rt2x00: Fix race condition when using inderect registers
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob7fc1d766062b44b252aefe2922c2e7d34bb07d88
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
33 * Link tuning handlers
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
38 return;
41 * Reset link information.
42 * Both the currently active vgc level as well as
43 * the link tuner counter should be reset. Resetting
44 * the counter is important for devices where the
45 * device should only perform link tuning during the
46 * first minute after being enabled.
48 rt2x00dev->link.count = 0;
49 rt2x00dev->link.vgc_level = 0;
52 * Reset the link tuner.
54 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
60 * Clear all (possibly) pre-existing quality statistics.
62 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
65 * The RX and TX percentage should start at 50%
66 * this will assure we will get at least get some
67 * decent value when the link tuner starts.
68 * The value will be dropped and overwritten with
69 * the correct (measured )value anyway during the
70 * first run of the link tuner.
72 rt2x00dev->link.qual.rx_percentage = 50;
73 rt2x00dev->link.qual.tx_percentage = 50;
75 rt2x00lib_reset_link_tuner(rt2x00dev);
77 queue_delayed_work(rt2x00dev->hw->workqueue,
78 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 cancel_delayed_work_sync(&rt2x00dev->link.work);
87 * Radio control handlers.
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 int status;
94 * Don't enable the radio twice.
95 * And check if the hardware button has been disabled.
97 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
98 test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99 return 0;
102 * Initialize all data queues.
104 rt2x00queue_init_queues(rt2x00dev);
107 * Enable radio.
109 status =
110 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
111 if (status)
112 return status;
114 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116 rt2x00leds_led_radio(rt2x00dev, true);
117 rt2x00led_led_activity(rt2x00dev, true);
119 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
122 * Enable RX.
124 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
127 * Start the TX queues.
129 ieee80211_wake_queues(rt2x00dev->hw);
131 return 0;
134 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
137 return;
140 * Stop the TX queues.
142 ieee80211_stop_queues(rt2x00dev->hw);
145 * Disable RX.
147 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
150 * Disable radio.
152 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
153 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
154 rt2x00led_led_activity(rt2x00dev, false);
155 rt2x00leds_led_radio(rt2x00dev, false);
158 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 * When we are disabling the RX, we should also stop the link tuner.
163 if (state == STATE_RADIO_RX_OFF)
164 rt2x00lib_stop_link_tuner(rt2x00dev);
166 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
169 * When we are enabling the RX, we should also start the link tuner.
171 if (state == STATE_RADIO_RX_ON &&
172 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
173 rt2x00lib_start_link_tuner(rt2x00dev);
176 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
178 struct antenna_setup ant;
179 int sample_a =
180 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
181 int sample_b =
182 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
184 memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
187 * We are done sampling. Now we should evaluate the results.
189 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
192 * During the last period we have sampled the RSSI
193 * from both antenna's. It now is time to determine
194 * which antenna demonstrated the best performance.
195 * When we are already on the antenna with the best
196 * performance, then there really is nothing for us
197 * left to do.
199 if (sample_a == sample_b)
200 return;
202 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
203 ant.rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
206 ant.tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208 rt2x00lib_config_antenna(rt2x00dev, &ant);
211 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 struct antenna_setup ant;
214 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
215 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
217 memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
220 * Legacy driver indicates that we should swap antenna's
221 * when the difference in RSSI is greater that 5. This
222 * also should be done when the RSSI was actually better
223 * then the previous sample.
224 * When the difference exceeds the threshold we should
225 * sample the rssi from the other antenna to make a valid
226 * comparison between the 2 antennas.
228 if (abs(rssi_curr - rssi_old) < 5)
229 return;
231 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
233 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234 ant.rx = (ant.rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
236 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237 ant.tx = (ant.tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
239 rt2x00lib_config_antenna(rt2x00dev, &ant);
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
245 * Determine if software diversity is enabled for
246 * either the TX or RX antenna (or both).
247 * Always perform this check since within the link
248 * tuner interval the configuration might have changed.
250 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
253 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
254 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
255 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
256 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
258 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
259 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
260 rt2x00dev->link.ant.flags = 0;
261 return;
265 * If we have only sampled the data over the last period
266 * we should now harvest the data. Otherwise just evaluate
267 * the data. The latter should only be performed once
268 * every 2 seconds.
270 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
271 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
272 else if (rt2x00dev->link.count & 1)
273 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
276 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
278 int avg_rssi = rssi;
281 * Update global RSSI
283 if (link->qual.avg_rssi)
284 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
285 link->qual.avg_rssi = avg_rssi;
288 * Update antenna RSSI
290 if (link->ant.rssi_ant)
291 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
292 link->ant.rssi_ant = rssi;
295 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
297 if (qual->rx_failed || qual->rx_success)
298 qual->rx_percentage =
299 (qual->rx_success * 100) /
300 (qual->rx_failed + qual->rx_success);
301 else
302 qual->rx_percentage = 50;
304 if (qual->tx_failed || qual->tx_success)
305 qual->tx_percentage =
306 (qual->tx_success * 100) /
307 (qual->tx_failed + qual->tx_success);
308 else
309 qual->tx_percentage = 50;
311 qual->rx_success = 0;
312 qual->rx_failed = 0;
313 qual->tx_success = 0;
314 qual->tx_failed = 0;
317 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
318 int rssi)
320 int rssi_percentage = 0;
321 int signal;
324 * We need a positive value for the RSSI.
326 if (rssi < 0)
327 rssi += rt2x00dev->rssi_offset;
330 * Calculate the different percentages,
331 * which will be used for the signal.
333 if (rt2x00dev->rssi_offset)
334 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
337 * Add the individual percentages and use the WEIGHT
338 * defines to calculate the current link signal.
340 signal = ((WEIGHT_RSSI * rssi_percentage) +
341 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
342 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
344 return (signal > 100) ? 100 : signal;
347 static void rt2x00lib_link_tuner(struct work_struct *work)
349 struct rt2x00_dev *rt2x00dev =
350 container_of(work, struct rt2x00_dev, link.work.work);
353 * When the radio is shutting down we should
354 * immediately cease all link tuning.
356 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
357 return;
360 * Update statistics.
362 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
363 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
364 rt2x00dev->link.qual.rx_failed;
367 * Only perform the link tuning when Link tuning
368 * has been enabled (This could have been disabled from the EEPROM).
370 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
371 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
374 * Precalculate a portion of the link signal which is
375 * in based on the tx/rx success/failure counters.
377 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380 * Send a signal to the led to update the led signal strength.
382 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
385 * Evaluate antenna setup, make this the last step since this could
386 * possibly reset some statistics.
388 rt2x00lib_evaluate_antenna(rt2x00dev);
391 * Increase tuner counter, and reschedule the next link tuner run.
393 rt2x00dev->link.count++;
394 queue_delayed_work(rt2x00dev->hw->workqueue,
395 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
398 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
400 struct rt2x00_dev *rt2x00dev =
401 container_of(work, struct rt2x00_dev, filter_work);
403 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
406 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
407 struct ieee80211_vif *vif)
409 struct rt2x00_dev *rt2x00dev = data;
410 struct rt2x00_intf *intf = vif_to_intf(vif);
411 struct ieee80211_bss_conf conf;
412 int delayed_flags;
415 * Copy all data we need during this action under the protection
416 * of a spinlock. Otherwise race conditions might occur which results
417 * into an invalid configuration.
419 spin_lock(&intf->lock);
421 memcpy(&conf, &vif->bss_conf, sizeof(conf));
422 delayed_flags = intf->delayed_flags;
423 intf->delayed_flags = 0;
425 spin_unlock(&intf->lock);
428 * It is possible the radio was disabled while the work had been
429 * scheduled. If that happens we should return here immediately,
430 * note that in the spinlock protected area above the delayed_flags
431 * have been cleared correctly.
433 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
434 return;
436 if (delayed_flags & DELAYED_UPDATE_BEACON)
437 rt2x00queue_update_beacon(rt2x00dev, vif);
439 if (delayed_flags & DELAYED_CONFIG_ERP)
440 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
442 if (delayed_flags & DELAYED_LED_ASSOC)
443 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
446 static void rt2x00lib_intf_scheduled(struct work_struct *work)
448 struct rt2x00_dev *rt2x00dev =
449 container_of(work, struct rt2x00_dev, intf_work);
452 * Iterate over each interface and perform the
453 * requested configurations.
455 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
456 rt2x00lib_intf_scheduled_iter,
457 rt2x00dev);
461 * Interrupt context handlers.
463 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
464 struct ieee80211_vif *vif)
466 struct rt2x00_dev *rt2x00dev = data;
467 struct rt2x00_intf *intf = vif_to_intf(vif);
469 if (vif->type != NL80211_IFTYPE_AP &&
470 vif->type != NL80211_IFTYPE_ADHOC)
471 return;
474 * Clean up the beacon skb.
476 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
477 intf->beacon->skb = NULL;
479 spin_lock(&intf->lock);
480 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
481 spin_unlock(&intf->lock);
484 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
486 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
487 return;
489 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
490 rt2x00lib_beacondone_iter,
491 rt2x00dev);
493 schedule_work(&rt2x00dev->intf_work);
495 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
497 void rt2x00lib_txdone(struct queue_entry *entry,
498 struct txdone_entry_desc *txdesc)
500 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
501 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
502 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
503 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
504 u8 rate_idx, rate_flags;
507 * Unmap the skb.
509 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
512 * If the IV/EIV data was stripped from the frame before it was
513 * passed to the hardware, we should now reinsert it again because
514 * mac80211 will expect the the same data to be present it the
515 * frame as it was passed to us.
517 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
518 rt2x00crypto_tx_insert_iv(entry->skb);
521 * Send frame to debugfs immediately, after this call is completed
522 * we are going to overwrite the skb->cb array.
524 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
527 * Update TX statistics.
529 rt2x00dev->link.qual.tx_success +=
530 test_bit(TXDONE_SUCCESS, &txdesc->flags);
531 rt2x00dev->link.qual.tx_failed +=
532 test_bit(TXDONE_FAILURE, &txdesc->flags);
534 rate_idx = skbdesc->tx_rate_idx;
535 rate_flags = skbdesc->tx_rate_flags;
538 * Initialize TX status
540 memset(&tx_info->status, 0, sizeof(tx_info->status));
541 tx_info->status.ack_signal = 0;
542 tx_info->status.rates[0].idx = rate_idx;
543 tx_info->status.rates[0].flags = rate_flags;
544 tx_info->status.rates[0].count = txdesc->retry + 1;
545 tx_info->status.rates[1].idx = -1; /* terminate */
547 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
548 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
549 tx_info->flags |= IEEE80211_TX_STAT_ACK;
550 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
551 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
554 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
555 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
556 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
557 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
558 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
562 * Only send the status report to mac80211 when TX status was
563 * requested by it. If this was a extra frame coming through
564 * a mac80211 library call (RTS/CTS) then we should not send the
565 * status report back.
567 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
568 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
569 else
570 dev_kfree_skb_irq(entry->skb);
573 * Make this entry available for reuse.
575 entry->skb = NULL;
576 entry->flags = 0;
578 rt2x00dev->ops->lib->clear_entry(entry);
580 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
581 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
584 * If the data queue was below the threshold before the txdone
585 * handler we must make sure the packet queue in the mac80211 stack
586 * is reenabled when the txdone handler has finished.
588 if (!rt2x00queue_threshold(entry->queue))
589 ieee80211_wake_queue(rt2x00dev->hw, qid);
591 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
593 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
594 struct queue_entry *entry)
596 struct rxdone_entry_desc rxdesc;
597 struct sk_buff *skb;
598 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
599 struct ieee80211_supported_band *sband;
600 struct ieee80211_hdr *hdr;
601 const struct rt2x00_rate *rate;
602 unsigned int header_length;
603 unsigned int align;
604 unsigned int i;
605 int idx = -1;
608 * Allocate a new sk_buffer. If no new buffer available, drop the
609 * received frame and reuse the existing buffer.
611 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
612 if (!skb)
613 return;
616 * Unmap the skb.
618 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
621 * Extract the RXD details.
623 memset(&rxdesc, 0, sizeof(rxdesc));
624 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
627 * The data behind the ieee80211 header must be
628 * aligned on a 4 byte boundary.
630 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
631 align = ((unsigned long)(entry->skb->data + header_length)) & 3;
634 * Hardware might have stripped the IV/EIV/ICV data,
635 * in that case it is possible that the data was
636 * provided seperately (through hardware descriptor)
637 * in which case we should reinsert the data into the frame.
639 if ((rxdesc.flags & RX_FLAG_IV_STRIPPED)) {
640 rt2x00crypto_rx_insert_iv(entry->skb, align,
641 header_length, &rxdesc);
642 } else if (align) {
643 skb_push(entry->skb, align);
644 /* Move entire frame in 1 command */
645 memmove(entry->skb->data, entry->skb->data + align,
646 rxdesc.size);
649 /* Update data pointers, trim buffer to correct size */
650 skb_trim(entry->skb, rxdesc.size);
653 * Update RX statistics.
655 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
656 for (i = 0; i < sband->n_bitrates; i++) {
657 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
659 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
660 (rate->plcp == rxdesc.signal)) ||
661 ((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
662 (rate->bitrate == rxdesc.signal))) {
663 idx = i;
664 break;
668 if (idx < 0) {
669 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
670 "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
671 !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
672 idx = 0;
676 * Only update link status if this is a beacon frame carrying our bssid.
678 hdr = (struct ieee80211_hdr *)entry->skb->data;
679 if (ieee80211_is_beacon(hdr->frame_control) &&
680 (rxdesc.dev_flags & RXDONE_MY_BSS))
681 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
683 rt2x00debug_update_crypto(rt2x00dev,
684 rxdesc.cipher,
685 rxdesc.cipher_status);
687 rt2x00dev->link.qual.rx_success++;
689 rx_status->mactime = rxdesc.timestamp;
690 rx_status->rate_idx = idx;
691 rx_status->qual =
692 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
693 rx_status->signal = rxdesc.rssi;
694 rx_status->flag = rxdesc.flags;
695 rx_status->antenna = rt2x00dev->link.ant.active.rx;
698 * Send frame to mac80211 & debugfs.
699 * mac80211 will clean up the skb structure.
701 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
702 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
705 * Replace the skb with the freshly allocated one.
707 entry->skb = skb;
708 entry->flags = 0;
710 rt2x00dev->ops->lib->clear_entry(entry);
712 rt2x00queue_index_inc(entry->queue, Q_INDEX);
714 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
717 * Driver initialization handlers.
719 const struct rt2x00_rate rt2x00_supported_rates[12] = {
721 .flags = DEV_RATE_CCK,
722 .bitrate = 10,
723 .ratemask = BIT(0),
724 .plcp = 0x00,
727 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
728 .bitrate = 20,
729 .ratemask = BIT(1),
730 .plcp = 0x01,
733 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
734 .bitrate = 55,
735 .ratemask = BIT(2),
736 .plcp = 0x02,
739 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
740 .bitrate = 110,
741 .ratemask = BIT(3),
742 .plcp = 0x03,
745 .flags = DEV_RATE_OFDM,
746 .bitrate = 60,
747 .ratemask = BIT(4),
748 .plcp = 0x0b,
751 .flags = DEV_RATE_OFDM,
752 .bitrate = 90,
753 .ratemask = BIT(5),
754 .plcp = 0x0f,
757 .flags = DEV_RATE_OFDM,
758 .bitrate = 120,
759 .ratemask = BIT(6),
760 .plcp = 0x0a,
763 .flags = DEV_RATE_OFDM,
764 .bitrate = 180,
765 .ratemask = BIT(7),
766 .plcp = 0x0e,
769 .flags = DEV_RATE_OFDM,
770 .bitrate = 240,
771 .ratemask = BIT(8),
772 .plcp = 0x09,
775 .flags = DEV_RATE_OFDM,
776 .bitrate = 360,
777 .ratemask = BIT(9),
778 .plcp = 0x0d,
781 .flags = DEV_RATE_OFDM,
782 .bitrate = 480,
783 .ratemask = BIT(10),
784 .plcp = 0x08,
787 .flags = DEV_RATE_OFDM,
788 .bitrate = 540,
789 .ratemask = BIT(11),
790 .plcp = 0x0c,
794 static void rt2x00lib_channel(struct ieee80211_channel *entry,
795 const int channel, const int tx_power,
796 const int value)
798 entry->center_freq = ieee80211_channel_to_frequency(channel);
799 entry->hw_value = value;
800 entry->max_power = tx_power;
801 entry->max_antenna_gain = 0xff;
804 static void rt2x00lib_rate(struct ieee80211_rate *entry,
805 const u16 index, const struct rt2x00_rate *rate)
807 entry->flags = 0;
808 entry->bitrate = rate->bitrate;
809 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
810 entry->hw_value_short = entry->hw_value;
812 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
813 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
814 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
818 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
819 struct hw_mode_spec *spec)
821 struct ieee80211_hw *hw = rt2x00dev->hw;
822 struct ieee80211_channel *channels;
823 struct ieee80211_rate *rates;
824 unsigned int num_rates;
825 unsigned int i;
827 num_rates = 0;
828 if (spec->supported_rates & SUPPORT_RATE_CCK)
829 num_rates += 4;
830 if (spec->supported_rates & SUPPORT_RATE_OFDM)
831 num_rates += 8;
833 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
834 if (!channels)
835 return -ENOMEM;
837 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
838 if (!rates)
839 goto exit_free_channels;
842 * Initialize Rate list.
844 for (i = 0; i < num_rates; i++)
845 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
848 * Initialize Channel list.
850 for (i = 0; i < spec->num_channels; i++) {
851 rt2x00lib_channel(&channels[i],
852 spec->channels[i].channel,
853 spec->channels_info[i].tx_power1, i);
857 * Intitialize 802.11b, 802.11g
858 * Rates: CCK, OFDM.
859 * Channels: 2.4 GHz
861 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
862 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
863 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
864 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
865 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
866 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
867 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
871 * Intitialize 802.11a
872 * Rates: OFDM.
873 * Channels: OFDM, UNII, HiperLAN2.
875 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
876 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
877 spec->num_channels - 14;
878 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
879 num_rates - 4;
880 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
881 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
882 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
883 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
886 return 0;
888 exit_free_channels:
889 kfree(channels);
890 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
891 return -ENOMEM;
894 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
896 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
897 ieee80211_unregister_hw(rt2x00dev->hw);
899 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
900 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
901 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
902 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
903 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
906 kfree(rt2x00dev->spec.channels_info);
909 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
911 struct hw_mode_spec *spec = &rt2x00dev->spec;
912 int status;
914 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
915 return 0;
918 * Initialize HW modes.
920 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
921 if (status)
922 return status;
925 * Initialize HW fields.
927 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
930 * Register HW.
932 status = ieee80211_register_hw(rt2x00dev->hw);
933 if (status) {
934 rt2x00lib_remove_hw(rt2x00dev);
935 return status;
938 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
940 return 0;
944 * Initialization/uninitialization handlers.
946 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
948 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
949 return;
952 * Unregister extra components.
954 rt2x00rfkill_unregister(rt2x00dev);
957 * Allow the HW to uninitialize.
959 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
962 * Free allocated queue entries.
964 rt2x00queue_uninitialize(rt2x00dev);
967 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
969 int status;
971 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
972 return 0;
975 * Allocate all queue entries.
977 status = rt2x00queue_initialize(rt2x00dev);
978 if (status)
979 return status;
982 * Initialize the device.
984 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
985 if (status) {
986 rt2x00queue_uninitialize(rt2x00dev);
987 return status;
990 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
993 * Register the extra components.
995 rt2x00rfkill_register(rt2x00dev);
997 return 0;
1000 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1002 int retval;
1004 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1005 return 0;
1008 * If this is the first interface which is added,
1009 * we should load the firmware now.
1011 retval = rt2x00lib_load_firmware(rt2x00dev);
1012 if (retval)
1013 return retval;
1016 * Initialize the device.
1018 retval = rt2x00lib_initialize(rt2x00dev);
1019 if (retval)
1020 return retval;
1022 rt2x00dev->intf_ap_count = 0;
1023 rt2x00dev->intf_sta_count = 0;
1024 rt2x00dev->intf_associated = 0;
1026 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1028 return 0;
1031 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1033 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1034 return;
1037 * Perhaps we can add something smarter here,
1038 * but for now just disabling the radio should do.
1040 rt2x00lib_disable_radio(rt2x00dev);
1042 rt2x00dev->intf_ap_count = 0;
1043 rt2x00dev->intf_sta_count = 0;
1044 rt2x00dev->intf_associated = 0;
1048 * driver allocation handlers.
1050 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1052 int retval = -ENOMEM;
1054 mutex_init(&rt2x00dev->csr_mutex);
1057 * Make room for rt2x00_intf inside the per-interface
1058 * structure ieee80211_vif.
1060 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1063 * Determine which operating modes are supported, all modes
1064 * which require beaconing, depend on the availability of
1065 * beacon entries.
1067 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1068 if (rt2x00dev->ops->bcn->entry_num > 0)
1069 rt2x00dev->hw->wiphy->interface_modes |=
1070 BIT(NL80211_IFTYPE_ADHOC) |
1071 BIT(NL80211_IFTYPE_AP);
1074 * Let the driver probe the device to detect the capabilities.
1076 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1077 if (retval) {
1078 ERROR(rt2x00dev, "Failed to allocate device.\n");
1079 goto exit;
1083 * Initialize configuration work.
1085 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1086 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1087 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1090 * Allocate queue array.
1092 retval = rt2x00queue_allocate(rt2x00dev);
1093 if (retval)
1094 goto exit;
1097 * Initialize ieee80211 structure.
1099 retval = rt2x00lib_probe_hw(rt2x00dev);
1100 if (retval) {
1101 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1102 goto exit;
1106 * Register extra components.
1108 rt2x00leds_register(rt2x00dev);
1109 rt2x00rfkill_allocate(rt2x00dev);
1110 rt2x00debug_register(rt2x00dev);
1112 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1114 return 0;
1116 exit:
1117 rt2x00lib_remove_dev(rt2x00dev);
1119 return retval;
1121 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1123 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1125 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1128 * Disable radio.
1130 rt2x00lib_disable_radio(rt2x00dev);
1133 * Uninitialize device.
1135 rt2x00lib_uninitialize(rt2x00dev);
1138 * Free extra components
1140 rt2x00debug_deregister(rt2x00dev);
1141 rt2x00rfkill_free(rt2x00dev);
1142 rt2x00leds_unregister(rt2x00dev);
1145 * Free ieee80211_hw memory.
1147 rt2x00lib_remove_hw(rt2x00dev);
1150 * Free firmware image.
1152 rt2x00lib_free_firmware(rt2x00dev);
1155 * Free queue structures.
1157 rt2x00queue_free(rt2x00dev);
1159 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1162 * Device state handlers
1164 #ifdef CONFIG_PM
1165 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1167 int retval;
1169 NOTICE(rt2x00dev, "Going to sleep.\n");
1172 * Only continue if mac80211 has open interfaces.
1174 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
1175 !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1176 goto exit;
1178 set_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags);
1181 * Disable radio.
1183 rt2x00lib_stop(rt2x00dev);
1184 rt2x00lib_uninitialize(rt2x00dev);
1187 * Suspend/disable extra components.
1189 rt2x00leds_suspend(rt2x00dev);
1190 rt2x00debug_deregister(rt2x00dev);
1192 exit:
1194 * Set device mode to sleep for power management,
1195 * on some hardware this call seems to consistently fail.
1196 * From the specifications it is hard to tell why it fails,
1197 * and if this is a "bad thing".
1198 * Overall it is safe to just ignore the failure and
1199 * continue suspending. The only downside is that the
1200 * device will not be in optimal power save mode, but with
1201 * the radio and the other components already disabled the
1202 * device is as good as disabled.
1204 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1205 if (retval)
1206 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1207 "continue suspending.\n");
1209 return 0;
1211 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1213 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1214 struct ieee80211_vif *vif)
1216 struct rt2x00_dev *rt2x00dev = data;
1217 struct rt2x00_intf *intf = vif_to_intf(vif);
1219 spin_lock(&intf->lock);
1221 rt2x00lib_config_intf(rt2x00dev, intf,
1222 vif->type, intf->mac, intf->bssid);
1226 * Master or Ad-hoc mode require a new beacon update.
1228 if (vif->type == NL80211_IFTYPE_AP ||
1229 vif->type == NL80211_IFTYPE_ADHOC)
1230 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1232 spin_unlock(&intf->lock);
1235 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1237 int retval;
1239 NOTICE(rt2x00dev, "Waking up.\n");
1242 * Restore/enable extra components.
1244 rt2x00debug_register(rt2x00dev);
1245 rt2x00leds_resume(rt2x00dev);
1248 * Only continue if mac80211 had open interfaces.
1250 if (!test_and_clear_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags))
1251 return 0;
1254 * Reinitialize device and all active interfaces.
1256 retval = rt2x00lib_start(rt2x00dev);
1257 if (retval)
1258 goto exit;
1261 * Reconfigure device.
1263 retval = rt2x00mac_config(rt2x00dev->hw, ~0);
1264 if (retval)
1265 goto exit;
1268 * Iterator over each active interface to
1269 * reconfigure the hardware.
1271 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1272 rt2x00lib_resume_intf, rt2x00dev);
1275 * We are ready again to receive requests from mac80211.
1277 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1280 * It is possible that during that mac80211 has attempted
1281 * to send frames while we were suspending or resuming.
1282 * In that case we have disabled the TX queue and should
1283 * now enable it again
1285 ieee80211_wake_queues(rt2x00dev->hw);
1288 * During interface iteration we might have changed the
1289 * delayed_flags, time to handles the event by calling
1290 * the work handler directly.
1292 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1294 return 0;
1296 exit:
1297 rt2x00lib_stop(rt2x00dev);
1298 rt2x00lib_uninitialize(rt2x00dev);
1299 rt2x00debug_deregister(rt2x00dev);
1301 return retval;
1303 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1304 #endif /* CONFIG_PM */
1307 * rt2x00lib module information.
1309 MODULE_AUTHOR(DRV_PROJECT);
1310 MODULE_VERSION(DRV_VERSION);
1311 MODULE_DESCRIPTION("rt2x00 library");
1312 MODULE_LICENSE("GPL");