
898 case VFIO_DMA_CC_IOMMU:
899 if (!iommu)
900 return 0;
901 return vfio_domains_have_iommu_cache(iommu);
902 default:
903 return 0;
905 } else if (cmd == VFIO_IOMMU_GET_INFO) {
906 struct vfio_iommu_type1_info info;
908 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
910 if (copy_from_user(&info, (void __user *)arg, minsz))
911 return -EFAULT;
913 if (info.argsz < minsz)
914 return -EINVAL;
916 info.flags = 0;
918 info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
920 return copy_to_user((void __user *)arg, &info, minsz);
922 } else if (cmd == VFIO_IOMMU_MAP_DMA) {
923 struct vfio_iommu_type1_dma_map map;
924 uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
925 VFIO_DMA_MAP_FLAG_WRITE;
927 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
929 if (copy_from_user(&map, (void __user *)arg, minsz))
930 return -EFAULT;
932 if (map.argsz < minsz || map.flags & ~mask)
933 return -EINVAL;
935 return vfio_dma_do_map(iommu, &map);
937 } else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
938 struct vfio_iommu_type1_dma_unmap unmap;
939 long ret;
941 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
943 if (copy_from_user(&unmap, (void __user *)arg, minsz))
944 return -EFAULT;
946 if (unmap.argsz < minsz || unmap.flags)
947 return -EINVAL;
949 ret = vfio_dma_do_unmap(iommu, &unmap);
950 if (ret)
951 return ret;
953 return copy_to_user((void __user *)arg, &unmap, minsz);
956 return -ENOTTY;
959 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
960 .name = "vfio-iommu-type1",
961 .owner = THIS_MODULE,
962 .open = vfio_iommu_type1_open,
963 .release = vfio_iommu_type1_release,
964 .ioctl = vfio_iommu_type1_ioctl,
965 .attach_group = vfio_iommu_type1_attach_group,
966 .detach_group = vfio_iommu_type1_detach_group,
969 static int __init vfio_iommu_type1_init(void)
971 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
974 static void __exit vfio_iommu_type1_cleanup(void)
976 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
979 module_init(vfio_iommu_type1_init);
980 module_exit(vfio_iommu_type1_cleanup);
982 MODULE_VERSION(DRIVER_VERSION);
983 MODULE_LICENSE("GPL v2");
984 MODULE_AUTHOR(DRIVER_AUTHOR);
985 MODULE_DESCRIPTION(DRIVER_DESC);