drm/i915: Defend against userspace creating a gem object with size==0
[linux-2.6/btrfs-unstable.git] / drivers / gpu / drm / i915 / i915_gem.c
blob52b199da7d5daadc09c5d54bed76ce9b318160f0
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
51 static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
53 static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file);
57 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
59 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60 struct shrink_control *sc);
62 /* some bookkeeping */
63 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
64 size_t size)
66 dev_priv->mm.object_count++;
67 dev_priv->mm.object_memory += size;
70 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
71 size_t size)
73 dev_priv->mm.object_count--;
74 dev_priv->mm.object_memory -= size;
77 static int
78 i915_gem_wait_for_error(struct drm_device *dev)
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct completion *x = &dev_priv->error_completion;
82 unsigned long flags;
83 int ret;
85 if (!atomic_read(&dev_priv->mm.wedged))
86 return 0;
88 ret = wait_for_completion_interruptible(x);
89 if (ret)
90 return ret;
92 if (atomic_read(&dev_priv->mm.wedged)) {
93 /* GPU is hung, bump the completion count to account for
94 * the token we just consumed so that we never hit zero and
95 * end up waiting upon a subsequent completion event that
96 * will never happen.
98 spin_lock_irqsave(&x->wait.lock, flags);
99 x->done++;
100 spin_unlock_irqrestore(&x->wait.lock, flags);
102 return 0;
105 int i915_mutex_lock_interruptible(struct drm_device *dev)
107 int ret;
109 ret = i915_gem_wait_for_error(dev);
110 if (ret)
111 return ret;
113 ret = mutex_lock_interruptible(&dev->struct_mutex);
114 if (ret)
115 return ret;
117 WARN_ON(i915_verify_lists(dev));
118 return 0;
121 static inline bool
122 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124 return obj->gtt_space && !obj->active && obj->pin_count == 0;
127 void i915_gem_do_init(struct drm_device *dev,
128 unsigned long start,
129 unsigned long mappable_end,
130 unsigned long end)
132 drm_i915_private_t *dev_priv = dev->dev_private;
134 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136 dev_priv->mm.gtt_start = start;
137 dev_priv->mm.gtt_mappable_end = mappable_end;
138 dev_priv->mm.gtt_end = end;
139 dev_priv->mm.gtt_total = end - start;
140 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142 /* Take over this portion of the GTT */
143 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
147 i915_gem_init_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
150 struct drm_i915_gem_init *args = data;
152 if (args->gtt_start >= args->gtt_end ||
153 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
154 return -EINVAL;
156 mutex_lock(&dev->struct_mutex);
157 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
158 mutex_unlock(&dev->struct_mutex);
160 return 0;
164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_get_aperture *args = data;
169 struct drm_i915_gem_object *obj;
170 size_t pinned;
172 if (!(dev->driver->driver_features & DRIVER_GEM))
173 return -ENODEV;
175 pinned = 0;
176 mutex_lock(&dev->struct_mutex);
177 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
178 pinned += obj->gtt_space->size;
179 mutex_unlock(&dev->struct_mutex);
181 args->aper_size = dev_priv->mm.gtt_total;
182 args->aper_available_size = args->aper_size - pinned;
184 return 0;
187 static int
188 i915_gem_create(struct drm_file *file,
189 struct drm_device *dev,
190 uint64_t size,
191 uint32_t *handle_p)
193 struct drm_i915_gem_object *obj;
194 int ret;
195 u32 handle;
197 size = roundup(size, PAGE_SIZE);
198 if (size == 0)
199 return -EINVAL;
201 /* Allocate the new object */
202 obj = i915_gem_alloc_object(dev, size);
203 if (obj == NULL)
204 return -ENOMEM;
206 ret = drm_gem_handle_create(file, &obj->base, &handle);
207 if (ret) {
208 drm_gem_object_release(&obj->base);
209 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
210 kfree(obj);
211 return ret;
214 /* drop reference from allocate - handle holds it now */
215 drm_gem_object_unreference(&obj->base);
216 trace_i915_gem_object_create(obj);
218 *handle_p = handle;
219 return 0;
223 i915_gem_dumb_create(struct drm_file *file,
224 struct drm_device *dev,
225 struct drm_mode_create_dumb *args)
227 /* have to work out size/pitch and return them */
228 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
229 args->size = args->pitch * args->height;
230 return i915_gem_create(file, dev,
231 args->size, &args->handle);
234 int i915_gem_dumb_destroy(struct drm_file *file,
235 struct drm_device *dev,
236 uint32_t handle)
238 return drm_gem_handle_delete(file, handle);
242 * Creates a new mm object and returns a handle to it.
245 i915_gem_create_ioctl(struct drm_device *dev, void *data,
246 struct drm_file *file)
248 struct drm_i915_gem_create *args = data;
249 return i915_gem_create(file, dev,
250 args->size, &args->handle);
253 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
255 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
257 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
258 obj->tiling_mode != I915_TILING_NONE;
261 static inline void
262 slow_shmem_copy(struct page *dst_page,
263 int dst_offset,
264 struct page *src_page,
265 int src_offset,
266 int length)
268 char *dst_vaddr, *src_vaddr;
270 dst_vaddr = kmap(dst_page);
271 src_vaddr = kmap(src_page);
273 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
275 kunmap(src_page);
276 kunmap(dst_page);
279 static inline void
280 slow_shmem_bit17_copy(struct page *gpu_page,
281 int gpu_offset,
282 struct page *cpu_page,
283 int cpu_offset,
284 int length,
285 int is_read)
287 char *gpu_vaddr, *cpu_vaddr;
289 /* Use the unswizzled path if this page isn't affected. */
290 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
291 if (is_read)
292 return slow_shmem_copy(cpu_page, cpu_offset,
293 gpu_page, gpu_offset, length);
294 else
295 return slow_shmem_copy(gpu_page, gpu_offset,
296 cpu_page, cpu_offset, length);
299 gpu_vaddr = kmap(gpu_page);
300 cpu_vaddr = kmap(cpu_page);
302 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
303 * XORing with the other bits (A9 for Y, A9 and A10 for X)
305 while (length > 0) {
306 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307 int this_length = min(cacheline_end - gpu_offset, length);
308 int swizzled_gpu_offset = gpu_offset ^ 64;
310 if (is_read) {
311 memcpy(cpu_vaddr + cpu_offset,
312 gpu_vaddr + swizzled_gpu_offset,
313 this_length);
314 } else {
315 memcpy(gpu_vaddr + swizzled_gpu_offset,
316 cpu_vaddr + cpu_offset,
317 this_length);
319 cpu_offset += this_length;
320 gpu_offset += this_length;
321 length -= this_length;
324 kunmap(cpu_page);
325 kunmap(gpu_page);
329 * This is the fast shmem pread path, which attempts to copy_from_user directly
330 * from the backing pages of the object to the user's address space. On a
331 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
333 static int
334 i915_gem_shmem_pread_fast(struct drm_device *dev,
335 struct drm_i915_gem_object *obj,
336 struct drm_i915_gem_pread *args,
337 struct drm_file *file)
339 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
340 ssize_t remain;
341 loff_t offset;
342 char __user *user_data;
343 int page_offset, page_length;
345 user_data = (char __user *) (uintptr_t) args->data_ptr;
346 remain = args->size;
348 offset = args->offset;
350 while (remain > 0) {
351 struct page *page;
352 char *vaddr;
353 int ret;
355 /* Operation in this page
357 * page_offset = offset within page
358 * page_length = bytes to copy for this page
360 page_offset = offset_in_page(offset);
361 page_length = remain;
362 if ((page_offset + remain) > PAGE_SIZE)
363 page_length = PAGE_SIZE - page_offset;
365 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
366 if (IS_ERR(page))
367 return PTR_ERR(page);
369 vaddr = kmap_atomic(page);
370 ret = __copy_to_user_inatomic(user_data,
371 vaddr + page_offset,
372 page_length);
373 kunmap_atomic(vaddr);
375 mark_page_accessed(page);
376 page_cache_release(page);
377 if (ret)
378 return -EFAULT;
380 remain -= page_length;
381 user_data += page_length;
382 offset += page_length;
385 return 0;
389 * This is the fallback shmem pread path, which allocates temporary storage
390 * in kernel space to copy_to_user into outside of the struct_mutex, so we
391 * can copy out of the object's backing pages while holding the struct mutex
392 * and not take page faults.
394 static int
395 i915_gem_shmem_pread_slow(struct drm_device *dev,
396 struct drm_i915_gem_object *obj,
397 struct drm_i915_gem_pread *args,
398 struct drm_file *file)
400 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
401 struct mm_struct *mm = current->mm;
402 struct page **user_pages;
403 ssize_t remain;
404 loff_t offset, pinned_pages, i;
405 loff_t first_data_page, last_data_page, num_pages;
406 int shmem_page_offset;
407 int data_page_index, data_page_offset;
408 int page_length;
409 int ret;
410 uint64_t data_ptr = args->data_ptr;
411 int do_bit17_swizzling;
413 remain = args->size;
415 /* Pin the user pages containing the data. We can't fault while
416 * holding the struct mutex, yet we want to hold it while
417 * dereferencing the user data.
419 first_data_page = data_ptr / PAGE_SIZE;
420 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421 num_pages = last_data_page - first_data_page + 1;
423 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
424 if (user_pages == NULL)
425 return -ENOMEM;
427 mutex_unlock(&dev->struct_mutex);
428 down_read(&mm->mmap_sem);
429 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
430 num_pages, 1, 0, user_pages, NULL);
431 up_read(&mm->mmap_sem);
432 mutex_lock(&dev->struct_mutex);
433 if (pinned_pages < num_pages) {
434 ret = -EFAULT;
435 goto out;
438 ret = i915_gem_object_set_cpu_read_domain_range(obj,
439 args->offset,
440 args->size);
441 if (ret)
442 goto out;
444 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
446 offset = args->offset;
448 while (remain > 0) {
449 struct page *page;
451 /* Operation in this page
453 * shmem_page_offset = offset within page in shmem file
454 * data_page_index = page number in get_user_pages return
455 * data_page_offset = offset with data_page_index page.
456 * page_length = bytes to copy for this page
458 shmem_page_offset = offset_in_page(offset);
459 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460 data_page_offset = offset_in_page(data_ptr);
462 page_length = remain;
463 if ((shmem_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - shmem_page_offset;
465 if ((data_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - data_page_offset;
468 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
469 if (IS_ERR(page)) {
470 ret = PTR_ERR(page);
471 goto out;
474 if (do_bit17_swizzling) {
475 slow_shmem_bit17_copy(page,
476 shmem_page_offset,
477 user_pages[data_page_index],
478 data_page_offset,
479 page_length,
481 } else {
482 slow_shmem_copy(user_pages[data_page_index],
483 data_page_offset,
484 page,
485 shmem_page_offset,
486 page_length);
489 mark_page_accessed(page);
490 page_cache_release(page);
492 remain -= page_length;
493 data_ptr += page_length;
494 offset += page_length;
497 out:
498 for (i = 0; i < pinned_pages; i++) {
499 SetPageDirty(user_pages[i]);
500 mark_page_accessed(user_pages[i]);
501 page_cache_release(user_pages[i]);
503 drm_free_large(user_pages);
505 return ret;
509 * Reads data from the object referenced by handle.
511 * On error, the contents of *data are undefined.
514 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
515 struct drm_file *file)
517 struct drm_i915_gem_pread *args = data;
518 struct drm_i915_gem_object *obj;
519 int ret = 0;
521 if (args->size == 0)
522 return 0;
524 if (!access_ok(VERIFY_WRITE,
525 (char __user *)(uintptr_t)args->data_ptr,
526 args->size))
527 return -EFAULT;
529 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
530 args->size);
531 if (ret)
532 return -EFAULT;
534 ret = i915_mutex_lock_interruptible(dev);
535 if (ret)
536 return ret;
538 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
539 if (&obj->base == NULL) {
540 ret = -ENOENT;
541 goto unlock;
544 /* Bounds check source. */
545 if (args->offset > obj->base.size ||
546 args->size > obj->base.size - args->offset) {
547 ret = -EINVAL;
548 goto out;
551 trace_i915_gem_object_pread(obj, args->offset, args->size);
553 ret = i915_gem_object_set_cpu_read_domain_range(obj,
554 args->offset,
555 args->size);
556 if (ret)
557 goto out;
559 ret = -EFAULT;
560 if (!i915_gem_object_needs_bit17_swizzle(obj))
561 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
562 if (ret == -EFAULT)
563 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
565 out:
566 drm_gem_object_unreference(&obj->base);
567 unlock:
568 mutex_unlock(&dev->struct_mutex);
569 return ret;
572 /* This is the fast write path which cannot handle
573 * page faults in the source data
576 static inline int
577 fast_user_write(struct io_mapping *mapping,
578 loff_t page_base, int page_offset,
579 char __user *user_data,
580 int length)
582 char *vaddr_atomic;
583 unsigned long unwritten;
585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
592 /* Here's the write path which can sleep for
593 * page faults
596 static inline void
597 slow_kernel_write(struct io_mapping *mapping,
598 loff_t gtt_base, int gtt_offset,
599 struct page *user_page, int user_offset,
600 int length)
602 char __iomem *dst_vaddr;
603 char *src_vaddr;
605 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
606 src_vaddr = kmap(user_page);
608 memcpy_toio(dst_vaddr + gtt_offset,
609 src_vaddr + user_offset,
610 length);
612 kunmap(user_page);
613 io_mapping_unmap(dst_vaddr);
617 * This is the fast pwrite path, where we copy the data directly from the
618 * user into the GTT, uncached.
620 static int
621 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
622 struct drm_i915_gem_object *obj,
623 struct drm_i915_gem_pwrite *args,
624 struct drm_file *file)
626 drm_i915_private_t *dev_priv = dev->dev_private;
627 ssize_t remain;
628 loff_t offset, page_base;
629 char __user *user_data;
630 int page_offset, page_length;
632 user_data = (char __user *) (uintptr_t) args->data_ptr;
633 remain = args->size;
635 offset = obj->gtt_offset + args->offset;
637 while (remain > 0) {
638 /* Operation in this page
640 * page_base = page offset within aperture
641 * page_offset = offset within page
642 * page_length = bytes to copy for this page
644 page_base = offset & PAGE_MASK;
645 page_offset = offset_in_page(offset);
646 page_length = remain;
647 if ((page_offset + remain) > PAGE_SIZE)
648 page_length = PAGE_SIZE - page_offset;
650 /* If we get a fault while copying data, then (presumably) our
651 * source page isn't available. Return the error and we'll
652 * retry in the slow path.
654 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
655 page_offset, user_data, page_length))
656 return -EFAULT;
658 remain -= page_length;
659 user_data += page_length;
660 offset += page_length;
663 return 0;
667 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668 * the memory and maps it using kmap_atomic for copying.
670 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
673 static int
674 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675 struct drm_i915_gem_object *obj,
676 struct drm_i915_gem_pwrite *args,
677 struct drm_file *file)
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t gtt_page_base, offset;
682 loff_t first_data_page, last_data_page, num_pages;
683 loff_t pinned_pages, i;
684 struct page **user_pages;
685 struct mm_struct *mm = current->mm;
686 int gtt_page_offset, data_page_offset, data_page_index, page_length;
687 int ret;
688 uint64_t data_ptr = args->data_ptr;
690 remain = args->size;
692 /* Pin the user pages containing the data. We can't fault while
693 * holding the struct mutex, and all of the pwrite implementations
694 * want to hold it while dereferencing the user data.
696 first_data_page = data_ptr / PAGE_SIZE;
697 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698 num_pages = last_data_page - first_data_page + 1;
700 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
701 if (user_pages == NULL)
702 return -ENOMEM;
704 mutex_unlock(&dev->struct_mutex);
705 down_read(&mm->mmap_sem);
706 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707 num_pages, 0, 0, user_pages, NULL);
708 up_read(&mm->mmap_sem);
709 mutex_lock(&dev->struct_mutex);
710 if (pinned_pages < num_pages) {
711 ret = -EFAULT;
712 goto out_unpin_pages;
715 ret = i915_gem_object_set_to_gtt_domain(obj, true);
716 if (ret)
717 goto out_unpin_pages;
719 ret = i915_gem_object_put_fence(obj);
720 if (ret)
721 goto out_unpin_pages;
723 offset = obj->gtt_offset + args->offset;
725 while (remain > 0) {
726 /* Operation in this page
728 * gtt_page_base = page offset within aperture
729 * gtt_page_offset = offset within page in aperture
730 * data_page_index = page number in get_user_pages return
731 * data_page_offset = offset with data_page_index page.
732 * page_length = bytes to copy for this page
734 gtt_page_base = offset & PAGE_MASK;
735 gtt_page_offset = offset_in_page(offset);
736 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737 data_page_offset = offset_in_page(data_ptr);
739 page_length = remain;
740 if ((gtt_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - gtt_page_offset;
742 if ((data_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - data_page_offset;
745 slow_kernel_write(dev_priv->mm.gtt_mapping,
746 gtt_page_base, gtt_page_offset,
747 user_pages[data_page_index],
748 data_page_offset,
749 page_length);
751 remain -= page_length;
752 offset += page_length;
753 data_ptr += page_length;
756 out_unpin_pages:
757 for (i = 0; i < pinned_pages; i++)
758 page_cache_release(user_pages[i]);
759 drm_free_large(user_pages);
761 return ret;
765 * This is the fast shmem pwrite path, which attempts to directly
766 * copy_from_user into the kmapped pages backing the object.
768 static int
769 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770 struct drm_i915_gem_object *obj,
771 struct drm_i915_gem_pwrite *args,
772 struct drm_file *file)
774 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
775 ssize_t remain;
776 loff_t offset;
777 char __user *user_data;
778 int page_offset, page_length;
780 user_data = (char __user *) (uintptr_t) args->data_ptr;
781 remain = args->size;
783 offset = args->offset;
784 obj->dirty = 1;
786 while (remain > 0) {
787 struct page *page;
788 char *vaddr;
789 int ret;
791 /* Operation in this page
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
796 page_offset = offset_in_page(offset);
797 page_length = remain;
798 if ((page_offset + remain) > PAGE_SIZE)
799 page_length = PAGE_SIZE - page_offset;
801 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
802 if (IS_ERR(page))
803 return PTR_ERR(page);
805 vaddr = kmap_atomic(page, KM_USER0);
806 ret = __copy_from_user_inatomic(vaddr + page_offset,
807 user_data,
808 page_length);
809 kunmap_atomic(vaddr, KM_USER0);
811 set_page_dirty(page);
812 mark_page_accessed(page);
813 page_cache_release(page);
815 /* If we get a fault while copying data, then (presumably) our
816 * source page isn't available. Return the error and we'll
817 * retry in the slow path.
819 if (ret)
820 return -EFAULT;
822 remain -= page_length;
823 user_data += page_length;
824 offset += page_length;
827 return 0;
831 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
832 * the memory and maps it using kmap_atomic for copying.
834 * This avoids taking mmap_sem for faulting on the user's address while the
835 * struct_mutex is held.
837 static int
838 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
839 struct drm_i915_gem_object *obj,
840 struct drm_i915_gem_pwrite *args,
841 struct drm_file *file)
843 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
844 struct mm_struct *mm = current->mm;
845 struct page **user_pages;
846 ssize_t remain;
847 loff_t offset, pinned_pages, i;
848 loff_t first_data_page, last_data_page, num_pages;
849 int shmem_page_offset;
850 int data_page_index, data_page_offset;
851 int page_length;
852 int ret;
853 uint64_t data_ptr = args->data_ptr;
854 int do_bit17_swizzling;
856 remain = args->size;
858 /* Pin the user pages containing the data. We can't fault while
859 * holding the struct mutex, and all of the pwrite implementations
860 * want to hold it while dereferencing the user data.
862 first_data_page = data_ptr / PAGE_SIZE;
863 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
864 num_pages = last_data_page - first_data_page + 1;
866 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
867 if (user_pages == NULL)
868 return -ENOMEM;
870 mutex_unlock(&dev->struct_mutex);
871 down_read(&mm->mmap_sem);
872 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
873 num_pages, 0, 0, user_pages, NULL);
874 up_read(&mm->mmap_sem);
875 mutex_lock(&dev->struct_mutex);
876 if (pinned_pages < num_pages) {
877 ret = -EFAULT;
878 goto out;
881 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
882 if (ret)
883 goto out;
885 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
887 offset = args->offset;
888 obj->dirty = 1;
890 while (remain > 0) {
891 struct page *page;
893 /* Operation in this page
895 * shmem_page_offset = offset within page in shmem file
896 * data_page_index = page number in get_user_pages return
897 * data_page_offset = offset with data_page_index page.
898 * page_length = bytes to copy for this page
900 shmem_page_offset = offset_in_page(offset);
901 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
902 data_page_offset = offset_in_page(data_ptr);
904 page_length = remain;
905 if ((shmem_page_offset + page_length) > PAGE_SIZE)
906 page_length = PAGE_SIZE - shmem_page_offset;
907 if ((data_page_offset + page_length) > PAGE_SIZE)
908 page_length = PAGE_SIZE - data_page_offset;
910 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
911 if (IS_ERR(page)) {
912 ret = PTR_ERR(page);
913 goto out;
916 if (do_bit17_swizzling) {
917 slow_shmem_bit17_copy(page,
918 shmem_page_offset,
919 user_pages[data_page_index],
920 data_page_offset,
921 page_length,
923 } else {
924 slow_shmem_copy(page,
925 shmem_page_offset,
926 user_pages[data_page_index],
927 data_page_offset,
928 page_length);
931 set_page_dirty(page);
932 mark_page_accessed(page);
933 page_cache_release(page);
935 remain -= page_length;
936 data_ptr += page_length;
937 offset += page_length;
940 out:
941 for (i = 0; i < pinned_pages; i++)
942 page_cache_release(user_pages[i]);
943 drm_free_large(user_pages);
945 return ret;
949 * Writes data to the object referenced by handle.
951 * On error, the contents of the buffer that were to be modified are undefined.
954 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
955 struct drm_file *file)
957 struct drm_i915_gem_pwrite *args = data;
958 struct drm_i915_gem_object *obj;
959 int ret;
961 if (args->size == 0)
962 return 0;
964 if (!access_ok(VERIFY_READ,
965 (char __user *)(uintptr_t)args->data_ptr,
966 args->size))
967 return -EFAULT;
969 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
970 args->size);
971 if (ret)
972 return -EFAULT;
974 ret = i915_mutex_lock_interruptible(dev);
975 if (ret)
976 return ret;
978 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
979 if (&obj->base == NULL) {
980 ret = -ENOENT;
981 goto unlock;
984 /* Bounds check destination. */
985 if (args->offset > obj->base.size ||
986 args->size > obj->base.size - args->offset) {
987 ret = -EINVAL;
988 goto out;
991 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
993 /* We can only do the GTT pwrite on untiled buffers, as otherwise
994 * it would end up going through the fenced access, and we'll get
995 * different detiling behavior between reading and writing.
996 * pread/pwrite currently are reading and writing from the CPU
997 * perspective, requiring manual detiling by the client.
999 if (obj->phys_obj)
1000 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1001 else if (obj->gtt_space &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003 ret = i915_gem_object_pin(obj, 0, true);
1004 if (ret)
1005 goto out;
1007 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1008 if (ret)
1009 goto out_unpin;
1011 ret = i915_gem_object_put_fence(obj);
1012 if (ret)
1013 goto out_unpin;
1015 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1016 if (ret == -EFAULT)
1017 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1019 out_unpin:
1020 i915_gem_object_unpin(obj);
1021 } else {
1022 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1023 if (ret)
1024 goto out;
1026 ret = -EFAULT;
1027 if (!i915_gem_object_needs_bit17_swizzle(obj))
1028 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1029 if (ret == -EFAULT)
1030 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1033 out:
1034 drm_gem_object_unreference(&obj->base);
1035 unlock:
1036 mutex_unlock(&dev->struct_mutex);
1037 return ret;
1041 * Called when user space prepares to use an object with the CPU, either
1042 * through the mmap ioctl's mapping or a GTT mapping.
1045 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1048 struct drm_i915_gem_set_domain *args = data;
1049 struct drm_i915_gem_object *obj;
1050 uint32_t read_domains = args->read_domains;
1051 uint32_t write_domain = args->write_domain;
1052 int ret;
1054 if (!(dev->driver->driver_features & DRIVER_GEM))
1055 return -ENODEV;
1057 /* Only handle setting domains to types used by the CPU. */
1058 if (write_domain & I915_GEM_GPU_DOMAINS)
1059 return -EINVAL;
1061 if (read_domains & I915_GEM_GPU_DOMAINS)
1062 return -EINVAL;
1064 /* Having something in the write domain implies it's in the read
1065 * domain, and only that read domain. Enforce that in the request.
1067 if (write_domain != 0 && read_domains != write_domain)
1068 return -EINVAL;
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 return ret;
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1080 if (read_domains & I915_GEM_DOMAIN_GTT) {
1081 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1083 /* Silently promote "you're not bound, there was nothing to do"
1084 * to success, since the client was just asking us to
1085 * make sure everything was done.
1087 if (ret == -EINVAL)
1088 ret = 0;
1089 } else {
1090 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1093 drm_gem_object_unreference(&obj->base);
1094 unlock:
1095 mutex_unlock(&dev->struct_mutex);
1096 return ret;
1100 * Called when user space has done writes to this buffer
1103 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1104 struct drm_file *file)
1106 struct drm_i915_gem_sw_finish *args = data;
1107 struct drm_i915_gem_object *obj;
1108 int ret = 0;
1110 if (!(dev->driver->driver_features & DRIVER_GEM))
1111 return -ENODEV;
1113 ret = i915_mutex_lock_interruptible(dev);
1114 if (ret)
1115 return ret;
1117 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1118 if (&obj->base == NULL) {
1119 ret = -ENOENT;
1120 goto unlock;
1123 /* Pinned buffers may be scanout, so flush the cache */
1124 if (obj->pin_count)
1125 i915_gem_object_flush_cpu_write_domain(obj);
1127 drm_gem_object_unreference(&obj->base);
1128 unlock:
1129 mutex_unlock(&dev->struct_mutex);
1130 return ret;
1134 * Maps the contents of an object, returning the address it is mapped
1135 * into.
1137 * While the mapping holds a reference on the contents of the object, it doesn't
1138 * imply a ref on the object itself.
1141 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1142 struct drm_file *file)
1144 struct drm_i915_private *dev_priv = dev->dev_private;
1145 struct drm_i915_gem_mmap *args = data;
1146 struct drm_gem_object *obj;
1147 unsigned long addr;
1149 if (!(dev->driver->driver_features & DRIVER_GEM))
1150 return -ENODEV;
1152 obj = drm_gem_object_lookup(dev, file, args->handle);
1153 if (obj == NULL)
1154 return -ENOENT;
1156 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1157 drm_gem_object_unreference_unlocked(obj);
1158 return -E2BIG;
1161 down_write(&current->mm->mmap_sem);
1162 addr = do_mmap(obj->filp, 0, args->size,
1163 PROT_READ | PROT_WRITE, MAP_SHARED,
1164 args->offset);
1165 up_write(&current->mm->mmap_sem);
1166 drm_gem_object_unreference_unlocked(obj);
1167 if (IS_ERR((void *)addr))
1168 return addr;
1170 args->addr_ptr = (uint64_t) addr;
1172 return 0;
1176 * i915_gem_fault - fault a page into the GTT
1177 * vma: VMA in question
1178 * vmf: fault info
1180 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1181 * from userspace. The fault handler takes care of binding the object to
1182 * the GTT (if needed), allocating and programming a fence register (again,
1183 * only if needed based on whether the old reg is still valid or the object
1184 * is tiled) and inserting a new PTE into the faulting process.
1186 * Note that the faulting process may involve evicting existing objects
1187 * from the GTT and/or fence registers to make room. So performance may
1188 * suffer if the GTT working set is large or there are few fence registers
1189 * left.
1191 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1193 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1194 struct drm_device *dev = obj->base.dev;
1195 drm_i915_private_t *dev_priv = dev->dev_private;
1196 pgoff_t page_offset;
1197 unsigned long pfn;
1198 int ret = 0;
1199 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1201 /* We don't use vmf->pgoff since that has the fake offset */
1202 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1203 PAGE_SHIFT;
1205 ret = i915_mutex_lock_interruptible(dev);
1206 if (ret)
1207 goto out;
1209 trace_i915_gem_object_fault(obj, page_offset, true, write);
1211 /* Now bind it into the GTT if needed */
1212 if (!obj->map_and_fenceable) {
1213 ret = i915_gem_object_unbind(obj);
1214 if (ret)
1215 goto unlock;
1217 if (!obj->gtt_space) {
1218 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1219 if (ret)
1220 goto unlock;
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1223 if (ret)
1224 goto unlock;
1227 if (obj->tiling_mode == I915_TILING_NONE)
1228 ret = i915_gem_object_put_fence(obj);
1229 else
1230 ret = i915_gem_object_get_fence(obj, NULL);
1231 if (ret)
1232 goto unlock;
1234 if (i915_gem_object_is_inactive(obj))
1235 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1237 obj->fault_mappable = true;
1239 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1240 page_offset;
1242 /* Finally, remap it using the new GTT offset */
1243 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1244 unlock:
1245 mutex_unlock(&dev->struct_mutex);
1246 out:
1247 switch (ret) {
1248 case -EIO:
1249 case -EAGAIN:
1250 /* Give the error handler a chance to run and move the
1251 * objects off the GPU active list. Next time we service the
1252 * fault, we should be able to transition the page into the
1253 * GTT without touching the GPU (and so avoid further
1254 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1255 * with coherency, just lost writes.
1257 set_need_resched();
1258 case 0:
1259 case -ERESTARTSYS:
1260 case -EINTR:
1261 return VM_FAULT_NOPAGE;
1262 case -ENOMEM:
1263 return VM_FAULT_OOM;
1264 default:
1265 return VM_FAULT_SIGBUS;
1270 * i915_gem_release_mmap - remove physical page mappings
1271 * @obj: obj in question
1273 * Preserve the reservation of the mmapping with the DRM core code, but
1274 * relinquish ownership of the pages back to the system.
1276 * It is vital that we remove the page mapping if we have mapped a tiled
1277 * object through the GTT and then lose the fence register due to
1278 * resource pressure. Similarly if the object has been moved out of the
1279 * aperture, than pages mapped into userspace must be revoked. Removing the
1280 * mapping will then trigger a page fault on the next user access, allowing
1281 * fixup by i915_gem_fault().
1283 void
1284 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1286 if (!obj->fault_mappable)
1287 return;
1289 if (obj->base.dev->dev_mapping)
1290 unmap_mapping_range(obj->base.dev->dev_mapping,
1291 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1292 obj->base.size, 1);
1294 obj->fault_mappable = false;
1297 static uint32_t
1298 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1300 uint32_t gtt_size;
1302 if (INTEL_INFO(dev)->gen >= 4 ||
1303 tiling_mode == I915_TILING_NONE)
1304 return size;
1306 /* Previous chips need a power-of-two fence region when tiling */
1307 if (INTEL_INFO(dev)->gen == 3)
1308 gtt_size = 1024*1024;
1309 else
1310 gtt_size = 512*1024;
1312 while (gtt_size < size)
1313 gtt_size <<= 1;
1315 return gtt_size;
1319 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1320 * @obj: object to check
1322 * Return the required GTT alignment for an object, taking into account
1323 * potential fence register mapping.
1325 static uint32_t
1326 i915_gem_get_gtt_alignment(struct drm_device *dev,
1327 uint32_t size,
1328 int tiling_mode)
1331 * Minimum alignment is 4k (GTT page size), but might be greater
1332 * if a fence register is needed for the object.
1334 if (INTEL_INFO(dev)->gen >= 4 ||
1335 tiling_mode == I915_TILING_NONE)
1336 return 4096;
1339 * Previous chips need to be aligned to the size of the smallest
1340 * fence register that can contain the object.
1342 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1346 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1347 * unfenced object
1348 * @dev: the device
1349 * @size: size of the object
1350 * @tiling_mode: tiling mode of the object
1352 * Return the required GTT alignment for an object, only taking into account
1353 * unfenced tiled surface requirements.
1355 uint32_t
1356 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1357 uint32_t size,
1358 int tiling_mode)
1361 * Minimum alignment is 4k (GTT page size) for sane hw.
1363 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1364 tiling_mode == I915_TILING_NONE)
1365 return 4096;
1367 /* Previous hardware however needs to be aligned to a power-of-two
1368 * tile height. The simplest method for determining this is to reuse
1369 * the power-of-tile object size.
1371 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1375 i915_gem_mmap_gtt(struct drm_file *file,
1376 struct drm_device *dev,
1377 uint32_t handle,
1378 uint64_t *offset)
1380 struct drm_i915_private *dev_priv = dev->dev_private;
1381 struct drm_i915_gem_object *obj;
1382 int ret;
1384 if (!(dev->driver->driver_features & DRIVER_GEM))
1385 return -ENODEV;
1387 ret = i915_mutex_lock_interruptible(dev);
1388 if (ret)
1389 return ret;
1391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1392 if (&obj->base == NULL) {
1393 ret = -ENOENT;
1394 goto unlock;
1397 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1398 ret = -E2BIG;
1399 goto unlock;
1402 if (obj->madv != I915_MADV_WILLNEED) {
1403 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1404 ret = -EINVAL;
1405 goto out;
1408 if (!obj->base.map_list.map) {
1409 ret = drm_gem_create_mmap_offset(&obj->base);
1410 if (ret)
1411 goto out;
1414 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1416 out:
1417 drm_gem_object_unreference(&obj->base);
1418 unlock:
1419 mutex_unlock(&dev->struct_mutex);
1420 return ret;
1424 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1425 * @dev: DRM device
1426 * @data: GTT mapping ioctl data
1427 * @file: GEM object info
1429 * Simply returns the fake offset to userspace so it can mmap it.
1430 * The mmap call will end up in drm_gem_mmap(), which will set things
1431 * up so we can get faults in the handler above.
1433 * The fault handler will take care of binding the object into the GTT
1434 * (since it may have been evicted to make room for something), allocating
1435 * a fence register, and mapping the appropriate aperture address into
1436 * userspace.
1439 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1440 struct drm_file *file)
1442 struct drm_i915_gem_mmap_gtt *args = data;
1444 if (!(dev->driver->driver_features & DRIVER_GEM))
1445 return -ENODEV;
1447 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1451 static int
1452 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1453 gfp_t gfpmask)
1455 int page_count, i;
1456 struct address_space *mapping;
1457 struct inode *inode;
1458 struct page *page;
1460 /* Get the list of pages out of our struct file. They'll be pinned
1461 * at this point until we release them.
1463 page_count = obj->base.size / PAGE_SIZE;
1464 BUG_ON(obj->pages != NULL);
1465 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1466 if (obj->pages == NULL)
1467 return -ENOMEM;
1469 inode = obj->base.filp->f_path.dentry->d_inode;
1470 mapping = inode->i_mapping;
1471 gfpmask |= mapping_gfp_mask(mapping);
1473 for (i = 0; i < page_count; i++) {
1474 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1475 if (IS_ERR(page))
1476 goto err_pages;
1478 obj->pages[i] = page;
1481 if (i915_gem_object_needs_bit17_swizzle(obj))
1482 i915_gem_object_do_bit_17_swizzle(obj);
1484 return 0;
1486 err_pages:
1487 while (i--)
1488 page_cache_release(obj->pages[i]);
1490 drm_free_large(obj->pages);
1491 obj->pages = NULL;
1492 return PTR_ERR(page);
1495 static void
1496 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1498 int page_count = obj->base.size / PAGE_SIZE;
1499 int i;
1501 BUG_ON(obj->madv == __I915_MADV_PURGED);
1503 if (i915_gem_object_needs_bit17_swizzle(obj))
1504 i915_gem_object_save_bit_17_swizzle(obj);
1506 if (obj->madv == I915_MADV_DONTNEED)
1507 obj->dirty = 0;
1509 for (i = 0; i < page_count; i++) {
1510 if (obj->dirty)
1511 set_page_dirty(obj->pages[i]);
1513 if (obj->madv == I915_MADV_WILLNEED)
1514 mark_page_accessed(obj->pages[i]);
1516 page_cache_release(obj->pages[i]);
1518 obj->dirty = 0;
1520 drm_free_large(obj->pages);
1521 obj->pages = NULL;
1524 void
1525 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1526 struct intel_ring_buffer *ring,
1527 u32 seqno)
1529 struct drm_device *dev = obj->base.dev;
1530 struct drm_i915_private *dev_priv = dev->dev_private;
1532 BUG_ON(ring == NULL);
1533 obj->ring = ring;
1535 /* Add a reference if we're newly entering the active list. */
1536 if (!obj->active) {
1537 drm_gem_object_reference(&obj->base);
1538 obj->active = 1;
1541 /* Move from whatever list we were on to the tail of execution. */
1542 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1543 list_move_tail(&obj->ring_list, &ring->active_list);
1545 obj->last_rendering_seqno = seqno;
1546 if (obj->fenced_gpu_access) {
1547 struct drm_i915_fence_reg *reg;
1549 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1551 obj->last_fenced_seqno = seqno;
1552 obj->last_fenced_ring = ring;
1554 reg = &dev_priv->fence_regs[obj->fence_reg];
1555 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1559 static void
1560 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1562 list_del_init(&obj->ring_list);
1563 obj->last_rendering_seqno = 0;
1566 static void
1567 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1569 struct drm_device *dev = obj->base.dev;
1570 drm_i915_private_t *dev_priv = dev->dev_private;
1572 BUG_ON(!obj->active);
1573 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1575 i915_gem_object_move_off_active(obj);
1578 static void
1579 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1581 struct drm_device *dev = obj->base.dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1584 if (obj->pin_count != 0)
1585 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1586 else
1587 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1589 BUG_ON(!list_empty(&obj->gpu_write_list));
1590 BUG_ON(!obj->active);
1591 obj->ring = NULL;
1593 i915_gem_object_move_off_active(obj);
1594 obj->fenced_gpu_access = false;
1596 obj->active = 0;
1597 obj->pending_gpu_write = false;
1598 drm_gem_object_unreference(&obj->base);
1600 WARN_ON(i915_verify_lists(dev));
1603 /* Immediately discard the backing storage */
1604 static void
1605 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1607 struct inode *inode;
1609 /* Our goal here is to return as much of the memory as
1610 * is possible back to the system as we are called from OOM.
1611 * To do this we must instruct the shmfs to drop all of its
1612 * backing pages, *now*.
1614 inode = obj->base.filp->f_path.dentry->d_inode;
1615 shmem_truncate_range(inode, 0, (loff_t)-1);
1617 obj->madv = __I915_MADV_PURGED;
1620 static inline int
1621 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1623 return obj->madv == I915_MADV_DONTNEED;
1626 static void
1627 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1628 uint32_t flush_domains)
1630 struct drm_i915_gem_object *obj, *next;
1632 list_for_each_entry_safe(obj, next,
1633 &ring->gpu_write_list,
1634 gpu_write_list) {
1635 if (obj->base.write_domain & flush_domains) {
1636 uint32_t old_write_domain = obj->base.write_domain;
1638 obj->base.write_domain = 0;
1639 list_del_init(&obj->gpu_write_list);
1640 i915_gem_object_move_to_active(obj, ring,
1641 i915_gem_next_request_seqno(ring));
1643 trace_i915_gem_object_change_domain(obj,
1644 obj->base.read_domains,
1645 old_write_domain);
1651 i915_add_request(struct intel_ring_buffer *ring,
1652 struct drm_file *file,
1653 struct drm_i915_gem_request *request)
1655 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1656 uint32_t seqno;
1657 int was_empty;
1658 int ret;
1660 BUG_ON(request == NULL);
1662 ret = ring->add_request(ring, &seqno);
1663 if (ret)
1664 return ret;
1666 trace_i915_gem_request_add(ring, seqno);
1668 request->seqno = seqno;
1669 request->ring = ring;
1670 request->emitted_jiffies = jiffies;
1671 was_empty = list_empty(&ring->request_list);
1672 list_add_tail(&request->list, &ring->request_list);
1674 if (file) {
1675 struct drm_i915_file_private *file_priv = file->driver_priv;
1677 spin_lock(&file_priv->mm.lock);
1678 request->file_priv = file_priv;
1679 list_add_tail(&request->client_list,
1680 &file_priv->mm.request_list);
1681 spin_unlock(&file_priv->mm.lock);
1684 ring->outstanding_lazy_request = false;
1686 if (!dev_priv->mm.suspended) {
1687 if (i915_enable_hangcheck) {
1688 mod_timer(&dev_priv->hangcheck_timer,
1689 jiffies +
1690 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1692 if (was_empty)
1693 queue_delayed_work(dev_priv->wq,
1694 &dev_priv->mm.retire_work, HZ);
1696 return 0;
1699 static inline void
1700 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1702 struct drm_i915_file_private *file_priv = request->file_priv;
1704 if (!file_priv)
1705 return;
1707 spin_lock(&file_priv->mm.lock);
1708 if (request->file_priv) {
1709 list_del(&request->client_list);
1710 request->file_priv = NULL;
1712 spin_unlock(&file_priv->mm.lock);
1715 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1716 struct intel_ring_buffer *ring)
1718 while (!list_empty(&ring->request_list)) {
1719 struct drm_i915_gem_request *request;
1721 request = list_first_entry(&ring->request_list,
1722 struct drm_i915_gem_request,
1723 list);
1725 list_del(&request->list);
1726 i915_gem_request_remove_from_client(request);
1727 kfree(request);
1730 while (!list_empty(&ring->active_list)) {
1731 struct drm_i915_gem_object *obj;
1733 obj = list_first_entry(&ring->active_list,
1734 struct drm_i915_gem_object,
1735 ring_list);
1737 obj->base.write_domain = 0;
1738 list_del_init(&obj->gpu_write_list);
1739 i915_gem_object_move_to_inactive(obj);
1743 static void i915_gem_reset_fences(struct drm_device *dev)
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 int i;
1748 for (i = 0; i < 16; i++) {
1749 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1750 struct drm_i915_gem_object *obj = reg->obj;
1752 if (!obj)
1753 continue;
1755 if (obj->tiling_mode)
1756 i915_gem_release_mmap(obj);
1758 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1759 reg->obj->fenced_gpu_access = false;
1760 reg->obj->last_fenced_seqno = 0;
1761 reg->obj->last_fenced_ring = NULL;
1762 i915_gem_clear_fence_reg(dev, reg);
1766 void i915_gem_reset(struct drm_device *dev)
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 struct drm_i915_gem_object *obj;
1770 int i;
1772 for (i = 0; i < I915_NUM_RINGS; i++)
1773 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1775 /* Remove anything from the flushing lists. The GPU cache is likely
1776 * to be lost on reset along with the data, so simply move the
1777 * lost bo to the inactive list.
1779 while (!list_empty(&dev_priv->mm.flushing_list)) {
1780 obj = list_first_entry(&dev_priv->mm.flushing_list,
1781 struct drm_i915_gem_object,
1782 mm_list);
1784 obj->base.write_domain = 0;
1785 list_del_init(&obj->gpu_write_list);
1786 i915_gem_object_move_to_inactive(obj);
1789 /* Move everything out of the GPU domains to ensure we do any
1790 * necessary invalidation upon reuse.
1792 list_for_each_entry(obj,
1793 &dev_priv->mm.inactive_list,
1794 mm_list)
1796 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1799 /* The fence registers are invalidated so clear them out */
1800 i915_gem_reset_fences(dev);
1804 * This function clears the request list as sequence numbers are passed.
1806 static void
1807 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1809 uint32_t seqno;
1810 int i;
1812 if (list_empty(&ring->request_list))
1813 return;
1815 WARN_ON(i915_verify_lists(ring->dev));
1817 seqno = ring->get_seqno(ring);
1819 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1820 if (seqno >= ring->sync_seqno[i])
1821 ring->sync_seqno[i] = 0;
1823 while (!list_empty(&ring->request_list)) {
1824 struct drm_i915_gem_request *request;
1826 request = list_first_entry(&ring->request_list,
1827 struct drm_i915_gem_request,
1828 list);
1830 if (!i915_seqno_passed(seqno, request->seqno))
1831 break;
1833 trace_i915_gem_request_retire(ring, request->seqno);
1835 list_del(&request->list);
1836 i915_gem_request_remove_from_client(request);
1837 kfree(request);
1840 /* Move any buffers on the active list that are no longer referenced
1841 * by the ringbuffer to the flushing/inactive lists as appropriate.
1843 while (!list_empty(&ring->active_list)) {
1844 struct drm_i915_gem_object *obj;
1846 obj = list_first_entry(&ring->active_list,
1847 struct drm_i915_gem_object,
1848 ring_list);
1850 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1851 break;
1853 if (obj->base.write_domain != 0)
1854 i915_gem_object_move_to_flushing(obj);
1855 else
1856 i915_gem_object_move_to_inactive(obj);
1859 if (unlikely(ring->trace_irq_seqno &&
1860 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1861 ring->irq_put(ring);
1862 ring->trace_irq_seqno = 0;
1865 WARN_ON(i915_verify_lists(ring->dev));
1868 void
1869 i915_gem_retire_requests(struct drm_device *dev)
1871 drm_i915_private_t *dev_priv = dev->dev_private;
1872 int i;
1874 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1875 struct drm_i915_gem_object *obj, *next;
1877 /* We must be careful that during unbind() we do not
1878 * accidentally infinitely recurse into retire requests.
1879 * Currently:
1880 * retire -> free -> unbind -> wait -> retire_ring
1882 list_for_each_entry_safe(obj, next,
1883 &dev_priv->mm.deferred_free_list,
1884 mm_list)
1885 i915_gem_free_object_tail(obj);
1888 for (i = 0; i < I915_NUM_RINGS; i++)
1889 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1892 static void
1893 i915_gem_retire_work_handler(struct work_struct *work)
1895 drm_i915_private_t *dev_priv;
1896 struct drm_device *dev;
1897 bool idle;
1898 int i;
1900 dev_priv = container_of(work, drm_i915_private_t,
1901 mm.retire_work.work);
1902 dev = dev_priv->dev;
1904 /* Come back later if the device is busy... */
1905 if (!mutex_trylock(&dev->struct_mutex)) {
1906 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1907 return;
1910 i915_gem_retire_requests(dev);
1912 /* Send a periodic flush down the ring so we don't hold onto GEM
1913 * objects indefinitely.
1915 idle = true;
1916 for (i = 0; i < I915_NUM_RINGS; i++) {
1917 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1919 if (!list_empty(&ring->gpu_write_list)) {
1920 struct drm_i915_gem_request *request;
1921 int ret;
1923 ret = i915_gem_flush_ring(ring,
1924 0, I915_GEM_GPU_DOMAINS);
1925 request = kzalloc(sizeof(*request), GFP_KERNEL);
1926 if (ret || request == NULL ||
1927 i915_add_request(ring, NULL, request))
1928 kfree(request);
1931 idle &= list_empty(&ring->request_list);
1934 if (!dev_priv->mm.suspended && !idle)
1935 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1937 mutex_unlock(&dev->struct_mutex);
1941 * Waits for a sequence number to be signaled, and cleans up the
1942 * request and object lists appropriately for that event.
1945 i915_wait_request(struct intel_ring_buffer *ring,
1946 uint32_t seqno)
1948 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1949 u32 ier;
1950 int ret = 0;
1952 BUG_ON(seqno == 0);
1954 if (atomic_read(&dev_priv->mm.wedged)) {
1955 struct completion *x = &dev_priv->error_completion;
1956 bool recovery_complete;
1957 unsigned long flags;
1959 /* Give the error handler a chance to run. */
1960 spin_lock_irqsave(&x->wait.lock, flags);
1961 recovery_complete = x->done > 0;
1962 spin_unlock_irqrestore(&x->wait.lock, flags);
1964 return recovery_complete ? -EIO : -EAGAIN;
1967 if (seqno == ring->outstanding_lazy_request) {
1968 struct drm_i915_gem_request *request;
1970 request = kzalloc(sizeof(*request), GFP_KERNEL);
1971 if (request == NULL)
1972 return -ENOMEM;
1974 ret = i915_add_request(ring, NULL, request);
1975 if (ret) {
1976 kfree(request);
1977 return ret;
1980 seqno = request->seqno;
1983 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1984 if (HAS_PCH_SPLIT(ring->dev))
1985 ier = I915_READ(DEIER) | I915_READ(GTIER);
1986 else
1987 ier = I915_READ(IER);
1988 if (!ier) {
1989 DRM_ERROR("something (likely vbetool) disabled "
1990 "interrupts, re-enabling\n");
1991 ring->dev->driver->irq_preinstall(ring->dev);
1992 ring->dev->driver->irq_postinstall(ring->dev);
1995 trace_i915_gem_request_wait_begin(ring, seqno);
1997 ring->waiting_seqno = seqno;
1998 if (ring->irq_get(ring)) {
1999 if (dev_priv->mm.interruptible)
2000 ret = wait_event_interruptible(ring->irq_queue,
2001 i915_seqno_passed(ring->get_seqno(ring), seqno)
2002 || atomic_read(&dev_priv->mm.wedged));
2003 else
2004 wait_event(ring->irq_queue,
2005 i915_seqno_passed(ring->get_seqno(ring), seqno)
2006 || atomic_read(&dev_priv->mm.wedged));
2008 ring->irq_put(ring);
2009 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2010 seqno) ||
2011 atomic_read(&dev_priv->mm.wedged), 3000))
2012 ret = -EBUSY;
2013 ring->waiting_seqno = 0;
2015 trace_i915_gem_request_wait_end(ring, seqno);
2017 if (atomic_read(&dev_priv->mm.wedged))
2018 ret = -EAGAIN;
2020 if (ret && ret != -ERESTARTSYS)
2021 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2022 __func__, ret, seqno, ring->get_seqno(ring),
2023 dev_priv->next_seqno);
2025 /* Directly dispatch request retiring. While we have the work queue
2026 * to handle this, the waiter on a request often wants an associated
2027 * buffer to have made it to the inactive list, and we would need
2028 * a separate wait queue to handle that.
2030 if (ret == 0)
2031 i915_gem_retire_requests_ring(ring);
2033 return ret;
2037 * Ensures that all rendering to the object has completed and the object is
2038 * safe to unbind from the GTT or access from the CPU.
2041 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2043 int ret;
2045 /* This function only exists to support waiting for existing rendering,
2046 * not for emitting required flushes.
2048 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2050 /* If there is rendering queued on the buffer being evicted, wait for
2051 * it.
2053 if (obj->active) {
2054 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2055 if (ret)
2056 return ret;
2059 return 0;
2062 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2064 u32 old_write_domain, old_read_domains;
2066 /* Act a barrier for all accesses through the GTT */
2067 mb();
2069 /* Force a pagefault for domain tracking on next user access */
2070 i915_gem_release_mmap(obj);
2072 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2073 return;
2075 old_read_domains = obj->base.read_domains;
2076 old_write_domain = obj->base.write_domain;
2078 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2079 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2081 trace_i915_gem_object_change_domain(obj,
2082 old_read_domains,
2083 old_write_domain);
2087 * Unbinds an object from the GTT aperture.
2090 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2092 int ret = 0;
2094 if (obj->gtt_space == NULL)
2095 return 0;
2097 if (obj->pin_count != 0) {
2098 DRM_ERROR("Attempting to unbind pinned buffer\n");
2099 return -EINVAL;
2102 ret = i915_gem_object_finish_gpu(obj);
2103 if (ret == -ERESTARTSYS)
2104 return ret;
2105 /* Continue on if we fail due to EIO, the GPU is hung so we
2106 * should be safe and we need to cleanup or else we might
2107 * cause memory corruption through use-after-free.
2110 i915_gem_object_finish_gtt(obj);
2112 /* Move the object to the CPU domain to ensure that
2113 * any possible CPU writes while it's not in the GTT
2114 * are flushed when we go to remap it.
2116 if (ret == 0)
2117 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2118 if (ret == -ERESTARTSYS)
2119 return ret;
2120 if (ret) {
2121 /* In the event of a disaster, abandon all caches and
2122 * hope for the best.
2124 i915_gem_clflush_object(obj);
2125 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2128 /* release the fence reg _after_ flushing */
2129 ret = i915_gem_object_put_fence(obj);
2130 if (ret == -ERESTARTSYS)
2131 return ret;
2133 trace_i915_gem_object_unbind(obj);
2135 i915_gem_gtt_unbind_object(obj);
2136 i915_gem_object_put_pages_gtt(obj);
2138 list_del_init(&obj->gtt_list);
2139 list_del_init(&obj->mm_list);
2140 /* Avoid an unnecessary call to unbind on rebind. */
2141 obj->map_and_fenceable = true;
2143 drm_mm_put_block(obj->gtt_space);
2144 obj->gtt_space = NULL;
2145 obj->gtt_offset = 0;
2147 if (i915_gem_object_is_purgeable(obj))
2148 i915_gem_object_truncate(obj);
2150 return ret;
2154 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2155 uint32_t invalidate_domains,
2156 uint32_t flush_domains)
2158 int ret;
2160 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2161 return 0;
2163 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2165 ret = ring->flush(ring, invalidate_domains, flush_domains);
2166 if (ret)
2167 return ret;
2169 if (flush_domains & I915_GEM_GPU_DOMAINS)
2170 i915_gem_process_flushing_list(ring, flush_domains);
2172 return 0;
2175 static int i915_ring_idle(struct intel_ring_buffer *ring)
2177 int ret;
2179 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2180 return 0;
2182 if (!list_empty(&ring->gpu_write_list)) {
2183 ret = i915_gem_flush_ring(ring,
2184 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2185 if (ret)
2186 return ret;
2189 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2193 i915_gpu_idle(struct drm_device *dev)
2195 drm_i915_private_t *dev_priv = dev->dev_private;
2196 bool lists_empty;
2197 int ret, i;
2199 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2200 list_empty(&dev_priv->mm.active_list));
2201 if (lists_empty)
2202 return 0;
2204 /* Flush everything onto the inactive list. */
2205 for (i = 0; i < I915_NUM_RINGS; i++) {
2206 ret = i915_ring_idle(&dev_priv->ring[i]);
2207 if (ret)
2208 return ret;
2211 return 0;
2214 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2215 struct intel_ring_buffer *pipelined)
2217 struct drm_device *dev = obj->base.dev;
2218 drm_i915_private_t *dev_priv = dev->dev_private;
2219 u32 size = obj->gtt_space->size;
2220 int regnum = obj->fence_reg;
2221 uint64_t val;
2223 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2224 0xfffff000) << 32;
2225 val |= obj->gtt_offset & 0xfffff000;
2226 val |= (uint64_t)((obj->stride / 128) - 1) <<
2227 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2229 if (obj->tiling_mode == I915_TILING_Y)
2230 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2231 val |= I965_FENCE_REG_VALID;
2233 if (pipelined) {
2234 int ret = intel_ring_begin(pipelined, 6);
2235 if (ret)
2236 return ret;
2238 intel_ring_emit(pipelined, MI_NOOP);
2239 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2240 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2241 intel_ring_emit(pipelined, (u32)val);
2242 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2243 intel_ring_emit(pipelined, (u32)(val >> 32));
2244 intel_ring_advance(pipelined);
2245 } else
2246 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2248 return 0;
2251 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2252 struct intel_ring_buffer *pipelined)
2254 struct drm_device *dev = obj->base.dev;
2255 drm_i915_private_t *dev_priv = dev->dev_private;
2256 u32 size = obj->gtt_space->size;
2257 int regnum = obj->fence_reg;
2258 uint64_t val;
2260 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2261 0xfffff000) << 32;
2262 val |= obj->gtt_offset & 0xfffff000;
2263 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2264 if (obj->tiling_mode == I915_TILING_Y)
2265 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2266 val |= I965_FENCE_REG_VALID;
2268 if (pipelined) {
2269 int ret = intel_ring_begin(pipelined, 6);
2270 if (ret)
2271 return ret;
2273 intel_ring_emit(pipelined, MI_NOOP);
2274 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2275 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2276 intel_ring_emit(pipelined, (u32)val);
2277 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2278 intel_ring_emit(pipelined, (u32)(val >> 32));
2279 intel_ring_advance(pipelined);
2280 } else
2281 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2283 return 0;
2286 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2287 struct intel_ring_buffer *pipelined)
2289 struct drm_device *dev = obj->base.dev;
2290 drm_i915_private_t *dev_priv = dev->dev_private;
2291 u32 size = obj->gtt_space->size;
2292 u32 fence_reg, val, pitch_val;
2293 int tile_width;
2295 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2296 (size & -size) != size ||
2297 (obj->gtt_offset & (size - 1)),
2298 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2299 obj->gtt_offset, obj->map_and_fenceable, size))
2300 return -EINVAL;
2302 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2303 tile_width = 128;
2304 else
2305 tile_width = 512;
2307 /* Note: pitch better be a power of two tile widths */
2308 pitch_val = obj->stride / tile_width;
2309 pitch_val = ffs(pitch_val) - 1;
2311 val = obj->gtt_offset;
2312 if (obj->tiling_mode == I915_TILING_Y)
2313 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2314 val |= I915_FENCE_SIZE_BITS(size);
2315 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2316 val |= I830_FENCE_REG_VALID;
2318 fence_reg = obj->fence_reg;
2319 if (fence_reg < 8)
2320 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2321 else
2322 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2324 if (pipelined) {
2325 int ret = intel_ring_begin(pipelined, 4);
2326 if (ret)
2327 return ret;
2329 intel_ring_emit(pipelined, MI_NOOP);
2330 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2331 intel_ring_emit(pipelined, fence_reg);
2332 intel_ring_emit(pipelined, val);
2333 intel_ring_advance(pipelined);
2334 } else
2335 I915_WRITE(fence_reg, val);
2337 return 0;
2340 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2341 struct intel_ring_buffer *pipelined)
2343 struct drm_device *dev = obj->base.dev;
2344 drm_i915_private_t *dev_priv = dev->dev_private;
2345 u32 size = obj->gtt_space->size;
2346 int regnum = obj->fence_reg;
2347 uint32_t val;
2348 uint32_t pitch_val;
2350 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2351 (size & -size) != size ||
2352 (obj->gtt_offset & (size - 1)),
2353 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2354 obj->gtt_offset, size))
2355 return -EINVAL;
2357 pitch_val = obj->stride / 128;
2358 pitch_val = ffs(pitch_val) - 1;
2360 val = obj->gtt_offset;
2361 if (obj->tiling_mode == I915_TILING_Y)
2362 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2363 val |= I830_FENCE_SIZE_BITS(size);
2364 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2365 val |= I830_FENCE_REG_VALID;
2367 if (pipelined) {
2368 int ret = intel_ring_begin(pipelined, 4);
2369 if (ret)
2370 return ret;
2372 intel_ring_emit(pipelined, MI_NOOP);
2373 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2374 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2375 intel_ring_emit(pipelined, val);
2376 intel_ring_advance(pipelined);
2377 } else
2378 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2380 return 0;
2383 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2385 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2388 static int
2389 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2390 struct intel_ring_buffer *pipelined)
2392 int ret;
2394 if (obj->fenced_gpu_access) {
2395 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2396 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2397 0, obj->base.write_domain);
2398 if (ret)
2399 return ret;
2402 obj->fenced_gpu_access = false;
2405 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2406 if (!ring_passed_seqno(obj->last_fenced_ring,
2407 obj->last_fenced_seqno)) {
2408 ret = i915_wait_request(obj->last_fenced_ring,
2409 obj->last_fenced_seqno);
2410 if (ret)
2411 return ret;
2414 obj->last_fenced_seqno = 0;
2415 obj->last_fenced_ring = NULL;
2418 /* Ensure that all CPU reads are completed before installing a fence
2419 * and all writes before removing the fence.
2421 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2422 mb();
2424 return 0;
2428 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2430 int ret;
2432 if (obj->tiling_mode)
2433 i915_gem_release_mmap(obj);
2435 ret = i915_gem_object_flush_fence(obj, NULL);
2436 if (ret)
2437 return ret;
2439 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2440 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2441 i915_gem_clear_fence_reg(obj->base.dev,
2442 &dev_priv->fence_regs[obj->fence_reg]);
2444 obj->fence_reg = I915_FENCE_REG_NONE;
2447 return 0;
2450 static struct drm_i915_fence_reg *
2451 i915_find_fence_reg(struct drm_device *dev,
2452 struct intel_ring_buffer *pipelined)
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 struct drm_i915_fence_reg *reg, *first, *avail;
2456 int i;
2458 /* First try to find a free reg */
2459 avail = NULL;
2460 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2461 reg = &dev_priv->fence_regs[i];
2462 if (!reg->obj)
2463 return reg;
2465 if (!reg->obj->pin_count)
2466 avail = reg;
2469 if (avail == NULL)
2470 return NULL;
2472 /* None available, try to steal one or wait for a user to finish */
2473 avail = first = NULL;
2474 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2475 if (reg->obj->pin_count)
2476 continue;
2478 if (first == NULL)
2479 first = reg;
2481 if (!pipelined ||
2482 !reg->obj->last_fenced_ring ||
2483 reg->obj->last_fenced_ring == pipelined) {
2484 avail = reg;
2485 break;
2489 if (avail == NULL)
2490 avail = first;
2492 return avail;
2496 * i915_gem_object_get_fence - set up a fence reg for an object
2497 * @obj: object to map through a fence reg
2498 * @pipelined: ring on which to queue the change, or NULL for CPU access
2499 * @interruptible: must we wait uninterruptibly for the register to retire?
2501 * When mapping objects through the GTT, userspace wants to be able to write
2502 * to them without having to worry about swizzling if the object is tiled.
2504 * This function walks the fence regs looking for a free one for @obj,
2505 * stealing one if it can't find any.
2507 * It then sets up the reg based on the object's properties: address, pitch
2508 * and tiling format.
2511 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2512 struct intel_ring_buffer *pipelined)
2514 struct drm_device *dev = obj->base.dev;
2515 struct drm_i915_private *dev_priv = dev->dev_private;
2516 struct drm_i915_fence_reg *reg;
2517 int ret;
2519 /* XXX disable pipelining. There are bugs. Shocking. */
2520 pipelined = NULL;
2522 /* Just update our place in the LRU if our fence is getting reused. */
2523 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2524 reg = &dev_priv->fence_regs[obj->fence_reg];
2525 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2527 if (obj->tiling_changed) {
2528 ret = i915_gem_object_flush_fence(obj, pipelined);
2529 if (ret)
2530 return ret;
2532 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2533 pipelined = NULL;
2535 if (pipelined) {
2536 reg->setup_seqno =
2537 i915_gem_next_request_seqno(pipelined);
2538 obj->last_fenced_seqno = reg->setup_seqno;
2539 obj->last_fenced_ring = pipelined;
2542 goto update;
2545 if (!pipelined) {
2546 if (reg->setup_seqno) {
2547 if (!ring_passed_seqno(obj->last_fenced_ring,
2548 reg->setup_seqno)) {
2549 ret = i915_wait_request(obj->last_fenced_ring,
2550 reg->setup_seqno);
2551 if (ret)
2552 return ret;
2555 reg->setup_seqno = 0;
2557 } else if (obj->last_fenced_ring &&
2558 obj->last_fenced_ring != pipelined) {
2559 ret = i915_gem_object_flush_fence(obj, pipelined);
2560 if (ret)
2561 return ret;
2564 return 0;
2567 reg = i915_find_fence_reg(dev, pipelined);
2568 if (reg == NULL)
2569 return -ENOSPC;
2571 ret = i915_gem_object_flush_fence(obj, pipelined);
2572 if (ret)
2573 return ret;
2575 if (reg->obj) {
2576 struct drm_i915_gem_object *old = reg->obj;
2578 drm_gem_object_reference(&old->base);
2580 if (old->tiling_mode)
2581 i915_gem_release_mmap(old);
2583 ret = i915_gem_object_flush_fence(old, pipelined);
2584 if (ret) {
2585 drm_gem_object_unreference(&old->base);
2586 return ret;
2589 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2590 pipelined = NULL;
2592 old->fence_reg = I915_FENCE_REG_NONE;
2593 old->last_fenced_ring = pipelined;
2594 old->last_fenced_seqno =
2595 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2597 drm_gem_object_unreference(&old->base);
2598 } else if (obj->last_fenced_seqno == 0)
2599 pipelined = NULL;
2601 reg->obj = obj;
2602 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2603 obj->fence_reg = reg - dev_priv->fence_regs;
2604 obj->last_fenced_ring = pipelined;
2606 reg->setup_seqno =
2607 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2608 obj->last_fenced_seqno = reg->setup_seqno;
2610 update:
2611 obj->tiling_changed = false;
2612 switch (INTEL_INFO(dev)->gen) {
2613 case 7:
2614 case 6:
2615 ret = sandybridge_write_fence_reg(obj, pipelined);
2616 break;
2617 case 5:
2618 case 4:
2619 ret = i965_write_fence_reg(obj, pipelined);
2620 break;
2621 case 3:
2622 ret = i915_write_fence_reg(obj, pipelined);
2623 break;
2624 case 2:
2625 ret = i830_write_fence_reg(obj, pipelined);
2626 break;
2629 return ret;
2633 * i915_gem_clear_fence_reg - clear out fence register info
2634 * @obj: object to clear
2636 * Zeroes out the fence register itself and clears out the associated
2637 * data structures in dev_priv and obj.
2639 static void
2640 i915_gem_clear_fence_reg(struct drm_device *dev,
2641 struct drm_i915_fence_reg *reg)
2643 drm_i915_private_t *dev_priv = dev->dev_private;
2644 uint32_t fence_reg = reg - dev_priv->fence_regs;
2646 switch (INTEL_INFO(dev)->gen) {
2647 case 7:
2648 case 6:
2649 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2650 break;
2651 case 5:
2652 case 4:
2653 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2654 break;
2655 case 3:
2656 if (fence_reg >= 8)
2657 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2658 else
2659 case 2:
2660 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2662 I915_WRITE(fence_reg, 0);
2663 break;
2666 list_del_init(&reg->lru_list);
2667 reg->obj = NULL;
2668 reg->setup_seqno = 0;
2672 * Finds free space in the GTT aperture and binds the object there.
2674 static int
2675 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2676 unsigned alignment,
2677 bool map_and_fenceable)
2679 struct drm_device *dev = obj->base.dev;
2680 drm_i915_private_t *dev_priv = dev->dev_private;
2681 struct drm_mm_node *free_space;
2682 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2683 u32 size, fence_size, fence_alignment, unfenced_alignment;
2684 bool mappable, fenceable;
2685 int ret;
2687 if (obj->madv != I915_MADV_WILLNEED) {
2688 DRM_ERROR("Attempting to bind a purgeable object\n");
2689 return -EINVAL;
2692 fence_size = i915_gem_get_gtt_size(dev,
2693 obj->base.size,
2694 obj->tiling_mode);
2695 fence_alignment = i915_gem_get_gtt_alignment(dev,
2696 obj->base.size,
2697 obj->tiling_mode);
2698 unfenced_alignment =
2699 i915_gem_get_unfenced_gtt_alignment(dev,
2700 obj->base.size,
2701 obj->tiling_mode);
2703 if (alignment == 0)
2704 alignment = map_and_fenceable ? fence_alignment :
2705 unfenced_alignment;
2706 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2707 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2708 return -EINVAL;
2711 size = map_and_fenceable ? fence_size : obj->base.size;
2713 /* If the object is bigger than the entire aperture, reject it early
2714 * before evicting everything in a vain attempt to find space.
2716 if (obj->base.size >
2717 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2718 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2719 return -E2BIG;
2722 search_free:
2723 if (map_and_fenceable)
2724 free_space =
2725 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2726 size, alignment, 0,
2727 dev_priv->mm.gtt_mappable_end,
2729 else
2730 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2731 size, alignment, 0);
2733 if (free_space != NULL) {
2734 if (map_and_fenceable)
2735 obj->gtt_space =
2736 drm_mm_get_block_range_generic(free_space,
2737 size, alignment, 0,
2738 dev_priv->mm.gtt_mappable_end,
2740 else
2741 obj->gtt_space =
2742 drm_mm_get_block(free_space, size, alignment);
2744 if (obj->gtt_space == NULL) {
2745 /* If the gtt is empty and we're still having trouble
2746 * fitting our object in, we're out of memory.
2748 ret = i915_gem_evict_something(dev, size, alignment,
2749 map_and_fenceable);
2750 if (ret)
2751 return ret;
2753 goto search_free;
2756 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2757 if (ret) {
2758 drm_mm_put_block(obj->gtt_space);
2759 obj->gtt_space = NULL;
2761 if (ret == -ENOMEM) {
2762 /* first try to reclaim some memory by clearing the GTT */
2763 ret = i915_gem_evict_everything(dev, false);
2764 if (ret) {
2765 /* now try to shrink everyone else */
2766 if (gfpmask) {
2767 gfpmask = 0;
2768 goto search_free;
2771 return -ENOMEM;
2774 goto search_free;
2777 return ret;
2780 ret = i915_gem_gtt_bind_object(obj);
2781 if (ret) {
2782 i915_gem_object_put_pages_gtt(obj);
2783 drm_mm_put_block(obj->gtt_space);
2784 obj->gtt_space = NULL;
2786 if (i915_gem_evict_everything(dev, false))
2787 return ret;
2789 goto search_free;
2792 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2793 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2795 /* Assert that the object is not currently in any GPU domain. As it
2796 * wasn't in the GTT, there shouldn't be any way it could have been in
2797 * a GPU cache
2799 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2800 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2802 obj->gtt_offset = obj->gtt_space->start;
2804 fenceable =
2805 obj->gtt_space->size == fence_size &&
2806 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2808 mappable =
2809 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2811 obj->map_and_fenceable = mappable && fenceable;
2813 trace_i915_gem_object_bind(obj, map_and_fenceable);
2814 return 0;
2817 void
2818 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2820 /* If we don't have a page list set up, then we're not pinned
2821 * to GPU, and we can ignore the cache flush because it'll happen
2822 * again at bind time.
2824 if (obj->pages == NULL)
2825 return;
2827 /* If the GPU is snooping the contents of the CPU cache,
2828 * we do not need to manually clear the CPU cache lines. However,
2829 * the caches are only snooped when the render cache is
2830 * flushed/invalidated. As we always have to emit invalidations
2831 * and flushes when moving into and out of the RENDER domain, correct
2832 * snooping behaviour occurs naturally as the result of our domain
2833 * tracking.
2835 if (obj->cache_level != I915_CACHE_NONE)
2836 return;
2838 trace_i915_gem_object_clflush(obj);
2840 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2843 /** Flushes any GPU write domain for the object if it's dirty. */
2844 static int
2845 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2847 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2848 return 0;
2850 /* Queue the GPU write cache flushing we need. */
2851 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2854 /** Flushes the GTT write domain for the object if it's dirty. */
2855 static void
2856 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2858 uint32_t old_write_domain;
2860 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2861 return;
2863 /* No actual flushing is required for the GTT write domain. Writes
2864 * to it immediately go to main memory as far as we know, so there's
2865 * no chipset flush. It also doesn't land in render cache.
2867 * However, we do have to enforce the order so that all writes through
2868 * the GTT land before any writes to the device, such as updates to
2869 * the GATT itself.
2871 wmb();
2873 old_write_domain = obj->base.write_domain;
2874 obj->base.write_domain = 0;
2876 trace_i915_gem_object_change_domain(obj,
2877 obj->base.read_domains,
2878 old_write_domain);
2881 /** Flushes the CPU write domain for the object if it's dirty. */
2882 static void
2883 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2885 uint32_t old_write_domain;
2887 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2888 return;
2890 i915_gem_clflush_object(obj);
2891 intel_gtt_chipset_flush();
2892 old_write_domain = obj->base.write_domain;
2893 obj->base.write_domain = 0;
2895 trace_i915_gem_object_change_domain(obj,
2896 obj->base.read_domains,
2897 old_write_domain);
2901 * Moves a single object to the GTT read, and possibly write domain.
2903 * This function returns when the move is complete, including waiting on
2904 * flushes to occur.
2907 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2909 uint32_t old_write_domain, old_read_domains;
2910 int ret;
2912 /* Not valid to be called on unbound objects. */
2913 if (obj->gtt_space == NULL)
2914 return -EINVAL;
2916 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2917 return 0;
2919 ret = i915_gem_object_flush_gpu_write_domain(obj);
2920 if (ret)
2921 return ret;
2923 if (obj->pending_gpu_write || write) {
2924 ret = i915_gem_object_wait_rendering(obj);
2925 if (ret)
2926 return ret;
2929 i915_gem_object_flush_cpu_write_domain(obj);
2931 old_write_domain = obj->base.write_domain;
2932 old_read_domains = obj->base.read_domains;
2934 /* It should now be out of any other write domains, and we can update
2935 * the domain values for our changes.
2937 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2938 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2939 if (write) {
2940 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2941 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2942 obj->dirty = 1;
2945 trace_i915_gem_object_change_domain(obj,
2946 old_read_domains,
2947 old_write_domain);
2949 return 0;
2952 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2953 enum i915_cache_level cache_level)
2955 int ret;
2957 if (obj->cache_level == cache_level)
2958 return 0;
2960 if (obj->pin_count) {
2961 DRM_DEBUG("can not change the cache level of pinned objects\n");
2962 return -EBUSY;
2965 if (obj->gtt_space) {
2966 ret = i915_gem_object_finish_gpu(obj);
2967 if (ret)
2968 return ret;
2970 i915_gem_object_finish_gtt(obj);
2972 /* Before SandyBridge, you could not use tiling or fence
2973 * registers with snooped memory, so relinquish any fences
2974 * currently pointing to our region in the aperture.
2976 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2977 ret = i915_gem_object_put_fence(obj);
2978 if (ret)
2979 return ret;
2982 i915_gem_gtt_rebind_object(obj, cache_level);
2985 if (cache_level == I915_CACHE_NONE) {
2986 u32 old_read_domains, old_write_domain;
2988 /* If we're coming from LLC cached, then we haven't
2989 * actually been tracking whether the data is in the
2990 * CPU cache or not, since we only allow one bit set
2991 * in obj->write_domain and have been skipping the clflushes.
2992 * Just set it to the CPU cache for now.
2994 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2995 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2997 old_read_domains = obj->base.read_domains;
2998 old_write_domain = obj->base.write_domain;
3000 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3001 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3003 trace_i915_gem_object_change_domain(obj,
3004 old_read_domains,
3005 old_write_domain);
3008 obj->cache_level = cache_level;
3009 return 0;
3013 * Prepare buffer for display plane (scanout, cursors, etc).
3014 * Can be called from an uninterruptible phase (modesetting) and allows
3015 * any flushes to be pipelined (for pageflips).
3017 * For the display plane, we want to be in the GTT but out of any write
3018 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3019 * ability to pipeline the waits, pinning and any additional subtleties
3020 * that may differentiate the display plane from ordinary buffers.
3023 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3024 u32 alignment,
3025 struct intel_ring_buffer *pipelined)
3027 u32 old_read_domains, old_write_domain;
3028 int ret;
3030 ret = i915_gem_object_flush_gpu_write_domain(obj);
3031 if (ret)
3032 return ret;
3034 if (pipelined != obj->ring) {
3035 ret = i915_gem_object_wait_rendering(obj);
3036 if (ret == -ERESTARTSYS)
3037 return ret;
3040 /* The display engine is not coherent with the LLC cache on gen6. As
3041 * a result, we make sure that the pinning that is about to occur is
3042 * done with uncached PTEs. This is lowest common denominator for all
3043 * chipsets.
3045 * However for gen6+, we could do better by using the GFDT bit instead
3046 * of uncaching, which would allow us to flush all the LLC-cached data
3047 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3049 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3050 if (ret)
3051 return ret;
3053 /* As the user may map the buffer once pinned in the display plane
3054 * (e.g. libkms for the bootup splash), we have to ensure that we
3055 * always use map_and_fenceable for all scanout buffers.
3057 ret = i915_gem_object_pin(obj, alignment, true);
3058 if (ret)
3059 return ret;
3061 i915_gem_object_flush_cpu_write_domain(obj);
3063 old_write_domain = obj->base.write_domain;
3064 old_read_domains = obj->base.read_domains;
3066 /* It should now be out of any other write domains, and we can update
3067 * the domain values for our changes.
3069 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3070 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3072 trace_i915_gem_object_change_domain(obj,
3073 old_read_domains,
3074 old_write_domain);
3076 return 0;
3080 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3082 int ret;
3084 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3085 return 0;
3087 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3088 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3089 if (ret)
3090 return ret;
3093 /* Ensure that we invalidate the GPU's caches and TLBs. */
3094 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3096 return i915_gem_object_wait_rendering(obj);
3100 * Moves a single object to the CPU read, and possibly write domain.
3102 * This function returns when the move is complete, including waiting on
3103 * flushes to occur.
3105 static int
3106 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3108 uint32_t old_write_domain, old_read_domains;
3109 int ret;
3111 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3112 return 0;
3114 ret = i915_gem_object_flush_gpu_write_domain(obj);
3115 if (ret)
3116 return ret;
3118 ret = i915_gem_object_wait_rendering(obj);
3119 if (ret)
3120 return ret;
3122 i915_gem_object_flush_gtt_write_domain(obj);
3124 /* If we have a partially-valid cache of the object in the CPU,
3125 * finish invalidating it and free the per-page flags.
3127 i915_gem_object_set_to_full_cpu_read_domain(obj);
3129 old_write_domain = obj->base.write_domain;
3130 old_read_domains = obj->base.read_domains;
3132 /* Flush the CPU cache if it's still invalid. */
3133 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3134 i915_gem_clflush_object(obj);
3136 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3139 /* It should now be out of any other write domains, and we can update
3140 * the domain values for our changes.
3142 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3144 /* If we're writing through the CPU, then the GPU read domains will
3145 * need to be invalidated at next use.
3147 if (write) {
3148 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3149 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3152 trace_i915_gem_object_change_domain(obj,
3153 old_read_domains,
3154 old_write_domain);
3156 return 0;
3160 * Moves the object from a partially CPU read to a full one.
3162 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3163 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3165 static void
3166 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3168 if (!obj->page_cpu_valid)
3169 return;
3171 /* If we're partially in the CPU read domain, finish moving it in.
3173 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3174 int i;
3176 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3177 if (obj->page_cpu_valid[i])
3178 continue;
3179 drm_clflush_pages(obj->pages + i, 1);
3183 /* Free the page_cpu_valid mappings which are now stale, whether
3184 * or not we've got I915_GEM_DOMAIN_CPU.
3186 kfree(obj->page_cpu_valid);
3187 obj->page_cpu_valid = NULL;
3191 * Set the CPU read domain on a range of the object.
3193 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3194 * not entirely valid. The page_cpu_valid member of the object flags which
3195 * pages have been flushed, and will be respected by
3196 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3197 * of the whole object.
3199 * This function returns when the move is complete, including waiting on
3200 * flushes to occur.
3202 static int
3203 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3204 uint64_t offset, uint64_t size)
3206 uint32_t old_read_domains;
3207 int i, ret;
3209 if (offset == 0 && size == obj->base.size)
3210 return i915_gem_object_set_to_cpu_domain(obj, 0);
3212 ret = i915_gem_object_flush_gpu_write_domain(obj);
3213 if (ret)
3214 return ret;
3216 ret = i915_gem_object_wait_rendering(obj);
3217 if (ret)
3218 return ret;
3220 i915_gem_object_flush_gtt_write_domain(obj);
3222 /* If we're already fully in the CPU read domain, we're done. */
3223 if (obj->page_cpu_valid == NULL &&
3224 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3225 return 0;
3227 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3228 * newly adding I915_GEM_DOMAIN_CPU
3230 if (obj->page_cpu_valid == NULL) {
3231 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3232 GFP_KERNEL);
3233 if (obj->page_cpu_valid == NULL)
3234 return -ENOMEM;
3235 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3236 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3238 /* Flush the cache on any pages that are still invalid from the CPU's
3239 * perspective.
3241 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3242 i++) {
3243 if (obj->page_cpu_valid[i])
3244 continue;
3246 drm_clflush_pages(obj->pages + i, 1);
3248 obj->page_cpu_valid[i] = 1;
3251 /* It should now be out of any other write domains, and we can update
3252 * the domain values for our changes.
3254 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3256 old_read_domains = obj->base.read_domains;
3257 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3259 trace_i915_gem_object_change_domain(obj,
3260 old_read_domains,
3261 obj->base.write_domain);
3263 return 0;
3266 /* Throttle our rendering by waiting until the ring has completed our requests
3267 * emitted over 20 msec ago.
3269 * Note that if we were to use the current jiffies each time around the loop,
3270 * we wouldn't escape the function with any frames outstanding if the time to
3271 * render a frame was over 20ms.
3273 * This should get us reasonable parallelism between CPU and GPU but also
3274 * relatively low latency when blocking on a particular request to finish.
3276 static int
3277 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3279 struct drm_i915_private *dev_priv = dev->dev_private;
3280 struct drm_i915_file_private *file_priv = file->driver_priv;
3281 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3282 struct drm_i915_gem_request *request;
3283 struct intel_ring_buffer *ring = NULL;
3284 u32 seqno = 0;
3285 int ret;
3287 if (atomic_read(&dev_priv->mm.wedged))
3288 return -EIO;
3290 spin_lock(&file_priv->mm.lock);
3291 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3292 if (time_after_eq(request->emitted_jiffies, recent_enough))
3293 break;
3295 ring = request->ring;
3296 seqno = request->seqno;
3298 spin_unlock(&file_priv->mm.lock);
3300 if (seqno == 0)
3301 return 0;
3303 ret = 0;
3304 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3305 /* And wait for the seqno passing without holding any locks and
3306 * causing extra latency for others. This is safe as the irq
3307 * generation is designed to be run atomically and so is
3308 * lockless.
3310 if (ring->irq_get(ring)) {
3311 ret = wait_event_interruptible(ring->irq_queue,
3312 i915_seqno_passed(ring->get_seqno(ring), seqno)
3313 || atomic_read(&dev_priv->mm.wedged));
3314 ring->irq_put(ring);
3316 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3317 ret = -EIO;
3321 if (ret == 0)
3322 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3324 return ret;
3328 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3329 uint32_t alignment,
3330 bool map_and_fenceable)
3332 struct drm_device *dev = obj->base.dev;
3333 struct drm_i915_private *dev_priv = dev->dev_private;
3334 int ret;
3336 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3337 WARN_ON(i915_verify_lists(dev));
3339 if (obj->gtt_space != NULL) {
3340 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3341 (map_and_fenceable && !obj->map_and_fenceable)) {
3342 WARN(obj->pin_count,
3343 "bo is already pinned with incorrect alignment:"
3344 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3345 " obj->map_and_fenceable=%d\n",
3346 obj->gtt_offset, alignment,
3347 map_and_fenceable,
3348 obj->map_and_fenceable);
3349 ret = i915_gem_object_unbind(obj);
3350 if (ret)
3351 return ret;
3355 if (obj->gtt_space == NULL) {
3356 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3357 map_and_fenceable);
3358 if (ret)
3359 return ret;
3362 if (obj->pin_count++ == 0) {
3363 if (!obj->active)
3364 list_move_tail(&obj->mm_list,
3365 &dev_priv->mm.pinned_list);
3367 obj->pin_mappable |= map_and_fenceable;
3369 WARN_ON(i915_verify_lists(dev));
3370 return 0;
3373 void
3374 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3376 struct drm_device *dev = obj->base.dev;
3377 drm_i915_private_t *dev_priv = dev->dev_private;
3379 WARN_ON(i915_verify_lists(dev));
3380 BUG_ON(obj->pin_count == 0);
3381 BUG_ON(obj->gtt_space == NULL);
3383 if (--obj->pin_count == 0) {
3384 if (!obj->active)
3385 list_move_tail(&obj->mm_list,
3386 &dev_priv->mm.inactive_list);
3387 obj->pin_mappable = false;
3389 WARN_ON(i915_verify_lists(dev));
3393 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3394 struct drm_file *file)
3396 struct drm_i915_gem_pin *args = data;
3397 struct drm_i915_gem_object *obj;
3398 int ret;
3400 ret = i915_mutex_lock_interruptible(dev);
3401 if (ret)
3402 return ret;
3404 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3405 if (&obj->base == NULL) {
3406 ret = -ENOENT;
3407 goto unlock;
3410 if (obj->madv != I915_MADV_WILLNEED) {
3411 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3412 ret = -EINVAL;
3413 goto out;
3416 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3417 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3418 args->handle);
3419 ret = -EINVAL;
3420 goto out;
3423 obj->user_pin_count++;
3424 obj->pin_filp = file;
3425 if (obj->user_pin_count == 1) {
3426 ret = i915_gem_object_pin(obj, args->alignment, true);
3427 if (ret)
3428 goto out;
3431 /* XXX - flush the CPU caches for pinned objects
3432 * as the X server doesn't manage domains yet
3434 i915_gem_object_flush_cpu_write_domain(obj);
3435 args->offset = obj->gtt_offset;
3436 out:
3437 drm_gem_object_unreference(&obj->base);
3438 unlock:
3439 mutex_unlock(&dev->struct_mutex);
3440 return ret;
3444 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3445 struct drm_file *file)
3447 struct drm_i915_gem_pin *args = data;
3448 struct drm_i915_gem_object *obj;
3449 int ret;
3451 ret = i915_mutex_lock_interruptible(dev);
3452 if (ret)
3453 return ret;
3455 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3456 if (&obj->base == NULL) {
3457 ret = -ENOENT;
3458 goto unlock;
3461 if (obj->pin_filp != file) {
3462 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3463 args->handle);
3464 ret = -EINVAL;
3465 goto out;
3467 obj->user_pin_count--;
3468 if (obj->user_pin_count == 0) {
3469 obj->pin_filp = NULL;
3470 i915_gem_object_unpin(obj);
3473 out:
3474 drm_gem_object_unreference(&obj->base);
3475 unlock:
3476 mutex_unlock(&dev->struct_mutex);
3477 return ret;
3481 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3482 struct drm_file *file)
3484 struct drm_i915_gem_busy *args = data;
3485 struct drm_i915_gem_object *obj;
3486 int ret;
3488 ret = i915_mutex_lock_interruptible(dev);
3489 if (ret)
3490 return ret;
3492 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3493 if (&obj->base == NULL) {
3494 ret = -ENOENT;
3495 goto unlock;
3498 /* Count all active objects as busy, even if they are currently not used
3499 * by the gpu. Users of this interface expect objects to eventually
3500 * become non-busy without any further actions, therefore emit any
3501 * necessary flushes here.
3503 args->busy = obj->active;
3504 if (args->busy) {
3505 /* Unconditionally flush objects, even when the gpu still uses this
3506 * object. Userspace calling this function indicates that it wants to
3507 * use this buffer rather sooner than later, so issuing the required
3508 * flush earlier is beneficial.
3510 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3511 ret = i915_gem_flush_ring(obj->ring,
3512 0, obj->base.write_domain);
3513 } else if (obj->ring->outstanding_lazy_request ==
3514 obj->last_rendering_seqno) {
3515 struct drm_i915_gem_request *request;
3517 /* This ring is not being cleared by active usage,
3518 * so emit a request to do so.
3520 request = kzalloc(sizeof(*request), GFP_KERNEL);
3521 if (request)
3522 ret = i915_add_request(obj->ring, NULL, request);
3523 else
3524 ret = -ENOMEM;
3527 /* Update the active list for the hardware's current position.
3528 * Otherwise this only updates on a delayed timer or when irqs
3529 * are actually unmasked, and our working set ends up being
3530 * larger than required.
3532 i915_gem_retire_requests_ring(obj->ring);
3534 args->busy = obj->active;
3537 drm_gem_object_unreference(&obj->base);
3538 unlock:
3539 mutex_unlock(&dev->struct_mutex);
3540 return ret;
3544 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3545 struct drm_file *file_priv)
3547 return i915_gem_ring_throttle(dev, file_priv);
3551 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3552 struct drm_file *file_priv)
3554 struct drm_i915_gem_madvise *args = data;
3555 struct drm_i915_gem_object *obj;
3556 int ret;
3558 switch (args->madv) {
3559 case I915_MADV_DONTNEED:
3560 case I915_MADV_WILLNEED:
3561 break;
3562 default:
3563 return -EINVAL;
3566 ret = i915_mutex_lock_interruptible(dev);
3567 if (ret)
3568 return ret;
3570 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3571 if (&obj->base == NULL) {
3572 ret = -ENOENT;
3573 goto unlock;
3576 if (obj->pin_count) {
3577 ret = -EINVAL;
3578 goto out;
3581 if (obj->madv != __I915_MADV_PURGED)
3582 obj->madv = args->madv;
3584 /* if the object is no longer bound, discard its backing storage */
3585 if (i915_gem_object_is_purgeable(obj) &&
3586 obj->gtt_space == NULL)
3587 i915_gem_object_truncate(obj);
3589 args->retained = obj->madv != __I915_MADV_PURGED;
3591 out:
3592 drm_gem_object_unreference(&obj->base);
3593 unlock:
3594 mutex_unlock(&dev->struct_mutex);
3595 return ret;
3598 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3599 size_t size)
3601 struct drm_i915_private *dev_priv = dev->dev_private;
3602 struct drm_i915_gem_object *obj;
3603 struct address_space *mapping;
3605 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3606 if (obj == NULL)
3607 return NULL;
3609 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3610 kfree(obj);
3611 return NULL;
3614 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3615 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3617 i915_gem_info_add_obj(dev_priv, size);
3619 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3620 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3622 if (IS_GEN6(dev)) {
3623 /* On Gen6, we can have the GPU use the LLC (the CPU
3624 * cache) for about a 10% performance improvement
3625 * compared to uncached. Graphics requests other than
3626 * display scanout are coherent with the CPU in
3627 * accessing this cache. This means in this mode we
3628 * don't need to clflush on the CPU side, and on the
3629 * GPU side we only need to flush internal caches to
3630 * get data visible to the CPU.
3632 * However, we maintain the display planes as UC, and so
3633 * need to rebind when first used as such.
3635 obj->cache_level = I915_CACHE_LLC;
3636 } else
3637 obj->cache_level = I915_CACHE_NONE;
3639 obj->base.driver_private = NULL;
3640 obj->fence_reg = I915_FENCE_REG_NONE;
3641 INIT_LIST_HEAD(&obj->mm_list);
3642 INIT_LIST_HEAD(&obj->gtt_list);
3643 INIT_LIST_HEAD(&obj->ring_list);
3644 INIT_LIST_HEAD(&obj->exec_list);
3645 INIT_LIST_HEAD(&obj->gpu_write_list);
3646 obj->madv = I915_MADV_WILLNEED;
3647 /* Avoid an unnecessary call to unbind on the first bind. */
3648 obj->map_and_fenceable = true;
3650 return obj;
3653 int i915_gem_init_object(struct drm_gem_object *obj)
3655 BUG();
3657 return 0;
3660 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3662 struct drm_device *dev = obj->base.dev;
3663 drm_i915_private_t *dev_priv = dev->dev_private;
3664 int ret;
3666 ret = i915_gem_object_unbind(obj);
3667 if (ret == -ERESTARTSYS) {
3668 list_move(&obj->mm_list,
3669 &dev_priv->mm.deferred_free_list);
3670 return;
3673 trace_i915_gem_object_destroy(obj);
3675 if (obj->base.map_list.map)
3676 drm_gem_free_mmap_offset(&obj->base);
3678 drm_gem_object_release(&obj->base);
3679 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3681 kfree(obj->page_cpu_valid);
3682 kfree(obj->bit_17);
3683 kfree(obj);
3686 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3688 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3689 struct drm_device *dev = obj->base.dev;
3691 while (obj->pin_count > 0)
3692 i915_gem_object_unpin(obj);
3694 if (obj->phys_obj)
3695 i915_gem_detach_phys_object(dev, obj);
3697 i915_gem_free_object_tail(obj);
3701 i915_gem_idle(struct drm_device *dev)
3703 drm_i915_private_t *dev_priv = dev->dev_private;
3704 int ret;
3706 mutex_lock(&dev->struct_mutex);
3708 if (dev_priv->mm.suspended) {
3709 mutex_unlock(&dev->struct_mutex);
3710 return 0;
3713 ret = i915_gpu_idle(dev);
3714 if (ret) {
3715 mutex_unlock(&dev->struct_mutex);
3716 return ret;
3719 /* Under UMS, be paranoid and evict. */
3720 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3721 ret = i915_gem_evict_inactive(dev, false);
3722 if (ret) {
3723 mutex_unlock(&dev->struct_mutex);
3724 return ret;
3728 i915_gem_reset_fences(dev);
3730 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3731 * We need to replace this with a semaphore, or something.
3732 * And not confound mm.suspended!
3734 dev_priv->mm.suspended = 1;
3735 del_timer_sync(&dev_priv->hangcheck_timer);
3737 i915_kernel_lost_context(dev);
3738 i915_gem_cleanup_ringbuffer(dev);
3740 mutex_unlock(&dev->struct_mutex);
3742 /* Cancel the retire work handler, which should be idle now. */
3743 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3745 return 0;
3749 i915_gem_init_ringbuffer(struct drm_device *dev)
3751 drm_i915_private_t *dev_priv = dev->dev_private;
3752 int ret;
3754 ret = intel_init_render_ring_buffer(dev);
3755 if (ret)
3756 return ret;
3758 if (HAS_BSD(dev)) {
3759 ret = intel_init_bsd_ring_buffer(dev);
3760 if (ret)
3761 goto cleanup_render_ring;
3764 if (HAS_BLT(dev)) {
3765 ret = intel_init_blt_ring_buffer(dev);
3766 if (ret)
3767 goto cleanup_bsd_ring;
3770 dev_priv->next_seqno = 1;
3772 return 0;
3774 cleanup_bsd_ring:
3775 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3776 cleanup_render_ring:
3777 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3778 return ret;
3781 void
3782 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3784 drm_i915_private_t *dev_priv = dev->dev_private;
3785 int i;
3787 for (i = 0; i < I915_NUM_RINGS; i++)
3788 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3792 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3793 struct drm_file *file_priv)
3795 drm_i915_private_t *dev_priv = dev->dev_private;
3796 int ret, i;
3798 if (drm_core_check_feature(dev, DRIVER_MODESET))
3799 return 0;
3801 if (atomic_read(&dev_priv->mm.wedged)) {
3802 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3803 atomic_set(&dev_priv->mm.wedged, 0);
3806 mutex_lock(&dev->struct_mutex);
3807 dev_priv->mm.suspended = 0;
3809 ret = i915_gem_init_ringbuffer(dev);
3810 if (ret != 0) {
3811 mutex_unlock(&dev->struct_mutex);
3812 return ret;
3815 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3816 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3817 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3818 for (i = 0; i < I915_NUM_RINGS; i++) {
3819 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3820 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3822 mutex_unlock(&dev->struct_mutex);
3824 ret = drm_irq_install(dev);
3825 if (ret)
3826 goto cleanup_ringbuffer;
3828 return 0;
3830 cleanup_ringbuffer:
3831 mutex_lock(&dev->struct_mutex);
3832 i915_gem_cleanup_ringbuffer(dev);
3833 dev_priv->mm.suspended = 1;
3834 mutex_unlock(&dev->struct_mutex);
3836 return ret;
3840 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3841 struct drm_file *file_priv)
3843 if (drm_core_check_feature(dev, DRIVER_MODESET))
3844 return 0;
3846 drm_irq_uninstall(dev);
3847 return i915_gem_idle(dev);
3850 void
3851 i915_gem_lastclose(struct drm_device *dev)
3853 int ret;
3855 if (drm_core_check_feature(dev, DRIVER_MODESET))
3856 return;
3858 ret = i915_gem_idle(dev);
3859 if (ret)
3860 DRM_ERROR("failed to idle hardware: %d\n", ret);
3863 static void
3864 init_ring_lists(struct intel_ring_buffer *ring)
3866 INIT_LIST_HEAD(&ring->active_list);
3867 INIT_LIST_HEAD(&ring->request_list);
3868 INIT_LIST_HEAD(&ring->gpu_write_list);
3871 void
3872 i915_gem_load(struct drm_device *dev)
3874 int i;
3875 drm_i915_private_t *dev_priv = dev->dev_private;
3877 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3878 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3879 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3880 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3881 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3882 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3883 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3884 for (i = 0; i < I915_NUM_RINGS; i++)
3885 init_ring_lists(&dev_priv->ring[i]);
3886 for (i = 0; i < 16; i++)
3887 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3888 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3889 i915_gem_retire_work_handler);
3890 init_completion(&dev_priv->error_completion);
3892 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3893 if (IS_GEN3(dev)) {
3894 u32 tmp = I915_READ(MI_ARB_STATE);
3895 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3896 /* arb state is a masked write, so set bit + bit in mask */
3897 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3898 I915_WRITE(MI_ARB_STATE, tmp);
3902 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3904 /* Old X drivers will take 0-2 for front, back, depth buffers */
3905 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3906 dev_priv->fence_reg_start = 3;
3908 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3909 dev_priv->num_fence_regs = 16;
3910 else
3911 dev_priv->num_fence_regs = 8;
3913 /* Initialize fence registers to zero */
3914 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3915 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3918 i915_gem_detect_bit_6_swizzle(dev);
3919 init_waitqueue_head(&dev_priv->pending_flip_queue);
3921 dev_priv->mm.interruptible = true;
3923 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3924 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3925 register_shrinker(&dev_priv->mm.inactive_shrinker);
3929 * Create a physically contiguous memory object for this object
3930 * e.g. for cursor + overlay regs
3932 static int i915_gem_init_phys_object(struct drm_device *dev,
3933 int id, int size, int align)
3935 drm_i915_private_t *dev_priv = dev->dev_private;
3936 struct drm_i915_gem_phys_object *phys_obj;
3937 int ret;
3939 if (dev_priv->mm.phys_objs[id - 1] || !size)
3940 return 0;
3942 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3943 if (!phys_obj)
3944 return -ENOMEM;
3946 phys_obj->id = id;
3948 phys_obj->handle = drm_pci_alloc(dev, size, align);
3949 if (!phys_obj->handle) {
3950 ret = -ENOMEM;
3951 goto kfree_obj;
3953 #ifdef CONFIG_X86
3954 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3955 #endif
3957 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3959 return 0;
3960 kfree_obj:
3961 kfree(phys_obj);
3962 return ret;
3965 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3967 drm_i915_private_t *dev_priv = dev->dev_private;
3968 struct drm_i915_gem_phys_object *phys_obj;
3970 if (!dev_priv->mm.phys_objs[id - 1])
3971 return;
3973 phys_obj = dev_priv->mm.phys_objs[id - 1];
3974 if (phys_obj->cur_obj) {
3975 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3978 #ifdef CONFIG_X86
3979 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3980 #endif
3981 drm_pci_free(dev, phys_obj->handle);
3982 kfree(phys_obj);
3983 dev_priv->mm.phys_objs[id - 1] = NULL;
3986 void i915_gem_free_all_phys_object(struct drm_device *dev)
3988 int i;
3990 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3991 i915_gem_free_phys_object(dev, i);
3994 void i915_gem_detach_phys_object(struct drm_device *dev,
3995 struct drm_i915_gem_object *obj)
3997 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3998 char *vaddr;
3999 int i;
4000 int page_count;
4002 if (!obj->phys_obj)
4003 return;
4004 vaddr = obj->phys_obj->handle->vaddr;
4006 page_count = obj->base.size / PAGE_SIZE;
4007 for (i = 0; i < page_count; i++) {
4008 struct page *page = shmem_read_mapping_page(mapping, i);
4009 if (!IS_ERR(page)) {
4010 char *dst = kmap_atomic(page);
4011 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4012 kunmap_atomic(dst);
4014 drm_clflush_pages(&page, 1);
4016 set_page_dirty(page);
4017 mark_page_accessed(page);
4018 page_cache_release(page);
4021 intel_gtt_chipset_flush();
4023 obj->phys_obj->cur_obj = NULL;
4024 obj->phys_obj = NULL;
4028 i915_gem_attach_phys_object(struct drm_device *dev,
4029 struct drm_i915_gem_object *obj,
4030 int id,
4031 int align)
4033 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4034 drm_i915_private_t *dev_priv = dev->dev_private;
4035 int ret = 0;
4036 int page_count;
4037 int i;
4039 if (id > I915_MAX_PHYS_OBJECT)
4040 return -EINVAL;
4042 if (obj->phys_obj) {
4043 if (obj->phys_obj->id == id)
4044 return 0;
4045 i915_gem_detach_phys_object(dev, obj);
4048 /* create a new object */
4049 if (!dev_priv->mm.phys_objs[id - 1]) {
4050 ret = i915_gem_init_phys_object(dev, id,
4051 obj->base.size, align);
4052 if (ret) {
4053 DRM_ERROR("failed to init phys object %d size: %zu\n",
4054 id, obj->base.size);
4055 return ret;
4059 /* bind to the object */
4060 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4061 obj->phys_obj->cur_obj = obj;
4063 page_count = obj->base.size / PAGE_SIZE;
4065 for (i = 0; i < page_count; i++) {
4066 struct page *page;
4067 char *dst, *src;
4069 page = shmem_read_mapping_page(mapping, i);
4070 if (IS_ERR(page))
4071 return PTR_ERR(page);
4073 src = kmap_atomic(page);
4074 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4075 memcpy(dst, src, PAGE_SIZE);
4076 kunmap_atomic(src);
4078 mark_page_accessed(page);
4079 page_cache_release(page);
4082 return 0;
4085 static int
4086 i915_gem_phys_pwrite(struct drm_device *dev,
4087 struct drm_i915_gem_object *obj,
4088 struct drm_i915_gem_pwrite *args,
4089 struct drm_file *file_priv)
4091 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4092 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4094 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4095 unsigned long unwritten;
4097 /* The physical object once assigned is fixed for the lifetime
4098 * of the obj, so we can safely drop the lock and continue
4099 * to access vaddr.
4101 mutex_unlock(&dev->struct_mutex);
4102 unwritten = copy_from_user(vaddr, user_data, args->size);
4103 mutex_lock(&dev->struct_mutex);
4104 if (unwritten)
4105 return -EFAULT;
4108 intel_gtt_chipset_flush();
4109 return 0;
4112 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4114 struct drm_i915_file_private *file_priv = file->driver_priv;
4116 /* Clean up our request list when the client is going away, so that
4117 * later retire_requests won't dereference our soon-to-be-gone
4118 * file_priv.
4120 spin_lock(&file_priv->mm.lock);
4121 while (!list_empty(&file_priv->mm.request_list)) {
4122 struct drm_i915_gem_request *request;
4124 request = list_first_entry(&file_priv->mm.request_list,
4125 struct drm_i915_gem_request,
4126 client_list);
4127 list_del(&request->client_list);
4128 request->file_priv = NULL;
4130 spin_unlock(&file_priv->mm.lock);
4133 static int
4134 i915_gpu_is_active(struct drm_device *dev)
4136 drm_i915_private_t *dev_priv = dev->dev_private;
4137 int lists_empty;
4139 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4140 list_empty(&dev_priv->mm.active_list);
4142 return !lists_empty;
4145 static int
4146 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4148 struct drm_i915_private *dev_priv =
4149 container_of(shrinker,
4150 struct drm_i915_private,
4151 mm.inactive_shrinker);
4152 struct drm_device *dev = dev_priv->dev;
4153 struct drm_i915_gem_object *obj, *next;
4154 int nr_to_scan = sc->nr_to_scan;
4155 int cnt;
4157 if (!mutex_trylock(&dev->struct_mutex))
4158 return 0;
4160 /* "fast-path" to count number of available objects */
4161 if (nr_to_scan == 0) {
4162 cnt = 0;
4163 list_for_each_entry(obj,
4164 &dev_priv->mm.inactive_list,
4165 mm_list)
4166 cnt++;
4167 mutex_unlock(&dev->struct_mutex);
4168 return cnt / 100 * sysctl_vfs_cache_pressure;
4171 rescan:
4172 /* first scan for clean buffers */
4173 i915_gem_retire_requests(dev);
4175 list_for_each_entry_safe(obj, next,
4176 &dev_priv->mm.inactive_list,
4177 mm_list) {
4178 if (i915_gem_object_is_purgeable(obj)) {
4179 if (i915_gem_object_unbind(obj) == 0 &&
4180 --nr_to_scan == 0)
4181 break;
4185 /* second pass, evict/count anything still on the inactive list */
4186 cnt = 0;
4187 list_for_each_entry_safe(obj, next,
4188 &dev_priv->mm.inactive_list,
4189 mm_list) {
4190 if (nr_to_scan &&
4191 i915_gem_object_unbind(obj) == 0)
4192 nr_to_scan--;
4193 else
4194 cnt++;
4197 if (nr_to_scan && i915_gpu_is_active(dev)) {
4199 * We are desperate for pages, so as a last resort, wait
4200 * for the GPU to finish and discard whatever we can.
4201 * This has a dramatic impact to reduce the number of
4202 * OOM-killer events whilst running the GPU aggressively.
4204 if (i915_gpu_idle(dev) == 0)
4205 goto rescan;
4207 mutex_unlock(&dev->struct_mutex);
4208 return cnt / 100 * sysctl_vfs_cache_pressure;