bnx2x: add support for ndo_ll_poll
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
blobe2e8705684551a260982fef752e7749356a08854
1 /* bnx2x_main.c: Broadcom Everest network driver.
3 * Copyright (c) 2007-2013 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION \
70 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
71 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
72 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
73 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT (5*HZ)
81 static char version[] =
82 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 "BCM57710/57711/57711E/"
88 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 " Set number of queues (default is as a number of CPUs)");
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108 "(1 INT#x; 2 MSI)");
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
122 struct workqueue_struct *bnx2x_wq;
124 struct bnx2x_mac_vals {
125 u32 xmac_addr;
126 u32 xmac_val;
127 u32 emac_addr;
128 u32 emac_val;
129 u32 umac_addr;
130 u32 umac_val;
131 u32 bmac_addr;
132 u32 bmac_val[2];
135 enum bnx2x_board_type {
136 BCM57710 = 0,
137 BCM57711,
138 BCM57711E,
139 BCM57712,
140 BCM57712_MF,
141 BCM57712_VF,
142 BCM57800,
143 BCM57800_MF,
144 BCM57800_VF,
145 BCM57810,
146 BCM57810_MF,
147 BCM57810_VF,
148 BCM57840_4_10,
149 BCM57840_2_20,
150 BCM57840_MF,
151 BCM57840_VF,
152 BCM57811,
153 BCM57811_MF,
154 BCM57840_O,
155 BCM57840_MFO,
156 BCM57811_VF
159 /* indexed by board_type, above */
160 static struct {
161 char *name;
162 } board_info[] = {
163 [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164 [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165 [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166 [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167 [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168 [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169 [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170 [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171 [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172 [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173 [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174 [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175 [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176 [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177 [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178 [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179 [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180 [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181 [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182 [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
248 #endif
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272 { 0 }
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286 u32 addr, dma_addr_t mapping)
288 REG_WR(bp, addr, U64_LO(mapping));
289 REG_WR(bp, addr + 4, U64_HI(mapping));
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293 dma_addr_t mapping, u16 abs_fid)
295 u32 addr = XSEM_REG_FAST_MEMORY +
296 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
298 __storm_memset_dma_mapping(bp, addr, mapping);
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302 u16 pf_id)
304 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305 pf_id);
306 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307 pf_id);
308 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309 pf_id);
310 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311 pf_id);
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315 u8 enable)
317 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318 enable);
319 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320 enable);
321 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322 enable);
323 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324 enable);
327 static void storm_memset_eq_data(struct bnx2x *bp,
328 struct event_ring_data *eq_data,
329 u16 pfid)
331 size_t size = sizeof(struct event_ring_data);
333 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
335 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339 u16 pfid)
341 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342 REG_WR16(bp, addr, eq_prod);
345 /* used only at init
346 * locking is done by mcp
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
350 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353 PCICFG_VENDOR_ID_OFFSET);
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
358 u32 val;
360 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363 PCICFG_VENDOR_ID_OFFSET);
365 return val;
368 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE "dst_addr [none]"
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375 struct dmae_command *dmae, int msglvl)
377 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378 int i;
380 switch (dmae->opcode & DMAE_COMMAND_DST) {
381 case DMAE_CMD_DST_PCI:
382 if (src_type == DMAE_CMD_SRC_PCI)
383 DP(msglvl, "DMAE: opcode 0x%08x\n"
384 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385 "comp_addr [%x:%08x], comp_val 0x%08x\n",
386 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388 dmae->comp_addr_hi, dmae->comp_addr_lo,
389 dmae->comp_val);
390 else
391 DP(msglvl, "DMAE: opcode 0x%08x\n"
392 "src [%08x], len [%d*4], dst [%x:%08x]\n"
393 "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 dmae->opcode, dmae->src_addr_lo >> 2,
395 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 dmae->comp_addr_hi, dmae->comp_addr_lo,
397 dmae->comp_val);
398 break;
399 case DMAE_CMD_DST_GRC:
400 if (src_type == DMAE_CMD_SRC_PCI)
401 DP(msglvl, "DMAE: opcode 0x%08x\n"
402 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403 "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405 dmae->len, dmae->dst_addr_lo >> 2,
406 dmae->comp_addr_hi, dmae->comp_addr_lo,
407 dmae->comp_val);
408 else
409 DP(msglvl, "DMAE: opcode 0x%08x\n"
410 "src [%08x], len [%d*4], dst [%08x]\n"
411 "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 dmae->opcode, dmae->src_addr_lo >> 2,
413 dmae->len, dmae->dst_addr_lo >> 2,
414 dmae->comp_addr_hi, dmae->comp_addr_lo,
415 dmae->comp_val);
416 break;
417 default:
418 if (src_type == DMAE_CMD_SRC_PCI)
419 DP(msglvl, "DMAE: opcode 0x%08x\n"
420 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
421 "comp_addr [%x:%08x] comp_val 0x%08x\n",
422 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424 dmae->comp_val);
425 else
426 DP(msglvl, "DMAE: opcode 0x%08x\n"
427 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
428 "comp_addr [%x:%08x] comp_val 0x%08x\n",
429 dmae->opcode, dmae->src_addr_lo >> 2,
430 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431 dmae->comp_val);
432 break;
435 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437 i, *(((u32 *)dmae) + i));
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
443 u32 cmd_offset;
444 int i;
446 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
450 REG_WR(bp, dmae_reg_go_c[idx], 1);
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
455 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456 DMAE_CMD_C_ENABLE);
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
461 return opcode & ~DMAE_CMD_SRC_RESET;
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465 bool with_comp, u8 comp_type)
467 u32 opcode = 0;
469 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470 (dst_type << DMAE_COMMAND_DST_SHIFT));
472 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
474 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
479 #ifdef __BIG_ENDIAN
480 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484 if (with_comp)
485 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486 return opcode;
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490 struct dmae_command *dmae,
491 u8 src_type, u8 dst_type)
493 memset(dmae, 0, sizeof(struct dmae_command));
495 /* set the opcode */
496 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497 true, DMAE_COMP_PCI);
499 /* fill in the completion parameters */
500 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502 dmae->comp_val = DMAE_COMP_VAL;
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
508 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510 int rc = 0;
512 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
514 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
515 * as long as this code is called both from syscall context and
516 * from ndo_set_rx_mode() flow that may be called from BH.
518 spin_lock_bh(&bp->dmae_lock);
520 /* reset completion */
521 *wb_comp = 0;
523 /* post the command on the channel used for initializations */
524 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
526 /* wait for completion */
527 udelay(5);
528 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
530 if (!cnt ||
531 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533 BNX2X_ERR("DMAE timeout!\n");
534 rc = DMAE_TIMEOUT;
535 goto unlock;
537 cnt--;
538 udelay(50);
540 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541 BNX2X_ERR("DMAE PCI error!\n");
542 rc = DMAE_PCI_ERROR;
545 unlock:
546 spin_unlock_bh(&bp->dmae_lock);
547 return rc;
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551 u32 len32)
553 int rc;
554 struct dmae_command dmae;
556 if (!bp->dmae_ready) {
557 u32 *data = bnx2x_sp(bp, wb_data[0]);
559 if (CHIP_IS_E1(bp))
560 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561 else
562 bnx2x_init_str_wr(bp, dst_addr, data, len32);
563 return;
566 /* set opcode and fixed command fields */
567 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
569 /* fill in addresses and len */
570 dmae.src_addr_lo = U64_LO(dma_addr);
571 dmae.src_addr_hi = U64_HI(dma_addr);
572 dmae.dst_addr_lo = dst_addr >> 2;
573 dmae.dst_addr_hi = 0;
574 dmae.len = len32;
576 /* issue the command and wait for completion */
577 rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578 if (rc) {
579 BNX2X_ERR("DMAE returned failure %d\n", rc);
580 bnx2x_panic();
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
586 int rc;
587 struct dmae_command dmae;
589 if (!bp->dmae_ready) {
590 u32 *data = bnx2x_sp(bp, wb_data[0]);
591 int i;
593 if (CHIP_IS_E1(bp))
594 for (i = 0; i < len32; i++)
595 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596 else
597 for (i = 0; i < len32; i++)
598 data[i] = REG_RD(bp, src_addr + i*4);
600 return;
603 /* set opcode and fixed command fields */
604 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
606 /* fill in addresses and len */
607 dmae.src_addr_lo = src_addr >> 2;
608 dmae.src_addr_hi = 0;
609 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611 dmae.len = len32;
613 /* issue the command and wait for completion */
614 rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615 if (rc) {
616 BNX2X_ERR("DMAE returned failure %d\n", rc);
617 bnx2x_panic();
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622 u32 addr, u32 len)
624 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625 int offset = 0;
627 while (len > dmae_wr_max) {
628 bnx2x_write_dmae(bp, phys_addr + offset,
629 addr + offset, dmae_wr_max);
630 offset += dmae_wr_max * 4;
631 len -= dmae_wr_max;
634 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
637 static int bnx2x_mc_assert(struct bnx2x *bp)
639 char last_idx;
640 int i, rc = 0;
641 u32 row0, row1, row2, row3;
643 /* XSTORM */
644 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645 XSTORM_ASSERT_LIST_INDEX_OFFSET);
646 if (last_idx)
647 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
649 /* print the asserts */
650 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
652 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653 XSTORM_ASSERT_LIST_OFFSET(i));
654 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
661 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 i, row3, row2, row1, row0);
664 rc++;
665 } else {
666 break;
670 /* TSTORM */
671 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672 TSTORM_ASSERT_LIST_INDEX_OFFSET);
673 if (last_idx)
674 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
676 /* print the asserts */
677 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
679 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680 TSTORM_ASSERT_LIST_OFFSET(i));
681 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
688 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690 i, row3, row2, row1, row0);
691 rc++;
692 } else {
693 break;
697 /* CSTORM */
698 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699 CSTORM_ASSERT_LIST_INDEX_OFFSET);
700 if (last_idx)
701 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
703 /* print the asserts */
704 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
706 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707 CSTORM_ASSERT_LIST_OFFSET(i));
708 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
715 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717 i, row3, row2, row1, row0);
718 rc++;
719 } else {
720 break;
724 /* USTORM */
725 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726 USTORM_ASSERT_LIST_INDEX_OFFSET);
727 if (last_idx)
728 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
730 /* print the asserts */
731 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
733 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734 USTORM_ASSERT_LIST_OFFSET(i));
735 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736 USTORM_ASSERT_LIST_OFFSET(i) + 4);
737 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738 USTORM_ASSERT_LIST_OFFSET(i) + 8);
739 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740 USTORM_ASSERT_LIST_OFFSET(i) + 12);
742 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744 i, row3, row2, row1, row0);
745 rc++;
746 } else {
747 break;
751 return rc;
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
756 u32 addr, val;
757 u32 mark, offset;
758 __be32 data[9];
759 int word;
760 u32 trace_shmem_base;
761 if (BP_NOMCP(bp)) {
762 BNX2X_ERR("NO MCP - can not dump\n");
763 return;
765 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766 (bp->common.bc_ver & 0xff0000) >> 16,
767 (bp->common.bc_ver & 0xff00) >> 8,
768 (bp->common.bc_ver & 0xff));
770 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
774 if (BP_PATH(bp) == 0)
775 trace_shmem_base = bp->common.shmem_base;
776 else
777 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778 addr = trace_shmem_base - 0x800;
780 /* validate TRCB signature */
781 mark = REG_RD(bp, addr);
782 if (mark != MFW_TRACE_SIGNATURE) {
783 BNX2X_ERR("Trace buffer signature is missing.");
784 return ;
787 /* read cyclic buffer pointer */
788 addr += 4;
789 mark = REG_RD(bp, addr);
790 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791 + ((mark + 0x3) & ~0x3) - 0x08000000;
792 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
794 printk("%s", lvl);
796 /* dump buffer after the mark */
797 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798 for (word = 0; word < 8; word++)
799 data[word] = htonl(REG_RD(bp, offset + 4*word));
800 data[8] = 0x0;
801 pr_cont("%s", (char *)data);
804 /* dump buffer before the mark */
805 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806 for (word = 0; word < 8; word++)
807 data[word] = htonl(REG_RD(bp, offset + 4*word));
808 data[8] = 0x0;
809 pr_cont("%s", (char *)data);
811 printk("%s" "end of fw dump\n", lvl);
814 static void bnx2x_fw_dump(struct bnx2x *bp)
816 bnx2x_fw_dump_lvl(bp, KERN_ERR);
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
821 int port = BP_PORT(bp);
822 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823 u32 val = REG_RD(bp, addr);
825 /* in E1 we must use only PCI configuration space to disable
826 * MSI/MSIX capability
827 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
829 if (CHIP_IS_E1(bp)) {
830 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831 * Use mask register to prevent from HC sending interrupts
832 * after we exit the function
834 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
836 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837 HC_CONFIG_0_REG_INT_LINE_EN_0 |
838 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839 } else
840 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842 HC_CONFIG_0_REG_INT_LINE_EN_0 |
843 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
845 DP(NETIF_MSG_IFDOWN,
846 "write %x to HC %d (addr 0x%x)\n",
847 val, port, addr);
849 /* flush all outstanding writes */
850 mmiowb();
852 REG_WR(bp, addr, val);
853 if (REG_RD(bp, addr) != val)
854 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
859 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
861 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862 IGU_PF_CONF_INT_LINE_EN |
863 IGU_PF_CONF_ATTN_BIT_EN);
865 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
867 /* flush all outstanding writes */
868 mmiowb();
870 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
875 static void bnx2x_int_disable(struct bnx2x *bp)
877 if (bp->common.int_block == INT_BLOCK_HC)
878 bnx2x_hc_int_disable(bp);
879 else
880 bnx2x_igu_int_disable(bp);
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
885 int i;
886 u16 j;
887 struct hc_sp_status_block_data sp_sb_data;
888 int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890 u16 start = 0, end = 0;
891 u8 cos;
892 #endif
893 if (disable_int)
894 bnx2x_int_disable(bp);
896 bp->stats_state = STATS_STATE_DISABLED;
897 bp->eth_stats.unrecoverable_error++;
898 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
900 BNX2X_ERR("begin crash dump -----------------\n");
902 /* Indices */
903 /* Common */
904 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905 bp->def_idx, bp->def_att_idx, bp->attn_state,
906 bp->spq_prod_idx, bp->stats_counter);
907 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
908 bp->def_status_blk->atten_status_block.attn_bits,
909 bp->def_status_blk->atten_status_block.attn_bits_ack,
910 bp->def_status_blk->atten_status_block.status_block_id,
911 bp->def_status_blk->atten_status_block.attn_bits_index);
912 BNX2X_ERR(" def (");
913 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914 pr_cont("0x%x%s",
915 bp->def_status_blk->sp_sb.index_values[i],
916 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
918 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921 i*sizeof(u32));
923 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
924 sp_sb_data.igu_sb_id,
925 sp_sb_data.igu_seg_id,
926 sp_sb_data.p_func.pf_id,
927 sp_sb_data.p_func.vnic_id,
928 sp_sb_data.p_func.vf_id,
929 sp_sb_data.p_func.vf_valid,
930 sp_sb_data.state);
932 for_each_eth_queue(bp, i) {
933 struct bnx2x_fastpath *fp = &bp->fp[i];
934 int loop;
935 struct hc_status_block_data_e2 sb_data_e2;
936 struct hc_status_block_data_e1x sb_data_e1x;
937 struct hc_status_block_sm *hc_sm_p =
938 CHIP_IS_E1x(bp) ?
939 sb_data_e1x.common.state_machine :
940 sb_data_e2.common.state_machine;
941 struct hc_index_data *hc_index_p =
942 CHIP_IS_E1x(bp) ?
943 sb_data_e1x.index_data :
944 sb_data_e2.index_data;
945 u8 data_size, cos;
946 u32 *sb_data_p;
947 struct bnx2x_fp_txdata txdata;
949 /* Rx */
950 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
951 i, fp->rx_bd_prod, fp->rx_bd_cons,
952 fp->rx_comp_prod,
953 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
955 fp->rx_sge_prod, fp->last_max_sge,
956 le16_to_cpu(fp->fp_hc_idx));
958 /* Tx */
959 for_each_cos_in_tx_queue(fp, cos)
961 txdata = *fp->txdata_ptr[cos];
962 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
963 i, txdata.tx_pkt_prod,
964 txdata.tx_pkt_cons, txdata.tx_bd_prod,
965 txdata.tx_bd_cons,
966 le16_to_cpu(*txdata.tx_cons_sb));
969 loop = CHIP_IS_E1x(bp) ?
970 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
972 /* host sb data */
974 if (IS_FCOE_FP(fp))
975 continue;
977 BNX2X_ERR(" run indexes (");
978 for (j = 0; j < HC_SB_MAX_SM; j++)
979 pr_cont("0x%x%s",
980 fp->sb_running_index[j],
981 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
983 BNX2X_ERR(" indexes (");
984 for (j = 0; j < loop; j++)
985 pr_cont("0x%x%s",
986 fp->sb_index_values[j],
987 (j == loop - 1) ? ")" : " ");
988 /* fw sb data */
989 data_size = CHIP_IS_E1x(bp) ?
990 sizeof(struct hc_status_block_data_e1x) :
991 sizeof(struct hc_status_block_data_e2);
992 data_size /= sizeof(u32);
993 sb_data_p = CHIP_IS_E1x(bp) ?
994 (u32 *)&sb_data_e1x :
995 (u32 *)&sb_data_e2;
996 /* copy sb data in here */
997 for (j = 0; j < data_size; j++)
998 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000 j * sizeof(u32));
1002 if (!CHIP_IS_E1x(bp)) {
1003 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1004 sb_data_e2.common.p_func.pf_id,
1005 sb_data_e2.common.p_func.vf_id,
1006 sb_data_e2.common.p_func.vf_valid,
1007 sb_data_e2.common.p_func.vnic_id,
1008 sb_data_e2.common.same_igu_sb_1b,
1009 sb_data_e2.common.state);
1010 } else {
1011 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1012 sb_data_e1x.common.p_func.pf_id,
1013 sb_data_e1x.common.p_func.vf_id,
1014 sb_data_e1x.common.p_func.vf_valid,
1015 sb_data_e1x.common.p_func.vnic_id,
1016 sb_data_e1x.common.same_igu_sb_1b,
1017 sb_data_e1x.common.state);
1020 /* SB_SMs data */
1021 for (j = 0; j < HC_SB_MAX_SM; j++) {
1022 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023 j, hc_sm_p[j].__flags,
1024 hc_sm_p[j].igu_sb_id,
1025 hc_sm_p[j].igu_seg_id,
1026 hc_sm_p[j].time_to_expire,
1027 hc_sm_p[j].timer_value);
1030 /* Indices data */
1031 for (j = 0; j < loop; j++) {
1032 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033 hc_index_p[j].flags,
1034 hc_index_p[j].timeout);
1038 #ifdef BNX2X_STOP_ON_ERROR
1040 /* event queue */
1041 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042 for (i = 0; i < NUM_EQ_DESC; i++) {
1043 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1045 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046 i, bp->eq_ring[i].message.opcode,
1047 bp->eq_ring[i].message.error);
1048 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1051 /* Rings */
1052 /* Rx */
1053 for_each_valid_rx_queue(bp, i) {
1054 struct bnx2x_fastpath *fp = &bp->fp[i];
1056 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058 for (j = start; j != end; j = RX_BD(j + 1)) {
1059 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1062 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1063 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1066 start = RX_SGE(fp->rx_sge_prod);
1067 end = RX_SGE(fp->last_max_sge);
1068 for (j = start; j != end; j = RX_SGE(j + 1)) {
1069 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1072 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1073 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1076 start = RCQ_BD(fp->rx_comp_cons - 10);
1077 end = RCQ_BD(fp->rx_comp_cons + 503);
1078 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1081 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1086 /* Tx */
1087 for_each_valid_tx_queue(bp, i) {
1088 struct bnx2x_fastpath *fp = &bp->fp[i];
1089 for_each_cos_in_tx_queue(fp, cos) {
1090 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1092 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094 for (j = start; j != end; j = TX_BD(j + 1)) {
1095 struct sw_tx_bd *sw_bd =
1096 &txdata->tx_buf_ring[j];
1098 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099 i, cos, j, sw_bd->skb,
1100 sw_bd->first_bd);
1103 start = TX_BD(txdata->tx_bd_cons - 10);
1104 end = TX_BD(txdata->tx_bd_cons + 254);
1105 for (j = start; j != end; j = TX_BD(j + 1)) {
1106 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1108 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109 i, cos, j, tx_bd[0], tx_bd[1],
1110 tx_bd[2], tx_bd[3]);
1114 #endif
1115 bnx2x_fw_dump(bp);
1116 bnx2x_mc_assert(bp);
1117 BNX2X_ERR("end crash dump -----------------\n");
1121 * FLR Support for E2
1123 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124 * initialization.
1126 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL 50 /* usec */
1128 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1130 struct pbf_pN_buf_regs {
1131 int pN;
1132 u32 init_crd;
1133 u32 crd;
1134 u32 crd_freed;
1137 struct pbf_pN_cmd_regs {
1138 int pN;
1139 u32 lines_occup;
1140 u32 lines_freed;
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144 struct pbf_pN_buf_regs *regs,
1145 u32 poll_count)
1147 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148 u32 cur_cnt = poll_count;
1150 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151 crd = crd_start = REG_RD(bp, regs->crd);
1152 init_crd = REG_RD(bp, regs->init_crd);
1154 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1156 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1158 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159 (init_crd - crd_start))) {
1160 if (cur_cnt--) {
1161 udelay(FLR_WAIT_INTERVAL);
1162 crd = REG_RD(bp, regs->crd);
1163 crd_freed = REG_RD(bp, regs->crd_freed);
1164 } else {
1165 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166 regs->pN);
1167 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1168 regs->pN, crd);
1169 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170 regs->pN, crd_freed);
1171 break;
1174 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179 struct pbf_pN_cmd_regs *regs,
1180 u32 poll_count)
1182 u32 occup, to_free, freed, freed_start;
1183 u32 cur_cnt = poll_count;
1185 occup = to_free = REG_RD(bp, regs->lines_occup);
1186 freed = freed_start = REG_RD(bp, regs->lines_freed);
1188 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1189 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1191 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192 if (cur_cnt--) {
1193 udelay(FLR_WAIT_INTERVAL);
1194 occup = REG_RD(bp, regs->lines_occup);
1195 freed = REG_RD(bp, regs->lines_freed);
1196 } else {
1197 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198 regs->pN);
1199 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1200 regs->pN, occup);
1201 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202 regs->pN, freed);
1203 break;
1206 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211 u32 expected, u32 poll_count)
1213 u32 cur_cnt = poll_count;
1214 u32 val;
1216 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217 udelay(FLR_WAIT_INTERVAL);
1219 return val;
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223 char *msg, u32 poll_cnt)
1225 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226 if (val != 0) {
1227 BNX2X_ERR("%s usage count=%d\n", msg, val);
1228 return 1;
1230 return 0;
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1236 /* adjust polling timeout */
1237 if (CHIP_REV_IS_EMUL(bp))
1238 return FLR_POLL_CNT * 2000;
1240 if (CHIP_REV_IS_FPGA(bp))
1241 return FLR_POLL_CNT * 120;
1243 return FLR_POLL_CNT;
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1248 struct pbf_pN_cmd_regs cmd_regs[] = {
1249 {0, (CHIP_IS_E3B0(bp)) ?
1250 PBF_REG_TQ_OCCUPANCY_Q0 :
1251 PBF_REG_P0_TQ_OCCUPANCY,
1252 (CHIP_IS_E3B0(bp)) ?
1253 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254 PBF_REG_P0_TQ_LINES_FREED_CNT},
1255 {1, (CHIP_IS_E3B0(bp)) ?
1256 PBF_REG_TQ_OCCUPANCY_Q1 :
1257 PBF_REG_P1_TQ_OCCUPANCY,
1258 (CHIP_IS_E3B0(bp)) ?
1259 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260 PBF_REG_P1_TQ_LINES_FREED_CNT},
1261 {4, (CHIP_IS_E3B0(bp)) ?
1262 PBF_REG_TQ_OCCUPANCY_LB_Q :
1263 PBF_REG_P4_TQ_OCCUPANCY,
1264 (CHIP_IS_E3B0(bp)) ?
1265 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266 PBF_REG_P4_TQ_LINES_FREED_CNT}
1269 struct pbf_pN_buf_regs buf_regs[] = {
1270 {0, (CHIP_IS_E3B0(bp)) ?
1271 PBF_REG_INIT_CRD_Q0 :
1272 PBF_REG_P0_INIT_CRD ,
1273 (CHIP_IS_E3B0(bp)) ?
1274 PBF_REG_CREDIT_Q0 :
1275 PBF_REG_P0_CREDIT,
1276 (CHIP_IS_E3B0(bp)) ?
1277 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279 {1, (CHIP_IS_E3B0(bp)) ?
1280 PBF_REG_INIT_CRD_Q1 :
1281 PBF_REG_P1_INIT_CRD,
1282 (CHIP_IS_E3B0(bp)) ?
1283 PBF_REG_CREDIT_Q1 :
1284 PBF_REG_P1_CREDIT,
1285 (CHIP_IS_E3B0(bp)) ?
1286 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288 {4, (CHIP_IS_E3B0(bp)) ?
1289 PBF_REG_INIT_CRD_LB_Q :
1290 PBF_REG_P4_INIT_CRD,
1291 (CHIP_IS_E3B0(bp)) ?
1292 PBF_REG_CREDIT_LB_Q :
1293 PBF_REG_P4_CREDIT,
1294 (CHIP_IS_E3B0(bp)) ?
1295 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1299 int i;
1301 /* Verify the command queues are flushed P0, P1, P4 */
1302 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1305 /* Verify the transmission buffers are flushed P0, P1, P4 */
1306 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1310 #define OP_GEN_PARAM(param) \
1311 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1313 #define OP_GEN_TYPE(type) \
1314 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1316 #define OP_GEN_AGG_VECT(index) \
1317 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1321 u32 op_gen_command = 0;
1322 u32 comp_addr = BAR_CSTRORM_INTMEM +
1323 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324 int ret = 0;
1326 if (REG_RD(bp, comp_addr)) {
1327 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328 return 1;
1331 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1336 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1339 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340 BNX2X_ERR("FW final cleanup did not succeed\n");
1341 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342 (REG_RD(bp, comp_addr)));
1343 bnx2x_panic();
1344 return 1;
1346 /* Zero completion for next FLR */
1347 REG_WR(bp, comp_addr, 0);
1349 return ret;
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1354 u16 status;
1356 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357 return status & PCI_EXP_DEVSTA_TRPND;
1360 /* PF FLR specific routines
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1364 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366 CFC_REG_NUM_LCIDS_INSIDE_PF,
1367 "CFC PF usage counter timed out",
1368 poll_cnt))
1369 return 1;
1371 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373 DORQ_REG_PF_USAGE_CNT,
1374 "DQ PF usage counter timed out",
1375 poll_cnt))
1376 return 1;
1378 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381 "QM PF usage counter timed out",
1382 poll_cnt))
1383 return 1;
1385 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388 "Timers VNIC usage counter timed out",
1389 poll_cnt))
1390 return 1;
1391 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393 "Timers NUM_SCANS usage counter timed out",
1394 poll_cnt))
1395 return 1;
1397 /* Wait DMAE PF usage counter to zero */
1398 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399 dmae_reg_go_c[INIT_DMAE_C(bp)],
1400 "DMAE command register timed out",
1401 poll_cnt))
1402 return 1;
1404 return 0;
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1409 u32 val;
1411 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1414 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1417 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1420 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1423 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1426 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1429 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1432 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434 val);
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1439 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1441 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1443 /* Re-enable PF target read access */
1444 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1446 /* Poll HW usage counters */
1447 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449 return -EBUSY;
1451 /* Zero the igu 'trailing edge' and 'leading edge' */
1453 /* Send the FW cleanup command */
1454 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455 return -EBUSY;
1457 /* ATC cleanup */
1459 /* Verify TX hw is flushed */
1460 bnx2x_tx_hw_flushed(bp, poll_cnt);
1462 /* Wait 100ms (not adjusted according to platform) */
1463 msleep(100);
1465 /* Verify no pending pci transactions */
1466 if (bnx2x_is_pcie_pending(bp->pdev))
1467 BNX2X_ERR("PCIE Transactions still pending\n");
1469 /* Debug */
1470 bnx2x_hw_enable_status(bp);
1473 * Master enable - Due to WB DMAE writes performed before this
1474 * register is re-initialized as part of the regular function init
1476 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1478 return 0;
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1483 int port = BP_PORT(bp);
1484 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485 u32 val = REG_RD(bp, addr);
1486 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1490 if (msix) {
1491 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492 HC_CONFIG_0_REG_INT_LINE_EN_0);
1493 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495 if (single_msix)
1496 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497 } else if (msi) {
1498 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502 } else {
1503 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1508 if (!CHIP_IS_E1(bp)) {
1509 DP(NETIF_MSG_IFUP,
1510 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1512 REG_WR(bp, addr, val);
1514 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1518 if (CHIP_IS_E1(bp))
1519 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1521 DP(NETIF_MSG_IFUP,
1522 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1525 REG_WR(bp, addr, val);
1527 * Ensure that HC_CONFIG is written before leading/trailing edge config
1529 mmiowb();
1530 barrier();
1532 if (!CHIP_IS_E1(bp)) {
1533 /* init leading/trailing edge */
1534 if (IS_MF(bp)) {
1535 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536 if (bp->port.pmf)
1537 /* enable nig and gpio3 attention */
1538 val |= 0x1100;
1539 } else
1540 val = 0xffff;
1542 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1546 /* Make sure that interrupts are indeed enabled from here on */
1547 mmiowb();
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1552 u32 val;
1553 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1557 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1559 if (msix) {
1560 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561 IGU_PF_CONF_SINGLE_ISR_EN);
1562 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563 IGU_PF_CONF_ATTN_BIT_EN);
1565 if (single_msix)
1566 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567 } else if (msi) {
1568 val &= ~IGU_PF_CONF_INT_LINE_EN;
1569 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570 IGU_PF_CONF_ATTN_BIT_EN |
1571 IGU_PF_CONF_SINGLE_ISR_EN);
1572 } else {
1573 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574 val |= (IGU_PF_CONF_INT_LINE_EN |
1575 IGU_PF_CONF_ATTN_BIT_EN |
1576 IGU_PF_CONF_SINGLE_ISR_EN);
1579 /* Clean previous status - need to configure igu prior to ack*/
1580 if ((!msix) || single_msix) {
1581 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582 bnx2x_ack_int(bp);
1585 val |= IGU_PF_CONF_FUNC_EN;
1587 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1588 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1590 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1592 if (val & IGU_PF_CONF_INT_LINE_EN)
1593 pci_intx(bp->pdev, true);
1595 barrier();
1597 /* init leading/trailing edge */
1598 if (IS_MF(bp)) {
1599 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600 if (bp->port.pmf)
1601 /* enable nig and gpio3 attention */
1602 val |= 0x1100;
1603 } else
1604 val = 0xffff;
1606 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1609 /* Make sure that interrupts are indeed enabled from here on */
1610 mmiowb();
1613 void bnx2x_int_enable(struct bnx2x *bp)
1615 if (bp->common.int_block == INT_BLOCK_HC)
1616 bnx2x_hc_int_enable(bp);
1617 else
1618 bnx2x_igu_int_enable(bp);
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1623 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624 int i, offset;
1626 if (disable_hw)
1627 /* prevent the HW from sending interrupts */
1628 bnx2x_int_disable(bp);
1630 /* make sure all ISRs are done */
1631 if (msix) {
1632 synchronize_irq(bp->msix_table[0].vector);
1633 offset = 1;
1634 if (CNIC_SUPPORT(bp))
1635 offset++;
1636 for_each_eth_queue(bp, i)
1637 synchronize_irq(bp->msix_table[offset++].vector);
1638 } else
1639 synchronize_irq(bp->pdev->irq);
1641 /* make sure sp_task is not running */
1642 cancel_delayed_work(&bp->sp_task);
1643 cancel_delayed_work(&bp->period_task);
1644 flush_workqueue(bnx2x_wq);
1647 /* fast path */
1650 * General service functions
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1656 u32 lock_status;
1657 u32 resource_bit = (1 << resource);
1658 int func = BP_FUNC(bp);
1659 u32 hw_lock_control_reg;
1661 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662 "Trying to take a lock on resource %d\n", resource);
1664 /* Validating that the resource is within range */
1665 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669 return false;
1672 if (func <= 5)
1673 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674 else
1675 hw_lock_control_reg =
1676 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1678 /* Try to acquire the lock */
1679 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680 lock_status = REG_RD(bp, hw_lock_control_reg);
1681 if (lock_status & resource_bit)
1682 return true;
1684 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685 "Failed to get a lock on resource %d\n", resource);
1686 return false;
1690 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1692 * @bp: driver handle
1694 * Returns the recovery leader resource id according to the engine this function
1695 * belongs to. Currently only only 2 engines is supported.
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1699 if (BP_PATH(bp))
1700 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701 else
1702 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1706 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1708 * @bp: driver handle
1710 * Tries to acquire a leader lock for current engine.
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1714 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1722 /* Set the interrupt occurred bit for the sp-task to recognize it
1723 * must ack the interrupt and transition according to the IGU
1724 * state machine.
1726 atomic_set(&bp->interrupt_occurred, 1);
1728 /* The sp_task must execute only after this bit
1729 * is set, otherwise we will get out of sync and miss all
1730 * further interrupts. Hence, the barrier.
1732 smp_wmb();
1734 /* schedule sp_task to workqueue */
1735 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1740 struct bnx2x *bp = fp->bp;
1741 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1746 DP(BNX2X_MSG_SP,
1747 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1748 fp->index, cid, command, bp->state,
1749 rr_cqe->ramrod_cqe.ramrod_type);
1751 /* If cid is within VF range, replace the slowpath object with the
1752 * one corresponding to this VF
1754 if (cid >= BNX2X_FIRST_VF_CID &&
1755 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1758 switch (command) {
1759 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761 drv_cmd = BNX2X_Q_CMD_UPDATE;
1762 break;
1764 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766 drv_cmd = BNX2X_Q_CMD_SETUP;
1767 break;
1769 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772 break;
1774 case (RAMROD_CMD_ID_ETH_HALT):
1775 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776 drv_cmd = BNX2X_Q_CMD_HALT;
1777 break;
1779 case (RAMROD_CMD_ID_ETH_TERMINATE):
1780 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782 break;
1784 case (RAMROD_CMD_ID_ETH_EMPTY):
1785 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786 drv_cmd = BNX2X_Q_CMD_EMPTY;
1787 break;
1789 default:
1790 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791 command, fp->index);
1792 return;
1795 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797 /* q_obj->complete_cmd() failure means that this was
1798 * an unexpected completion.
1800 * In this case we don't want to increase the bp->spq_left
1801 * because apparently we haven't sent this command the first
1802 * place.
1804 #ifdef BNX2X_STOP_ON_ERROR
1805 bnx2x_panic();
1806 #else
1807 return;
1808 #endif
1809 /* SRIOV: reschedule any 'in_progress' operations */
1810 bnx2x_iov_sp_event(bp, cid, true);
1812 smp_mb__before_atomic_inc();
1813 atomic_inc(&bp->cq_spq_left);
1814 /* push the change in bp->spq_left and towards the memory */
1815 smp_mb__after_atomic_inc();
1817 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1819 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821 /* if Q update ramrod is completed for last Q in AFEX vif set
1822 * flow, then ACK MCP at the end
1824 * mark pending ACK to MCP bit.
1825 * prevent case that both bits are cleared.
1826 * At the end of load/unload driver checks that
1827 * sp_state is cleared, and this order prevents
1828 * races
1830 smp_mb__before_clear_bit();
1831 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832 wmb();
1833 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834 smp_mb__after_clear_bit();
1836 /* schedule the sp task as mcp ack is required */
1837 bnx2x_schedule_sp_task(bp);
1840 return;
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1845 struct bnx2x *bp = netdev_priv(dev_instance);
1846 u16 status = bnx2x_ack_int(bp);
1847 u16 mask;
1848 int i;
1849 u8 cos;
1851 /* Return here if interrupt is shared and it's not for us */
1852 if (unlikely(status == 0)) {
1853 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854 return IRQ_NONE;
1856 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1858 #ifdef BNX2X_STOP_ON_ERROR
1859 if (unlikely(bp->panic))
1860 return IRQ_HANDLED;
1861 #endif
1863 for_each_eth_queue(bp, i) {
1864 struct bnx2x_fastpath *fp = &bp->fp[i];
1866 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867 if (status & mask) {
1868 /* Handle Rx or Tx according to SB id */
1869 prefetch(fp->rx_cons_sb);
1870 for_each_cos_in_tx_queue(fp, cos)
1871 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1872 prefetch(&fp->sb_running_index[SM_RX_ID]);
1873 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1874 status &= ~mask;
1878 if (CNIC_SUPPORT(bp)) {
1879 mask = 0x2;
1880 if (status & (mask | 0x1)) {
1881 struct cnic_ops *c_ops = NULL;
1883 rcu_read_lock();
1884 c_ops = rcu_dereference(bp->cnic_ops);
1885 if (c_ops && (bp->cnic_eth_dev.drv_state &
1886 CNIC_DRV_STATE_HANDLES_IRQ))
1887 c_ops->cnic_handler(bp->cnic_data, NULL);
1888 rcu_read_unlock();
1890 status &= ~mask;
1894 if (unlikely(status & 0x1)) {
1896 /* schedule sp task to perform default status block work, ack
1897 * attentions and enable interrupts.
1899 bnx2x_schedule_sp_task(bp);
1901 status &= ~0x1;
1902 if (!status)
1903 return IRQ_HANDLED;
1906 if (unlikely(status))
1907 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1908 status);
1910 return IRQ_HANDLED;
1913 /* Link */
1916 * General service functions
1919 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1921 u32 lock_status;
1922 u32 resource_bit = (1 << resource);
1923 int func = BP_FUNC(bp);
1924 u32 hw_lock_control_reg;
1925 int cnt;
1927 /* Validating that the resource is within range */
1928 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1929 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1930 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1931 return -EINVAL;
1934 if (func <= 5) {
1935 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1936 } else {
1937 hw_lock_control_reg =
1938 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1941 /* Validating that the resource is not already taken */
1942 lock_status = REG_RD(bp, hw_lock_control_reg);
1943 if (lock_status & resource_bit) {
1944 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
1945 lock_status, resource_bit);
1946 return -EEXIST;
1949 /* Try for 5 second every 5ms */
1950 for (cnt = 0; cnt < 1000; cnt++) {
1951 /* Try to acquire the lock */
1952 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1953 lock_status = REG_RD(bp, hw_lock_control_reg);
1954 if (lock_status & resource_bit)
1955 return 0;
1957 usleep_range(5000, 10000);
1959 BNX2X_ERR("Timeout\n");
1960 return -EAGAIN;
1963 int bnx2x_release_leader_lock(struct bnx2x *bp)
1965 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1968 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1970 u32 lock_status;
1971 u32 resource_bit = (1 << resource);
1972 int func = BP_FUNC(bp);
1973 u32 hw_lock_control_reg;
1975 /* Validating that the resource is within range */
1976 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1977 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1978 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1979 return -EINVAL;
1982 if (func <= 5) {
1983 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1984 } else {
1985 hw_lock_control_reg =
1986 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1989 /* Validating that the resource is currently taken */
1990 lock_status = REG_RD(bp, hw_lock_control_reg);
1991 if (!(lock_status & resource_bit)) {
1992 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1993 lock_status, resource_bit);
1994 return -EFAULT;
1997 REG_WR(bp, hw_lock_control_reg, resource_bit);
1998 return 0;
2001 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2003 /* The GPIO should be swapped if swap register is set and active */
2004 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2005 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2006 int gpio_shift = gpio_num +
2007 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2008 u32 gpio_mask = (1 << gpio_shift);
2009 u32 gpio_reg;
2010 int value;
2012 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2013 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2014 return -EINVAL;
2017 /* read GPIO value */
2018 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2020 /* get the requested pin value */
2021 if ((gpio_reg & gpio_mask) == gpio_mask)
2022 value = 1;
2023 else
2024 value = 0;
2026 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
2028 return value;
2031 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2033 /* The GPIO should be swapped if swap register is set and active */
2034 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2035 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2036 int gpio_shift = gpio_num +
2037 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2038 u32 gpio_mask = (1 << gpio_shift);
2039 u32 gpio_reg;
2041 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2042 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2043 return -EINVAL;
2046 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2047 /* read GPIO and mask except the float bits */
2048 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2050 switch (mode) {
2051 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2052 DP(NETIF_MSG_LINK,
2053 "Set GPIO %d (shift %d) -> output low\n",
2054 gpio_num, gpio_shift);
2055 /* clear FLOAT and set CLR */
2056 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2057 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2058 break;
2060 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2061 DP(NETIF_MSG_LINK,
2062 "Set GPIO %d (shift %d) -> output high\n",
2063 gpio_num, gpio_shift);
2064 /* clear FLOAT and set SET */
2065 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2066 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2067 break;
2069 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2070 DP(NETIF_MSG_LINK,
2071 "Set GPIO %d (shift %d) -> input\n",
2072 gpio_num, gpio_shift);
2073 /* set FLOAT */
2074 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2075 break;
2077 default:
2078 break;
2081 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2082 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2084 return 0;
2087 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2089 u32 gpio_reg = 0;
2090 int rc = 0;
2092 /* Any port swapping should be handled by caller. */
2094 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2095 /* read GPIO and mask except the float bits */
2096 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2097 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2098 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2099 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2101 switch (mode) {
2102 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2103 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2104 /* set CLR */
2105 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2106 break;
2108 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2109 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2110 /* set SET */
2111 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2112 break;
2114 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2115 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2116 /* set FLOAT */
2117 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2118 break;
2120 default:
2121 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2122 rc = -EINVAL;
2123 break;
2126 if (rc == 0)
2127 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2129 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2131 return rc;
2134 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2136 /* The GPIO should be swapped if swap register is set and active */
2137 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2138 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2139 int gpio_shift = gpio_num +
2140 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2141 u32 gpio_mask = (1 << gpio_shift);
2142 u32 gpio_reg;
2144 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2145 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2146 return -EINVAL;
2149 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2150 /* read GPIO int */
2151 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2153 switch (mode) {
2154 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2155 DP(NETIF_MSG_LINK,
2156 "Clear GPIO INT %d (shift %d) -> output low\n",
2157 gpio_num, gpio_shift);
2158 /* clear SET and set CLR */
2159 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2160 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2161 break;
2163 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2164 DP(NETIF_MSG_LINK,
2165 "Set GPIO INT %d (shift %d) -> output high\n",
2166 gpio_num, gpio_shift);
2167 /* clear CLR and set SET */
2168 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2169 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2170 break;
2172 default:
2173 break;
2176 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2177 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2179 return 0;
2182 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2184 u32 spio_reg;
2186 /* Only 2 SPIOs are configurable */
2187 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2188 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2189 return -EINVAL;
2192 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2193 /* read SPIO and mask except the float bits */
2194 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2196 switch (mode) {
2197 case MISC_SPIO_OUTPUT_LOW:
2198 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2199 /* clear FLOAT and set CLR */
2200 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2201 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2202 break;
2204 case MISC_SPIO_OUTPUT_HIGH:
2205 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2206 /* clear FLOAT and set SET */
2207 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2208 spio_reg |= (spio << MISC_SPIO_SET_POS);
2209 break;
2211 case MISC_SPIO_INPUT_HI_Z:
2212 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2213 /* set FLOAT */
2214 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2215 break;
2217 default:
2218 break;
2221 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2222 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2224 return 0;
2227 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2229 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2230 switch (bp->link_vars.ieee_fc &
2231 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2232 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2233 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2234 ADVERTISED_Pause);
2235 break;
2237 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2238 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2239 ADVERTISED_Pause);
2240 break;
2242 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2243 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2244 break;
2246 default:
2247 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2248 ADVERTISED_Pause);
2249 break;
2253 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2255 /* Initialize link parameters structure variables
2256 * It is recommended to turn off RX FC for jumbo frames
2257 * for better performance
2259 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2260 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2261 else
2262 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2265 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2267 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2268 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2270 if (!BP_NOMCP(bp)) {
2271 bnx2x_set_requested_fc(bp);
2272 bnx2x_acquire_phy_lock(bp);
2274 if (load_mode == LOAD_DIAG) {
2275 struct link_params *lp = &bp->link_params;
2276 lp->loopback_mode = LOOPBACK_XGXS;
2277 /* do PHY loopback at 10G speed, if possible */
2278 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2279 if (lp->speed_cap_mask[cfx_idx] &
2280 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2281 lp->req_line_speed[cfx_idx] =
2282 SPEED_10000;
2283 else
2284 lp->req_line_speed[cfx_idx] =
2285 SPEED_1000;
2289 if (load_mode == LOAD_LOOPBACK_EXT) {
2290 struct link_params *lp = &bp->link_params;
2291 lp->loopback_mode = LOOPBACK_EXT;
2294 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2296 bnx2x_release_phy_lock(bp);
2298 bnx2x_calc_fc_adv(bp);
2300 if (bp->link_vars.link_up) {
2301 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2302 bnx2x_link_report(bp);
2304 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2305 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2306 return rc;
2308 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2309 return -EINVAL;
2312 void bnx2x_link_set(struct bnx2x *bp)
2314 if (!BP_NOMCP(bp)) {
2315 bnx2x_acquire_phy_lock(bp);
2316 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2317 bnx2x_release_phy_lock(bp);
2319 bnx2x_calc_fc_adv(bp);
2320 } else
2321 BNX2X_ERR("Bootcode is missing - can not set link\n");
2324 static void bnx2x__link_reset(struct bnx2x *bp)
2326 if (!BP_NOMCP(bp)) {
2327 bnx2x_acquire_phy_lock(bp);
2328 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2329 bnx2x_release_phy_lock(bp);
2330 } else
2331 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2334 void bnx2x_force_link_reset(struct bnx2x *bp)
2336 bnx2x_acquire_phy_lock(bp);
2337 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2338 bnx2x_release_phy_lock(bp);
2341 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2343 u8 rc = 0;
2345 if (!BP_NOMCP(bp)) {
2346 bnx2x_acquire_phy_lock(bp);
2347 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2348 is_serdes);
2349 bnx2x_release_phy_lock(bp);
2350 } else
2351 BNX2X_ERR("Bootcode is missing - can not test link\n");
2353 return rc;
2356 /* Calculates the sum of vn_min_rates.
2357 It's needed for further normalizing of the min_rates.
2358 Returns:
2359 sum of vn_min_rates.
2361 0 - if all the min_rates are 0.
2362 In the later case fairness algorithm should be deactivated.
2363 If not all min_rates are zero then those that are zeroes will be set to 1.
2365 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2366 struct cmng_init_input *input)
2368 int all_zero = 1;
2369 int vn;
2371 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2372 u32 vn_cfg = bp->mf_config[vn];
2373 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2374 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2376 /* Skip hidden vns */
2377 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2378 vn_min_rate = 0;
2379 /* If min rate is zero - set it to 1 */
2380 else if (!vn_min_rate)
2381 vn_min_rate = DEF_MIN_RATE;
2382 else
2383 all_zero = 0;
2385 input->vnic_min_rate[vn] = vn_min_rate;
2388 /* if ETS or all min rates are zeros - disable fairness */
2389 if (BNX2X_IS_ETS_ENABLED(bp)) {
2390 input->flags.cmng_enables &=
2391 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2392 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2393 } else if (all_zero) {
2394 input->flags.cmng_enables &=
2395 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2396 DP(NETIF_MSG_IFUP,
2397 "All MIN values are zeroes fairness will be disabled\n");
2398 } else
2399 input->flags.cmng_enables |=
2400 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2403 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2404 struct cmng_init_input *input)
2406 u16 vn_max_rate;
2407 u32 vn_cfg = bp->mf_config[vn];
2409 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2410 vn_max_rate = 0;
2411 else {
2412 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2414 if (IS_MF_SI(bp)) {
2415 /* maxCfg in percents of linkspeed */
2416 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2417 } else /* SD modes */
2418 /* maxCfg is absolute in 100Mb units */
2419 vn_max_rate = maxCfg * 100;
2422 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2424 input->vnic_max_rate[vn] = vn_max_rate;
2427 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2429 if (CHIP_REV_IS_SLOW(bp))
2430 return CMNG_FNS_NONE;
2431 if (IS_MF(bp))
2432 return CMNG_FNS_MINMAX;
2434 return CMNG_FNS_NONE;
2437 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2439 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2441 if (BP_NOMCP(bp))
2442 return; /* what should be the default value in this case */
2444 /* For 2 port configuration the absolute function number formula
2445 * is:
2446 * abs_func = 2 * vn + BP_PORT + BP_PATH
2448 * and there are 4 functions per port
2450 * For 4 port configuration it is
2451 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2453 * and there are 2 functions per port
2455 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2456 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2458 if (func >= E1H_FUNC_MAX)
2459 break;
2461 bp->mf_config[vn] =
2462 MF_CFG_RD(bp, func_mf_config[func].config);
2464 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2465 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2466 bp->flags |= MF_FUNC_DIS;
2467 } else {
2468 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2469 bp->flags &= ~MF_FUNC_DIS;
2473 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2475 struct cmng_init_input input;
2476 memset(&input, 0, sizeof(struct cmng_init_input));
2478 input.port_rate = bp->link_vars.line_speed;
2480 if (cmng_type == CMNG_FNS_MINMAX) {
2481 int vn;
2483 /* read mf conf from shmem */
2484 if (read_cfg)
2485 bnx2x_read_mf_cfg(bp);
2487 /* vn_weight_sum and enable fairness if not 0 */
2488 bnx2x_calc_vn_min(bp, &input);
2490 /* calculate and set min-max rate for each vn */
2491 if (bp->port.pmf)
2492 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2493 bnx2x_calc_vn_max(bp, vn, &input);
2495 /* always enable rate shaping and fairness */
2496 input.flags.cmng_enables |=
2497 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2499 bnx2x_init_cmng(&input, &bp->cmng);
2500 return;
2503 /* rate shaping and fairness are disabled */
2504 DP(NETIF_MSG_IFUP,
2505 "rate shaping and fairness are disabled\n");
2508 static void storm_memset_cmng(struct bnx2x *bp,
2509 struct cmng_init *cmng,
2510 u8 port)
2512 int vn;
2513 size_t size = sizeof(struct cmng_struct_per_port);
2515 u32 addr = BAR_XSTRORM_INTMEM +
2516 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2518 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2520 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2521 int func = func_by_vn(bp, vn);
2523 addr = BAR_XSTRORM_INTMEM +
2524 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2525 size = sizeof(struct rate_shaping_vars_per_vn);
2526 __storm_memset_struct(bp, addr, size,
2527 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2529 addr = BAR_XSTRORM_INTMEM +
2530 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2531 size = sizeof(struct fairness_vars_per_vn);
2532 __storm_memset_struct(bp, addr, size,
2533 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2537 /* This function is called upon link interrupt */
2538 static void bnx2x_link_attn(struct bnx2x *bp)
2540 /* Make sure that we are synced with the current statistics */
2541 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2543 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2545 if (bp->link_vars.link_up) {
2547 /* dropless flow control */
2548 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2549 int port = BP_PORT(bp);
2550 u32 pause_enabled = 0;
2552 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2553 pause_enabled = 1;
2555 REG_WR(bp, BAR_USTRORM_INTMEM +
2556 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2557 pause_enabled);
2560 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2561 struct host_port_stats *pstats;
2563 pstats = bnx2x_sp(bp, port_stats);
2564 /* reset old mac stats */
2565 memset(&(pstats->mac_stx[0]), 0,
2566 sizeof(struct mac_stx));
2568 if (bp->state == BNX2X_STATE_OPEN)
2569 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2572 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2573 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2575 if (cmng_fns != CMNG_FNS_NONE) {
2576 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2577 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2578 } else
2579 /* rate shaping and fairness are disabled */
2580 DP(NETIF_MSG_IFUP,
2581 "single function mode without fairness\n");
2584 __bnx2x_link_report(bp);
2586 if (IS_MF(bp))
2587 bnx2x_link_sync_notify(bp);
2590 void bnx2x__link_status_update(struct bnx2x *bp)
2592 if (bp->state != BNX2X_STATE_OPEN)
2593 return;
2595 /* read updated dcb configuration */
2596 if (IS_PF(bp)) {
2597 bnx2x_dcbx_pmf_update(bp);
2598 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2599 if (bp->link_vars.link_up)
2600 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2601 else
2602 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2603 /* indicate link status */
2604 bnx2x_link_report(bp);
2606 } else { /* VF */
2607 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2608 SUPPORTED_10baseT_Full |
2609 SUPPORTED_100baseT_Half |
2610 SUPPORTED_100baseT_Full |
2611 SUPPORTED_1000baseT_Full |
2612 SUPPORTED_2500baseX_Full |
2613 SUPPORTED_10000baseT_Full |
2614 SUPPORTED_TP |
2615 SUPPORTED_FIBRE |
2616 SUPPORTED_Autoneg |
2617 SUPPORTED_Pause |
2618 SUPPORTED_Asym_Pause);
2619 bp->port.advertising[0] = bp->port.supported[0];
2621 bp->link_params.bp = bp;
2622 bp->link_params.port = BP_PORT(bp);
2623 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2624 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2625 bp->link_params.req_line_speed[0] = SPEED_10000;
2626 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2627 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2628 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2629 bp->link_vars.line_speed = SPEED_10000;
2630 bp->link_vars.link_status =
2631 (LINK_STATUS_LINK_UP |
2632 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2633 bp->link_vars.link_up = 1;
2634 bp->link_vars.duplex = DUPLEX_FULL;
2635 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2636 __bnx2x_link_report(bp);
2637 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2641 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2642 u16 vlan_val, u8 allowed_prio)
2644 struct bnx2x_func_state_params func_params = {NULL};
2645 struct bnx2x_func_afex_update_params *f_update_params =
2646 &func_params.params.afex_update;
2648 func_params.f_obj = &bp->func_obj;
2649 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2651 /* no need to wait for RAMROD completion, so don't
2652 * set RAMROD_COMP_WAIT flag
2655 f_update_params->vif_id = vifid;
2656 f_update_params->afex_default_vlan = vlan_val;
2657 f_update_params->allowed_priorities = allowed_prio;
2659 /* if ramrod can not be sent, response to MCP immediately */
2660 if (bnx2x_func_state_change(bp, &func_params) < 0)
2661 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2663 return 0;
2666 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2667 u16 vif_index, u8 func_bit_map)
2669 struct bnx2x_func_state_params func_params = {NULL};
2670 struct bnx2x_func_afex_viflists_params *update_params =
2671 &func_params.params.afex_viflists;
2672 int rc;
2673 u32 drv_msg_code;
2675 /* validate only LIST_SET and LIST_GET are received from switch */
2676 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2677 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2678 cmd_type);
2680 func_params.f_obj = &bp->func_obj;
2681 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2683 /* set parameters according to cmd_type */
2684 update_params->afex_vif_list_command = cmd_type;
2685 update_params->vif_list_index = vif_index;
2686 update_params->func_bit_map =
2687 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2688 update_params->func_to_clear = 0;
2689 drv_msg_code =
2690 (cmd_type == VIF_LIST_RULE_GET) ?
2691 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2692 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2694 /* if ramrod can not be sent, respond to MCP immediately for
2695 * SET and GET requests (other are not triggered from MCP)
2697 rc = bnx2x_func_state_change(bp, &func_params);
2698 if (rc < 0)
2699 bnx2x_fw_command(bp, drv_msg_code, 0);
2701 return 0;
2704 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2706 struct afex_stats afex_stats;
2707 u32 func = BP_ABS_FUNC(bp);
2708 u32 mf_config;
2709 u16 vlan_val;
2710 u32 vlan_prio;
2711 u16 vif_id;
2712 u8 allowed_prio;
2713 u8 vlan_mode;
2714 u32 addr_to_write, vifid, addrs, stats_type, i;
2716 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2717 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2718 DP(BNX2X_MSG_MCP,
2719 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2720 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2723 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2724 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2725 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2726 DP(BNX2X_MSG_MCP,
2727 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2728 vifid, addrs);
2729 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2730 addrs);
2733 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2734 addr_to_write = SHMEM2_RD(bp,
2735 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2736 stats_type = SHMEM2_RD(bp,
2737 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2739 DP(BNX2X_MSG_MCP,
2740 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2741 addr_to_write);
2743 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2745 /* write response to scratchpad, for MCP */
2746 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2747 REG_WR(bp, addr_to_write + i*sizeof(u32),
2748 *(((u32 *)(&afex_stats))+i));
2750 /* send ack message to MCP */
2751 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2754 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2755 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2756 bp->mf_config[BP_VN(bp)] = mf_config;
2757 DP(BNX2X_MSG_MCP,
2758 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2759 mf_config);
2761 /* if VIF_SET is "enabled" */
2762 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2763 /* set rate limit directly to internal RAM */
2764 struct cmng_init_input cmng_input;
2765 struct rate_shaping_vars_per_vn m_rs_vn;
2766 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2767 u32 addr = BAR_XSTRORM_INTMEM +
2768 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2770 bp->mf_config[BP_VN(bp)] = mf_config;
2772 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2773 m_rs_vn.vn_counter.rate =
2774 cmng_input.vnic_max_rate[BP_VN(bp)];
2775 m_rs_vn.vn_counter.quota =
2776 (m_rs_vn.vn_counter.rate *
2777 RS_PERIODIC_TIMEOUT_USEC) / 8;
2779 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2781 /* read relevant values from mf_cfg struct in shmem */
2782 vif_id =
2783 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2784 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2785 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2786 vlan_val =
2787 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2788 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2789 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2790 vlan_prio = (mf_config &
2791 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2792 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2793 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2794 vlan_mode =
2795 (MF_CFG_RD(bp,
2796 func_mf_config[func].afex_config) &
2797 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2798 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2799 allowed_prio =
2800 (MF_CFG_RD(bp,
2801 func_mf_config[func].afex_config) &
2802 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2803 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2805 /* send ramrod to FW, return in case of failure */
2806 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2807 allowed_prio))
2808 return;
2810 bp->afex_def_vlan_tag = vlan_val;
2811 bp->afex_vlan_mode = vlan_mode;
2812 } else {
2813 /* notify link down because BP->flags is disabled */
2814 bnx2x_link_report(bp);
2816 /* send INVALID VIF ramrod to FW */
2817 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2819 /* Reset the default afex VLAN */
2820 bp->afex_def_vlan_tag = -1;
2825 static void bnx2x_pmf_update(struct bnx2x *bp)
2827 int port = BP_PORT(bp);
2828 u32 val;
2830 bp->port.pmf = 1;
2831 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2834 * We need the mb() to ensure the ordering between the writing to
2835 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2837 smp_mb();
2839 /* queue a periodic task */
2840 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2842 bnx2x_dcbx_pmf_update(bp);
2844 /* enable nig attention */
2845 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2846 if (bp->common.int_block == INT_BLOCK_HC) {
2847 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2848 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2849 } else if (!CHIP_IS_E1x(bp)) {
2850 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2851 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2854 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2857 /* end of Link */
2859 /* slow path */
2862 * General service functions
2865 /* send the MCP a request, block until there is a reply */
2866 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2868 int mb_idx = BP_FW_MB_IDX(bp);
2869 u32 seq;
2870 u32 rc = 0;
2871 u32 cnt = 1;
2872 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2874 mutex_lock(&bp->fw_mb_mutex);
2875 seq = ++bp->fw_seq;
2876 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2877 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2879 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2880 (command | seq), param);
2882 do {
2883 /* let the FW do it's magic ... */
2884 msleep(delay);
2886 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2888 /* Give the FW up to 5 second (500*10ms) */
2889 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2891 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2892 cnt*delay, rc, seq);
2894 /* is this a reply to our command? */
2895 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2896 rc &= FW_MSG_CODE_MASK;
2897 else {
2898 /* FW BUG! */
2899 BNX2X_ERR("FW failed to respond!\n");
2900 bnx2x_fw_dump(bp);
2901 rc = 0;
2903 mutex_unlock(&bp->fw_mb_mutex);
2905 return rc;
2908 static void storm_memset_func_cfg(struct bnx2x *bp,
2909 struct tstorm_eth_function_common_config *tcfg,
2910 u16 abs_fid)
2912 size_t size = sizeof(struct tstorm_eth_function_common_config);
2914 u32 addr = BAR_TSTRORM_INTMEM +
2915 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2917 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2920 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2922 if (CHIP_IS_E1x(bp)) {
2923 struct tstorm_eth_function_common_config tcfg = {0};
2925 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2928 /* Enable the function in the FW */
2929 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2930 storm_memset_func_en(bp, p->func_id, 1);
2932 /* spq */
2933 if (p->func_flgs & FUNC_FLG_SPQ) {
2934 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2935 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2936 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2941 * bnx2x_get_common_flags - Return common flags
2943 * @bp device handle
2944 * @fp queue handle
2945 * @zero_stats TRUE if statistics zeroing is needed
2947 * Return the flags that are common for the Tx-only and not normal connections.
2949 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2950 struct bnx2x_fastpath *fp,
2951 bool zero_stats)
2953 unsigned long flags = 0;
2955 /* PF driver will always initialize the Queue to an ACTIVE state */
2956 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2958 /* tx only connections collect statistics (on the same index as the
2959 * parent connection). The statistics are zeroed when the parent
2960 * connection is initialized.
2963 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2964 if (zero_stats)
2965 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2967 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2968 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2970 #ifdef BNX2X_STOP_ON_ERROR
2971 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2972 #endif
2974 return flags;
2977 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2978 struct bnx2x_fastpath *fp,
2979 bool leading)
2981 unsigned long flags = 0;
2983 /* calculate other queue flags */
2984 if (IS_MF_SD(bp))
2985 __set_bit(BNX2X_Q_FLG_OV, &flags);
2987 if (IS_FCOE_FP(fp)) {
2988 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2989 /* For FCoE - force usage of default priority (for afex) */
2990 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2993 if (!fp->disable_tpa) {
2994 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2995 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2996 if (fp->mode == TPA_MODE_GRO)
2997 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3000 if (leading) {
3001 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3002 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3005 /* Always set HW VLAN stripping */
3006 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3008 /* configure silent vlan removal */
3009 if (IS_MF_AFEX(bp))
3010 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3012 return flags | bnx2x_get_common_flags(bp, fp, true);
3015 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3016 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3017 u8 cos)
3019 gen_init->stat_id = bnx2x_stats_id(fp);
3020 gen_init->spcl_id = fp->cl_id;
3022 /* Always use mini-jumbo MTU for FCoE L2 ring */
3023 if (IS_FCOE_FP(fp))
3024 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3025 else
3026 gen_init->mtu = bp->dev->mtu;
3028 gen_init->cos = cos;
3031 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3032 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3033 struct bnx2x_rxq_setup_params *rxq_init)
3035 u8 max_sge = 0;
3036 u16 sge_sz = 0;
3037 u16 tpa_agg_size = 0;
3039 if (!fp->disable_tpa) {
3040 pause->sge_th_lo = SGE_TH_LO(bp);
3041 pause->sge_th_hi = SGE_TH_HI(bp);
3043 /* validate SGE ring has enough to cross high threshold */
3044 WARN_ON(bp->dropless_fc &&
3045 pause->sge_th_hi + FW_PREFETCH_CNT >
3046 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3048 tpa_agg_size = TPA_AGG_SIZE;
3049 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3050 SGE_PAGE_SHIFT;
3051 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3052 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3053 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3056 /* pause - not for e1 */
3057 if (!CHIP_IS_E1(bp)) {
3058 pause->bd_th_lo = BD_TH_LO(bp);
3059 pause->bd_th_hi = BD_TH_HI(bp);
3061 pause->rcq_th_lo = RCQ_TH_LO(bp);
3062 pause->rcq_th_hi = RCQ_TH_HI(bp);
3064 * validate that rings have enough entries to cross
3065 * high thresholds
3067 WARN_ON(bp->dropless_fc &&
3068 pause->bd_th_hi + FW_PREFETCH_CNT >
3069 bp->rx_ring_size);
3070 WARN_ON(bp->dropless_fc &&
3071 pause->rcq_th_hi + FW_PREFETCH_CNT >
3072 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3074 pause->pri_map = 1;
3077 /* rxq setup */
3078 rxq_init->dscr_map = fp->rx_desc_mapping;
3079 rxq_init->sge_map = fp->rx_sge_mapping;
3080 rxq_init->rcq_map = fp->rx_comp_mapping;
3081 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3083 /* This should be a maximum number of data bytes that may be
3084 * placed on the BD (not including paddings).
3086 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3087 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3089 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3090 rxq_init->tpa_agg_sz = tpa_agg_size;
3091 rxq_init->sge_buf_sz = sge_sz;
3092 rxq_init->max_sges_pkt = max_sge;
3093 rxq_init->rss_engine_id = BP_FUNC(bp);
3094 rxq_init->mcast_engine_id = BP_FUNC(bp);
3096 /* Maximum number or simultaneous TPA aggregation for this Queue.
3098 * For PF Clients it should be the maximum available number.
3099 * VF driver(s) may want to define it to a smaller value.
3101 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3103 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3104 rxq_init->fw_sb_id = fp->fw_sb_id;
3106 if (IS_FCOE_FP(fp))
3107 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3108 else
3109 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3110 /* configure silent vlan removal
3111 * if multi function mode is afex, then mask default vlan
3113 if (IS_MF_AFEX(bp)) {
3114 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3115 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3119 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3120 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3121 u8 cos)
3123 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3124 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3125 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3126 txq_init->fw_sb_id = fp->fw_sb_id;
3129 * set the tss leading client id for TX classification ==
3130 * leading RSS client id
3132 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3134 if (IS_FCOE_FP(fp)) {
3135 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3136 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3140 static void bnx2x_pf_init(struct bnx2x *bp)
3142 struct bnx2x_func_init_params func_init = {0};
3143 struct event_ring_data eq_data = { {0} };
3144 u16 flags;
3146 if (!CHIP_IS_E1x(bp)) {
3147 /* reset IGU PF statistics: MSIX + ATTN */
3148 /* PF */
3149 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3150 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3151 (CHIP_MODE_IS_4_PORT(bp) ?
3152 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3153 /* ATTN */
3154 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3155 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3156 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3157 (CHIP_MODE_IS_4_PORT(bp) ?
3158 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3161 /* function setup flags */
3162 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3164 /* This flag is relevant for E1x only.
3165 * E2 doesn't have a TPA configuration in a function level.
3167 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3169 func_init.func_flgs = flags;
3170 func_init.pf_id = BP_FUNC(bp);
3171 func_init.func_id = BP_FUNC(bp);
3172 func_init.spq_map = bp->spq_mapping;
3173 func_init.spq_prod = bp->spq_prod_idx;
3175 bnx2x_func_init(bp, &func_init);
3177 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3180 * Congestion management values depend on the link rate
3181 * There is no active link so initial link rate is set to 10 Gbps.
3182 * When the link comes up The congestion management values are
3183 * re-calculated according to the actual link rate.
3185 bp->link_vars.line_speed = SPEED_10000;
3186 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3188 /* Only the PMF sets the HW */
3189 if (bp->port.pmf)
3190 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3192 /* init Event Queue - PCI bus guarantees correct endianity*/
3193 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3194 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3195 eq_data.producer = bp->eq_prod;
3196 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3197 eq_data.sb_id = DEF_SB_ID;
3198 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3201 static void bnx2x_e1h_disable(struct bnx2x *bp)
3203 int port = BP_PORT(bp);
3205 bnx2x_tx_disable(bp);
3207 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3210 static void bnx2x_e1h_enable(struct bnx2x *bp)
3212 int port = BP_PORT(bp);
3214 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3216 /* Tx queue should be only re-enabled */
3217 netif_tx_wake_all_queues(bp->dev);
3220 * Should not call netif_carrier_on since it will be called if the link
3221 * is up when checking for link state
3225 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3227 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3229 struct eth_stats_info *ether_stat =
3230 &bp->slowpath->drv_info_to_mcp.ether_stat;
3231 struct bnx2x_vlan_mac_obj *mac_obj =
3232 &bp->sp_objs->mac_obj;
3233 int i;
3235 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3236 ETH_STAT_INFO_VERSION_LEN);
3238 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3239 * mac_local field in ether_stat struct. The base address is offset by 2
3240 * bytes to account for the field being 8 bytes but a mac address is
3241 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3242 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3243 * allocated by the ether_stat struct, so the macs will land in their
3244 * proper positions.
3246 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3247 memset(ether_stat->mac_local + i, 0,
3248 sizeof(ether_stat->mac_local[0]));
3249 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3250 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3251 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3252 ETH_ALEN);
3253 ether_stat->mtu_size = bp->dev->mtu;
3254 if (bp->dev->features & NETIF_F_RXCSUM)
3255 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3256 if (bp->dev->features & NETIF_F_TSO)
3257 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3258 ether_stat->feature_flags |= bp->common.boot_mode;
3260 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3262 ether_stat->txq_size = bp->tx_ring_size;
3263 ether_stat->rxq_size = bp->rx_ring_size;
3266 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3268 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3269 struct fcoe_stats_info *fcoe_stat =
3270 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3272 if (!CNIC_LOADED(bp))
3273 return;
3275 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3277 fcoe_stat->qos_priority =
3278 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3280 /* insert FCoE stats from ramrod response */
3281 if (!NO_FCOE(bp)) {
3282 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3283 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3284 tstorm_queue_statistics;
3286 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3287 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3288 xstorm_queue_statistics;
3290 struct fcoe_statistics_params *fw_fcoe_stat =
3291 &bp->fw_stats_data->fcoe;
3293 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3294 fcoe_stat->rx_bytes_lo,
3295 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3297 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3298 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3299 fcoe_stat->rx_bytes_lo,
3300 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3302 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3303 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3304 fcoe_stat->rx_bytes_lo,
3305 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3307 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3308 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3309 fcoe_stat->rx_bytes_lo,
3310 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3312 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3313 fcoe_stat->rx_frames_lo,
3314 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3316 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3317 fcoe_stat->rx_frames_lo,
3318 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3320 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3321 fcoe_stat->rx_frames_lo,
3322 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3324 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3325 fcoe_stat->rx_frames_lo,
3326 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3328 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3329 fcoe_stat->tx_bytes_lo,
3330 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3332 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3333 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3334 fcoe_stat->tx_bytes_lo,
3335 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3337 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3338 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3339 fcoe_stat->tx_bytes_lo,
3340 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3342 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3343 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3344 fcoe_stat->tx_bytes_lo,
3345 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3347 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3348 fcoe_stat->tx_frames_lo,
3349 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3351 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3352 fcoe_stat->tx_frames_lo,
3353 fcoe_q_xstorm_stats->ucast_pkts_sent);
3355 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3356 fcoe_stat->tx_frames_lo,
3357 fcoe_q_xstorm_stats->bcast_pkts_sent);
3359 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3360 fcoe_stat->tx_frames_lo,
3361 fcoe_q_xstorm_stats->mcast_pkts_sent);
3364 /* ask L5 driver to add data to the struct */
3365 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3368 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3370 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3371 struct iscsi_stats_info *iscsi_stat =
3372 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3374 if (!CNIC_LOADED(bp))
3375 return;
3377 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3378 ETH_ALEN);
3380 iscsi_stat->qos_priority =
3381 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3383 /* ask L5 driver to add data to the struct */
3384 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3387 /* called due to MCP event (on pmf):
3388 * reread new bandwidth configuration
3389 * configure FW
3390 * notify others function about the change
3392 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3394 if (bp->link_vars.link_up) {
3395 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3396 bnx2x_link_sync_notify(bp);
3398 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3401 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3403 bnx2x_config_mf_bw(bp);
3404 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3407 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3409 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3410 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3413 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3415 enum drv_info_opcode op_code;
3416 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3418 /* if drv_info version supported by MFW doesn't match - send NACK */
3419 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3420 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3421 return;
3424 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3425 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3427 memset(&bp->slowpath->drv_info_to_mcp, 0,
3428 sizeof(union drv_info_to_mcp));
3430 switch (op_code) {
3431 case ETH_STATS_OPCODE:
3432 bnx2x_drv_info_ether_stat(bp);
3433 break;
3434 case FCOE_STATS_OPCODE:
3435 bnx2x_drv_info_fcoe_stat(bp);
3436 break;
3437 case ISCSI_STATS_OPCODE:
3438 bnx2x_drv_info_iscsi_stat(bp);
3439 break;
3440 default:
3441 /* if op code isn't supported - send NACK */
3442 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3443 return;
3446 /* if we got drv_info attn from MFW then these fields are defined in
3447 * shmem2 for sure
3449 SHMEM2_WR(bp, drv_info_host_addr_lo,
3450 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3451 SHMEM2_WR(bp, drv_info_host_addr_hi,
3452 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3454 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3457 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3459 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3461 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3464 * This is the only place besides the function initialization
3465 * where the bp->flags can change so it is done without any
3466 * locks
3468 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3469 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3470 bp->flags |= MF_FUNC_DIS;
3472 bnx2x_e1h_disable(bp);
3473 } else {
3474 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3475 bp->flags &= ~MF_FUNC_DIS;
3477 bnx2x_e1h_enable(bp);
3479 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3481 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3482 bnx2x_config_mf_bw(bp);
3483 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3486 /* Report results to MCP */
3487 if (dcc_event)
3488 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3489 else
3490 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3493 /* must be called under the spq lock */
3494 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3496 struct eth_spe *next_spe = bp->spq_prod_bd;
3498 if (bp->spq_prod_bd == bp->spq_last_bd) {
3499 bp->spq_prod_bd = bp->spq;
3500 bp->spq_prod_idx = 0;
3501 DP(BNX2X_MSG_SP, "end of spq\n");
3502 } else {
3503 bp->spq_prod_bd++;
3504 bp->spq_prod_idx++;
3506 return next_spe;
3509 /* must be called under the spq lock */
3510 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3512 int func = BP_FUNC(bp);
3515 * Make sure that BD data is updated before writing the producer:
3516 * BD data is written to the memory, the producer is read from the
3517 * memory, thus we need a full memory barrier to ensure the ordering.
3519 mb();
3521 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3522 bp->spq_prod_idx);
3523 mmiowb();
3527 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3529 * @cmd: command to check
3530 * @cmd_type: command type
3532 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3534 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3535 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3536 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3537 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3538 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3539 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3540 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3541 return true;
3542 else
3543 return false;
3547 * bnx2x_sp_post - place a single command on an SP ring
3549 * @bp: driver handle
3550 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3551 * @cid: SW CID the command is related to
3552 * @data_hi: command private data address (high 32 bits)
3553 * @data_lo: command private data address (low 32 bits)
3554 * @cmd_type: command type (e.g. NONE, ETH)
3556 * SP data is handled as if it's always an address pair, thus data fields are
3557 * not swapped to little endian in upper functions. Instead this function swaps
3558 * data as if it's two u32 fields.
3560 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3561 u32 data_hi, u32 data_lo, int cmd_type)
3563 struct eth_spe *spe;
3564 u16 type;
3565 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3567 #ifdef BNX2X_STOP_ON_ERROR
3568 if (unlikely(bp->panic)) {
3569 BNX2X_ERR("Can't post SP when there is panic\n");
3570 return -EIO;
3572 #endif
3574 spin_lock_bh(&bp->spq_lock);
3576 if (common) {
3577 if (!atomic_read(&bp->eq_spq_left)) {
3578 BNX2X_ERR("BUG! EQ ring full!\n");
3579 spin_unlock_bh(&bp->spq_lock);
3580 bnx2x_panic();
3581 return -EBUSY;
3583 } else if (!atomic_read(&bp->cq_spq_left)) {
3584 BNX2X_ERR("BUG! SPQ ring full!\n");
3585 spin_unlock_bh(&bp->spq_lock);
3586 bnx2x_panic();
3587 return -EBUSY;
3590 spe = bnx2x_sp_get_next(bp);
3592 /* CID needs port number to be encoded int it */
3593 spe->hdr.conn_and_cmd_data =
3594 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3595 HW_CID(bp, cid));
3597 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3599 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3600 SPE_HDR_FUNCTION_ID);
3602 spe->hdr.type = cpu_to_le16(type);
3604 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3605 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3608 * It's ok if the actual decrement is issued towards the memory
3609 * somewhere between the spin_lock and spin_unlock. Thus no
3610 * more explicit memory barrier is needed.
3612 if (common)
3613 atomic_dec(&bp->eq_spq_left);
3614 else
3615 atomic_dec(&bp->cq_spq_left);
3617 DP(BNX2X_MSG_SP,
3618 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3619 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3620 (u32)(U64_LO(bp->spq_mapping) +
3621 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3622 HW_CID(bp, cid), data_hi, data_lo, type,
3623 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3625 bnx2x_sp_prod_update(bp);
3626 spin_unlock_bh(&bp->spq_lock);
3627 return 0;
3630 /* acquire split MCP access lock register */
3631 static int bnx2x_acquire_alr(struct bnx2x *bp)
3633 u32 j, val;
3634 int rc = 0;
3636 might_sleep();
3637 for (j = 0; j < 1000; j++) {
3638 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3639 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3640 if (val & MCPR_ACCESS_LOCK_LOCK)
3641 break;
3643 usleep_range(5000, 10000);
3645 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3646 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3647 rc = -EBUSY;
3650 return rc;
3653 /* release split MCP access lock register */
3654 static void bnx2x_release_alr(struct bnx2x *bp)
3656 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3659 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3660 #define BNX2X_DEF_SB_IDX 0x0002
3662 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3664 struct host_sp_status_block *def_sb = bp->def_status_blk;
3665 u16 rc = 0;
3667 barrier(); /* status block is written to by the chip */
3668 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3669 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3670 rc |= BNX2X_DEF_SB_ATT_IDX;
3673 if (bp->def_idx != def_sb->sp_sb.running_index) {
3674 bp->def_idx = def_sb->sp_sb.running_index;
3675 rc |= BNX2X_DEF_SB_IDX;
3678 /* Do not reorder: indices reading should complete before handling */
3679 barrier();
3680 return rc;
3684 * slow path service functions
3687 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3689 int port = BP_PORT(bp);
3690 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3691 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3692 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3693 NIG_REG_MASK_INTERRUPT_PORT0;
3694 u32 aeu_mask;
3695 u32 nig_mask = 0;
3696 u32 reg_addr;
3698 if (bp->attn_state & asserted)
3699 BNX2X_ERR("IGU ERROR\n");
3701 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3702 aeu_mask = REG_RD(bp, aeu_addr);
3704 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3705 aeu_mask, asserted);
3706 aeu_mask &= ~(asserted & 0x3ff);
3707 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3709 REG_WR(bp, aeu_addr, aeu_mask);
3710 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3712 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3713 bp->attn_state |= asserted;
3714 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3716 if (asserted & ATTN_HARD_WIRED_MASK) {
3717 if (asserted & ATTN_NIG_FOR_FUNC) {
3719 bnx2x_acquire_phy_lock(bp);
3721 /* save nig interrupt mask */
3722 nig_mask = REG_RD(bp, nig_int_mask_addr);
3724 /* If nig_mask is not set, no need to call the update
3725 * function.
3727 if (nig_mask) {
3728 REG_WR(bp, nig_int_mask_addr, 0);
3730 bnx2x_link_attn(bp);
3733 /* handle unicore attn? */
3735 if (asserted & ATTN_SW_TIMER_4_FUNC)
3736 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3738 if (asserted & GPIO_2_FUNC)
3739 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3741 if (asserted & GPIO_3_FUNC)
3742 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3744 if (asserted & GPIO_4_FUNC)
3745 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3747 if (port == 0) {
3748 if (asserted & ATTN_GENERAL_ATTN_1) {
3749 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3750 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3752 if (asserted & ATTN_GENERAL_ATTN_2) {
3753 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3754 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3756 if (asserted & ATTN_GENERAL_ATTN_3) {
3757 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3758 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3760 } else {
3761 if (asserted & ATTN_GENERAL_ATTN_4) {
3762 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3763 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3765 if (asserted & ATTN_GENERAL_ATTN_5) {
3766 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3767 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3769 if (asserted & ATTN_GENERAL_ATTN_6) {
3770 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3771 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3775 } /* if hardwired */
3777 if (bp->common.int_block == INT_BLOCK_HC)
3778 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3779 COMMAND_REG_ATTN_BITS_SET);
3780 else
3781 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3783 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3784 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3785 REG_WR(bp, reg_addr, asserted);
3787 /* now set back the mask */
3788 if (asserted & ATTN_NIG_FOR_FUNC) {
3789 /* Verify that IGU ack through BAR was written before restoring
3790 * NIG mask. This loop should exit after 2-3 iterations max.
3792 if (bp->common.int_block != INT_BLOCK_HC) {
3793 u32 cnt = 0, igu_acked;
3794 do {
3795 igu_acked = REG_RD(bp,
3796 IGU_REG_ATTENTION_ACK_BITS);
3797 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3798 (++cnt < MAX_IGU_ATTN_ACK_TO));
3799 if (!igu_acked)
3800 DP(NETIF_MSG_HW,
3801 "Failed to verify IGU ack on time\n");
3802 barrier();
3804 REG_WR(bp, nig_int_mask_addr, nig_mask);
3805 bnx2x_release_phy_lock(bp);
3809 static void bnx2x_fan_failure(struct bnx2x *bp)
3811 int port = BP_PORT(bp);
3812 u32 ext_phy_config;
3813 /* mark the failure */
3814 ext_phy_config =
3815 SHMEM_RD(bp,
3816 dev_info.port_hw_config[port].external_phy_config);
3818 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3819 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3820 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3821 ext_phy_config);
3823 /* log the failure */
3824 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3825 "Please contact OEM Support for assistance\n");
3827 /* Schedule device reset (unload)
3828 * This is due to some boards consuming sufficient power when driver is
3829 * up to overheat if fan fails.
3831 smp_mb__before_clear_bit();
3832 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3833 smp_mb__after_clear_bit();
3834 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3837 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3839 int port = BP_PORT(bp);
3840 int reg_offset;
3841 u32 val;
3843 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3844 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3846 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3848 val = REG_RD(bp, reg_offset);
3849 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3850 REG_WR(bp, reg_offset, val);
3852 BNX2X_ERR("SPIO5 hw attention\n");
3854 /* Fan failure attention */
3855 bnx2x_hw_reset_phy(&bp->link_params);
3856 bnx2x_fan_failure(bp);
3859 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3860 bnx2x_acquire_phy_lock(bp);
3861 bnx2x_handle_module_detect_int(&bp->link_params);
3862 bnx2x_release_phy_lock(bp);
3865 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3867 val = REG_RD(bp, reg_offset);
3868 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3869 REG_WR(bp, reg_offset, val);
3871 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3872 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3873 bnx2x_panic();
3877 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3879 u32 val;
3881 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3883 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3884 BNX2X_ERR("DB hw attention 0x%x\n", val);
3885 /* DORQ discard attention */
3886 if (val & 0x2)
3887 BNX2X_ERR("FATAL error from DORQ\n");
3890 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3892 int port = BP_PORT(bp);
3893 int reg_offset;
3895 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3896 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3898 val = REG_RD(bp, reg_offset);
3899 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3900 REG_WR(bp, reg_offset, val);
3902 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3903 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3904 bnx2x_panic();
3908 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3910 u32 val;
3912 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3914 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3915 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3916 /* CFC error attention */
3917 if (val & 0x2)
3918 BNX2X_ERR("FATAL error from CFC\n");
3921 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3922 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3923 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3924 /* RQ_USDMDP_FIFO_OVERFLOW */
3925 if (val & 0x18000)
3926 BNX2X_ERR("FATAL error from PXP\n");
3928 if (!CHIP_IS_E1x(bp)) {
3929 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3930 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3934 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3936 int port = BP_PORT(bp);
3937 int reg_offset;
3939 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3940 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3942 val = REG_RD(bp, reg_offset);
3943 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3944 REG_WR(bp, reg_offset, val);
3946 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3947 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3948 bnx2x_panic();
3952 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3954 u32 val;
3956 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3958 if (attn & BNX2X_PMF_LINK_ASSERT) {
3959 int func = BP_FUNC(bp);
3961 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3962 bnx2x_read_mf_cfg(bp);
3963 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3964 func_mf_config[BP_ABS_FUNC(bp)].config);
3965 val = SHMEM_RD(bp,
3966 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3967 if (val & DRV_STATUS_DCC_EVENT_MASK)
3968 bnx2x_dcc_event(bp,
3969 (val & DRV_STATUS_DCC_EVENT_MASK));
3971 if (val & DRV_STATUS_SET_MF_BW)
3972 bnx2x_set_mf_bw(bp);
3974 if (val & DRV_STATUS_DRV_INFO_REQ)
3975 bnx2x_handle_drv_info_req(bp);
3977 if (val & DRV_STATUS_VF_DISABLED)
3978 bnx2x_vf_handle_flr_event(bp);
3980 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3981 bnx2x_pmf_update(bp);
3983 if (bp->port.pmf &&
3984 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3985 bp->dcbx_enabled > 0)
3986 /* start dcbx state machine */
3987 bnx2x_dcbx_set_params(bp,
3988 BNX2X_DCBX_STATE_NEG_RECEIVED);
3989 if (val & DRV_STATUS_AFEX_EVENT_MASK)
3990 bnx2x_handle_afex_cmd(bp,
3991 val & DRV_STATUS_AFEX_EVENT_MASK);
3992 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3993 bnx2x_handle_eee_event(bp);
3994 if (bp->link_vars.periodic_flags &
3995 PERIODIC_FLAGS_LINK_EVENT) {
3996 /* sync with link */
3997 bnx2x_acquire_phy_lock(bp);
3998 bp->link_vars.periodic_flags &=
3999 ~PERIODIC_FLAGS_LINK_EVENT;
4000 bnx2x_release_phy_lock(bp);
4001 if (IS_MF(bp))
4002 bnx2x_link_sync_notify(bp);
4003 bnx2x_link_report(bp);
4005 /* Always call it here: bnx2x_link_report() will
4006 * prevent the link indication duplication.
4008 bnx2x__link_status_update(bp);
4009 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4011 BNX2X_ERR("MC assert!\n");
4012 bnx2x_mc_assert(bp);
4013 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4014 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4015 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4016 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4017 bnx2x_panic();
4019 } else if (attn & BNX2X_MCP_ASSERT) {
4021 BNX2X_ERR("MCP assert!\n");
4022 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4023 bnx2x_fw_dump(bp);
4025 } else
4026 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4029 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4030 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4031 if (attn & BNX2X_GRC_TIMEOUT) {
4032 val = CHIP_IS_E1(bp) ? 0 :
4033 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4034 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4036 if (attn & BNX2X_GRC_RSV) {
4037 val = CHIP_IS_E1(bp) ? 0 :
4038 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4039 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4041 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4046 * Bits map:
4047 * 0-7 - Engine0 load counter.
4048 * 8-15 - Engine1 load counter.
4049 * 16 - Engine0 RESET_IN_PROGRESS bit.
4050 * 17 - Engine1 RESET_IN_PROGRESS bit.
4051 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4052 * on the engine
4053 * 19 - Engine1 ONE_IS_LOADED.
4054 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4055 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4056 * just the one belonging to its engine).
4059 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4061 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4062 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4063 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4064 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4065 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4066 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4067 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4070 * Set the GLOBAL_RESET bit.
4072 * Should be run under rtnl lock
4074 void bnx2x_set_reset_global(struct bnx2x *bp)
4076 u32 val;
4077 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4078 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4079 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4080 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4084 * Clear the GLOBAL_RESET bit.
4086 * Should be run under rtnl lock
4088 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4090 u32 val;
4091 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4092 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4093 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4094 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4098 * Checks the GLOBAL_RESET bit.
4100 * should be run under rtnl lock
4102 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4104 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4106 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4107 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4111 * Clear RESET_IN_PROGRESS bit for the current engine.
4113 * Should be run under rtnl lock
4115 static void bnx2x_set_reset_done(struct bnx2x *bp)
4117 u32 val;
4118 u32 bit = BP_PATH(bp) ?
4119 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4120 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4121 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4123 /* Clear the bit */
4124 val &= ~bit;
4125 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4127 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4131 * Set RESET_IN_PROGRESS for the current engine.
4133 * should be run under rtnl lock
4135 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4137 u32 val;
4138 u32 bit = BP_PATH(bp) ?
4139 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4140 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4141 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4143 /* Set the bit */
4144 val |= bit;
4145 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4146 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4150 * Checks the RESET_IN_PROGRESS bit for the given engine.
4151 * should be run under rtnl lock
4153 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4155 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4156 u32 bit = engine ?
4157 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4159 /* return false if bit is set */
4160 return (val & bit) ? false : true;
4164 * set pf load for the current pf.
4166 * should be run under rtnl lock
4168 void bnx2x_set_pf_load(struct bnx2x *bp)
4170 u32 val1, val;
4171 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4172 BNX2X_PATH0_LOAD_CNT_MASK;
4173 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4174 BNX2X_PATH0_LOAD_CNT_SHIFT;
4176 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4177 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4179 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4181 /* get the current counter value */
4182 val1 = (val & mask) >> shift;
4184 /* set bit of that PF */
4185 val1 |= (1 << bp->pf_num);
4187 /* clear the old value */
4188 val &= ~mask;
4190 /* set the new one */
4191 val |= ((val1 << shift) & mask);
4193 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4194 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4198 * bnx2x_clear_pf_load - clear pf load mark
4200 * @bp: driver handle
4202 * Should be run under rtnl lock.
4203 * Decrements the load counter for the current engine. Returns
4204 * whether other functions are still loaded
4206 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4208 u32 val1, val;
4209 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4210 BNX2X_PATH0_LOAD_CNT_MASK;
4211 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4212 BNX2X_PATH0_LOAD_CNT_SHIFT;
4214 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4215 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4216 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4218 /* get the current counter value */
4219 val1 = (val & mask) >> shift;
4221 /* clear bit of that PF */
4222 val1 &= ~(1 << bp->pf_num);
4224 /* clear the old value */
4225 val &= ~mask;
4227 /* set the new one */
4228 val |= ((val1 << shift) & mask);
4230 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4231 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4232 return val1 != 0;
4236 * Read the load status for the current engine.
4238 * should be run under rtnl lock
4240 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4242 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4243 BNX2X_PATH0_LOAD_CNT_MASK);
4244 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4245 BNX2X_PATH0_LOAD_CNT_SHIFT);
4246 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4248 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4250 val = (val & mask) >> shift;
4252 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4253 engine, val);
4255 return val != 0;
4258 static void _print_parity(struct bnx2x *bp, u32 reg)
4260 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4263 static void _print_next_block(int idx, const char *blk)
4265 pr_cont("%s%s", idx ? ", " : "", blk);
4268 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4269 int par_num, bool print)
4271 int i = 0;
4272 u32 cur_bit = 0;
4273 for (i = 0; sig; i++) {
4274 cur_bit = ((u32)0x1 << i);
4275 if (sig & cur_bit) {
4276 switch (cur_bit) {
4277 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4278 if (print) {
4279 _print_next_block(par_num++, "BRB");
4280 _print_parity(bp,
4281 BRB1_REG_BRB1_PRTY_STS);
4283 break;
4284 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4285 if (print) {
4286 _print_next_block(par_num++, "PARSER");
4287 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4289 break;
4290 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4291 if (print) {
4292 _print_next_block(par_num++, "TSDM");
4293 _print_parity(bp,
4294 TSDM_REG_TSDM_PRTY_STS);
4296 break;
4297 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4298 if (print) {
4299 _print_next_block(par_num++,
4300 "SEARCHER");
4301 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4303 break;
4304 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4305 if (print) {
4306 _print_next_block(par_num++, "TCM");
4307 _print_parity(bp,
4308 TCM_REG_TCM_PRTY_STS);
4310 break;
4311 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4312 if (print) {
4313 _print_next_block(par_num++, "TSEMI");
4314 _print_parity(bp,
4315 TSEM_REG_TSEM_PRTY_STS_0);
4316 _print_parity(bp,
4317 TSEM_REG_TSEM_PRTY_STS_1);
4319 break;
4320 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4321 if (print) {
4322 _print_next_block(par_num++, "XPB");
4323 _print_parity(bp, GRCBASE_XPB +
4324 PB_REG_PB_PRTY_STS);
4326 break;
4329 /* Clear the bit */
4330 sig &= ~cur_bit;
4334 return par_num;
4337 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4338 int par_num, bool *global,
4339 bool print)
4341 int i = 0;
4342 u32 cur_bit = 0;
4343 for (i = 0; sig; i++) {
4344 cur_bit = ((u32)0x1 << i);
4345 if (sig & cur_bit) {
4346 switch (cur_bit) {
4347 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4348 if (print) {
4349 _print_next_block(par_num++, "PBF");
4350 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4352 break;
4353 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4354 if (print) {
4355 _print_next_block(par_num++, "QM");
4356 _print_parity(bp, QM_REG_QM_PRTY_STS);
4358 break;
4359 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4360 if (print) {
4361 _print_next_block(par_num++, "TM");
4362 _print_parity(bp, TM_REG_TM_PRTY_STS);
4364 break;
4365 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4366 if (print) {
4367 _print_next_block(par_num++, "XSDM");
4368 _print_parity(bp,
4369 XSDM_REG_XSDM_PRTY_STS);
4371 break;
4372 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4373 if (print) {
4374 _print_next_block(par_num++, "XCM");
4375 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4377 break;
4378 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4379 if (print) {
4380 _print_next_block(par_num++, "XSEMI");
4381 _print_parity(bp,
4382 XSEM_REG_XSEM_PRTY_STS_0);
4383 _print_parity(bp,
4384 XSEM_REG_XSEM_PRTY_STS_1);
4386 break;
4387 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4388 if (print) {
4389 _print_next_block(par_num++,
4390 "DOORBELLQ");
4391 _print_parity(bp,
4392 DORQ_REG_DORQ_PRTY_STS);
4394 break;
4395 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4396 if (print) {
4397 _print_next_block(par_num++, "NIG");
4398 if (CHIP_IS_E1x(bp)) {
4399 _print_parity(bp,
4400 NIG_REG_NIG_PRTY_STS);
4401 } else {
4402 _print_parity(bp,
4403 NIG_REG_NIG_PRTY_STS_0);
4404 _print_parity(bp,
4405 NIG_REG_NIG_PRTY_STS_1);
4408 break;
4409 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4410 if (print)
4411 _print_next_block(par_num++,
4412 "VAUX PCI CORE");
4413 *global = true;
4414 break;
4415 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4416 if (print) {
4417 _print_next_block(par_num++, "DEBUG");
4418 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4420 break;
4421 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4422 if (print) {
4423 _print_next_block(par_num++, "USDM");
4424 _print_parity(bp,
4425 USDM_REG_USDM_PRTY_STS);
4427 break;
4428 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4429 if (print) {
4430 _print_next_block(par_num++, "UCM");
4431 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4433 break;
4434 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4435 if (print) {
4436 _print_next_block(par_num++, "USEMI");
4437 _print_parity(bp,
4438 USEM_REG_USEM_PRTY_STS_0);
4439 _print_parity(bp,
4440 USEM_REG_USEM_PRTY_STS_1);
4442 break;
4443 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4444 if (print) {
4445 _print_next_block(par_num++, "UPB");
4446 _print_parity(bp, GRCBASE_UPB +
4447 PB_REG_PB_PRTY_STS);
4449 break;
4450 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4451 if (print) {
4452 _print_next_block(par_num++, "CSDM");
4453 _print_parity(bp,
4454 CSDM_REG_CSDM_PRTY_STS);
4456 break;
4457 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4458 if (print) {
4459 _print_next_block(par_num++, "CCM");
4460 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4462 break;
4465 /* Clear the bit */
4466 sig &= ~cur_bit;
4470 return par_num;
4473 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4474 int par_num, bool print)
4476 int i = 0;
4477 u32 cur_bit = 0;
4478 for (i = 0; sig; i++) {
4479 cur_bit = ((u32)0x1 << i);
4480 if (sig & cur_bit) {
4481 switch (cur_bit) {
4482 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4483 if (print) {
4484 _print_next_block(par_num++, "CSEMI");
4485 _print_parity(bp,
4486 CSEM_REG_CSEM_PRTY_STS_0);
4487 _print_parity(bp,
4488 CSEM_REG_CSEM_PRTY_STS_1);
4490 break;
4491 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4492 if (print) {
4493 _print_next_block(par_num++, "PXP");
4494 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4495 _print_parity(bp,
4496 PXP2_REG_PXP2_PRTY_STS_0);
4497 _print_parity(bp,
4498 PXP2_REG_PXP2_PRTY_STS_1);
4500 break;
4501 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4502 if (print)
4503 _print_next_block(par_num++,
4504 "PXPPCICLOCKCLIENT");
4505 break;
4506 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4507 if (print) {
4508 _print_next_block(par_num++, "CFC");
4509 _print_parity(bp,
4510 CFC_REG_CFC_PRTY_STS);
4512 break;
4513 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4514 if (print) {
4515 _print_next_block(par_num++, "CDU");
4516 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4518 break;
4519 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4520 if (print) {
4521 _print_next_block(par_num++, "DMAE");
4522 _print_parity(bp,
4523 DMAE_REG_DMAE_PRTY_STS);
4525 break;
4526 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4527 if (print) {
4528 _print_next_block(par_num++, "IGU");
4529 if (CHIP_IS_E1x(bp))
4530 _print_parity(bp,
4531 HC_REG_HC_PRTY_STS);
4532 else
4533 _print_parity(bp,
4534 IGU_REG_IGU_PRTY_STS);
4536 break;
4537 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4538 if (print) {
4539 _print_next_block(par_num++, "MISC");
4540 _print_parity(bp,
4541 MISC_REG_MISC_PRTY_STS);
4543 break;
4546 /* Clear the bit */
4547 sig &= ~cur_bit;
4551 return par_num;
4554 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4555 bool *global, bool print)
4557 int i = 0;
4558 u32 cur_bit = 0;
4559 for (i = 0; sig; i++) {
4560 cur_bit = ((u32)0x1 << i);
4561 if (sig & cur_bit) {
4562 switch (cur_bit) {
4563 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4564 if (print)
4565 _print_next_block(par_num++, "MCP ROM");
4566 *global = true;
4567 break;
4568 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4569 if (print)
4570 _print_next_block(par_num++,
4571 "MCP UMP RX");
4572 *global = true;
4573 break;
4574 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4575 if (print)
4576 _print_next_block(par_num++,
4577 "MCP UMP TX");
4578 *global = true;
4579 break;
4580 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4581 if (print)
4582 _print_next_block(par_num++,
4583 "MCP SCPAD");
4584 *global = true;
4585 break;
4588 /* Clear the bit */
4589 sig &= ~cur_bit;
4593 return par_num;
4596 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4597 int par_num, bool print)
4599 int i = 0;
4600 u32 cur_bit = 0;
4601 for (i = 0; sig; i++) {
4602 cur_bit = ((u32)0x1 << i);
4603 if (sig & cur_bit) {
4604 switch (cur_bit) {
4605 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4606 if (print) {
4607 _print_next_block(par_num++, "PGLUE_B");
4608 _print_parity(bp,
4609 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4611 break;
4612 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4613 if (print) {
4614 _print_next_block(par_num++, "ATC");
4615 _print_parity(bp,
4616 ATC_REG_ATC_PRTY_STS);
4618 break;
4621 /* Clear the bit */
4622 sig &= ~cur_bit;
4626 return par_num;
4629 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4630 u32 *sig)
4632 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4633 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4634 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4635 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4636 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4637 int par_num = 0;
4638 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4639 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4640 sig[0] & HW_PRTY_ASSERT_SET_0,
4641 sig[1] & HW_PRTY_ASSERT_SET_1,
4642 sig[2] & HW_PRTY_ASSERT_SET_2,
4643 sig[3] & HW_PRTY_ASSERT_SET_3,
4644 sig[4] & HW_PRTY_ASSERT_SET_4);
4645 if (print)
4646 netdev_err(bp->dev,
4647 "Parity errors detected in blocks: ");
4648 par_num = bnx2x_check_blocks_with_parity0(bp,
4649 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4650 par_num = bnx2x_check_blocks_with_parity1(bp,
4651 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4652 par_num = bnx2x_check_blocks_with_parity2(bp,
4653 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4654 par_num = bnx2x_check_blocks_with_parity3(
4655 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4656 par_num = bnx2x_check_blocks_with_parity4(bp,
4657 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4659 if (print)
4660 pr_cont("\n");
4662 return true;
4663 } else
4664 return false;
4668 * bnx2x_chk_parity_attn - checks for parity attentions.
4670 * @bp: driver handle
4671 * @global: true if there was a global attention
4672 * @print: show parity attention in syslog
4674 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4676 struct attn_route attn = { {0} };
4677 int port = BP_PORT(bp);
4679 attn.sig[0] = REG_RD(bp,
4680 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4681 port*4);
4682 attn.sig[1] = REG_RD(bp,
4683 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4684 port*4);
4685 attn.sig[2] = REG_RD(bp,
4686 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4687 port*4);
4688 attn.sig[3] = REG_RD(bp,
4689 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4690 port*4);
4692 if (!CHIP_IS_E1x(bp))
4693 attn.sig[4] = REG_RD(bp,
4694 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4695 port*4);
4697 return bnx2x_parity_attn(bp, global, print, attn.sig);
4700 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4702 u32 val;
4703 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4705 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4706 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4707 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4708 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4709 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4710 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4711 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4712 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4713 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4714 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4715 if (val &
4716 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4717 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4718 if (val &
4719 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4720 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4721 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4722 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4723 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4724 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4725 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4726 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4728 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4729 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4730 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4731 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4732 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4733 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4734 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4735 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4736 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4737 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4738 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4739 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4740 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4741 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4742 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4745 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4746 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4747 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4748 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4749 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4753 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4755 struct attn_route attn, *group_mask;
4756 int port = BP_PORT(bp);
4757 int index;
4758 u32 reg_addr;
4759 u32 val;
4760 u32 aeu_mask;
4761 bool global = false;
4763 /* need to take HW lock because MCP or other port might also
4764 try to handle this event */
4765 bnx2x_acquire_alr(bp);
4767 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4768 #ifndef BNX2X_STOP_ON_ERROR
4769 bp->recovery_state = BNX2X_RECOVERY_INIT;
4770 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4771 /* Disable HW interrupts */
4772 bnx2x_int_disable(bp);
4773 /* In case of parity errors don't handle attentions so that
4774 * other function would "see" parity errors.
4776 #else
4777 bnx2x_panic();
4778 #endif
4779 bnx2x_release_alr(bp);
4780 return;
4783 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4784 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4785 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4786 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4787 if (!CHIP_IS_E1x(bp))
4788 attn.sig[4] =
4789 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4790 else
4791 attn.sig[4] = 0;
4793 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4794 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4796 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4797 if (deasserted & (1 << index)) {
4798 group_mask = &bp->attn_group[index];
4800 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4801 index,
4802 group_mask->sig[0], group_mask->sig[1],
4803 group_mask->sig[2], group_mask->sig[3],
4804 group_mask->sig[4]);
4806 bnx2x_attn_int_deasserted4(bp,
4807 attn.sig[4] & group_mask->sig[4]);
4808 bnx2x_attn_int_deasserted3(bp,
4809 attn.sig[3] & group_mask->sig[3]);
4810 bnx2x_attn_int_deasserted1(bp,
4811 attn.sig[1] & group_mask->sig[1]);
4812 bnx2x_attn_int_deasserted2(bp,
4813 attn.sig[2] & group_mask->sig[2]);
4814 bnx2x_attn_int_deasserted0(bp,
4815 attn.sig[0] & group_mask->sig[0]);
4819 bnx2x_release_alr(bp);
4821 if (bp->common.int_block == INT_BLOCK_HC)
4822 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4823 COMMAND_REG_ATTN_BITS_CLR);
4824 else
4825 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4827 val = ~deasserted;
4828 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4829 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4830 REG_WR(bp, reg_addr, val);
4832 if (~bp->attn_state & deasserted)
4833 BNX2X_ERR("IGU ERROR\n");
4835 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4836 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4838 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4839 aeu_mask = REG_RD(bp, reg_addr);
4841 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4842 aeu_mask, deasserted);
4843 aeu_mask |= (deasserted & 0x3ff);
4844 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4846 REG_WR(bp, reg_addr, aeu_mask);
4847 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4849 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4850 bp->attn_state &= ~deasserted;
4851 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4854 static void bnx2x_attn_int(struct bnx2x *bp)
4856 /* read local copy of bits */
4857 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4858 attn_bits);
4859 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4860 attn_bits_ack);
4861 u32 attn_state = bp->attn_state;
4863 /* look for changed bits */
4864 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4865 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4867 DP(NETIF_MSG_HW,
4868 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4869 attn_bits, attn_ack, asserted, deasserted);
4871 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4872 BNX2X_ERR("BAD attention state\n");
4874 /* handle bits that were raised */
4875 if (asserted)
4876 bnx2x_attn_int_asserted(bp, asserted);
4878 if (deasserted)
4879 bnx2x_attn_int_deasserted(bp, deasserted);
4882 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4883 u16 index, u8 op, u8 update)
4885 u32 igu_addr = bp->igu_base_addr;
4886 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4887 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4888 igu_addr);
4891 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4893 /* No memory barriers */
4894 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4895 mmiowb(); /* keep prod updates ordered */
4898 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4899 union event_ring_elem *elem)
4901 u8 err = elem->message.error;
4903 if (!bp->cnic_eth_dev.starting_cid ||
4904 (cid < bp->cnic_eth_dev.starting_cid &&
4905 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4906 return 1;
4908 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4910 if (unlikely(err)) {
4912 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4913 cid);
4914 bnx2x_panic_dump(bp, false);
4916 bnx2x_cnic_cfc_comp(bp, cid, err);
4917 return 0;
4920 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4922 struct bnx2x_mcast_ramrod_params rparam;
4923 int rc;
4925 memset(&rparam, 0, sizeof(rparam));
4927 rparam.mcast_obj = &bp->mcast_obj;
4929 netif_addr_lock_bh(bp->dev);
4931 /* Clear pending state for the last command */
4932 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4934 /* If there are pending mcast commands - send them */
4935 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4936 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4937 if (rc < 0)
4938 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4939 rc);
4942 netif_addr_unlock_bh(bp->dev);
4945 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4946 union event_ring_elem *elem)
4948 unsigned long ramrod_flags = 0;
4949 int rc = 0;
4950 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4951 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4953 /* Always push next commands out, don't wait here */
4954 __set_bit(RAMROD_CONT, &ramrod_flags);
4956 switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4957 >> BNX2X_SWCID_SHIFT) {
4958 case BNX2X_FILTER_MAC_PENDING:
4959 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4960 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4961 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4962 else
4963 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4965 break;
4966 case BNX2X_FILTER_MCAST_PENDING:
4967 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4968 /* This is only relevant for 57710 where multicast MACs are
4969 * configured as unicast MACs using the same ramrod.
4971 bnx2x_handle_mcast_eqe(bp);
4972 return;
4973 default:
4974 BNX2X_ERR("Unsupported classification command: %d\n",
4975 elem->message.data.eth_event.echo);
4976 return;
4979 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4981 if (rc < 0)
4982 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4983 else if (rc > 0)
4984 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4987 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4989 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4991 netif_addr_lock_bh(bp->dev);
4993 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4995 /* Send rx_mode command again if was requested */
4996 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4997 bnx2x_set_storm_rx_mode(bp);
4998 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4999 &bp->sp_state))
5000 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5001 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5002 &bp->sp_state))
5003 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5005 netif_addr_unlock_bh(bp->dev);
5008 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5009 union event_ring_elem *elem)
5011 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5012 DP(BNX2X_MSG_SP,
5013 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5014 elem->message.data.vif_list_event.func_bit_map);
5015 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5016 elem->message.data.vif_list_event.func_bit_map);
5017 } else if (elem->message.data.vif_list_event.echo ==
5018 VIF_LIST_RULE_SET) {
5019 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5020 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5024 /* called with rtnl_lock */
5025 static void bnx2x_after_function_update(struct bnx2x *bp)
5027 int q, rc;
5028 struct bnx2x_fastpath *fp;
5029 struct bnx2x_queue_state_params queue_params = {NULL};
5030 struct bnx2x_queue_update_params *q_update_params =
5031 &queue_params.params.update;
5033 /* Send Q update command with afex vlan removal values for all Qs */
5034 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5036 /* set silent vlan removal values according to vlan mode */
5037 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5038 &q_update_params->update_flags);
5039 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5040 &q_update_params->update_flags);
5041 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5043 /* in access mode mark mask and value are 0 to strip all vlans */
5044 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5045 q_update_params->silent_removal_value = 0;
5046 q_update_params->silent_removal_mask = 0;
5047 } else {
5048 q_update_params->silent_removal_value =
5049 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5050 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5053 for_each_eth_queue(bp, q) {
5054 /* Set the appropriate Queue object */
5055 fp = &bp->fp[q];
5056 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5058 /* send the ramrod */
5059 rc = bnx2x_queue_state_change(bp, &queue_params);
5060 if (rc < 0)
5061 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5065 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5066 fp = &bp->fp[FCOE_IDX(bp)];
5067 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5069 /* clear pending completion bit */
5070 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5072 /* mark latest Q bit */
5073 smp_mb__before_clear_bit();
5074 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5075 smp_mb__after_clear_bit();
5077 /* send Q update ramrod for FCoE Q */
5078 rc = bnx2x_queue_state_change(bp, &queue_params);
5079 if (rc < 0)
5080 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5082 } else {
5083 /* If no FCoE ring - ACK MCP now */
5084 bnx2x_link_report(bp);
5085 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5089 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5090 struct bnx2x *bp, u32 cid)
5092 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5094 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5095 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5096 else
5097 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5100 static void bnx2x_eq_int(struct bnx2x *bp)
5102 u16 hw_cons, sw_cons, sw_prod;
5103 union event_ring_elem *elem;
5104 u8 echo;
5105 u32 cid;
5106 u8 opcode;
5107 int rc, spqe_cnt = 0;
5108 struct bnx2x_queue_sp_obj *q_obj;
5109 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5110 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5112 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5114 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5115 * when we get the next-page we need to adjust so the loop
5116 * condition below will be met. The next element is the size of a
5117 * regular element and hence incrementing by 1
5119 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5120 hw_cons++;
5122 /* This function may never run in parallel with itself for a
5123 * specific bp, thus there is no need in "paired" read memory
5124 * barrier here.
5126 sw_cons = bp->eq_cons;
5127 sw_prod = bp->eq_prod;
5129 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5130 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5132 for (; sw_cons != hw_cons;
5133 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5135 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5137 rc = bnx2x_iov_eq_sp_event(bp, elem);
5138 if (!rc) {
5139 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5140 rc);
5141 goto next_spqe;
5144 /* elem CID originates from FW; actually LE */
5145 cid = SW_CID((__force __le32)
5146 elem->message.data.cfc_del_event.cid);
5147 opcode = elem->message.opcode;
5149 /* handle eq element */
5150 switch (opcode) {
5151 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5152 DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5153 bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5154 continue;
5156 case EVENT_RING_OPCODE_STAT_QUERY:
5157 DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5158 "got statistics comp event %d\n",
5159 bp->stats_comp++);
5160 /* nothing to do with stats comp */
5161 goto next_spqe;
5163 case EVENT_RING_OPCODE_CFC_DEL:
5164 /* handle according to cid range */
5166 * we may want to verify here that the bp state is
5167 * HALTING
5169 DP(BNX2X_MSG_SP,
5170 "got delete ramrod for MULTI[%d]\n", cid);
5172 if (CNIC_LOADED(bp) &&
5173 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5174 goto next_spqe;
5176 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5178 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5179 break;
5181 goto next_spqe;
5183 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5184 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5185 if (f_obj->complete_cmd(bp, f_obj,
5186 BNX2X_F_CMD_TX_STOP))
5187 break;
5188 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5189 goto next_spqe;
5191 case EVENT_RING_OPCODE_START_TRAFFIC:
5192 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5193 if (f_obj->complete_cmd(bp, f_obj,
5194 BNX2X_F_CMD_TX_START))
5195 break;
5196 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5197 goto next_spqe;
5199 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5200 echo = elem->message.data.function_update_event.echo;
5201 if (echo == SWITCH_UPDATE) {
5202 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5203 "got FUNC_SWITCH_UPDATE ramrod\n");
5204 if (f_obj->complete_cmd(
5205 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5206 break;
5208 } else {
5209 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5210 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5211 f_obj->complete_cmd(bp, f_obj,
5212 BNX2X_F_CMD_AFEX_UPDATE);
5214 /* We will perform the Queues update from
5215 * sp_rtnl task as all Queue SP operations
5216 * should run under rtnl_lock.
5218 smp_mb__before_clear_bit();
5219 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5220 &bp->sp_rtnl_state);
5221 smp_mb__after_clear_bit();
5223 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5226 goto next_spqe;
5228 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5229 f_obj->complete_cmd(bp, f_obj,
5230 BNX2X_F_CMD_AFEX_VIFLISTS);
5231 bnx2x_after_afex_vif_lists(bp, elem);
5232 goto next_spqe;
5233 case EVENT_RING_OPCODE_FUNCTION_START:
5234 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5235 "got FUNC_START ramrod\n");
5236 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5237 break;
5239 goto next_spqe;
5241 case EVENT_RING_OPCODE_FUNCTION_STOP:
5242 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5243 "got FUNC_STOP ramrod\n");
5244 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5245 break;
5247 goto next_spqe;
5250 switch (opcode | bp->state) {
5251 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5252 BNX2X_STATE_OPEN):
5253 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5254 BNX2X_STATE_OPENING_WAIT4_PORT):
5255 cid = elem->message.data.eth_event.echo &
5256 BNX2X_SWCID_MASK;
5257 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5258 cid);
5259 rss_raw->clear_pending(rss_raw);
5260 break;
5262 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5263 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5264 case (EVENT_RING_OPCODE_SET_MAC |
5265 BNX2X_STATE_CLOSING_WAIT4_HALT):
5266 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5267 BNX2X_STATE_OPEN):
5268 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5269 BNX2X_STATE_DIAG):
5270 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5271 BNX2X_STATE_CLOSING_WAIT4_HALT):
5272 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5273 bnx2x_handle_classification_eqe(bp, elem);
5274 break;
5276 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5277 BNX2X_STATE_OPEN):
5278 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5279 BNX2X_STATE_DIAG):
5280 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5281 BNX2X_STATE_CLOSING_WAIT4_HALT):
5282 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5283 bnx2x_handle_mcast_eqe(bp);
5284 break;
5286 case (EVENT_RING_OPCODE_FILTERS_RULES |
5287 BNX2X_STATE_OPEN):
5288 case (EVENT_RING_OPCODE_FILTERS_RULES |
5289 BNX2X_STATE_DIAG):
5290 case (EVENT_RING_OPCODE_FILTERS_RULES |
5291 BNX2X_STATE_CLOSING_WAIT4_HALT):
5292 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5293 bnx2x_handle_rx_mode_eqe(bp);
5294 break;
5295 default:
5296 /* unknown event log error and continue */
5297 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5298 elem->message.opcode, bp->state);
5300 next_spqe:
5301 spqe_cnt++;
5302 } /* for */
5304 smp_mb__before_atomic_inc();
5305 atomic_add(spqe_cnt, &bp->eq_spq_left);
5307 bp->eq_cons = sw_cons;
5308 bp->eq_prod = sw_prod;
5309 /* Make sure that above mem writes were issued towards the memory */
5310 smp_wmb();
5312 /* update producer */
5313 bnx2x_update_eq_prod(bp, bp->eq_prod);
5316 static void bnx2x_sp_task(struct work_struct *work)
5318 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5320 DP(BNX2X_MSG_SP, "sp task invoked\n");
5322 /* make sure the atomic interrupt_occurred has been written */
5323 smp_rmb();
5324 if (atomic_read(&bp->interrupt_occurred)) {
5326 /* what work needs to be performed? */
5327 u16 status = bnx2x_update_dsb_idx(bp);
5329 DP(BNX2X_MSG_SP, "status %x\n", status);
5330 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5331 atomic_set(&bp->interrupt_occurred, 0);
5333 /* HW attentions */
5334 if (status & BNX2X_DEF_SB_ATT_IDX) {
5335 bnx2x_attn_int(bp);
5336 status &= ~BNX2X_DEF_SB_ATT_IDX;
5339 /* SP events: STAT_QUERY and others */
5340 if (status & BNX2X_DEF_SB_IDX) {
5341 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5343 if (FCOE_INIT(bp) &&
5344 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5345 /* Prevent local bottom-halves from running as
5346 * we are going to change the local NAPI list.
5348 local_bh_disable();
5349 napi_schedule(&bnx2x_fcoe(bp, napi));
5350 local_bh_enable();
5353 /* Handle EQ completions */
5354 bnx2x_eq_int(bp);
5355 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5356 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5358 status &= ~BNX2X_DEF_SB_IDX;
5361 /* if status is non zero then perhaps something went wrong */
5362 if (unlikely(status))
5363 DP(BNX2X_MSG_SP,
5364 "got an unknown interrupt! (status 0x%x)\n", status);
5366 /* ack status block only if something was actually handled */
5367 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5368 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5371 /* must be called after the EQ processing (since eq leads to sriov
5372 * ramrod completion flows).
5373 * This flow may have been scheduled by the arrival of a ramrod
5374 * completion, or by the sriov code rescheduling itself.
5376 bnx2x_iov_sp_task(bp);
5378 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5379 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5380 &bp->sp_state)) {
5381 bnx2x_link_report(bp);
5382 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5386 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5388 struct net_device *dev = dev_instance;
5389 struct bnx2x *bp = netdev_priv(dev);
5391 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5392 IGU_INT_DISABLE, 0);
5394 #ifdef BNX2X_STOP_ON_ERROR
5395 if (unlikely(bp->panic))
5396 return IRQ_HANDLED;
5397 #endif
5399 if (CNIC_LOADED(bp)) {
5400 struct cnic_ops *c_ops;
5402 rcu_read_lock();
5403 c_ops = rcu_dereference(bp->cnic_ops);
5404 if (c_ops)
5405 c_ops->cnic_handler(bp->cnic_data, NULL);
5406 rcu_read_unlock();
5409 /* schedule sp task to perform default status block work, ack
5410 * attentions and enable interrupts.
5412 bnx2x_schedule_sp_task(bp);
5414 return IRQ_HANDLED;
5417 /* end of slow path */
5419 void bnx2x_drv_pulse(struct bnx2x *bp)
5421 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5422 bp->fw_drv_pulse_wr_seq);
5425 static void bnx2x_timer(unsigned long data)
5427 struct bnx2x *bp = (struct bnx2x *) data;
5429 if (!netif_running(bp->dev))
5430 return;
5432 if (IS_PF(bp) &&
5433 !BP_NOMCP(bp)) {
5434 int mb_idx = BP_FW_MB_IDX(bp);
5435 u32 drv_pulse;
5436 u32 mcp_pulse;
5438 ++bp->fw_drv_pulse_wr_seq;
5439 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5440 /* TBD - add SYSTEM_TIME */
5441 drv_pulse = bp->fw_drv_pulse_wr_seq;
5442 bnx2x_drv_pulse(bp);
5444 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5445 MCP_PULSE_SEQ_MASK);
5446 /* The delta between driver pulse and mcp response
5447 * should be 1 (before mcp response) or 0 (after mcp response)
5449 if ((drv_pulse != mcp_pulse) &&
5450 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5451 /* someone lost a heartbeat... */
5452 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5453 drv_pulse, mcp_pulse);
5457 if (bp->state == BNX2X_STATE_OPEN)
5458 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5460 /* sample pf vf bulletin board for new posts from pf */
5461 if (IS_VF(bp))
5462 bnx2x_sample_bulletin(bp);
5464 mod_timer(&bp->timer, jiffies + bp->current_interval);
5467 /* end of Statistics */
5469 /* nic init */
5472 * nic init service functions
5475 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5477 u32 i;
5478 if (!(len%4) && !(addr%4))
5479 for (i = 0; i < len; i += 4)
5480 REG_WR(bp, addr + i, fill);
5481 else
5482 for (i = 0; i < len; i++)
5483 REG_WR8(bp, addr + i, fill);
5486 /* helper: writes FP SP data to FW - data_size in dwords */
5487 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5488 int fw_sb_id,
5489 u32 *sb_data_p,
5490 u32 data_size)
5492 int index;
5493 for (index = 0; index < data_size; index++)
5494 REG_WR(bp, BAR_CSTRORM_INTMEM +
5495 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5496 sizeof(u32)*index,
5497 *(sb_data_p + index));
5500 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5502 u32 *sb_data_p;
5503 u32 data_size = 0;
5504 struct hc_status_block_data_e2 sb_data_e2;
5505 struct hc_status_block_data_e1x sb_data_e1x;
5507 /* disable the function first */
5508 if (!CHIP_IS_E1x(bp)) {
5509 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5510 sb_data_e2.common.state = SB_DISABLED;
5511 sb_data_e2.common.p_func.vf_valid = false;
5512 sb_data_p = (u32 *)&sb_data_e2;
5513 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5514 } else {
5515 memset(&sb_data_e1x, 0,
5516 sizeof(struct hc_status_block_data_e1x));
5517 sb_data_e1x.common.state = SB_DISABLED;
5518 sb_data_e1x.common.p_func.vf_valid = false;
5519 sb_data_p = (u32 *)&sb_data_e1x;
5520 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5522 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5524 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5525 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5526 CSTORM_STATUS_BLOCK_SIZE);
5527 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5528 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5529 CSTORM_SYNC_BLOCK_SIZE);
5532 /* helper: writes SP SB data to FW */
5533 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5534 struct hc_sp_status_block_data *sp_sb_data)
5536 int func = BP_FUNC(bp);
5537 int i;
5538 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5539 REG_WR(bp, BAR_CSTRORM_INTMEM +
5540 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5541 i*sizeof(u32),
5542 *((u32 *)sp_sb_data + i));
5545 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5547 int func = BP_FUNC(bp);
5548 struct hc_sp_status_block_data sp_sb_data;
5549 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5551 sp_sb_data.state = SB_DISABLED;
5552 sp_sb_data.p_func.vf_valid = false;
5554 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5556 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5557 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5558 CSTORM_SP_STATUS_BLOCK_SIZE);
5559 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5560 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5561 CSTORM_SP_SYNC_BLOCK_SIZE);
5564 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5565 int igu_sb_id, int igu_seg_id)
5567 hc_sm->igu_sb_id = igu_sb_id;
5568 hc_sm->igu_seg_id = igu_seg_id;
5569 hc_sm->timer_value = 0xFF;
5570 hc_sm->time_to_expire = 0xFFFFFFFF;
5573 /* allocates state machine ids. */
5574 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5576 /* zero out state machine indices */
5577 /* rx indices */
5578 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5580 /* tx indices */
5581 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5582 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5583 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5584 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5586 /* map indices */
5587 /* rx indices */
5588 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5589 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5591 /* tx indices */
5592 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5593 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5594 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5595 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5596 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5597 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5598 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5599 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5602 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5603 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5605 int igu_seg_id;
5607 struct hc_status_block_data_e2 sb_data_e2;
5608 struct hc_status_block_data_e1x sb_data_e1x;
5609 struct hc_status_block_sm *hc_sm_p;
5610 int data_size;
5611 u32 *sb_data_p;
5613 if (CHIP_INT_MODE_IS_BC(bp))
5614 igu_seg_id = HC_SEG_ACCESS_NORM;
5615 else
5616 igu_seg_id = IGU_SEG_ACCESS_NORM;
5618 bnx2x_zero_fp_sb(bp, fw_sb_id);
5620 if (!CHIP_IS_E1x(bp)) {
5621 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5622 sb_data_e2.common.state = SB_ENABLED;
5623 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5624 sb_data_e2.common.p_func.vf_id = vfid;
5625 sb_data_e2.common.p_func.vf_valid = vf_valid;
5626 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5627 sb_data_e2.common.same_igu_sb_1b = true;
5628 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5629 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5630 hc_sm_p = sb_data_e2.common.state_machine;
5631 sb_data_p = (u32 *)&sb_data_e2;
5632 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5633 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5634 } else {
5635 memset(&sb_data_e1x, 0,
5636 sizeof(struct hc_status_block_data_e1x));
5637 sb_data_e1x.common.state = SB_ENABLED;
5638 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5639 sb_data_e1x.common.p_func.vf_id = 0xff;
5640 sb_data_e1x.common.p_func.vf_valid = false;
5641 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5642 sb_data_e1x.common.same_igu_sb_1b = true;
5643 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5644 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5645 hc_sm_p = sb_data_e1x.common.state_machine;
5646 sb_data_p = (u32 *)&sb_data_e1x;
5647 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5648 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5651 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5652 igu_sb_id, igu_seg_id);
5653 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5654 igu_sb_id, igu_seg_id);
5656 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5658 /* write indices to HW - PCI guarantees endianity of regpairs */
5659 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5662 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5663 u16 tx_usec, u16 rx_usec)
5665 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5666 false, rx_usec);
5667 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5668 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5669 tx_usec);
5670 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5671 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5672 tx_usec);
5673 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5674 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5675 tx_usec);
5678 static void bnx2x_init_def_sb(struct bnx2x *bp)
5680 struct host_sp_status_block *def_sb = bp->def_status_blk;
5681 dma_addr_t mapping = bp->def_status_blk_mapping;
5682 int igu_sp_sb_index;
5683 int igu_seg_id;
5684 int port = BP_PORT(bp);
5685 int func = BP_FUNC(bp);
5686 int reg_offset, reg_offset_en5;
5687 u64 section;
5688 int index;
5689 struct hc_sp_status_block_data sp_sb_data;
5690 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5692 if (CHIP_INT_MODE_IS_BC(bp)) {
5693 igu_sp_sb_index = DEF_SB_IGU_ID;
5694 igu_seg_id = HC_SEG_ACCESS_DEF;
5695 } else {
5696 igu_sp_sb_index = bp->igu_dsb_id;
5697 igu_seg_id = IGU_SEG_ACCESS_DEF;
5700 /* ATTN */
5701 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5702 atten_status_block);
5703 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5705 bp->attn_state = 0;
5707 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5708 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5709 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5710 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5711 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5712 int sindex;
5713 /* take care of sig[0]..sig[4] */
5714 for (sindex = 0; sindex < 4; sindex++)
5715 bp->attn_group[index].sig[sindex] =
5716 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5718 if (!CHIP_IS_E1x(bp))
5720 * enable5 is separate from the rest of the registers,
5721 * and therefore the address skip is 4
5722 * and not 16 between the different groups
5724 bp->attn_group[index].sig[4] = REG_RD(bp,
5725 reg_offset_en5 + 0x4*index);
5726 else
5727 bp->attn_group[index].sig[4] = 0;
5730 if (bp->common.int_block == INT_BLOCK_HC) {
5731 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5732 HC_REG_ATTN_MSG0_ADDR_L);
5734 REG_WR(bp, reg_offset, U64_LO(section));
5735 REG_WR(bp, reg_offset + 4, U64_HI(section));
5736 } else if (!CHIP_IS_E1x(bp)) {
5737 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5738 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5741 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5742 sp_sb);
5744 bnx2x_zero_sp_sb(bp);
5746 /* PCI guarantees endianity of regpairs */
5747 sp_sb_data.state = SB_ENABLED;
5748 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5749 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5750 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5751 sp_sb_data.igu_seg_id = igu_seg_id;
5752 sp_sb_data.p_func.pf_id = func;
5753 sp_sb_data.p_func.vnic_id = BP_VN(bp);
5754 sp_sb_data.p_func.vf_id = 0xff;
5756 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5758 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5761 void bnx2x_update_coalesce(struct bnx2x *bp)
5763 int i;
5765 for_each_eth_queue(bp, i)
5766 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5767 bp->tx_ticks, bp->rx_ticks);
5770 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5772 spin_lock_init(&bp->spq_lock);
5773 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5775 bp->spq_prod_idx = 0;
5776 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5777 bp->spq_prod_bd = bp->spq;
5778 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5781 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5783 int i;
5784 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5785 union event_ring_elem *elem =
5786 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5788 elem->next_page.addr.hi =
5789 cpu_to_le32(U64_HI(bp->eq_mapping +
5790 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5791 elem->next_page.addr.lo =
5792 cpu_to_le32(U64_LO(bp->eq_mapping +
5793 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5795 bp->eq_cons = 0;
5796 bp->eq_prod = NUM_EQ_DESC;
5797 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5798 /* we want a warning message before it gets wrought... */
5799 atomic_set(&bp->eq_spq_left,
5800 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5803 /* called with netif_addr_lock_bh() */
5804 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5805 unsigned long rx_mode_flags,
5806 unsigned long rx_accept_flags,
5807 unsigned long tx_accept_flags,
5808 unsigned long ramrod_flags)
5810 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5811 int rc;
5813 memset(&ramrod_param, 0, sizeof(ramrod_param));
5815 /* Prepare ramrod parameters */
5816 ramrod_param.cid = 0;
5817 ramrod_param.cl_id = cl_id;
5818 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5819 ramrod_param.func_id = BP_FUNC(bp);
5821 ramrod_param.pstate = &bp->sp_state;
5822 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5824 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5825 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5827 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5829 ramrod_param.ramrod_flags = ramrod_flags;
5830 ramrod_param.rx_mode_flags = rx_mode_flags;
5832 ramrod_param.rx_accept_flags = rx_accept_flags;
5833 ramrod_param.tx_accept_flags = tx_accept_flags;
5835 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5836 if (rc < 0) {
5837 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5838 return rc;
5841 return 0;
5844 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5845 unsigned long *rx_accept_flags,
5846 unsigned long *tx_accept_flags)
5848 /* Clear the flags first */
5849 *rx_accept_flags = 0;
5850 *tx_accept_flags = 0;
5852 switch (rx_mode) {
5853 case BNX2X_RX_MODE_NONE:
5855 * 'drop all' supersedes any accept flags that may have been
5856 * passed to the function.
5858 break;
5859 case BNX2X_RX_MODE_NORMAL:
5860 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5861 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5862 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5864 /* internal switching mode */
5865 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5866 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5867 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5869 break;
5870 case BNX2X_RX_MODE_ALLMULTI:
5871 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5872 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5873 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5875 /* internal switching mode */
5876 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5877 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5878 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5880 break;
5881 case BNX2X_RX_MODE_PROMISC:
5882 /* According to definition of SI mode, iface in promisc mode
5883 * should receive matched and unmatched (in resolution of port)
5884 * unicast packets.
5886 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5887 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5888 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5889 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5891 /* internal switching mode */
5892 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5893 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5895 if (IS_MF_SI(bp))
5896 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5897 else
5898 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5900 break;
5901 default:
5902 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5903 return -EINVAL;
5906 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5907 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5908 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5909 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5912 return 0;
5915 /* called with netif_addr_lock_bh() */
5916 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5918 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5919 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5920 int rc;
5922 if (!NO_FCOE(bp))
5923 /* Configure rx_mode of FCoE Queue */
5924 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5926 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5927 &tx_accept_flags);
5928 if (rc)
5929 return rc;
5931 __set_bit(RAMROD_RX, &ramrod_flags);
5932 __set_bit(RAMROD_TX, &ramrod_flags);
5934 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5935 rx_accept_flags, tx_accept_flags,
5936 ramrod_flags);
5939 static void bnx2x_init_internal_common(struct bnx2x *bp)
5941 int i;
5943 if (IS_MF_SI(bp))
5945 * In switch independent mode, the TSTORM needs to accept
5946 * packets that failed classification, since approximate match
5947 * mac addresses aren't written to NIG LLH
5949 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5950 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5951 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5952 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5953 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5955 /* Zero this manually as its initialization is
5956 currently missing in the initTool */
5957 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5958 REG_WR(bp, BAR_USTRORM_INTMEM +
5959 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5960 if (!CHIP_IS_E1x(bp)) {
5961 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5962 CHIP_INT_MODE_IS_BC(bp) ?
5963 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5967 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5969 switch (load_code) {
5970 case FW_MSG_CODE_DRV_LOAD_COMMON:
5971 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5972 bnx2x_init_internal_common(bp);
5973 /* no break */
5975 case FW_MSG_CODE_DRV_LOAD_PORT:
5976 /* nothing to do */
5977 /* no break */
5979 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5980 /* internal memory per function is
5981 initialized inside bnx2x_pf_init */
5982 break;
5984 default:
5985 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5986 break;
5990 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5992 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5995 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5997 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6000 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6002 if (CHIP_IS_E1x(fp->bp))
6003 return BP_L_ID(fp->bp) + fp->index;
6004 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6005 return bnx2x_fp_igu_sb_id(fp);
6008 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6010 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6011 u8 cos;
6012 unsigned long q_type = 0;
6013 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6014 fp->rx_queue = fp_idx;
6015 fp->cid = fp_idx;
6016 fp->cl_id = bnx2x_fp_cl_id(fp);
6017 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6018 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6019 /* qZone id equals to FW (per path) client id */
6020 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6022 /* init shortcut */
6023 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6025 /* Setup SB indices */
6026 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6028 /* Configure Queue State object */
6029 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6030 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6032 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6034 /* init tx data */
6035 for_each_cos_in_tx_queue(fp, cos) {
6036 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6037 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6038 FP_COS_TO_TXQ(fp, cos, bp),
6039 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6040 cids[cos] = fp->txdata_ptr[cos]->cid;
6043 /* nothing more for vf to do here */
6044 if (IS_VF(bp))
6045 return;
6047 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6048 fp->fw_sb_id, fp->igu_sb_id);
6049 bnx2x_update_fpsb_idx(fp);
6050 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6051 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6052 bnx2x_sp_mapping(bp, q_rdata), q_type);
6055 * Configure classification DBs: Always enable Tx switching
6057 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6059 DP(NETIF_MSG_IFUP,
6060 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6061 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6062 fp->igu_sb_id);
6065 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6067 int i;
6069 for (i = 1; i <= NUM_TX_RINGS; i++) {
6070 struct eth_tx_next_bd *tx_next_bd =
6071 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6073 tx_next_bd->addr_hi =
6074 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6075 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6076 tx_next_bd->addr_lo =
6077 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6078 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6081 *txdata->tx_cons_sb = cpu_to_le16(0);
6083 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6084 txdata->tx_db.data.zero_fill1 = 0;
6085 txdata->tx_db.data.prod = 0;
6087 txdata->tx_pkt_prod = 0;
6088 txdata->tx_pkt_cons = 0;
6089 txdata->tx_bd_prod = 0;
6090 txdata->tx_bd_cons = 0;
6091 txdata->tx_pkt = 0;
6094 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6096 int i;
6098 for_each_tx_queue_cnic(bp, i)
6099 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6102 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6104 int i;
6105 u8 cos;
6107 for_each_eth_queue(bp, i)
6108 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6109 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6112 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6114 if (!NO_FCOE(bp))
6115 bnx2x_init_fcoe_fp(bp);
6117 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6118 BNX2X_VF_ID_INVALID, false,
6119 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6121 /* ensure status block indices were read */
6122 rmb();
6123 bnx2x_init_rx_rings_cnic(bp);
6124 bnx2x_init_tx_rings_cnic(bp);
6126 /* flush all */
6127 mb();
6128 mmiowb();
6131 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6133 int i;
6135 /* Setup NIC internals and enable interrupts */
6136 for_each_eth_queue(bp, i)
6137 bnx2x_init_eth_fp(bp, i);
6139 /* ensure status block indices were read */
6140 rmb();
6141 bnx2x_init_rx_rings(bp);
6142 bnx2x_init_tx_rings(bp);
6144 if (IS_PF(bp)) {
6145 /* Initialize MOD_ABS interrupts */
6146 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6147 bp->common.shmem_base,
6148 bp->common.shmem2_base, BP_PORT(bp));
6150 /* initialize the default status block and sp ring */
6151 bnx2x_init_def_sb(bp);
6152 bnx2x_update_dsb_idx(bp);
6153 bnx2x_init_sp_ring(bp);
6154 } else {
6155 bnx2x_memset_stats(bp);
6159 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6161 bnx2x_init_eq_ring(bp);
6162 bnx2x_init_internal(bp, load_code);
6163 bnx2x_pf_init(bp);
6164 bnx2x_stats_init(bp);
6166 /* flush all before enabling interrupts */
6167 mb();
6168 mmiowb();
6170 bnx2x_int_enable(bp);
6172 /* Check for SPIO5 */
6173 bnx2x_attn_int_deasserted0(bp,
6174 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6175 AEU_INPUTS_ATTN_BITS_SPIO5);
6178 /* gzip service functions */
6179 static int bnx2x_gunzip_init(struct bnx2x *bp)
6181 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6182 &bp->gunzip_mapping, GFP_KERNEL);
6183 if (bp->gunzip_buf == NULL)
6184 goto gunzip_nomem1;
6186 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6187 if (bp->strm == NULL)
6188 goto gunzip_nomem2;
6190 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6191 if (bp->strm->workspace == NULL)
6192 goto gunzip_nomem3;
6194 return 0;
6196 gunzip_nomem3:
6197 kfree(bp->strm);
6198 bp->strm = NULL;
6200 gunzip_nomem2:
6201 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6202 bp->gunzip_mapping);
6203 bp->gunzip_buf = NULL;
6205 gunzip_nomem1:
6206 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6207 return -ENOMEM;
6210 static void bnx2x_gunzip_end(struct bnx2x *bp)
6212 if (bp->strm) {
6213 vfree(bp->strm->workspace);
6214 kfree(bp->strm);
6215 bp->strm = NULL;
6218 if (bp->gunzip_buf) {
6219 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6220 bp->gunzip_mapping);
6221 bp->gunzip_buf = NULL;
6225 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6227 int n, rc;
6229 /* check gzip header */
6230 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6231 BNX2X_ERR("Bad gzip header\n");
6232 return -EINVAL;
6235 n = 10;
6237 #define FNAME 0x8
6239 if (zbuf[3] & FNAME)
6240 while ((zbuf[n++] != 0) && (n < len));
6242 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6243 bp->strm->avail_in = len - n;
6244 bp->strm->next_out = bp->gunzip_buf;
6245 bp->strm->avail_out = FW_BUF_SIZE;
6247 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6248 if (rc != Z_OK)
6249 return rc;
6251 rc = zlib_inflate(bp->strm, Z_FINISH);
6252 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6253 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6254 bp->strm->msg);
6256 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6257 if (bp->gunzip_outlen & 0x3)
6258 netdev_err(bp->dev,
6259 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6260 bp->gunzip_outlen);
6261 bp->gunzip_outlen >>= 2;
6263 zlib_inflateEnd(bp->strm);
6265 if (rc == Z_STREAM_END)
6266 return 0;
6268 return rc;
6271 /* nic load/unload */
6274 * General service functions
6277 /* send a NIG loopback debug packet */
6278 static void bnx2x_lb_pckt(struct bnx2x *bp)
6280 u32 wb_write[3];
6282 /* Ethernet source and destination addresses */
6283 wb_write[0] = 0x55555555;
6284 wb_write[1] = 0x55555555;
6285 wb_write[2] = 0x20; /* SOP */
6286 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6288 /* NON-IP protocol */
6289 wb_write[0] = 0x09000000;
6290 wb_write[1] = 0x55555555;
6291 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6292 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6295 /* some of the internal memories
6296 * are not directly readable from the driver
6297 * to test them we send debug packets
6299 static int bnx2x_int_mem_test(struct bnx2x *bp)
6301 int factor;
6302 int count, i;
6303 u32 val = 0;
6305 if (CHIP_REV_IS_FPGA(bp))
6306 factor = 120;
6307 else if (CHIP_REV_IS_EMUL(bp))
6308 factor = 200;
6309 else
6310 factor = 1;
6312 /* Disable inputs of parser neighbor blocks */
6313 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6314 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6315 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6316 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6318 /* Write 0 to parser credits for CFC search request */
6319 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6321 /* send Ethernet packet */
6322 bnx2x_lb_pckt(bp);
6324 /* TODO do i reset NIG statistic? */
6325 /* Wait until NIG register shows 1 packet of size 0x10 */
6326 count = 1000 * factor;
6327 while (count) {
6329 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6330 val = *bnx2x_sp(bp, wb_data[0]);
6331 if (val == 0x10)
6332 break;
6334 usleep_range(10000, 20000);
6335 count--;
6337 if (val != 0x10) {
6338 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6339 return -1;
6342 /* Wait until PRS register shows 1 packet */
6343 count = 1000 * factor;
6344 while (count) {
6345 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6346 if (val == 1)
6347 break;
6349 usleep_range(10000, 20000);
6350 count--;
6352 if (val != 0x1) {
6353 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6354 return -2;
6357 /* Reset and init BRB, PRS */
6358 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6359 msleep(50);
6360 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6361 msleep(50);
6362 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6363 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6365 DP(NETIF_MSG_HW, "part2\n");
6367 /* Disable inputs of parser neighbor blocks */
6368 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6369 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6370 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6371 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6373 /* Write 0 to parser credits for CFC search request */
6374 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6376 /* send 10 Ethernet packets */
6377 for (i = 0; i < 10; i++)
6378 bnx2x_lb_pckt(bp);
6380 /* Wait until NIG register shows 10 + 1
6381 packets of size 11*0x10 = 0xb0 */
6382 count = 1000 * factor;
6383 while (count) {
6385 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6386 val = *bnx2x_sp(bp, wb_data[0]);
6387 if (val == 0xb0)
6388 break;
6390 usleep_range(10000, 20000);
6391 count--;
6393 if (val != 0xb0) {
6394 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6395 return -3;
6398 /* Wait until PRS register shows 2 packets */
6399 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6400 if (val != 2)
6401 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6403 /* Write 1 to parser credits for CFC search request */
6404 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6406 /* Wait until PRS register shows 3 packets */
6407 msleep(10 * factor);
6408 /* Wait until NIG register shows 1 packet of size 0x10 */
6409 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6410 if (val != 3)
6411 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6413 /* clear NIG EOP FIFO */
6414 for (i = 0; i < 11; i++)
6415 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6416 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6417 if (val != 1) {
6418 BNX2X_ERR("clear of NIG failed\n");
6419 return -4;
6422 /* Reset and init BRB, PRS, NIG */
6423 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6424 msleep(50);
6425 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6426 msleep(50);
6427 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6428 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6429 if (!CNIC_SUPPORT(bp))
6430 /* set NIC mode */
6431 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6433 /* Enable inputs of parser neighbor blocks */
6434 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6435 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6436 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6437 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6439 DP(NETIF_MSG_HW, "done\n");
6441 return 0; /* OK */
6444 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6446 u32 val;
6448 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6449 if (!CHIP_IS_E1x(bp))
6450 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6451 else
6452 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6453 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6454 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6456 * mask read length error interrupts in brb for parser
6457 * (parsing unit and 'checksum and crc' unit)
6458 * these errors are legal (PU reads fixed length and CAC can cause
6459 * read length error on truncated packets)
6461 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6462 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6463 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6464 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6465 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6466 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6467 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6468 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6469 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6470 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6471 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6472 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6473 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6474 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6475 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6476 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6477 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6478 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6479 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6481 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6482 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6483 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6484 if (!CHIP_IS_E1x(bp))
6485 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6486 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6487 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6489 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6490 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6491 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6492 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6494 if (!CHIP_IS_E1x(bp))
6495 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6496 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6498 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6499 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6500 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6501 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6504 static void bnx2x_reset_common(struct bnx2x *bp)
6506 u32 val = 0x1400;
6508 /* reset_common */
6509 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6510 0xd3ffff7f);
6512 if (CHIP_IS_E3(bp)) {
6513 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6514 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6517 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6520 static void bnx2x_setup_dmae(struct bnx2x *bp)
6522 bp->dmae_ready = 0;
6523 spin_lock_init(&bp->dmae_lock);
6526 static void bnx2x_init_pxp(struct bnx2x *bp)
6528 u16 devctl;
6529 int r_order, w_order;
6531 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6532 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6533 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6534 if (bp->mrrs == -1)
6535 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6536 else {
6537 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6538 r_order = bp->mrrs;
6541 bnx2x_init_pxp_arb(bp, r_order, w_order);
6544 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6546 int is_required;
6547 u32 val;
6548 int port;
6550 if (BP_NOMCP(bp))
6551 return;
6553 is_required = 0;
6554 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6555 SHARED_HW_CFG_FAN_FAILURE_MASK;
6557 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6558 is_required = 1;
6561 * The fan failure mechanism is usually related to the PHY type since
6562 * the power consumption of the board is affected by the PHY. Currently,
6563 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6565 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6566 for (port = PORT_0; port < PORT_MAX; port++) {
6567 is_required |=
6568 bnx2x_fan_failure_det_req(
6570 bp->common.shmem_base,
6571 bp->common.shmem2_base,
6572 port);
6575 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6577 if (is_required == 0)
6578 return;
6580 /* Fan failure is indicated by SPIO 5 */
6581 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6583 /* set to active low mode */
6584 val = REG_RD(bp, MISC_REG_SPIO_INT);
6585 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6586 REG_WR(bp, MISC_REG_SPIO_INT, val);
6588 /* enable interrupt to signal the IGU */
6589 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6590 val |= MISC_SPIO_SPIO5;
6591 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6594 void bnx2x_pf_disable(struct bnx2x *bp)
6596 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6597 val &= ~IGU_PF_CONF_FUNC_EN;
6599 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6600 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6601 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6604 static void bnx2x__common_init_phy(struct bnx2x *bp)
6606 u32 shmem_base[2], shmem2_base[2];
6607 /* Avoid common init in case MFW supports LFA */
6608 if (SHMEM2_RD(bp, size) >
6609 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6610 return;
6611 shmem_base[0] = bp->common.shmem_base;
6612 shmem2_base[0] = bp->common.shmem2_base;
6613 if (!CHIP_IS_E1x(bp)) {
6614 shmem_base[1] =
6615 SHMEM2_RD(bp, other_shmem_base_addr);
6616 shmem2_base[1] =
6617 SHMEM2_RD(bp, other_shmem2_base_addr);
6619 bnx2x_acquire_phy_lock(bp);
6620 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6621 bp->common.chip_id);
6622 bnx2x_release_phy_lock(bp);
6626 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6628 * @bp: driver handle
6630 static int bnx2x_init_hw_common(struct bnx2x *bp)
6632 u32 val;
6634 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
6637 * take the RESET lock to protect undi_unload flow from accessing
6638 * registers while we're resetting the chip
6640 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6642 bnx2x_reset_common(bp);
6643 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6645 val = 0xfffc;
6646 if (CHIP_IS_E3(bp)) {
6647 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6648 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6650 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6652 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6654 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6656 if (!CHIP_IS_E1x(bp)) {
6657 u8 abs_func_id;
6660 * 4-port mode or 2-port mode we need to turn of master-enable
6661 * for everyone, after that, turn it back on for self.
6662 * so, we disregard multi-function or not, and always disable
6663 * for all functions on the given path, this means 0,2,4,6 for
6664 * path 0 and 1,3,5,7 for path 1
6666 for (abs_func_id = BP_PATH(bp);
6667 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6668 if (abs_func_id == BP_ABS_FUNC(bp)) {
6669 REG_WR(bp,
6670 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6672 continue;
6675 bnx2x_pretend_func(bp, abs_func_id);
6676 /* clear pf enable */
6677 bnx2x_pf_disable(bp);
6678 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6682 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6683 if (CHIP_IS_E1(bp)) {
6684 /* enable HW interrupt from PXP on USDM overflow
6685 bit 16 on INT_MASK_0 */
6686 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6689 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6690 bnx2x_init_pxp(bp);
6692 #ifdef __BIG_ENDIAN
6693 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6694 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6695 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6696 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6697 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6698 /* make sure this value is 0 */
6699 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6701 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6702 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6703 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6704 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6705 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6706 #endif
6708 bnx2x_ilt_init_page_size(bp, INITOP_SET);
6710 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6711 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6713 /* let the HW do it's magic ... */
6714 msleep(100);
6715 /* finish PXP init */
6716 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6717 if (val != 1) {
6718 BNX2X_ERR("PXP2 CFG failed\n");
6719 return -EBUSY;
6721 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6722 if (val != 1) {
6723 BNX2X_ERR("PXP2 RD_INIT failed\n");
6724 return -EBUSY;
6727 /* Timers bug workaround E2 only. We need to set the entire ILT to
6728 * have entries with value "0" and valid bit on.
6729 * This needs to be done by the first PF that is loaded in a path
6730 * (i.e. common phase)
6732 if (!CHIP_IS_E1x(bp)) {
6733 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6734 * (i.e. vnic3) to start even if it is marked as "scan-off".
6735 * This occurs when a different function (func2,3) is being marked
6736 * as "scan-off". Real-life scenario for example: if a driver is being
6737 * load-unloaded while func6,7 are down. This will cause the timer to access
6738 * the ilt, translate to a logical address and send a request to read/write.
6739 * Since the ilt for the function that is down is not valid, this will cause
6740 * a translation error which is unrecoverable.
6741 * The Workaround is intended to make sure that when this happens nothing fatal
6742 * will occur. The workaround:
6743 * 1. First PF driver which loads on a path will:
6744 * a. After taking the chip out of reset, by using pretend,
6745 * it will write "0" to the following registers of
6746 * the other vnics.
6747 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6748 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6749 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6750 * And for itself it will write '1' to
6751 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6752 * dmae-operations (writing to pram for example.)
6753 * note: can be done for only function 6,7 but cleaner this
6754 * way.
6755 * b. Write zero+valid to the entire ILT.
6756 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6757 * VNIC3 (of that port). The range allocated will be the
6758 * entire ILT. This is needed to prevent ILT range error.
6759 * 2. Any PF driver load flow:
6760 * a. ILT update with the physical addresses of the allocated
6761 * logical pages.
6762 * b. Wait 20msec. - note that this timeout is needed to make
6763 * sure there are no requests in one of the PXP internal
6764 * queues with "old" ILT addresses.
6765 * c. PF enable in the PGLC.
6766 * d. Clear the was_error of the PF in the PGLC. (could have
6767 * occurred while driver was down)
6768 * e. PF enable in the CFC (WEAK + STRONG)
6769 * f. Timers scan enable
6770 * 3. PF driver unload flow:
6771 * a. Clear the Timers scan_en.
6772 * b. Polling for scan_on=0 for that PF.
6773 * c. Clear the PF enable bit in the PXP.
6774 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6775 * e. Write zero+valid to all ILT entries (The valid bit must
6776 * stay set)
6777 * f. If this is VNIC 3 of a port then also init
6778 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6779 * to the last entry in the ILT.
6781 * Notes:
6782 * Currently the PF error in the PGLC is non recoverable.
6783 * In the future the there will be a recovery routine for this error.
6784 * Currently attention is masked.
6785 * Having an MCP lock on the load/unload process does not guarantee that
6786 * there is no Timer disable during Func6/7 enable. This is because the
6787 * Timers scan is currently being cleared by the MCP on FLR.
6788 * Step 2.d can be done only for PF6/7 and the driver can also check if
6789 * there is error before clearing it. But the flow above is simpler and
6790 * more general.
6791 * All ILT entries are written by zero+valid and not just PF6/7
6792 * ILT entries since in the future the ILT entries allocation for
6793 * PF-s might be dynamic.
6795 struct ilt_client_info ilt_cli;
6796 struct bnx2x_ilt ilt;
6797 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6798 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6800 /* initialize dummy TM client */
6801 ilt_cli.start = 0;
6802 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6803 ilt_cli.client_num = ILT_CLIENT_TM;
6805 /* Step 1: set zeroes to all ilt page entries with valid bit on
6806 * Step 2: set the timers first/last ilt entry to point
6807 * to the entire range to prevent ILT range error for 3rd/4th
6808 * vnic (this code assumes existence of the vnic)
6810 * both steps performed by call to bnx2x_ilt_client_init_op()
6811 * with dummy TM client
6813 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6814 * and his brother are split registers
6816 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6817 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6818 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6820 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6821 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6822 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6825 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6826 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6828 if (!CHIP_IS_E1x(bp)) {
6829 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6830 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6831 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6833 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6835 /* let the HW do it's magic ... */
6836 do {
6837 msleep(200);
6838 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6839 } while (factor-- && (val != 1));
6841 if (val != 1) {
6842 BNX2X_ERR("ATC_INIT failed\n");
6843 return -EBUSY;
6847 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6849 bnx2x_iov_init_dmae(bp);
6851 /* clean the DMAE memory */
6852 bp->dmae_ready = 1;
6853 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6855 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6857 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6859 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6861 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6863 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6864 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6865 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6866 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6868 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6870 /* QM queues pointers table */
6871 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6873 /* soft reset pulse */
6874 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6875 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6877 if (CNIC_SUPPORT(bp))
6878 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6880 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6881 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6882 if (!CHIP_REV_IS_SLOW(bp))
6883 /* enable hw interrupt from doorbell Q */
6884 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6886 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6888 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6889 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6891 if (!CHIP_IS_E1(bp))
6892 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6894 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6895 if (IS_MF_AFEX(bp)) {
6896 /* configure that VNTag and VLAN headers must be
6897 * received in afex mode
6899 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6900 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6901 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6902 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6903 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6904 } else {
6905 /* Bit-map indicating which L2 hdrs may appear
6906 * after the basic Ethernet header
6908 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6909 bp->path_has_ovlan ? 7 : 6);
6913 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6914 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6915 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6916 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6918 if (!CHIP_IS_E1x(bp)) {
6919 /* reset VFC memories */
6920 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6921 VFC_MEMORIES_RST_REG_CAM_RST |
6922 VFC_MEMORIES_RST_REG_RAM_RST);
6923 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6924 VFC_MEMORIES_RST_REG_CAM_RST |
6925 VFC_MEMORIES_RST_REG_RAM_RST);
6927 msleep(20);
6930 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6931 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6932 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6933 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6935 /* sync semi rtc */
6936 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6937 0x80000000);
6938 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6939 0x80000000);
6941 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6942 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6943 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6945 if (!CHIP_IS_E1x(bp)) {
6946 if (IS_MF_AFEX(bp)) {
6947 /* configure that VNTag and VLAN headers must be
6948 * sent in afex mode
6950 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6951 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6952 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6953 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6954 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6955 } else {
6956 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6957 bp->path_has_ovlan ? 7 : 6);
6961 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6963 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6965 if (CNIC_SUPPORT(bp)) {
6966 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6967 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6968 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6969 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6970 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6971 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6972 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6973 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6974 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6975 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6977 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6979 if (sizeof(union cdu_context) != 1024)
6980 /* we currently assume that a context is 1024 bytes */
6981 dev_alert(&bp->pdev->dev,
6982 "please adjust the size of cdu_context(%ld)\n",
6983 (long)sizeof(union cdu_context));
6985 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6986 val = (4 << 24) + (0 << 12) + 1024;
6987 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6989 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6990 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6991 /* enable context validation interrupt from CFC */
6992 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6994 /* set the thresholds to prevent CFC/CDU race */
6995 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6997 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6999 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7000 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7002 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7003 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7005 /* Reset PCIE errors for debug */
7006 REG_WR(bp, 0x2814, 0xffffffff);
7007 REG_WR(bp, 0x3820, 0xffffffff);
7009 if (!CHIP_IS_E1x(bp)) {
7010 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7011 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7012 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7013 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7014 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7015 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7016 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7017 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7018 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7019 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7020 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7023 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7024 if (!CHIP_IS_E1(bp)) {
7025 /* in E3 this done in per-port section */
7026 if (!CHIP_IS_E3(bp))
7027 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7029 if (CHIP_IS_E1H(bp))
7030 /* not applicable for E2 (and above ...) */
7031 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7033 if (CHIP_REV_IS_SLOW(bp))
7034 msleep(200);
7036 /* finish CFC init */
7037 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7038 if (val != 1) {
7039 BNX2X_ERR("CFC LL_INIT failed\n");
7040 return -EBUSY;
7042 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7043 if (val != 1) {
7044 BNX2X_ERR("CFC AC_INIT failed\n");
7045 return -EBUSY;
7047 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7048 if (val != 1) {
7049 BNX2X_ERR("CFC CAM_INIT failed\n");
7050 return -EBUSY;
7052 REG_WR(bp, CFC_REG_DEBUG0, 0);
7054 if (CHIP_IS_E1(bp)) {
7055 /* read NIG statistic
7056 to see if this is our first up since powerup */
7057 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7058 val = *bnx2x_sp(bp, wb_data[0]);
7060 /* do internal memory self test */
7061 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7062 BNX2X_ERR("internal mem self test failed\n");
7063 return -EBUSY;
7067 bnx2x_setup_fan_failure_detection(bp);
7069 /* clear PXP2 attentions */
7070 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7072 bnx2x_enable_blocks_attention(bp);
7073 bnx2x_enable_blocks_parity(bp);
7075 if (!BP_NOMCP(bp)) {
7076 if (CHIP_IS_E1x(bp))
7077 bnx2x__common_init_phy(bp);
7078 } else
7079 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7081 return 0;
7085 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7087 * @bp: driver handle
7089 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7091 int rc = bnx2x_init_hw_common(bp);
7093 if (rc)
7094 return rc;
7096 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7097 if (!BP_NOMCP(bp))
7098 bnx2x__common_init_phy(bp);
7100 return 0;
7103 static int bnx2x_init_hw_port(struct bnx2x *bp)
7105 int port = BP_PORT(bp);
7106 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7107 u32 low, high;
7108 u32 val;
7110 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7112 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7114 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7115 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7116 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7118 /* Timers bug workaround: disables the pf_master bit in pglue at
7119 * common phase, we need to enable it here before any dmae access are
7120 * attempted. Therefore we manually added the enable-master to the
7121 * port phase (it also happens in the function phase)
7123 if (!CHIP_IS_E1x(bp))
7124 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7126 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7127 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7128 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7129 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7131 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7132 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7133 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7134 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7136 /* QM cid (connection) count */
7137 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7139 if (CNIC_SUPPORT(bp)) {
7140 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7141 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7142 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7145 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7147 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7149 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7151 if (IS_MF(bp))
7152 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7153 else if (bp->dev->mtu > 4096) {
7154 if (bp->flags & ONE_PORT_FLAG)
7155 low = 160;
7156 else {
7157 val = bp->dev->mtu;
7158 /* (24*1024 + val*4)/256 */
7159 low = 96 + (val/64) +
7160 ((val % 64) ? 1 : 0);
7162 } else
7163 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7164 high = low + 56; /* 14*1024/256 */
7165 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7166 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7169 if (CHIP_MODE_IS_4_PORT(bp))
7170 REG_WR(bp, (BP_PORT(bp) ?
7171 BRB1_REG_MAC_GUARANTIED_1 :
7172 BRB1_REG_MAC_GUARANTIED_0), 40);
7174 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7175 if (CHIP_IS_E3B0(bp)) {
7176 if (IS_MF_AFEX(bp)) {
7177 /* configure headers for AFEX mode */
7178 REG_WR(bp, BP_PORT(bp) ?
7179 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7180 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7181 REG_WR(bp, BP_PORT(bp) ?
7182 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7183 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7184 REG_WR(bp, BP_PORT(bp) ?
7185 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7186 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7187 } else {
7188 /* Ovlan exists only if we are in multi-function +
7189 * switch-dependent mode, in switch-independent there
7190 * is no ovlan headers
7192 REG_WR(bp, BP_PORT(bp) ?
7193 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7194 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7195 (bp->path_has_ovlan ? 7 : 6));
7199 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7200 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7201 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7202 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7204 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7205 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7206 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7207 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7209 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7210 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7212 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7214 if (CHIP_IS_E1x(bp)) {
7215 /* configure PBF to work without PAUSE mtu 9000 */
7216 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7218 /* update threshold */
7219 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7220 /* update init credit */
7221 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7223 /* probe changes */
7224 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7225 udelay(50);
7226 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7229 if (CNIC_SUPPORT(bp))
7230 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7232 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7233 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7235 if (CHIP_IS_E1(bp)) {
7236 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7237 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7239 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7241 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7243 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7244 /* init aeu_mask_attn_func_0/1:
7245 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7246 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7247 * bits 4-7 are used for "per vn group attention" */
7248 val = IS_MF(bp) ? 0xF7 : 0x7;
7249 /* Enable DCBX attention for all but E1 */
7250 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7251 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7253 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7255 if (!CHIP_IS_E1x(bp)) {
7256 /* Bit-map indicating which L2 hdrs may appear after the
7257 * basic Ethernet header
7259 if (IS_MF_AFEX(bp))
7260 REG_WR(bp, BP_PORT(bp) ?
7261 NIG_REG_P1_HDRS_AFTER_BASIC :
7262 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7263 else
7264 REG_WR(bp, BP_PORT(bp) ?
7265 NIG_REG_P1_HDRS_AFTER_BASIC :
7266 NIG_REG_P0_HDRS_AFTER_BASIC,
7267 IS_MF_SD(bp) ? 7 : 6);
7269 if (CHIP_IS_E3(bp))
7270 REG_WR(bp, BP_PORT(bp) ?
7271 NIG_REG_LLH1_MF_MODE :
7272 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7274 if (!CHIP_IS_E3(bp))
7275 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7277 if (!CHIP_IS_E1(bp)) {
7278 /* 0x2 disable mf_ov, 0x1 enable */
7279 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7280 (IS_MF_SD(bp) ? 0x1 : 0x2));
7282 if (!CHIP_IS_E1x(bp)) {
7283 val = 0;
7284 switch (bp->mf_mode) {
7285 case MULTI_FUNCTION_SD:
7286 val = 1;
7287 break;
7288 case MULTI_FUNCTION_SI:
7289 case MULTI_FUNCTION_AFEX:
7290 val = 2;
7291 break;
7294 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7295 NIG_REG_LLH0_CLS_TYPE), val);
7298 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7299 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7300 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7304 /* If SPIO5 is set to generate interrupts, enable it for this port */
7305 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7306 if (val & MISC_SPIO_SPIO5) {
7307 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7308 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7309 val = REG_RD(bp, reg_addr);
7310 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7311 REG_WR(bp, reg_addr, val);
7314 return 0;
7317 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7319 int reg;
7320 u32 wb_write[2];
7322 if (CHIP_IS_E1(bp))
7323 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7324 else
7325 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7327 wb_write[0] = ONCHIP_ADDR1(addr);
7328 wb_write[1] = ONCHIP_ADDR2(addr);
7329 REG_WR_DMAE(bp, reg, wb_write, 2);
7332 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7334 u32 data, ctl, cnt = 100;
7335 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7336 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7337 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7338 u32 sb_bit = 1 << (idu_sb_id%32);
7339 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7340 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7342 /* Not supported in BC mode */
7343 if (CHIP_INT_MODE_IS_BC(bp))
7344 return;
7346 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7347 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7348 IGU_REGULAR_CLEANUP_SET |
7349 IGU_REGULAR_BCLEANUP;
7351 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7352 func_encode << IGU_CTRL_REG_FID_SHIFT |
7353 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7355 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7356 data, igu_addr_data);
7357 REG_WR(bp, igu_addr_data, data);
7358 mmiowb();
7359 barrier();
7360 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7361 ctl, igu_addr_ctl);
7362 REG_WR(bp, igu_addr_ctl, ctl);
7363 mmiowb();
7364 barrier();
7366 /* wait for clean up to finish */
7367 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7368 msleep(20);
7370 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7371 DP(NETIF_MSG_HW,
7372 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7373 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7377 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7379 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7382 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7384 u32 i, base = FUNC_ILT_BASE(func);
7385 for (i = base; i < base + ILT_PER_FUNC; i++)
7386 bnx2x_ilt_wr(bp, i, 0);
7389 static void bnx2x_init_searcher(struct bnx2x *bp)
7391 int port = BP_PORT(bp);
7392 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7393 /* T1 hash bits value determines the T1 number of entries */
7394 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7397 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7399 int rc;
7400 struct bnx2x_func_state_params func_params = {NULL};
7401 struct bnx2x_func_switch_update_params *switch_update_params =
7402 &func_params.params.switch_update;
7404 /* Prepare parameters for function state transitions */
7405 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7406 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7408 func_params.f_obj = &bp->func_obj;
7409 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7411 /* Function parameters */
7412 switch_update_params->suspend = suspend;
7414 rc = bnx2x_func_state_change(bp, &func_params);
7416 return rc;
7419 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7421 int rc, i, port = BP_PORT(bp);
7422 int vlan_en = 0, mac_en[NUM_MACS];
7424 /* Close input from network */
7425 if (bp->mf_mode == SINGLE_FUNCTION) {
7426 bnx2x_set_rx_filter(&bp->link_params, 0);
7427 } else {
7428 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7429 NIG_REG_LLH0_FUNC_EN);
7430 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7431 NIG_REG_LLH0_FUNC_EN, 0);
7432 for (i = 0; i < NUM_MACS; i++) {
7433 mac_en[i] = REG_RD(bp, port ?
7434 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7435 4 * i) :
7436 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7437 4 * i));
7438 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7439 4 * i) :
7440 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7444 /* Close BMC to host */
7445 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7446 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7448 /* Suspend Tx switching to the PF. Completion of this ramrod
7449 * further guarantees that all the packets of that PF / child
7450 * VFs in BRB were processed by the Parser, so it is safe to
7451 * change the NIC_MODE register.
7453 rc = bnx2x_func_switch_update(bp, 1);
7454 if (rc) {
7455 BNX2X_ERR("Can't suspend tx-switching!\n");
7456 return rc;
7459 /* Change NIC_MODE register */
7460 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7462 /* Open input from network */
7463 if (bp->mf_mode == SINGLE_FUNCTION) {
7464 bnx2x_set_rx_filter(&bp->link_params, 1);
7465 } else {
7466 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7467 NIG_REG_LLH0_FUNC_EN, vlan_en);
7468 for (i = 0; i < NUM_MACS; i++) {
7469 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7470 4 * i) :
7471 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7472 mac_en[i]);
7476 /* Enable BMC to host */
7477 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7478 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7480 /* Resume Tx switching to the PF */
7481 rc = bnx2x_func_switch_update(bp, 0);
7482 if (rc) {
7483 BNX2X_ERR("Can't resume tx-switching!\n");
7484 return rc;
7487 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7488 return 0;
7491 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7493 int rc;
7495 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7497 if (CONFIGURE_NIC_MODE(bp)) {
7498 /* Configure searcher as part of function hw init */
7499 bnx2x_init_searcher(bp);
7501 /* Reset NIC mode */
7502 rc = bnx2x_reset_nic_mode(bp);
7503 if (rc)
7504 BNX2X_ERR("Can't change NIC mode!\n");
7505 return rc;
7508 return 0;
7511 static int bnx2x_init_hw_func(struct bnx2x *bp)
7513 int port = BP_PORT(bp);
7514 int func = BP_FUNC(bp);
7515 int init_phase = PHASE_PF0 + func;
7516 struct bnx2x_ilt *ilt = BP_ILT(bp);
7517 u16 cdu_ilt_start;
7518 u32 addr, val;
7519 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7520 int i, main_mem_width, rc;
7522 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7524 /* FLR cleanup - hmmm */
7525 if (!CHIP_IS_E1x(bp)) {
7526 rc = bnx2x_pf_flr_clnup(bp);
7527 if (rc) {
7528 bnx2x_fw_dump(bp);
7529 return rc;
7533 /* set MSI reconfigure capability */
7534 if (bp->common.int_block == INT_BLOCK_HC) {
7535 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7536 val = REG_RD(bp, addr);
7537 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7538 REG_WR(bp, addr, val);
7541 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7542 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7544 ilt = BP_ILT(bp);
7545 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7547 if (IS_SRIOV(bp))
7548 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7549 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7551 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7552 * those of the VFs, so start line should be reset
7554 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7555 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7556 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7557 ilt->lines[cdu_ilt_start + i].page_mapping =
7558 bp->context[i].cxt_mapping;
7559 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7562 bnx2x_ilt_init_op(bp, INITOP_SET);
7564 if (!CONFIGURE_NIC_MODE(bp)) {
7565 bnx2x_init_searcher(bp);
7566 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7567 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7568 } else {
7569 /* Set NIC mode */
7570 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7571 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7574 if (!CHIP_IS_E1x(bp)) {
7575 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7577 /* Turn on a single ISR mode in IGU if driver is going to use
7578 * INT#x or MSI
7580 if (!(bp->flags & USING_MSIX_FLAG))
7581 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7583 * Timers workaround bug: function init part.
7584 * Need to wait 20msec after initializing ILT,
7585 * needed to make sure there are no requests in
7586 * one of the PXP internal queues with "old" ILT addresses
7588 msleep(20);
7590 * Master enable - Due to WB DMAE writes performed before this
7591 * register is re-initialized as part of the regular function
7592 * init
7594 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7595 /* Enable the function in IGU */
7596 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7599 bp->dmae_ready = 1;
7601 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7603 if (!CHIP_IS_E1x(bp))
7604 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7606 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7607 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7608 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7609 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7610 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7611 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7612 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7613 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7614 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7615 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7616 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7617 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7618 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7620 if (!CHIP_IS_E1x(bp))
7621 REG_WR(bp, QM_REG_PF_EN, 1);
7623 if (!CHIP_IS_E1x(bp)) {
7624 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7625 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7626 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7627 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7629 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7631 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7632 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7634 bnx2x_iov_init_dq(bp);
7636 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7637 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7638 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7639 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7640 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7641 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7642 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7643 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7644 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7645 if (!CHIP_IS_E1x(bp))
7646 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7648 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7650 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7652 if (!CHIP_IS_E1x(bp))
7653 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7655 if (IS_MF(bp)) {
7656 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7657 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7660 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7662 /* HC init per function */
7663 if (bp->common.int_block == INT_BLOCK_HC) {
7664 if (CHIP_IS_E1H(bp)) {
7665 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7667 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7668 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7670 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7672 } else {
7673 int num_segs, sb_idx, prod_offset;
7675 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7677 if (!CHIP_IS_E1x(bp)) {
7678 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7679 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7682 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7684 if (!CHIP_IS_E1x(bp)) {
7685 int dsb_idx = 0;
7687 * Producer memory:
7688 * E2 mode: address 0-135 match to the mapping memory;
7689 * 136 - PF0 default prod; 137 - PF1 default prod;
7690 * 138 - PF2 default prod; 139 - PF3 default prod;
7691 * 140 - PF0 attn prod; 141 - PF1 attn prod;
7692 * 142 - PF2 attn prod; 143 - PF3 attn prod;
7693 * 144-147 reserved.
7695 * E1.5 mode - In backward compatible mode;
7696 * for non default SB; each even line in the memory
7697 * holds the U producer and each odd line hold
7698 * the C producer. The first 128 producers are for
7699 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7700 * producers are for the DSB for each PF.
7701 * Each PF has five segments: (the order inside each
7702 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7703 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7704 * 144-147 attn prods;
7706 /* non-default-status-blocks */
7707 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7708 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7709 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7710 prod_offset = (bp->igu_base_sb + sb_idx) *
7711 num_segs;
7713 for (i = 0; i < num_segs; i++) {
7714 addr = IGU_REG_PROD_CONS_MEMORY +
7715 (prod_offset + i) * 4;
7716 REG_WR(bp, addr, 0);
7718 /* send consumer update with value 0 */
7719 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7720 USTORM_ID, 0, IGU_INT_NOP, 1);
7721 bnx2x_igu_clear_sb(bp,
7722 bp->igu_base_sb + sb_idx);
7725 /* default-status-blocks */
7726 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7727 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7729 if (CHIP_MODE_IS_4_PORT(bp))
7730 dsb_idx = BP_FUNC(bp);
7731 else
7732 dsb_idx = BP_VN(bp);
7734 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7735 IGU_BC_BASE_DSB_PROD + dsb_idx :
7736 IGU_NORM_BASE_DSB_PROD + dsb_idx);
7739 * igu prods come in chunks of E1HVN_MAX (4) -
7740 * does not matters what is the current chip mode
7742 for (i = 0; i < (num_segs * E1HVN_MAX);
7743 i += E1HVN_MAX) {
7744 addr = IGU_REG_PROD_CONS_MEMORY +
7745 (prod_offset + i)*4;
7746 REG_WR(bp, addr, 0);
7748 /* send consumer update with 0 */
7749 if (CHIP_INT_MODE_IS_BC(bp)) {
7750 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7751 USTORM_ID, 0, IGU_INT_NOP, 1);
7752 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7753 CSTORM_ID, 0, IGU_INT_NOP, 1);
7754 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7755 XSTORM_ID, 0, IGU_INT_NOP, 1);
7756 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7757 TSTORM_ID, 0, IGU_INT_NOP, 1);
7758 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7759 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7760 } else {
7761 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7762 USTORM_ID, 0, IGU_INT_NOP, 1);
7763 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7764 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7766 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7768 /* !!! These should become driver const once
7769 rf-tool supports split-68 const */
7770 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7771 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7772 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7773 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7774 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7775 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7779 /* Reset PCIE errors for debug */
7780 REG_WR(bp, 0x2114, 0xffffffff);
7781 REG_WR(bp, 0x2120, 0xffffffff);
7783 if (CHIP_IS_E1x(bp)) {
7784 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7785 main_mem_base = HC_REG_MAIN_MEMORY +
7786 BP_PORT(bp) * (main_mem_size * 4);
7787 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7788 main_mem_width = 8;
7790 val = REG_RD(bp, main_mem_prty_clr);
7791 if (val)
7792 DP(NETIF_MSG_HW,
7793 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7794 val);
7796 /* Clear "false" parity errors in MSI-X table */
7797 for (i = main_mem_base;
7798 i < main_mem_base + main_mem_size * 4;
7799 i += main_mem_width) {
7800 bnx2x_read_dmae(bp, i, main_mem_width / 4);
7801 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7802 i, main_mem_width / 4);
7804 /* Clear HC parity attention */
7805 REG_RD(bp, main_mem_prty_clr);
7808 #ifdef BNX2X_STOP_ON_ERROR
7809 /* Enable STORMs SP logging */
7810 REG_WR8(bp, BAR_USTRORM_INTMEM +
7811 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7812 REG_WR8(bp, BAR_TSTRORM_INTMEM +
7813 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7814 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7815 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7816 REG_WR8(bp, BAR_XSTRORM_INTMEM +
7817 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7818 #endif
7820 bnx2x_phy_probe(&bp->link_params);
7822 return 0;
7825 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7827 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7829 if (!CHIP_IS_E1x(bp))
7830 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7831 sizeof(struct host_hc_status_block_e2));
7832 else
7833 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7834 sizeof(struct host_hc_status_block_e1x));
7836 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7839 void bnx2x_free_mem(struct bnx2x *bp)
7841 int i;
7843 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7844 sizeof(struct host_sp_status_block));
7846 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7847 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7849 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7850 sizeof(struct bnx2x_slowpath));
7852 for (i = 0; i < L2_ILT_LINES(bp); i++)
7853 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7854 bp->context[i].size);
7855 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7857 BNX2X_FREE(bp->ilt->lines);
7859 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7861 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7862 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7864 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7866 bnx2x_iov_free_mem(bp);
7869 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7871 if (!CHIP_IS_E1x(bp))
7872 /* size = the status block + ramrod buffers */
7873 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7874 sizeof(struct host_hc_status_block_e2));
7875 else
7876 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7877 &bp->cnic_sb_mapping,
7878 sizeof(struct
7879 host_hc_status_block_e1x));
7881 if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7882 /* allocate searcher T2 table, as it wasn't allocated before */
7883 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7885 /* write address to which L5 should insert its values */
7886 bp->cnic_eth_dev.addr_drv_info_to_mcp =
7887 &bp->slowpath->drv_info_to_mcp;
7889 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7890 goto alloc_mem_err;
7892 return 0;
7894 alloc_mem_err:
7895 bnx2x_free_mem_cnic(bp);
7896 BNX2X_ERR("Can't allocate memory\n");
7897 return -ENOMEM;
7900 int bnx2x_alloc_mem(struct bnx2x *bp)
7902 int i, allocated, context_size;
7904 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7905 /* allocate searcher T2 table */
7906 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7908 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7909 sizeof(struct host_sp_status_block));
7911 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7912 sizeof(struct bnx2x_slowpath));
7914 /* Allocate memory for CDU context:
7915 * This memory is allocated separately and not in the generic ILT
7916 * functions because CDU differs in few aspects:
7917 * 1. There are multiple entities allocating memory for context -
7918 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7919 * its own ILT lines.
7920 * 2. Since CDU page-size is not a single 4KB page (which is the case
7921 * for the other ILT clients), to be efficient we want to support
7922 * allocation of sub-page-size in the last entry.
7923 * 3. Context pointers are used by the driver to pass to FW / update
7924 * the context (for the other ILT clients the pointers are used just to
7925 * free the memory during unload).
7927 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7929 for (i = 0, allocated = 0; allocated < context_size; i++) {
7930 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7931 (context_size - allocated));
7932 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7933 &bp->context[i].cxt_mapping,
7934 bp->context[i].size);
7935 allocated += bp->context[i].size;
7937 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7939 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7940 goto alloc_mem_err;
7942 if (bnx2x_iov_alloc_mem(bp))
7943 goto alloc_mem_err;
7945 /* Slow path ring */
7946 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7948 /* EQ */
7949 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7950 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7952 return 0;
7954 alloc_mem_err:
7955 bnx2x_free_mem(bp);
7956 BNX2X_ERR("Can't allocate memory\n");
7957 return -ENOMEM;
7961 * Init service functions
7964 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7965 struct bnx2x_vlan_mac_obj *obj, bool set,
7966 int mac_type, unsigned long *ramrod_flags)
7968 int rc;
7969 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7971 memset(&ramrod_param, 0, sizeof(ramrod_param));
7973 /* Fill general parameters */
7974 ramrod_param.vlan_mac_obj = obj;
7975 ramrod_param.ramrod_flags = *ramrod_flags;
7977 /* Fill a user request section if needed */
7978 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7979 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7981 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7983 /* Set the command: ADD or DEL */
7984 if (set)
7985 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7986 else
7987 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7990 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7992 if (rc == -EEXIST) {
7993 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7994 /* do not treat adding same MAC as error */
7995 rc = 0;
7996 } else if (rc < 0)
7997 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7999 return rc;
8002 int bnx2x_del_all_macs(struct bnx2x *bp,
8003 struct bnx2x_vlan_mac_obj *mac_obj,
8004 int mac_type, bool wait_for_comp)
8006 int rc;
8007 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8009 /* Wait for completion of requested */
8010 if (wait_for_comp)
8011 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8013 /* Set the mac type of addresses we want to clear */
8014 __set_bit(mac_type, &vlan_mac_flags);
8016 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8017 if (rc < 0)
8018 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8020 return rc;
8023 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8025 if (is_zero_ether_addr(bp->dev->dev_addr) &&
8026 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8027 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8028 "Ignoring Zero MAC for STORAGE SD mode\n");
8029 return 0;
8032 if (IS_PF(bp)) {
8033 unsigned long ramrod_flags = 0;
8035 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8036 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8037 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8038 &bp->sp_objs->mac_obj, set,
8039 BNX2X_ETH_MAC, &ramrod_flags);
8040 } else { /* vf */
8041 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8042 bp->fp->index, true);
8046 int bnx2x_setup_leading(struct bnx2x *bp)
8048 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
8052 * bnx2x_set_int_mode - configure interrupt mode
8054 * @bp: driver handle
8056 * In case of MSI-X it will also try to enable MSI-X.
8058 int bnx2x_set_int_mode(struct bnx2x *bp)
8060 int rc = 0;
8062 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
8063 return -EINVAL;
8065 switch (int_mode) {
8066 case BNX2X_INT_MODE_MSIX:
8067 /* attempt to enable msix */
8068 rc = bnx2x_enable_msix(bp);
8070 /* msix attained */
8071 if (!rc)
8072 return 0;
8074 /* vfs use only msix */
8075 if (rc && IS_VF(bp))
8076 return rc;
8078 /* failed to enable multiple MSI-X */
8079 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8080 bp->num_queues,
8081 1 + bp->num_cnic_queues);
8083 /* falling through... */
8084 case BNX2X_INT_MODE_MSI:
8085 bnx2x_enable_msi(bp);
8087 /* falling through... */
8088 case BNX2X_INT_MODE_INTX:
8089 bp->num_ethernet_queues = 1;
8090 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8091 BNX2X_DEV_INFO("set number of queues to 1\n");
8092 break;
8093 default:
8094 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8095 return -EINVAL;
8097 return 0;
8100 /* must be called prior to any HW initializations */
8101 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8103 if (IS_SRIOV(bp))
8104 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8105 return L2_ILT_LINES(bp);
8108 void bnx2x_ilt_set_info(struct bnx2x *bp)
8110 struct ilt_client_info *ilt_client;
8111 struct bnx2x_ilt *ilt = BP_ILT(bp);
8112 u16 line = 0;
8114 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8115 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8117 /* CDU */
8118 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8119 ilt_client->client_num = ILT_CLIENT_CDU;
8120 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8121 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8122 ilt_client->start = line;
8123 line += bnx2x_cid_ilt_lines(bp);
8125 if (CNIC_SUPPORT(bp))
8126 line += CNIC_ILT_LINES;
8127 ilt_client->end = line - 1;
8129 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8130 ilt_client->start,
8131 ilt_client->end,
8132 ilt_client->page_size,
8133 ilt_client->flags,
8134 ilog2(ilt_client->page_size >> 12));
8136 /* QM */
8137 if (QM_INIT(bp->qm_cid_count)) {
8138 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8139 ilt_client->client_num = ILT_CLIENT_QM;
8140 ilt_client->page_size = QM_ILT_PAGE_SZ;
8141 ilt_client->flags = 0;
8142 ilt_client->start = line;
8144 /* 4 bytes for each cid */
8145 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8146 QM_ILT_PAGE_SZ);
8148 ilt_client->end = line - 1;
8150 DP(NETIF_MSG_IFUP,
8151 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8152 ilt_client->start,
8153 ilt_client->end,
8154 ilt_client->page_size,
8155 ilt_client->flags,
8156 ilog2(ilt_client->page_size >> 12));
8159 if (CNIC_SUPPORT(bp)) {
8160 /* SRC */
8161 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8162 ilt_client->client_num = ILT_CLIENT_SRC;
8163 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8164 ilt_client->flags = 0;
8165 ilt_client->start = line;
8166 line += SRC_ILT_LINES;
8167 ilt_client->end = line - 1;
8169 DP(NETIF_MSG_IFUP,
8170 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8171 ilt_client->start,
8172 ilt_client->end,
8173 ilt_client->page_size,
8174 ilt_client->flags,
8175 ilog2(ilt_client->page_size >> 12));
8177 /* TM */
8178 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8179 ilt_client->client_num = ILT_CLIENT_TM;
8180 ilt_client->page_size = TM_ILT_PAGE_SZ;
8181 ilt_client->flags = 0;
8182 ilt_client->start = line;
8183 line += TM_ILT_LINES;
8184 ilt_client->end = line - 1;
8186 DP(NETIF_MSG_IFUP,
8187 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8188 ilt_client->start,
8189 ilt_client->end,
8190 ilt_client->page_size,
8191 ilt_client->flags,
8192 ilog2(ilt_client->page_size >> 12));
8195 BUG_ON(line > ILT_MAX_LINES);
8199 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8201 * @bp: driver handle
8202 * @fp: pointer to fastpath
8203 * @init_params: pointer to parameters structure
8205 * parameters configured:
8206 * - HC configuration
8207 * - Queue's CDU context
8209 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8210 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8212 u8 cos;
8213 int cxt_index, cxt_offset;
8215 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8216 if (!IS_FCOE_FP(fp)) {
8217 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8218 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8220 /* If HC is supported, enable host coalescing in the transition
8221 * to INIT state.
8223 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8224 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8226 /* HC rate */
8227 init_params->rx.hc_rate = bp->rx_ticks ?
8228 (1000000 / bp->rx_ticks) : 0;
8229 init_params->tx.hc_rate = bp->tx_ticks ?
8230 (1000000 / bp->tx_ticks) : 0;
8232 /* FW SB ID */
8233 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8234 fp->fw_sb_id;
8237 * CQ index among the SB indices: FCoE clients uses the default
8238 * SB, therefore it's different.
8240 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8241 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8244 /* set maximum number of COSs supported by this queue */
8245 init_params->max_cos = fp->max_cos;
8247 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8248 fp->index, init_params->max_cos);
8250 /* set the context pointers queue object */
8251 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8252 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8253 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8254 ILT_PAGE_CIDS);
8255 init_params->cxts[cos] =
8256 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8260 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8261 struct bnx2x_queue_state_params *q_params,
8262 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8263 int tx_index, bool leading)
8265 memset(tx_only_params, 0, sizeof(*tx_only_params));
8267 /* Set the command */
8268 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8270 /* Set tx-only QUEUE flags: don't zero statistics */
8271 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8273 /* choose the index of the cid to send the slow path on */
8274 tx_only_params->cid_index = tx_index;
8276 /* Set general TX_ONLY_SETUP parameters */
8277 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8279 /* Set Tx TX_ONLY_SETUP parameters */
8280 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8282 DP(NETIF_MSG_IFUP,
8283 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8284 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8285 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8286 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8288 /* send the ramrod */
8289 return bnx2x_queue_state_change(bp, q_params);
8293 * bnx2x_setup_queue - setup queue
8295 * @bp: driver handle
8296 * @fp: pointer to fastpath
8297 * @leading: is leading
8299 * This function performs 2 steps in a Queue state machine
8300 * actually: 1) RESET->INIT 2) INIT->SETUP
8303 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8304 bool leading)
8306 struct bnx2x_queue_state_params q_params = {NULL};
8307 struct bnx2x_queue_setup_params *setup_params =
8308 &q_params.params.setup;
8309 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8310 &q_params.params.tx_only;
8311 int rc;
8312 u8 tx_index;
8314 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8316 /* reset IGU state skip FCoE L2 queue */
8317 if (!IS_FCOE_FP(fp))
8318 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8319 IGU_INT_ENABLE, 0);
8321 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8322 /* We want to wait for completion in this context */
8323 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8325 /* Prepare the INIT parameters */
8326 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8328 /* Set the command */
8329 q_params.cmd = BNX2X_Q_CMD_INIT;
8331 /* Change the state to INIT */
8332 rc = bnx2x_queue_state_change(bp, &q_params);
8333 if (rc) {
8334 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8335 return rc;
8338 DP(NETIF_MSG_IFUP, "init complete\n");
8340 /* Now move the Queue to the SETUP state... */
8341 memset(setup_params, 0, sizeof(*setup_params));
8343 /* Set QUEUE flags */
8344 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8346 /* Set general SETUP parameters */
8347 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8348 FIRST_TX_COS_INDEX);
8350 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8351 &setup_params->rxq_params);
8353 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8354 FIRST_TX_COS_INDEX);
8356 /* Set the command */
8357 q_params.cmd = BNX2X_Q_CMD_SETUP;
8359 if (IS_FCOE_FP(fp))
8360 bp->fcoe_init = true;
8362 /* Change the state to SETUP */
8363 rc = bnx2x_queue_state_change(bp, &q_params);
8364 if (rc) {
8365 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8366 return rc;
8369 /* loop through the relevant tx-only indices */
8370 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8371 tx_index < fp->max_cos;
8372 tx_index++) {
8374 /* prepare and send tx-only ramrod*/
8375 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8376 tx_only_params, tx_index, leading);
8377 if (rc) {
8378 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8379 fp->index, tx_index);
8380 return rc;
8384 return rc;
8387 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8389 struct bnx2x_fastpath *fp = &bp->fp[index];
8390 struct bnx2x_fp_txdata *txdata;
8391 struct bnx2x_queue_state_params q_params = {NULL};
8392 int rc, tx_index;
8394 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8396 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8397 /* We want to wait for completion in this context */
8398 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8400 /* close tx-only connections */
8401 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8402 tx_index < fp->max_cos;
8403 tx_index++){
8405 /* ascertain this is a normal queue*/
8406 txdata = fp->txdata_ptr[tx_index];
8408 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8409 txdata->txq_index);
8411 /* send halt terminate on tx-only connection */
8412 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8413 memset(&q_params.params.terminate, 0,
8414 sizeof(q_params.params.terminate));
8415 q_params.params.terminate.cid_index = tx_index;
8417 rc = bnx2x_queue_state_change(bp, &q_params);
8418 if (rc)
8419 return rc;
8421 /* send halt terminate on tx-only connection */
8422 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8423 memset(&q_params.params.cfc_del, 0,
8424 sizeof(q_params.params.cfc_del));
8425 q_params.params.cfc_del.cid_index = tx_index;
8426 rc = bnx2x_queue_state_change(bp, &q_params);
8427 if (rc)
8428 return rc;
8430 /* Stop the primary connection: */
8431 /* ...halt the connection */
8432 q_params.cmd = BNX2X_Q_CMD_HALT;
8433 rc = bnx2x_queue_state_change(bp, &q_params);
8434 if (rc)
8435 return rc;
8437 /* ...terminate the connection */
8438 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8439 memset(&q_params.params.terminate, 0,
8440 sizeof(q_params.params.terminate));
8441 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8442 rc = bnx2x_queue_state_change(bp, &q_params);
8443 if (rc)
8444 return rc;
8445 /* ...delete cfc entry */
8446 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8447 memset(&q_params.params.cfc_del, 0,
8448 sizeof(q_params.params.cfc_del));
8449 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8450 return bnx2x_queue_state_change(bp, &q_params);
8453 static void bnx2x_reset_func(struct bnx2x *bp)
8455 int port = BP_PORT(bp);
8456 int func = BP_FUNC(bp);
8457 int i;
8459 /* Disable the function in the FW */
8460 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8461 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8462 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8463 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8465 /* FP SBs */
8466 for_each_eth_queue(bp, i) {
8467 struct bnx2x_fastpath *fp = &bp->fp[i];
8468 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8469 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8470 SB_DISABLED);
8473 if (CNIC_LOADED(bp))
8474 /* CNIC SB */
8475 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8476 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8477 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8479 /* SP SB */
8480 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8481 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8482 SB_DISABLED);
8484 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8485 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8488 /* Configure IGU */
8489 if (bp->common.int_block == INT_BLOCK_HC) {
8490 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8491 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8492 } else {
8493 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8494 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8497 if (CNIC_LOADED(bp)) {
8498 /* Disable Timer scan */
8499 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8501 * Wait for at least 10ms and up to 2 second for the timers
8502 * scan to complete
8504 for (i = 0; i < 200; i++) {
8505 usleep_range(10000, 20000);
8506 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8507 break;
8510 /* Clear ILT */
8511 bnx2x_clear_func_ilt(bp, func);
8513 /* Timers workaround bug for E2: if this is vnic-3,
8514 * we need to set the entire ilt range for this timers.
8516 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8517 struct ilt_client_info ilt_cli;
8518 /* use dummy TM client */
8519 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8520 ilt_cli.start = 0;
8521 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8522 ilt_cli.client_num = ILT_CLIENT_TM;
8524 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8527 /* this assumes that reset_port() called before reset_func()*/
8528 if (!CHIP_IS_E1x(bp))
8529 bnx2x_pf_disable(bp);
8531 bp->dmae_ready = 0;
8534 static void bnx2x_reset_port(struct bnx2x *bp)
8536 int port = BP_PORT(bp);
8537 u32 val;
8539 /* Reset physical Link */
8540 bnx2x__link_reset(bp);
8542 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8544 /* Do not rcv packets to BRB */
8545 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8546 /* Do not direct rcv packets that are not for MCP to the BRB */
8547 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8548 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8550 /* Configure AEU */
8551 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8553 msleep(100);
8554 /* Check for BRB port occupancy */
8555 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8556 if (val)
8557 DP(NETIF_MSG_IFDOWN,
8558 "BRB1 is not empty %d blocks are occupied\n", val);
8560 /* TODO: Close Doorbell port? */
8563 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8565 struct bnx2x_func_state_params func_params = {NULL};
8567 /* Prepare parameters for function state transitions */
8568 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8570 func_params.f_obj = &bp->func_obj;
8571 func_params.cmd = BNX2X_F_CMD_HW_RESET;
8573 func_params.params.hw_init.load_phase = load_code;
8575 return bnx2x_func_state_change(bp, &func_params);
8578 static int bnx2x_func_stop(struct bnx2x *bp)
8580 struct bnx2x_func_state_params func_params = {NULL};
8581 int rc;
8583 /* Prepare parameters for function state transitions */
8584 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8585 func_params.f_obj = &bp->func_obj;
8586 func_params.cmd = BNX2X_F_CMD_STOP;
8589 * Try to stop the function the 'good way'. If fails (in case
8590 * of a parity error during bnx2x_chip_cleanup()) and we are
8591 * not in a debug mode, perform a state transaction in order to
8592 * enable further HW_RESET transaction.
8594 rc = bnx2x_func_state_change(bp, &func_params);
8595 if (rc) {
8596 #ifdef BNX2X_STOP_ON_ERROR
8597 return rc;
8598 #else
8599 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8600 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8601 return bnx2x_func_state_change(bp, &func_params);
8602 #endif
8605 return 0;
8609 * bnx2x_send_unload_req - request unload mode from the MCP.
8611 * @bp: driver handle
8612 * @unload_mode: requested function's unload mode
8614 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8616 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8618 u32 reset_code = 0;
8619 int port = BP_PORT(bp);
8621 /* Select the UNLOAD request mode */
8622 if (unload_mode == UNLOAD_NORMAL)
8623 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8625 else if (bp->flags & NO_WOL_FLAG)
8626 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8628 else if (bp->wol) {
8629 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8630 u8 *mac_addr = bp->dev->dev_addr;
8631 u32 val;
8632 u16 pmc;
8634 /* The mac address is written to entries 1-4 to
8635 * preserve entry 0 which is used by the PMF
8637 u8 entry = (BP_VN(bp) + 1)*8;
8639 val = (mac_addr[0] << 8) | mac_addr[1];
8640 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8642 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8643 (mac_addr[4] << 8) | mac_addr[5];
8644 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8646 /* Enable the PME and clear the status */
8647 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8648 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8649 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8651 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8653 } else
8654 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8656 /* Send the request to the MCP */
8657 if (!BP_NOMCP(bp))
8658 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8659 else {
8660 int path = BP_PATH(bp);
8662 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
8663 path, load_count[path][0], load_count[path][1],
8664 load_count[path][2]);
8665 load_count[path][0]--;
8666 load_count[path][1 + port]--;
8667 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
8668 path, load_count[path][0], load_count[path][1],
8669 load_count[path][2]);
8670 if (load_count[path][0] == 0)
8671 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8672 else if (load_count[path][1 + port] == 0)
8673 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8674 else
8675 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8678 return reset_code;
8682 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8684 * @bp: driver handle
8685 * @keep_link: true iff link should be kept up
8687 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8689 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8691 /* Report UNLOAD_DONE to MCP */
8692 if (!BP_NOMCP(bp))
8693 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8696 static int bnx2x_func_wait_started(struct bnx2x *bp)
8698 int tout = 50;
8699 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8701 if (!bp->port.pmf)
8702 return 0;
8705 * (assumption: No Attention from MCP at this stage)
8706 * PMF probably in the middle of TX disable/enable transaction
8707 * 1. Sync IRS for default SB
8708 * 2. Sync SP queue - this guarantees us that attention handling started
8709 * 3. Wait, that TX disable/enable transaction completes
8711 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8712 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8713 * received completion for the transaction the state is TX_STOPPED.
8714 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8715 * transaction.
8718 /* make sure default SB ISR is done */
8719 if (msix)
8720 synchronize_irq(bp->msix_table[0].vector);
8721 else
8722 synchronize_irq(bp->pdev->irq);
8724 flush_workqueue(bnx2x_wq);
8726 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8727 BNX2X_F_STATE_STARTED && tout--)
8728 msleep(20);
8730 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8731 BNX2X_F_STATE_STARTED) {
8732 #ifdef BNX2X_STOP_ON_ERROR
8733 BNX2X_ERR("Wrong function state\n");
8734 return -EBUSY;
8735 #else
8737 * Failed to complete the transaction in a "good way"
8738 * Force both transactions with CLR bit
8740 struct bnx2x_func_state_params func_params = {NULL};
8742 DP(NETIF_MSG_IFDOWN,
8743 "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8745 func_params.f_obj = &bp->func_obj;
8746 __set_bit(RAMROD_DRV_CLR_ONLY,
8747 &func_params.ramrod_flags);
8749 /* STARTED-->TX_ST0PPED */
8750 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8751 bnx2x_func_state_change(bp, &func_params);
8753 /* TX_ST0PPED-->STARTED */
8754 func_params.cmd = BNX2X_F_CMD_TX_START;
8755 return bnx2x_func_state_change(bp, &func_params);
8756 #endif
8759 return 0;
8762 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8764 int port = BP_PORT(bp);
8765 int i, rc = 0;
8766 u8 cos;
8767 struct bnx2x_mcast_ramrod_params rparam = {NULL};
8768 u32 reset_code;
8770 /* Wait until tx fastpath tasks complete */
8771 for_each_tx_queue(bp, i) {
8772 struct bnx2x_fastpath *fp = &bp->fp[i];
8774 for_each_cos_in_tx_queue(fp, cos)
8775 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8776 #ifdef BNX2X_STOP_ON_ERROR
8777 if (rc)
8778 return;
8779 #endif
8782 /* Give HW time to discard old tx messages */
8783 usleep_range(1000, 2000);
8785 /* Clean all ETH MACs */
8786 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8787 false);
8788 if (rc < 0)
8789 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8791 /* Clean up UC list */
8792 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8793 true);
8794 if (rc < 0)
8795 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8796 rc);
8798 /* Disable LLH */
8799 if (!CHIP_IS_E1(bp))
8800 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8802 /* Set "drop all" (stop Rx).
8803 * We need to take a netif_addr_lock() here in order to prevent
8804 * a race between the completion code and this code.
8806 netif_addr_lock_bh(bp->dev);
8807 /* Schedule the rx_mode command */
8808 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8809 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8810 else
8811 bnx2x_set_storm_rx_mode(bp);
8813 /* Cleanup multicast configuration */
8814 rparam.mcast_obj = &bp->mcast_obj;
8815 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8816 if (rc < 0)
8817 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8819 netif_addr_unlock_bh(bp->dev);
8821 bnx2x_iov_chip_cleanup(bp);
8824 * Send the UNLOAD_REQUEST to the MCP. This will return if
8825 * this function should perform FUNC, PORT or COMMON HW
8826 * reset.
8828 reset_code = bnx2x_send_unload_req(bp, unload_mode);
8831 * (assumption: No Attention from MCP at this stage)
8832 * PMF probably in the middle of TX disable/enable transaction
8834 rc = bnx2x_func_wait_started(bp);
8835 if (rc) {
8836 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8837 #ifdef BNX2X_STOP_ON_ERROR
8838 return;
8839 #endif
8842 /* Close multi and leading connections
8843 * Completions for ramrods are collected in a synchronous way
8845 for_each_eth_queue(bp, i)
8846 if (bnx2x_stop_queue(bp, i))
8847 #ifdef BNX2X_STOP_ON_ERROR
8848 return;
8849 #else
8850 goto unload_error;
8851 #endif
8853 if (CNIC_LOADED(bp)) {
8854 for_each_cnic_queue(bp, i)
8855 if (bnx2x_stop_queue(bp, i))
8856 #ifdef BNX2X_STOP_ON_ERROR
8857 return;
8858 #else
8859 goto unload_error;
8860 #endif
8863 /* If SP settings didn't get completed so far - something
8864 * very wrong has happen.
8866 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8867 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8869 #ifndef BNX2X_STOP_ON_ERROR
8870 unload_error:
8871 #endif
8872 rc = bnx2x_func_stop(bp);
8873 if (rc) {
8874 BNX2X_ERR("Function stop failed!\n");
8875 #ifdef BNX2X_STOP_ON_ERROR
8876 return;
8877 #endif
8880 /* Disable HW interrupts, NAPI */
8881 bnx2x_netif_stop(bp, 1);
8882 /* Delete all NAPI objects */
8883 bnx2x_del_all_napi(bp);
8884 if (CNIC_LOADED(bp))
8885 bnx2x_del_all_napi_cnic(bp);
8887 /* Release IRQs */
8888 bnx2x_free_irq(bp);
8890 /* Reset the chip */
8891 rc = bnx2x_reset_hw(bp, reset_code);
8892 if (rc)
8893 BNX2X_ERR("HW_RESET failed\n");
8895 /* Report UNLOAD_DONE to MCP */
8896 bnx2x_send_unload_done(bp, keep_link);
8899 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8901 u32 val;
8903 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8905 if (CHIP_IS_E1(bp)) {
8906 int port = BP_PORT(bp);
8907 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8908 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8910 val = REG_RD(bp, addr);
8911 val &= ~(0x300);
8912 REG_WR(bp, addr, val);
8913 } else {
8914 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8915 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8916 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8917 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8921 /* Close gates #2, #3 and #4: */
8922 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8924 u32 val;
8926 /* Gates #2 and #4a are closed/opened for "not E1" only */
8927 if (!CHIP_IS_E1(bp)) {
8928 /* #4 */
8929 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8930 /* #2 */
8931 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8934 /* #3 */
8935 if (CHIP_IS_E1x(bp)) {
8936 /* Prevent interrupts from HC on both ports */
8937 val = REG_RD(bp, HC_REG_CONFIG_1);
8938 REG_WR(bp, HC_REG_CONFIG_1,
8939 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8940 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8942 val = REG_RD(bp, HC_REG_CONFIG_0);
8943 REG_WR(bp, HC_REG_CONFIG_0,
8944 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8945 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8946 } else {
8947 /* Prevent incoming interrupts in IGU */
8948 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8950 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8951 (!close) ?
8952 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8953 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8956 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8957 close ? "closing" : "opening");
8958 mmiowb();
8961 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
8963 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8965 /* Do some magic... */
8966 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8967 *magic_val = val & SHARED_MF_CLP_MAGIC;
8968 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8972 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8974 * @bp: driver handle
8975 * @magic_val: old value of the `magic' bit.
8977 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8979 /* Restore the `magic' bit value... */
8980 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8981 MF_CFG_WR(bp, shared_mf_config.clp_mb,
8982 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8986 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8988 * @bp: driver handle
8989 * @magic_val: old value of 'magic' bit.
8991 * Takes care of CLP configurations.
8993 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8995 u32 shmem;
8996 u32 validity_offset;
8998 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9000 /* Set `magic' bit in order to save MF config */
9001 if (!CHIP_IS_E1(bp))
9002 bnx2x_clp_reset_prep(bp, magic_val);
9004 /* Get shmem offset */
9005 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9006 validity_offset =
9007 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9009 /* Clear validity map flags */
9010 if (shmem > 0)
9011 REG_WR(bp, shmem + validity_offset, 0);
9014 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9015 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9018 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9020 * @bp: driver handle
9022 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9024 /* special handling for emulation and FPGA,
9025 wait 10 times longer */
9026 if (CHIP_REV_IS_SLOW(bp))
9027 msleep(MCP_ONE_TIMEOUT*10);
9028 else
9029 msleep(MCP_ONE_TIMEOUT);
9033 * initializes bp->common.shmem_base and waits for validity signature to appear
9035 static int bnx2x_init_shmem(struct bnx2x *bp)
9037 int cnt = 0;
9038 u32 val = 0;
9040 do {
9041 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9042 if (bp->common.shmem_base) {
9043 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9044 if (val & SHR_MEM_VALIDITY_MB)
9045 return 0;
9048 bnx2x_mcp_wait_one(bp);
9050 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9052 BNX2X_ERR("BAD MCP validity signature\n");
9054 return -ENODEV;
9057 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9059 int rc = bnx2x_init_shmem(bp);
9061 /* Restore the `magic' bit value */
9062 if (!CHIP_IS_E1(bp))
9063 bnx2x_clp_reset_done(bp, magic_val);
9065 return rc;
9068 static void bnx2x_pxp_prep(struct bnx2x *bp)
9070 if (!CHIP_IS_E1(bp)) {
9071 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9072 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9073 mmiowb();
9078 * Reset the whole chip except for:
9079 * - PCIE core
9080 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9081 * one reset bit)
9082 * - IGU
9083 * - MISC (including AEU)
9084 * - GRC
9085 * - RBCN, RBCP
9087 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9089 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9090 u32 global_bits2, stay_reset2;
9093 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9094 * (per chip) blocks.
9096 global_bits2 =
9097 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9098 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9100 /* Don't reset the following blocks.
9101 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9102 * reset, as in 4 port device they might still be owned
9103 * by the MCP (there is only one leader per path).
9105 not_reset_mask1 =
9106 MISC_REGISTERS_RESET_REG_1_RST_HC |
9107 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9108 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9110 not_reset_mask2 =
9111 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9112 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9113 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9114 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9115 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9116 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9117 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9118 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9119 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9120 MISC_REGISTERS_RESET_REG_2_PGLC |
9121 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9122 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9123 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9124 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9125 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9126 MISC_REGISTERS_RESET_REG_2_UMAC1;
9129 * Keep the following blocks in reset:
9130 * - all xxMACs are handled by the bnx2x_link code.
9132 stay_reset2 =
9133 MISC_REGISTERS_RESET_REG_2_XMAC |
9134 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9136 /* Full reset masks according to the chip */
9137 reset_mask1 = 0xffffffff;
9139 if (CHIP_IS_E1(bp))
9140 reset_mask2 = 0xffff;
9141 else if (CHIP_IS_E1H(bp))
9142 reset_mask2 = 0x1ffff;
9143 else if (CHIP_IS_E2(bp))
9144 reset_mask2 = 0xfffff;
9145 else /* CHIP_IS_E3 */
9146 reset_mask2 = 0x3ffffff;
9148 /* Don't reset global blocks unless we need to */
9149 if (!global)
9150 reset_mask2 &= ~global_bits2;
9153 * In case of attention in the QM, we need to reset PXP
9154 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9155 * because otherwise QM reset would release 'close the gates' shortly
9156 * before resetting the PXP, then the PSWRQ would send a write
9157 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9158 * read the payload data from PSWWR, but PSWWR would not
9159 * respond. The write queue in PGLUE would stuck, dmae commands
9160 * would not return. Therefore it's important to reset the second
9161 * reset register (containing the
9162 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9163 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9164 * bit).
9166 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9167 reset_mask2 & (~not_reset_mask2));
9169 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9170 reset_mask1 & (~not_reset_mask1));
9172 barrier();
9173 mmiowb();
9175 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9176 reset_mask2 & (~stay_reset2));
9178 barrier();
9179 mmiowb();
9181 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9182 mmiowb();
9186 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9187 * It should get cleared in no more than 1s.
9189 * @bp: driver handle
9191 * It should get cleared in no more than 1s. Returns 0 if
9192 * pending writes bit gets cleared.
9194 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9196 u32 cnt = 1000;
9197 u32 pend_bits = 0;
9199 do {
9200 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9202 if (pend_bits == 0)
9203 break;
9205 usleep_range(1000, 2000);
9206 } while (cnt-- > 0);
9208 if (cnt <= 0) {
9209 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9210 pend_bits);
9211 return -EBUSY;
9214 return 0;
9217 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9219 int cnt = 1000;
9220 u32 val = 0;
9221 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9222 u32 tags_63_32 = 0;
9224 /* Empty the Tetris buffer, wait for 1s */
9225 do {
9226 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9227 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9228 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9229 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9230 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9231 if (CHIP_IS_E3(bp))
9232 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9234 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9235 ((port_is_idle_0 & 0x1) == 0x1) &&
9236 ((port_is_idle_1 & 0x1) == 0x1) &&
9237 (pgl_exp_rom2 == 0xffffffff) &&
9238 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9239 break;
9240 usleep_range(1000, 2000);
9241 } while (cnt-- > 0);
9243 if (cnt <= 0) {
9244 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9245 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9246 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9247 pgl_exp_rom2);
9248 return -EAGAIN;
9251 barrier();
9253 /* Close gates #2, #3 and #4 */
9254 bnx2x_set_234_gates(bp, true);
9256 /* Poll for IGU VQs for 57712 and newer chips */
9257 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9258 return -EAGAIN;
9260 /* TBD: Indicate that "process kill" is in progress to MCP */
9262 /* Clear "unprepared" bit */
9263 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9264 barrier();
9266 /* Make sure all is written to the chip before the reset */
9267 mmiowb();
9269 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9270 * PSWHST, GRC and PSWRD Tetris buffer.
9272 usleep_range(1000, 2000);
9274 /* Prepare to chip reset: */
9275 /* MCP */
9276 if (global)
9277 bnx2x_reset_mcp_prep(bp, &val);
9279 /* PXP */
9280 bnx2x_pxp_prep(bp);
9281 barrier();
9283 /* reset the chip */
9284 bnx2x_process_kill_chip_reset(bp, global);
9285 barrier();
9287 /* Recover after reset: */
9288 /* MCP */
9289 if (global && bnx2x_reset_mcp_comp(bp, val))
9290 return -EAGAIN;
9292 /* TBD: Add resetting the NO_MCP mode DB here */
9294 /* Open the gates #2, #3 and #4 */
9295 bnx2x_set_234_gates(bp, false);
9297 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9298 * reset state, re-enable attentions. */
9300 return 0;
9303 static int bnx2x_leader_reset(struct bnx2x *bp)
9305 int rc = 0;
9306 bool global = bnx2x_reset_is_global(bp);
9307 u32 load_code;
9309 /* if not going to reset MCP - load "fake" driver to reset HW while
9310 * driver is owner of the HW
9312 if (!global && !BP_NOMCP(bp)) {
9313 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9314 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9315 if (!load_code) {
9316 BNX2X_ERR("MCP response failure, aborting\n");
9317 rc = -EAGAIN;
9318 goto exit_leader_reset;
9320 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9321 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9322 BNX2X_ERR("MCP unexpected resp, aborting\n");
9323 rc = -EAGAIN;
9324 goto exit_leader_reset2;
9326 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9327 if (!load_code) {
9328 BNX2X_ERR("MCP response failure, aborting\n");
9329 rc = -EAGAIN;
9330 goto exit_leader_reset2;
9334 /* Try to recover after the failure */
9335 if (bnx2x_process_kill(bp, global)) {
9336 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9337 BP_PATH(bp));
9338 rc = -EAGAIN;
9339 goto exit_leader_reset2;
9343 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9344 * state.
9346 bnx2x_set_reset_done(bp);
9347 if (global)
9348 bnx2x_clear_reset_global(bp);
9350 exit_leader_reset2:
9351 /* unload "fake driver" if it was loaded */
9352 if (!global && !BP_NOMCP(bp)) {
9353 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9354 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9356 exit_leader_reset:
9357 bp->is_leader = 0;
9358 bnx2x_release_leader_lock(bp);
9359 smp_mb();
9360 return rc;
9363 static void bnx2x_recovery_failed(struct bnx2x *bp)
9365 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9367 /* Disconnect this device */
9368 netif_device_detach(bp->dev);
9371 * Block ifup for all function on this engine until "process kill"
9372 * or power cycle.
9374 bnx2x_set_reset_in_progress(bp);
9376 /* Shut down the power */
9377 bnx2x_set_power_state(bp, PCI_D3hot);
9379 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9381 smp_mb();
9385 * Assumption: runs under rtnl lock. This together with the fact
9386 * that it's called only from bnx2x_sp_rtnl() ensure that it
9387 * will never be called when netif_running(bp->dev) is false.
9389 static void bnx2x_parity_recover(struct bnx2x *bp)
9391 bool global = false;
9392 u32 error_recovered, error_unrecovered;
9393 bool is_parity;
9395 DP(NETIF_MSG_HW, "Handling parity\n");
9396 while (1) {
9397 switch (bp->recovery_state) {
9398 case BNX2X_RECOVERY_INIT:
9399 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9400 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9401 WARN_ON(!is_parity);
9403 /* Try to get a LEADER_LOCK HW lock */
9404 if (bnx2x_trylock_leader_lock(bp)) {
9405 bnx2x_set_reset_in_progress(bp);
9407 * Check if there is a global attention and if
9408 * there was a global attention, set the global
9409 * reset bit.
9412 if (global)
9413 bnx2x_set_reset_global(bp);
9415 bp->is_leader = 1;
9418 /* Stop the driver */
9419 /* If interface has been removed - break */
9420 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9421 return;
9423 bp->recovery_state = BNX2X_RECOVERY_WAIT;
9425 /* Ensure "is_leader", MCP command sequence and
9426 * "recovery_state" update values are seen on other
9427 * CPUs.
9429 smp_mb();
9430 break;
9432 case BNX2X_RECOVERY_WAIT:
9433 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9434 if (bp->is_leader) {
9435 int other_engine = BP_PATH(bp) ? 0 : 1;
9436 bool other_load_status =
9437 bnx2x_get_load_status(bp, other_engine);
9438 bool load_status =
9439 bnx2x_get_load_status(bp, BP_PATH(bp));
9440 global = bnx2x_reset_is_global(bp);
9443 * In case of a parity in a global block, let
9444 * the first leader that performs a
9445 * leader_reset() reset the global blocks in
9446 * order to clear global attentions. Otherwise
9447 * the gates will remain closed for that
9448 * engine.
9450 if (load_status ||
9451 (global && other_load_status)) {
9452 /* Wait until all other functions get
9453 * down.
9455 schedule_delayed_work(&bp->sp_rtnl_task,
9456 HZ/10);
9457 return;
9458 } else {
9459 /* If all other functions got down -
9460 * try to bring the chip back to
9461 * normal. In any case it's an exit
9462 * point for a leader.
9464 if (bnx2x_leader_reset(bp)) {
9465 bnx2x_recovery_failed(bp);
9466 return;
9469 /* If we are here, means that the
9470 * leader has succeeded and doesn't
9471 * want to be a leader any more. Try
9472 * to continue as a none-leader.
9474 break;
9476 } else { /* non-leader */
9477 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9478 /* Try to get a LEADER_LOCK HW lock as
9479 * long as a former leader may have
9480 * been unloaded by the user or
9481 * released a leadership by another
9482 * reason.
9484 if (bnx2x_trylock_leader_lock(bp)) {
9485 /* I'm a leader now! Restart a
9486 * switch case.
9488 bp->is_leader = 1;
9489 break;
9492 schedule_delayed_work(&bp->sp_rtnl_task,
9493 HZ/10);
9494 return;
9496 } else {
9498 * If there was a global attention, wait
9499 * for it to be cleared.
9501 if (bnx2x_reset_is_global(bp)) {
9502 schedule_delayed_work(
9503 &bp->sp_rtnl_task,
9504 HZ/10);
9505 return;
9508 error_recovered =
9509 bp->eth_stats.recoverable_error;
9510 error_unrecovered =
9511 bp->eth_stats.unrecoverable_error;
9512 bp->recovery_state =
9513 BNX2X_RECOVERY_NIC_LOADING;
9514 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9515 error_unrecovered++;
9516 netdev_err(bp->dev,
9517 "Recovery failed. Power cycle needed\n");
9518 /* Disconnect this device */
9519 netif_device_detach(bp->dev);
9520 /* Shut down the power */
9521 bnx2x_set_power_state(
9522 bp, PCI_D3hot);
9523 smp_mb();
9524 } else {
9525 bp->recovery_state =
9526 BNX2X_RECOVERY_DONE;
9527 error_recovered++;
9528 smp_mb();
9530 bp->eth_stats.recoverable_error =
9531 error_recovered;
9532 bp->eth_stats.unrecoverable_error =
9533 error_unrecovered;
9535 return;
9538 default:
9539 return;
9544 static int bnx2x_close(struct net_device *dev);
9546 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9547 * scheduled on a general queue in order to prevent a dead lock.
9549 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9551 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9553 rtnl_lock();
9555 if (!netif_running(bp->dev)) {
9556 rtnl_unlock();
9557 return;
9560 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9561 #ifdef BNX2X_STOP_ON_ERROR
9562 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9563 "you will need to reboot when done\n");
9564 goto sp_rtnl_not_reset;
9565 #endif
9567 * Clear all pending SP commands as we are going to reset the
9568 * function anyway.
9570 bp->sp_rtnl_state = 0;
9571 smp_mb();
9573 bnx2x_parity_recover(bp);
9575 rtnl_unlock();
9576 return;
9579 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9580 #ifdef BNX2X_STOP_ON_ERROR
9581 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9582 "you will need to reboot when done\n");
9583 goto sp_rtnl_not_reset;
9584 #endif
9587 * Clear all pending SP commands as we are going to reset the
9588 * function anyway.
9590 bp->sp_rtnl_state = 0;
9591 smp_mb();
9593 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9594 bnx2x_nic_load(bp, LOAD_NORMAL);
9596 rtnl_unlock();
9597 return;
9599 #ifdef BNX2X_STOP_ON_ERROR
9600 sp_rtnl_not_reset:
9601 #endif
9602 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9603 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9604 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9605 bnx2x_after_function_update(bp);
9607 * in case of fan failure we need to reset id if the "stop on error"
9608 * debug flag is set, since we trying to prevent permanent overheating
9609 * damage
9611 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9612 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9613 netif_device_detach(bp->dev);
9614 bnx2x_close(bp->dev);
9615 rtnl_unlock();
9616 return;
9619 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9620 DP(BNX2X_MSG_SP,
9621 "sending set mcast vf pf channel message from rtnl sp-task\n");
9622 bnx2x_vfpf_set_mcast(bp->dev);
9625 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
9626 &bp->sp_rtnl_state)) {
9627 DP(BNX2X_MSG_SP,
9628 "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
9629 bnx2x_vfpf_storm_rx_mode(bp);
9632 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9633 &bp->sp_rtnl_state))
9634 bnx2x_pf_set_vfs_vlan(bp);
9636 /* work which needs rtnl lock not-taken (as it takes the lock itself and
9637 * can be called from other contexts as well)
9639 rtnl_unlock();
9641 /* enable SR-IOV if applicable */
9642 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9643 &bp->sp_rtnl_state)) {
9644 bnx2x_disable_sriov(bp);
9645 bnx2x_enable_sriov(bp);
9649 static void bnx2x_period_task(struct work_struct *work)
9651 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9653 if (!netif_running(bp->dev))
9654 goto period_task_exit;
9656 if (CHIP_REV_IS_SLOW(bp)) {
9657 BNX2X_ERR("period task called on emulation, ignoring\n");
9658 goto period_task_exit;
9661 bnx2x_acquire_phy_lock(bp);
9663 * The barrier is needed to ensure the ordering between the writing to
9664 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9665 * the reading here.
9667 smp_mb();
9668 if (bp->port.pmf) {
9669 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9671 /* Re-queue task in 1 sec */
9672 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9675 bnx2x_release_phy_lock(bp);
9676 period_task_exit:
9677 return;
9681 * Init service functions
9684 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9686 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9687 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9688 return base + (BP_ABS_FUNC(bp)) * stride;
9691 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9692 struct bnx2x_mac_vals *vals)
9694 u32 val, base_addr, offset, mask, reset_reg;
9695 bool mac_stopped = false;
9696 u8 port = BP_PORT(bp);
9698 /* reset addresses as they also mark which values were changed */
9699 vals->bmac_addr = 0;
9700 vals->umac_addr = 0;
9701 vals->xmac_addr = 0;
9702 vals->emac_addr = 0;
9704 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9706 if (!CHIP_IS_E3(bp)) {
9707 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9708 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9709 if ((mask & reset_reg) && val) {
9710 u32 wb_data[2];
9711 BNX2X_DEV_INFO("Disable bmac Rx\n");
9712 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9713 : NIG_REG_INGRESS_BMAC0_MEM;
9714 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9715 : BIGMAC_REGISTER_BMAC_CONTROL;
9718 * use rd/wr since we cannot use dmae. This is safe
9719 * since MCP won't access the bus due to the request
9720 * to unload, and no function on the path can be
9721 * loaded at this time.
9723 wb_data[0] = REG_RD(bp, base_addr + offset);
9724 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9725 vals->bmac_addr = base_addr + offset;
9726 vals->bmac_val[0] = wb_data[0];
9727 vals->bmac_val[1] = wb_data[1];
9728 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9729 REG_WR(bp, vals->bmac_addr, wb_data[0]);
9730 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9732 BNX2X_DEV_INFO("Disable emac Rx\n");
9733 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9734 vals->emac_val = REG_RD(bp, vals->emac_addr);
9735 REG_WR(bp, vals->emac_addr, 0);
9736 mac_stopped = true;
9737 } else {
9738 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9739 BNX2X_DEV_INFO("Disable xmac Rx\n");
9740 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9741 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9742 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9743 val & ~(1 << 1));
9744 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9745 val | (1 << 1));
9746 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9747 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9748 REG_WR(bp, vals->xmac_addr, 0);
9749 mac_stopped = true;
9751 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9752 if (mask & reset_reg) {
9753 BNX2X_DEV_INFO("Disable umac Rx\n");
9754 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9755 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9756 vals->umac_val = REG_RD(bp, vals->umac_addr);
9757 REG_WR(bp, vals->umac_addr, 0);
9758 mac_stopped = true;
9762 if (mac_stopped)
9763 msleep(20);
9766 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9767 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
9768 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
9769 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9771 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9773 u16 rcq, bd;
9774 u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9776 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9777 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9779 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9780 REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9782 BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9783 port, bd, rcq);
9786 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9788 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9789 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9790 if (!rc) {
9791 BNX2X_ERR("MCP response failure, aborting\n");
9792 return -EBUSY;
9795 return 0;
9798 static struct bnx2x_prev_path_list *
9799 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9801 struct bnx2x_prev_path_list *tmp_list;
9803 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9804 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9805 bp->pdev->bus->number == tmp_list->bus &&
9806 BP_PATH(bp) == tmp_list->path)
9807 return tmp_list;
9809 return NULL;
9812 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9814 struct bnx2x_prev_path_list *tmp_list;
9815 int rc;
9817 rc = down_interruptible(&bnx2x_prev_sem);
9818 if (rc) {
9819 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9820 return rc;
9823 tmp_list = bnx2x_prev_path_get_entry(bp);
9824 if (tmp_list) {
9825 tmp_list->aer = 1;
9826 rc = 0;
9827 } else {
9828 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9829 BP_PATH(bp));
9832 up(&bnx2x_prev_sem);
9834 return rc;
9837 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9839 struct bnx2x_prev_path_list *tmp_list;
9840 int rc = false;
9842 if (down_trylock(&bnx2x_prev_sem))
9843 return false;
9845 tmp_list = bnx2x_prev_path_get_entry(bp);
9846 if (tmp_list) {
9847 if (tmp_list->aer) {
9848 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9849 BP_PATH(bp));
9850 } else {
9851 rc = true;
9852 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9853 BP_PATH(bp));
9857 up(&bnx2x_prev_sem);
9859 return rc;
9862 bool bnx2x_port_after_undi(struct bnx2x *bp)
9864 struct bnx2x_prev_path_list *entry;
9865 bool val;
9867 down(&bnx2x_prev_sem);
9869 entry = bnx2x_prev_path_get_entry(bp);
9870 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9872 up(&bnx2x_prev_sem);
9874 return val;
9877 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9879 struct bnx2x_prev_path_list *tmp_list;
9880 int rc;
9882 rc = down_interruptible(&bnx2x_prev_sem);
9883 if (rc) {
9884 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9885 return rc;
9888 /* Check whether the entry for this path already exists */
9889 tmp_list = bnx2x_prev_path_get_entry(bp);
9890 if (tmp_list) {
9891 if (!tmp_list->aer) {
9892 BNX2X_ERR("Re-Marking the path.\n");
9893 } else {
9894 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9895 BP_PATH(bp));
9896 tmp_list->aer = 0;
9898 up(&bnx2x_prev_sem);
9899 return 0;
9901 up(&bnx2x_prev_sem);
9903 /* Create an entry for this path and add it */
9904 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9905 if (!tmp_list) {
9906 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9907 return -ENOMEM;
9910 tmp_list->bus = bp->pdev->bus->number;
9911 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9912 tmp_list->path = BP_PATH(bp);
9913 tmp_list->aer = 0;
9914 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9916 rc = down_interruptible(&bnx2x_prev_sem);
9917 if (rc) {
9918 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9919 kfree(tmp_list);
9920 } else {
9921 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9922 BP_PATH(bp));
9923 list_add(&tmp_list->list, &bnx2x_prev_list);
9924 up(&bnx2x_prev_sem);
9927 return rc;
9930 static int bnx2x_do_flr(struct bnx2x *bp)
9932 int i;
9933 u16 status;
9934 struct pci_dev *dev = bp->pdev;
9936 if (CHIP_IS_E1x(bp)) {
9937 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9938 return -EINVAL;
9941 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9942 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9943 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9944 bp->common.bc_ver);
9945 return -EINVAL;
9948 /* Wait for Transaction Pending bit clean */
9949 for (i = 0; i < 4; i++) {
9950 if (i)
9951 msleep((1 << (i - 1)) * 100);
9953 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9954 if (!(status & PCI_EXP_DEVSTA_TRPND))
9955 goto clear;
9958 dev_err(&dev->dev,
9959 "transaction is not cleared; proceeding with reset anyway\n");
9961 clear:
9963 BNX2X_DEV_INFO("Initiating FLR\n");
9964 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9966 return 0;
9969 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9971 int rc;
9973 BNX2X_DEV_INFO("Uncommon unload Flow\n");
9975 /* Test if previous unload process was already finished for this path */
9976 if (bnx2x_prev_is_path_marked(bp))
9977 return bnx2x_prev_mcp_done(bp);
9979 BNX2X_DEV_INFO("Path is unmarked\n");
9981 /* If function has FLR capabilities, and existing FW version matches
9982 * the one required, then FLR will be sufficient to clean any residue
9983 * left by previous driver
9985 rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9987 if (!rc) {
9988 /* fw version is good */
9989 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9990 rc = bnx2x_do_flr(bp);
9993 if (!rc) {
9994 /* FLR was performed */
9995 BNX2X_DEV_INFO("FLR successful\n");
9996 return 0;
9999 BNX2X_DEV_INFO("Could not FLR\n");
10001 /* Close the MCP request, return failure*/
10002 rc = bnx2x_prev_mcp_done(bp);
10003 if (!rc)
10004 rc = BNX2X_PREV_WAIT_NEEDED;
10006 return rc;
10009 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10011 u32 reset_reg, tmp_reg = 0, rc;
10012 bool prev_undi = false;
10013 struct bnx2x_mac_vals mac_vals;
10015 /* It is possible a previous function received 'common' answer,
10016 * but hasn't loaded yet, therefore creating a scenario of
10017 * multiple functions receiving 'common' on the same path.
10019 BNX2X_DEV_INFO("Common unload Flow\n");
10021 memset(&mac_vals, 0, sizeof(mac_vals));
10023 if (bnx2x_prev_is_path_marked(bp))
10024 return bnx2x_prev_mcp_done(bp);
10026 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10028 /* Reset should be performed after BRB is emptied */
10029 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10030 u32 timer_count = 1000;
10032 /* Close the MAC Rx to prevent BRB from filling up */
10033 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10035 /* close LLH filters towards the BRB */
10036 bnx2x_set_rx_filter(&bp->link_params, 0);
10038 /* Check if the UNDI driver was previously loaded
10039 * UNDI driver initializes CID offset for normal bell to 0x7
10041 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10042 tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10043 if (tmp_reg == 0x7) {
10044 BNX2X_DEV_INFO("UNDI previously loaded\n");
10045 prev_undi = true;
10046 /* clear the UNDI indication */
10047 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10048 /* clear possible idle check errors */
10049 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10052 if (!CHIP_IS_E1x(bp))
10053 /* block FW from writing to host */
10054 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10056 /* wait until BRB is empty */
10057 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10058 while (timer_count) {
10059 u32 prev_brb = tmp_reg;
10061 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10062 if (!tmp_reg)
10063 break;
10065 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10067 /* reset timer as long as BRB actually gets emptied */
10068 if (prev_brb > tmp_reg)
10069 timer_count = 1000;
10070 else
10071 timer_count--;
10073 /* If UNDI resides in memory, manually increment it */
10074 if (prev_undi)
10075 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10077 udelay(10);
10080 if (!timer_count)
10081 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10084 /* No packets are in the pipeline, path is ready for reset */
10085 bnx2x_reset_common(bp);
10087 if (mac_vals.xmac_addr)
10088 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10089 if (mac_vals.umac_addr)
10090 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10091 if (mac_vals.emac_addr)
10092 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10093 if (mac_vals.bmac_addr) {
10094 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10095 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10098 rc = bnx2x_prev_mark_path(bp, prev_undi);
10099 if (rc) {
10100 bnx2x_prev_mcp_done(bp);
10101 return rc;
10104 return bnx2x_prev_mcp_done(bp);
10107 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10108 * and boot began, or when kdump kernel was loaded. Either case would invalidate
10109 * the addresses of the transaction, resulting in was-error bit set in the pci
10110 * causing all hw-to-host pcie transactions to timeout. If this happened we want
10111 * to clear the interrupt which detected this from the pglueb and the was done
10112 * bit
10114 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10116 if (!CHIP_IS_E1x(bp)) {
10117 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10118 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10119 DP(BNX2X_MSG_SP,
10120 "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10121 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10122 1 << BP_FUNC(bp));
10127 static int bnx2x_prev_unload(struct bnx2x *bp)
10129 int time_counter = 10;
10130 u32 rc, fw, hw_lock_reg, hw_lock_val;
10131 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10133 /* clear hw from errors which may have resulted from an interrupted
10134 * dmae transaction.
10136 bnx2x_prev_interrupted_dmae(bp);
10138 /* Release previously held locks */
10139 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10140 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10141 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10143 hw_lock_val = REG_RD(bp, hw_lock_reg);
10144 if (hw_lock_val) {
10145 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10146 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10147 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10148 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10151 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10152 REG_WR(bp, hw_lock_reg, 0xffffffff);
10153 } else
10154 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10156 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10157 BNX2X_DEV_INFO("Release previously held alr\n");
10158 bnx2x_release_alr(bp);
10161 do {
10162 int aer = 0;
10163 /* Lock MCP using an unload request */
10164 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10165 if (!fw) {
10166 BNX2X_ERR("MCP response failure, aborting\n");
10167 rc = -EBUSY;
10168 break;
10171 rc = down_interruptible(&bnx2x_prev_sem);
10172 if (rc) {
10173 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10174 rc);
10175 } else {
10176 /* If Path is marked by EEH, ignore unload status */
10177 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10178 bnx2x_prev_path_get_entry(bp)->aer);
10179 up(&bnx2x_prev_sem);
10182 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10183 rc = bnx2x_prev_unload_common(bp);
10184 break;
10187 /* non-common reply from MCP might require looping */
10188 rc = bnx2x_prev_unload_uncommon(bp);
10189 if (rc != BNX2X_PREV_WAIT_NEEDED)
10190 break;
10192 msleep(20);
10193 } while (--time_counter);
10195 if (!time_counter || rc) {
10196 BNX2X_ERR("Failed unloading previous driver, aborting\n");
10197 rc = -EBUSY;
10200 /* Mark function if its port was used to boot from SAN */
10201 if (bnx2x_port_after_undi(bp))
10202 bp->link_params.feature_config_flags |=
10203 FEATURE_CONFIG_BOOT_FROM_SAN;
10205 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10207 return rc;
10210 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10212 u32 val, val2, val3, val4, id, boot_mode;
10213 u16 pmc;
10215 /* Get the chip revision id and number. */
10216 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10217 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10218 id = ((val & 0xffff) << 16);
10219 val = REG_RD(bp, MISC_REG_CHIP_REV);
10220 id |= ((val & 0xf) << 12);
10222 /* Metal is read from PCI regs, but we can't access >=0x400 from
10223 * the configuration space (so we need to reg_rd)
10225 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10226 id |= (((val >> 24) & 0xf) << 4);
10227 val = REG_RD(bp, MISC_REG_BOND_ID);
10228 id |= (val & 0xf);
10229 bp->common.chip_id = id;
10231 /* force 57811 according to MISC register */
10232 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10233 if (CHIP_IS_57810(bp))
10234 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10235 (bp->common.chip_id & 0x0000FFFF);
10236 else if (CHIP_IS_57810_MF(bp))
10237 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10238 (bp->common.chip_id & 0x0000FFFF);
10239 bp->common.chip_id |= 0x1;
10242 /* Set doorbell size */
10243 bp->db_size = (1 << BNX2X_DB_SHIFT);
10245 if (!CHIP_IS_E1x(bp)) {
10246 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10247 if ((val & 1) == 0)
10248 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10249 else
10250 val = (val >> 1) & 1;
10251 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10252 "2_PORT_MODE");
10253 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10254 CHIP_2_PORT_MODE;
10256 if (CHIP_MODE_IS_4_PORT(bp))
10257 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10258 else
10259 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10260 } else {
10261 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10262 bp->pfid = bp->pf_num; /* 0..7 */
10265 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10267 bp->link_params.chip_id = bp->common.chip_id;
10268 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10270 val = (REG_RD(bp, 0x2874) & 0x55);
10271 if ((bp->common.chip_id & 0x1) ||
10272 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10273 bp->flags |= ONE_PORT_FLAG;
10274 BNX2X_DEV_INFO("single port device\n");
10277 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10278 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10279 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10280 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10281 bp->common.flash_size, bp->common.flash_size);
10283 bnx2x_init_shmem(bp);
10285 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10286 MISC_REG_GENERIC_CR_1 :
10287 MISC_REG_GENERIC_CR_0));
10289 bp->link_params.shmem_base = bp->common.shmem_base;
10290 bp->link_params.shmem2_base = bp->common.shmem2_base;
10291 if (SHMEM2_RD(bp, size) >
10292 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10293 bp->link_params.lfa_base =
10294 REG_RD(bp, bp->common.shmem2_base +
10295 (u32)offsetof(struct shmem2_region,
10296 lfa_host_addr[BP_PORT(bp)]));
10297 else
10298 bp->link_params.lfa_base = 0;
10299 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
10300 bp->common.shmem_base, bp->common.shmem2_base);
10302 if (!bp->common.shmem_base) {
10303 BNX2X_DEV_INFO("MCP not active\n");
10304 bp->flags |= NO_MCP_FLAG;
10305 return;
10308 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10309 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10311 bp->link_params.hw_led_mode = ((bp->common.hw_config &
10312 SHARED_HW_CFG_LED_MODE_MASK) >>
10313 SHARED_HW_CFG_LED_MODE_SHIFT);
10315 bp->link_params.feature_config_flags = 0;
10316 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10317 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10318 bp->link_params.feature_config_flags |=
10319 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10320 else
10321 bp->link_params.feature_config_flags &=
10322 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10324 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10325 bp->common.bc_ver = val;
10326 BNX2X_DEV_INFO("bc_ver %X\n", val);
10327 if (val < BNX2X_BC_VER) {
10328 /* for now only warn
10329 * later we might need to enforce this */
10330 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10331 BNX2X_BC_VER, val);
10333 bp->link_params.feature_config_flags |=
10334 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10335 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10337 bp->link_params.feature_config_flags |=
10338 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10339 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10340 bp->link_params.feature_config_flags |=
10341 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10342 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10343 bp->link_params.feature_config_flags |=
10344 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10345 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10347 bp->link_params.feature_config_flags |=
10348 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10349 FEATURE_CONFIG_MT_SUPPORT : 0;
10351 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10352 BC_SUPPORTS_PFC_STATS : 0;
10354 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10355 BC_SUPPORTS_FCOE_FEATURES : 0;
10357 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10358 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10359 boot_mode = SHMEM_RD(bp,
10360 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10361 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10362 switch (boot_mode) {
10363 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10364 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10365 break;
10366 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10367 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10368 break;
10369 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10370 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10371 break;
10372 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10373 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10374 break;
10377 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10378 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10380 BNX2X_DEV_INFO("%sWoL capable\n",
10381 (bp->flags & NO_WOL_FLAG) ? "not " : "");
10383 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10384 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10385 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10386 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10388 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10389 val, val2, val3, val4);
10392 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10393 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10395 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10397 int pfid = BP_FUNC(bp);
10398 int igu_sb_id;
10399 u32 val;
10400 u8 fid, igu_sb_cnt = 0;
10402 bp->igu_base_sb = 0xff;
10403 if (CHIP_INT_MODE_IS_BC(bp)) {
10404 int vn = BP_VN(bp);
10405 igu_sb_cnt = bp->igu_sb_cnt;
10406 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10407 FP_SB_MAX_E1x;
10409 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
10410 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10412 return 0;
10415 /* IGU in normal mode - read CAM */
10416 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10417 igu_sb_id++) {
10418 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10419 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10420 continue;
10421 fid = IGU_FID(val);
10422 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10423 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10424 continue;
10425 if (IGU_VEC(val) == 0)
10426 /* default status block */
10427 bp->igu_dsb_id = igu_sb_id;
10428 else {
10429 if (bp->igu_base_sb == 0xff)
10430 bp->igu_base_sb = igu_sb_id;
10431 igu_sb_cnt++;
10436 #ifdef CONFIG_PCI_MSI
10437 /* Due to new PF resource allocation by MFW T7.4 and above, it's
10438 * optional that number of CAM entries will not be equal to the value
10439 * advertised in PCI.
10440 * Driver should use the minimal value of both as the actual status
10441 * block count
10443 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10444 #endif
10446 if (igu_sb_cnt == 0) {
10447 BNX2X_ERR("CAM configuration error\n");
10448 return -EINVAL;
10451 return 0;
10454 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10456 int cfg_size = 0, idx, port = BP_PORT(bp);
10458 /* Aggregation of supported attributes of all external phys */
10459 bp->port.supported[0] = 0;
10460 bp->port.supported[1] = 0;
10461 switch (bp->link_params.num_phys) {
10462 case 1:
10463 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10464 cfg_size = 1;
10465 break;
10466 case 2:
10467 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10468 cfg_size = 1;
10469 break;
10470 case 3:
10471 if (bp->link_params.multi_phy_config &
10472 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10473 bp->port.supported[1] =
10474 bp->link_params.phy[EXT_PHY1].supported;
10475 bp->port.supported[0] =
10476 bp->link_params.phy[EXT_PHY2].supported;
10477 } else {
10478 bp->port.supported[0] =
10479 bp->link_params.phy[EXT_PHY1].supported;
10480 bp->port.supported[1] =
10481 bp->link_params.phy[EXT_PHY2].supported;
10483 cfg_size = 2;
10484 break;
10487 if (!(bp->port.supported[0] || bp->port.supported[1])) {
10488 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10489 SHMEM_RD(bp,
10490 dev_info.port_hw_config[port].external_phy_config),
10491 SHMEM_RD(bp,
10492 dev_info.port_hw_config[port].external_phy_config2));
10493 return;
10496 if (CHIP_IS_E3(bp))
10497 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10498 else {
10499 switch (switch_cfg) {
10500 case SWITCH_CFG_1G:
10501 bp->port.phy_addr = REG_RD(
10502 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10503 break;
10504 case SWITCH_CFG_10G:
10505 bp->port.phy_addr = REG_RD(
10506 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10507 break;
10508 default:
10509 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10510 bp->port.link_config[0]);
10511 return;
10514 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10515 /* mask what we support according to speed_cap_mask per configuration */
10516 for (idx = 0; idx < cfg_size; idx++) {
10517 if (!(bp->link_params.speed_cap_mask[idx] &
10518 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10519 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10521 if (!(bp->link_params.speed_cap_mask[idx] &
10522 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10523 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10525 if (!(bp->link_params.speed_cap_mask[idx] &
10526 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10527 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10529 if (!(bp->link_params.speed_cap_mask[idx] &
10530 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10531 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10533 if (!(bp->link_params.speed_cap_mask[idx] &
10534 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10535 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10536 SUPPORTED_1000baseT_Full);
10538 if (!(bp->link_params.speed_cap_mask[idx] &
10539 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10540 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10542 if (!(bp->link_params.speed_cap_mask[idx] &
10543 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10544 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10547 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10548 bp->port.supported[1]);
10551 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10553 u32 link_config, idx, cfg_size = 0;
10554 bp->port.advertising[0] = 0;
10555 bp->port.advertising[1] = 0;
10556 switch (bp->link_params.num_phys) {
10557 case 1:
10558 case 2:
10559 cfg_size = 1;
10560 break;
10561 case 3:
10562 cfg_size = 2;
10563 break;
10565 for (idx = 0; idx < cfg_size; idx++) {
10566 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10567 link_config = bp->port.link_config[idx];
10568 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10569 case PORT_FEATURE_LINK_SPEED_AUTO:
10570 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10571 bp->link_params.req_line_speed[idx] =
10572 SPEED_AUTO_NEG;
10573 bp->port.advertising[idx] |=
10574 bp->port.supported[idx];
10575 if (bp->link_params.phy[EXT_PHY1].type ==
10576 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10577 bp->port.advertising[idx] |=
10578 (SUPPORTED_100baseT_Half |
10579 SUPPORTED_100baseT_Full);
10580 } else {
10581 /* force 10G, no AN */
10582 bp->link_params.req_line_speed[idx] =
10583 SPEED_10000;
10584 bp->port.advertising[idx] |=
10585 (ADVERTISED_10000baseT_Full |
10586 ADVERTISED_FIBRE);
10587 continue;
10589 break;
10591 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10592 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10593 bp->link_params.req_line_speed[idx] =
10594 SPEED_10;
10595 bp->port.advertising[idx] |=
10596 (ADVERTISED_10baseT_Full |
10597 ADVERTISED_TP);
10598 } else {
10599 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10600 link_config,
10601 bp->link_params.speed_cap_mask[idx]);
10602 return;
10604 break;
10606 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10607 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10608 bp->link_params.req_line_speed[idx] =
10609 SPEED_10;
10610 bp->link_params.req_duplex[idx] =
10611 DUPLEX_HALF;
10612 bp->port.advertising[idx] |=
10613 (ADVERTISED_10baseT_Half |
10614 ADVERTISED_TP);
10615 } else {
10616 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10617 link_config,
10618 bp->link_params.speed_cap_mask[idx]);
10619 return;
10621 break;
10623 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10624 if (bp->port.supported[idx] &
10625 SUPPORTED_100baseT_Full) {
10626 bp->link_params.req_line_speed[idx] =
10627 SPEED_100;
10628 bp->port.advertising[idx] |=
10629 (ADVERTISED_100baseT_Full |
10630 ADVERTISED_TP);
10631 } else {
10632 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10633 link_config,
10634 bp->link_params.speed_cap_mask[idx]);
10635 return;
10637 break;
10639 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10640 if (bp->port.supported[idx] &
10641 SUPPORTED_100baseT_Half) {
10642 bp->link_params.req_line_speed[idx] =
10643 SPEED_100;
10644 bp->link_params.req_duplex[idx] =
10645 DUPLEX_HALF;
10646 bp->port.advertising[idx] |=
10647 (ADVERTISED_100baseT_Half |
10648 ADVERTISED_TP);
10649 } else {
10650 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10651 link_config,
10652 bp->link_params.speed_cap_mask[idx]);
10653 return;
10655 break;
10657 case PORT_FEATURE_LINK_SPEED_1G:
10658 if (bp->port.supported[idx] &
10659 SUPPORTED_1000baseT_Full) {
10660 bp->link_params.req_line_speed[idx] =
10661 SPEED_1000;
10662 bp->port.advertising[idx] |=
10663 (ADVERTISED_1000baseT_Full |
10664 ADVERTISED_TP);
10665 } else {
10666 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10667 link_config,
10668 bp->link_params.speed_cap_mask[idx]);
10669 return;
10671 break;
10673 case PORT_FEATURE_LINK_SPEED_2_5G:
10674 if (bp->port.supported[idx] &
10675 SUPPORTED_2500baseX_Full) {
10676 bp->link_params.req_line_speed[idx] =
10677 SPEED_2500;
10678 bp->port.advertising[idx] |=
10679 (ADVERTISED_2500baseX_Full |
10680 ADVERTISED_TP);
10681 } else {
10682 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10683 link_config,
10684 bp->link_params.speed_cap_mask[idx]);
10685 return;
10687 break;
10689 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10690 if (bp->port.supported[idx] &
10691 SUPPORTED_10000baseT_Full) {
10692 bp->link_params.req_line_speed[idx] =
10693 SPEED_10000;
10694 bp->port.advertising[idx] |=
10695 (ADVERTISED_10000baseT_Full |
10696 ADVERTISED_FIBRE);
10697 } else {
10698 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10699 link_config,
10700 bp->link_params.speed_cap_mask[idx]);
10701 return;
10703 break;
10704 case PORT_FEATURE_LINK_SPEED_20G:
10705 bp->link_params.req_line_speed[idx] = SPEED_20000;
10707 break;
10708 default:
10709 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10710 link_config);
10711 bp->link_params.req_line_speed[idx] =
10712 SPEED_AUTO_NEG;
10713 bp->port.advertising[idx] =
10714 bp->port.supported[idx];
10715 break;
10718 bp->link_params.req_flow_ctrl[idx] = (link_config &
10719 PORT_FEATURE_FLOW_CONTROL_MASK);
10720 if (bp->link_params.req_flow_ctrl[idx] ==
10721 BNX2X_FLOW_CTRL_AUTO) {
10722 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10723 bp->link_params.req_flow_ctrl[idx] =
10724 BNX2X_FLOW_CTRL_NONE;
10725 else
10726 bnx2x_set_requested_fc(bp);
10729 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10730 bp->link_params.req_line_speed[idx],
10731 bp->link_params.req_duplex[idx],
10732 bp->link_params.req_flow_ctrl[idx],
10733 bp->port.advertising[idx]);
10737 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10739 __be16 mac_hi_be = cpu_to_be16(mac_hi);
10740 __be32 mac_lo_be = cpu_to_be32(mac_lo);
10741 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10742 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10745 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10747 int port = BP_PORT(bp);
10748 u32 config;
10749 u32 ext_phy_type, ext_phy_config, eee_mode;
10751 bp->link_params.bp = bp;
10752 bp->link_params.port = port;
10754 bp->link_params.lane_config =
10755 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10757 bp->link_params.speed_cap_mask[0] =
10758 SHMEM_RD(bp,
10759 dev_info.port_hw_config[port].speed_capability_mask) &
10760 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10761 bp->link_params.speed_cap_mask[1] =
10762 SHMEM_RD(bp,
10763 dev_info.port_hw_config[port].speed_capability_mask2) &
10764 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10765 bp->port.link_config[0] =
10766 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10768 bp->port.link_config[1] =
10769 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10771 bp->link_params.multi_phy_config =
10772 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10773 /* If the device is capable of WoL, set the default state according
10774 * to the HW
10776 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10777 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10778 (config & PORT_FEATURE_WOL_ENABLED));
10780 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10781 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10782 bp->flags |= NO_ISCSI_FLAG;
10783 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10784 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10785 bp->flags |= NO_FCOE_FLAG;
10787 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
10788 bp->link_params.lane_config,
10789 bp->link_params.speed_cap_mask[0],
10790 bp->port.link_config[0]);
10792 bp->link_params.switch_cfg = (bp->port.link_config[0] &
10793 PORT_FEATURE_CONNECTED_SWITCH_MASK);
10794 bnx2x_phy_probe(&bp->link_params);
10795 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10797 bnx2x_link_settings_requested(bp);
10800 * If connected directly, work with the internal PHY, otherwise, work
10801 * with the external PHY
10803 ext_phy_config =
10804 SHMEM_RD(bp,
10805 dev_info.port_hw_config[port].external_phy_config);
10806 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10807 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10808 bp->mdio.prtad = bp->port.phy_addr;
10810 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10811 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10812 bp->mdio.prtad =
10813 XGXS_EXT_PHY_ADDR(ext_phy_config);
10815 /* Configure link feature according to nvram value */
10816 eee_mode = (((SHMEM_RD(bp, dev_info.
10817 port_feature_config[port].eee_power_mode)) &
10818 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10819 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10820 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10821 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10822 EEE_MODE_ENABLE_LPI |
10823 EEE_MODE_OUTPUT_TIME;
10824 } else {
10825 bp->link_params.eee_mode = 0;
10829 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10831 u32 no_flags = NO_ISCSI_FLAG;
10832 int port = BP_PORT(bp);
10833 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10834 drv_lic_key[port].max_iscsi_conn);
10836 if (!CNIC_SUPPORT(bp)) {
10837 bp->flags |= no_flags;
10838 return;
10841 /* Get the number of maximum allowed iSCSI connections */
10842 bp->cnic_eth_dev.max_iscsi_conn =
10843 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10844 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10846 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10847 bp->cnic_eth_dev.max_iscsi_conn);
10850 * If maximum allowed number of connections is zero -
10851 * disable the feature.
10853 if (!bp->cnic_eth_dev.max_iscsi_conn)
10854 bp->flags |= no_flags;
10857 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10859 /* Port info */
10860 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10861 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10862 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10863 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10865 /* Node info */
10866 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10867 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10868 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10869 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10872 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10874 u8 count = 0;
10876 if (IS_MF(bp)) {
10877 u8 fid;
10879 /* iterate over absolute function ids for this path: */
10880 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10881 if (IS_MF_SD(bp)) {
10882 u32 cfg = MF_CFG_RD(bp,
10883 func_mf_config[fid].config);
10885 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10886 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10887 FUNC_MF_CFG_PROTOCOL_FCOE))
10888 count++;
10889 } else {
10890 u32 cfg = MF_CFG_RD(bp,
10891 func_ext_config[fid].
10892 func_cfg);
10894 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10895 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10896 count++;
10899 } else { /* SF */
10900 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10902 for (port = 0; port < port_cnt; port++) {
10903 u32 lic = SHMEM_RD(bp,
10904 drv_lic_key[port].max_fcoe_conn) ^
10905 FW_ENCODE_32BIT_PATTERN;
10906 if (lic)
10907 count++;
10911 return count;
10914 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10916 int port = BP_PORT(bp);
10917 int func = BP_ABS_FUNC(bp);
10918 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10919 drv_lic_key[port].max_fcoe_conn);
10920 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10922 if (!CNIC_SUPPORT(bp)) {
10923 bp->flags |= NO_FCOE_FLAG;
10924 return;
10927 /* Get the number of maximum allowed FCoE connections */
10928 bp->cnic_eth_dev.max_fcoe_conn =
10929 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10930 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10932 /* Calculate the number of maximum allowed FCoE tasks */
10933 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10935 /* check if FCoE resources must be shared between different functions */
10936 if (num_fcoe_func)
10937 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10939 /* Read the WWN: */
10940 if (!IS_MF(bp)) {
10941 /* Port info */
10942 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10943 SHMEM_RD(bp,
10944 dev_info.port_hw_config[port].
10945 fcoe_wwn_port_name_upper);
10946 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10947 SHMEM_RD(bp,
10948 dev_info.port_hw_config[port].
10949 fcoe_wwn_port_name_lower);
10951 /* Node info */
10952 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10953 SHMEM_RD(bp,
10954 dev_info.port_hw_config[port].
10955 fcoe_wwn_node_name_upper);
10956 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10957 SHMEM_RD(bp,
10958 dev_info.port_hw_config[port].
10959 fcoe_wwn_node_name_lower);
10960 } else if (!IS_MF_SD(bp)) {
10962 * Read the WWN info only if the FCoE feature is enabled for
10963 * this function.
10965 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10966 bnx2x_get_ext_wwn_info(bp, func);
10968 } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10969 bnx2x_get_ext_wwn_info(bp, func);
10972 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10975 * If maximum allowed number of connections is zero -
10976 * disable the feature.
10978 if (!bp->cnic_eth_dev.max_fcoe_conn)
10979 bp->flags |= NO_FCOE_FLAG;
10982 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10985 * iSCSI may be dynamically disabled but reading
10986 * info here we will decrease memory usage by driver
10987 * if the feature is disabled for good
10989 bnx2x_get_iscsi_info(bp);
10990 bnx2x_get_fcoe_info(bp);
10993 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10995 u32 val, val2;
10996 int func = BP_ABS_FUNC(bp);
10997 int port = BP_PORT(bp);
10998 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10999 u8 *fip_mac = bp->fip_mac;
11001 if (IS_MF(bp)) {
11002 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11003 * FCoE MAC then the appropriate feature should be disabled.
11004 * In non SD mode features configuration comes from struct
11005 * func_ext_config.
11007 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11008 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11009 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11010 val2 = MF_CFG_RD(bp, func_ext_config[func].
11011 iscsi_mac_addr_upper);
11012 val = MF_CFG_RD(bp, func_ext_config[func].
11013 iscsi_mac_addr_lower);
11014 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11015 BNX2X_DEV_INFO
11016 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11017 } else {
11018 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11021 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11022 val2 = MF_CFG_RD(bp, func_ext_config[func].
11023 fcoe_mac_addr_upper);
11024 val = MF_CFG_RD(bp, func_ext_config[func].
11025 fcoe_mac_addr_lower);
11026 bnx2x_set_mac_buf(fip_mac, val, val2);
11027 BNX2X_DEV_INFO
11028 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11029 } else {
11030 bp->flags |= NO_FCOE_FLAG;
11033 bp->mf_ext_config = cfg;
11035 } else { /* SD MODE */
11036 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11037 /* use primary mac as iscsi mac */
11038 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11040 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11041 BNX2X_DEV_INFO
11042 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11043 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11044 /* use primary mac as fip mac */
11045 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11046 BNX2X_DEV_INFO("SD FCoE MODE\n");
11047 BNX2X_DEV_INFO
11048 ("Read FIP MAC: %pM\n", fip_mac);
11052 /* If this is a storage-only interface, use SAN mac as
11053 * primary MAC. Notice that for SD this is already the case,
11054 * as the SAN mac was copied from the primary MAC.
11056 if (IS_MF_FCOE_AFEX(bp))
11057 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11058 } else {
11059 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11060 iscsi_mac_upper);
11061 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11062 iscsi_mac_lower);
11063 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11065 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11066 fcoe_fip_mac_upper);
11067 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11068 fcoe_fip_mac_lower);
11069 bnx2x_set_mac_buf(fip_mac, val, val2);
11072 /* Disable iSCSI OOO if MAC configuration is invalid. */
11073 if (!is_valid_ether_addr(iscsi_mac)) {
11074 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11075 memset(iscsi_mac, 0, ETH_ALEN);
11078 /* Disable FCoE if MAC configuration is invalid. */
11079 if (!is_valid_ether_addr(fip_mac)) {
11080 bp->flags |= NO_FCOE_FLAG;
11081 memset(bp->fip_mac, 0, ETH_ALEN);
11085 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11087 u32 val, val2;
11088 int func = BP_ABS_FUNC(bp);
11089 int port = BP_PORT(bp);
11091 /* Zero primary MAC configuration */
11092 memset(bp->dev->dev_addr, 0, ETH_ALEN);
11094 if (BP_NOMCP(bp)) {
11095 BNX2X_ERROR("warning: random MAC workaround active\n");
11096 eth_hw_addr_random(bp->dev);
11097 } else if (IS_MF(bp)) {
11098 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11099 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11100 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11101 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11102 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11104 if (CNIC_SUPPORT(bp))
11105 bnx2x_get_cnic_mac_hwinfo(bp);
11106 } else {
11107 /* in SF read MACs from port configuration */
11108 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11109 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11110 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11112 if (CNIC_SUPPORT(bp))
11113 bnx2x_get_cnic_mac_hwinfo(bp);
11116 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11118 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11119 dev_err(&bp->pdev->dev,
11120 "bad Ethernet MAC address configuration: %pM\n"
11121 "change it manually before bringing up the appropriate network interface\n",
11122 bp->dev->dev_addr);
11125 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11127 int tmp;
11128 u32 cfg;
11130 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11131 /* Take function: tmp = func */
11132 tmp = BP_ABS_FUNC(bp);
11133 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11134 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11135 } else {
11136 /* Take port: tmp = port */
11137 tmp = BP_PORT(bp);
11138 cfg = SHMEM_RD(bp,
11139 dev_info.port_hw_config[tmp].generic_features);
11140 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11142 return cfg;
11145 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11147 int /*abs*/func = BP_ABS_FUNC(bp);
11148 int vn;
11149 u32 val = 0;
11150 int rc = 0;
11152 bnx2x_get_common_hwinfo(bp);
11155 * initialize IGU parameters
11157 if (CHIP_IS_E1x(bp)) {
11158 bp->common.int_block = INT_BLOCK_HC;
11160 bp->igu_dsb_id = DEF_SB_IGU_ID;
11161 bp->igu_base_sb = 0;
11162 } else {
11163 bp->common.int_block = INT_BLOCK_IGU;
11165 /* do not allow device reset during IGU info processing */
11166 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11168 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11170 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11171 int tout = 5000;
11173 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11175 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11176 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11177 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11179 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11180 tout--;
11181 usleep_range(1000, 2000);
11184 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11185 dev_err(&bp->pdev->dev,
11186 "FORCING Normal Mode failed!!!\n");
11187 bnx2x_release_hw_lock(bp,
11188 HW_LOCK_RESOURCE_RESET);
11189 return -EPERM;
11193 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11194 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11195 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11196 } else
11197 BNX2X_DEV_INFO("IGU Normal Mode\n");
11199 rc = bnx2x_get_igu_cam_info(bp);
11200 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11201 if (rc)
11202 return rc;
11206 * set base FW non-default (fast path) status block id, this value is
11207 * used to initialize the fw_sb_id saved on the fp/queue structure to
11208 * determine the id used by the FW.
11210 if (CHIP_IS_E1x(bp))
11211 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11212 else /*
11213 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11214 * the same queue are indicated on the same IGU SB). So we prefer
11215 * FW and IGU SBs to be the same value.
11217 bp->base_fw_ndsb = bp->igu_base_sb;
11219 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
11220 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11221 bp->igu_sb_cnt, bp->base_fw_ndsb);
11224 * Initialize MF configuration
11227 bp->mf_ov = 0;
11228 bp->mf_mode = 0;
11229 vn = BP_VN(bp);
11231 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11232 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11233 bp->common.shmem2_base, SHMEM2_RD(bp, size),
11234 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11236 if (SHMEM2_HAS(bp, mf_cfg_addr))
11237 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11238 else
11239 bp->common.mf_cfg_base = bp->common.shmem_base +
11240 offsetof(struct shmem_region, func_mb) +
11241 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11243 * get mf configuration:
11244 * 1. Existence of MF configuration
11245 * 2. MAC address must be legal (check only upper bytes)
11246 * for Switch-Independent mode;
11247 * OVLAN must be legal for Switch-Dependent mode
11248 * 3. SF_MODE configures specific MF mode
11250 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11251 /* get mf configuration */
11252 val = SHMEM_RD(bp,
11253 dev_info.shared_feature_config.config);
11254 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11256 switch (val) {
11257 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11258 val = MF_CFG_RD(bp, func_mf_config[func].
11259 mac_upper);
11260 /* check for legal mac (upper bytes)*/
11261 if (val != 0xffff) {
11262 bp->mf_mode = MULTI_FUNCTION_SI;
11263 bp->mf_config[vn] = MF_CFG_RD(bp,
11264 func_mf_config[func].config);
11265 } else
11266 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11267 break;
11268 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11269 if ((!CHIP_IS_E1x(bp)) &&
11270 (MF_CFG_RD(bp, func_mf_config[func].
11271 mac_upper) != 0xffff) &&
11272 (SHMEM2_HAS(bp,
11273 afex_driver_support))) {
11274 bp->mf_mode = MULTI_FUNCTION_AFEX;
11275 bp->mf_config[vn] = MF_CFG_RD(bp,
11276 func_mf_config[func].config);
11277 } else {
11278 BNX2X_DEV_INFO("can not configure afex mode\n");
11280 break;
11281 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11282 /* get OV configuration */
11283 val = MF_CFG_RD(bp,
11284 func_mf_config[FUNC_0].e1hov_tag);
11285 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11287 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11288 bp->mf_mode = MULTI_FUNCTION_SD;
11289 bp->mf_config[vn] = MF_CFG_RD(bp,
11290 func_mf_config[func].config);
11291 } else
11292 BNX2X_DEV_INFO("illegal OV for SD\n");
11293 break;
11294 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11295 bp->mf_config[vn] = 0;
11296 break;
11297 default:
11298 /* Unknown configuration: reset mf_config */
11299 bp->mf_config[vn] = 0;
11300 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11304 BNX2X_DEV_INFO("%s function mode\n",
11305 IS_MF(bp) ? "multi" : "single");
11307 switch (bp->mf_mode) {
11308 case MULTI_FUNCTION_SD:
11309 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11310 FUNC_MF_CFG_E1HOV_TAG_MASK;
11311 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11312 bp->mf_ov = val;
11313 bp->path_has_ovlan = true;
11315 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11316 func, bp->mf_ov, bp->mf_ov);
11317 } else {
11318 dev_err(&bp->pdev->dev,
11319 "No valid MF OV for func %d, aborting\n",
11320 func);
11321 return -EPERM;
11323 break;
11324 case MULTI_FUNCTION_AFEX:
11325 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11326 break;
11327 case MULTI_FUNCTION_SI:
11328 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11329 func);
11330 break;
11331 default:
11332 if (vn) {
11333 dev_err(&bp->pdev->dev,
11334 "VN %d is in a single function mode, aborting\n",
11335 vn);
11336 return -EPERM;
11338 break;
11341 /* check if other port on the path needs ovlan:
11342 * Since MF configuration is shared between ports
11343 * Possible mixed modes are only
11344 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11346 if (CHIP_MODE_IS_4_PORT(bp) &&
11347 !bp->path_has_ovlan &&
11348 !IS_MF(bp) &&
11349 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11350 u8 other_port = !BP_PORT(bp);
11351 u8 other_func = BP_PATH(bp) + 2*other_port;
11352 val = MF_CFG_RD(bp,
11353 func_mf_config[other_func].e1hov_tag);
11354 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11355 bp->path_has_ovlan = true;
11359 /* adjust igu_sb_cnt to MF for E1x */
11360 if (CHIP_IS_E1x(bp) && IS_MF(bp))
11361 bp->igu_sb_cnt /= E1HVN_MAX;
11363 /* port info */
11364 bnx2x_get_port_hwinfo(bp);
11366 /* Get MAC addresses */
11367 bnx2x_get_mac_hwinfo(bp);
11369 bnx2x_get_cnic_info(bp);
11371 return rc;
11374 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11376 int cnt, i, block_end, rodi;
11377 char vpd_start[BNX2X_VPD_LEN+1];
11378 char str_id_reg[VENDOR_ID_LEN+1];
11379 char str_id_cap[VENDOR_ID_LEN+1];
11380 char *vpd_data;
11381 char *vpd_extended_data = NULL;
11382 u8 len;
11384 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11385 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11387 if (cnt < BNX2X_VPD_LEN)
11388 goto out_not_found;
11390 /* VPD RO tag should be first tag after identifier string, hence
11391 * we should be able to find it in first BNX2X_VPD_LEN chars
11393 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11394 PCI_VPD_LRDT_RO_DATA);
11395 if (i < 0)
11396 goto out_not_found;
11398 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11399 pci_vpd_lrdt_size(&vpd_start[i]);
11401 i += PCI_VPD_LRDT_TAG_SIZE;
11403 if (block_end > BNX2X_VPD_LEN) {
11404 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11405 if (vpd_extended_data == NULL)
11406 goto out_not_found;
11408 /* read rest of vpd image into vpd_extended_data */
11409 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11410 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11411 block_end - BNX2X_VPD_LEN,
11412 vpd_extended_data + BNX2X_VPD_LEN);
11413 if (cnt < (block_end - BNX2X_VPD_LEN))
11414 goto out_not_found;
11415 vpd_data = vpd_extended_data;
11416 } else
11417 vpd_data = vpd_start;
11419 /* now vpd_data holds full vpd content in both cases */
11421 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11422 PCI_VPD_RO_KEYWORD_MFR_ID);
11423 if (rodi < 0)
11424 goto out_not_found;
11426 len = pci_vpd_info_field_size(&vpd_data[rodi]);
11428 if (len != VENDOR_ID_LEN)
11429 goto out_not_found;
11431 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11433 /* vendor specific info */
11434 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11435 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11436 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11437 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11439 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11440 PCI_VPD_RO_KEYWORD_VENDOR0);
11441 if (rodi >= 0) {
11442 len = pci_vpd_info_field_size(&vpd_data[rodi]);
11444 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11446 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11447 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11448 bp->fw_ver[len] = ' ';
11451 kfree(vpd_extended_data);
11452 return;
11454 out_not_found:
11455 kfree(vpd_extended_data);
11456 return;
11459 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11461 u32 flags = 0;
11463 if (CHIP_REV_IS_FPGA(bp))
11464 SET_FLAGS(flags, MODE_FPGA);
11465 else if (CHIP_REV_IS_EMUL(bp))
11466 SET_FLAGS(flags, MODE_EMUL);
11467 else
11468 SET_FLAGS(flags, MODE_ASIC);
11470 if (CHIP_MODE_IS_4_PORT(bp))
11471 SET_FLAGS(flags, MODE_PORT4);
11472 else
11473 SET_FLAGS(flags, MODE_PORT2);
11475 if (CHIP_IS_E2(bp))
11476 SET_FLAGS(flags, MODE_E2);
11477 else if (CHIP_IS_E3(bp)) {
11478 SET_FLAGS(flags, MODE_E3);
11479 if (CHIP_REV(bp) == CHIP_REV_Ax)
11480 SET_FLAGS(flags, MODE_E3_A0);
11481 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11482 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11485 if (IS_MF(bp)) {
11486 SET_FLAGS(flags, MODE_MF);
11487 switch (bp->mf_mode) {
11488 case MULTI_FUNCTION_SD:
11489 SET_FLAGS(flags, MODE_MF_SD);
11490 break;
11491 case MULTI_FUNCTION_SI:
11492 SET_FLAGS(flags, MODE_MF_SI);
11493 break;
11494 case MULTI_FUNCTION_AFEX:
11495 SET_FLAGS(flags, MODE_MF_AFEX);
11496 break;
11498 } else
11499 SET_FLAGS(flags, MODE_SF);
11501 #if defined(__LITTLE_ENDIAN)
11502 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11503 #else /*(__BIG_ENDIAN)*/
11504 SET_FLAGS(flags, MODE_BIG_ENDIAN);
11505 #endif
11506 INIT_MODE_FLAGS(bp) = flags;
11509 static int bnx2x_init_bp(struct bnx2x *bp)
11511 int func;
11512 int rc;
11514 mutex_init(&bp->port.phy_mutex);
11515 mutex_init(&bp->fw_mb_mutex);
11516 spin_lock_init(&bp->stats_lock);
11518 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11519 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11520 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11521 if (IS_PF(bp)) {
11522 rc = bnx2x_get_hwinfo(bp);
11523 if (rc)
11524 return rc;
11525 } else {
11526 eth_zero_addr(bp->dev->dev_addr);
11529 bnx2x_set_modes_bitmap(bp);
11531 rc = bnx2x_alloc_mem_bp(bp);
11532 if (rc)
11533 return rc;
11535 bnx2x_read_fwinfo(bp);
11537 func = BP_FUNC(bp);
11539 /* need to reset chip if undi was active */
11540 if (IS_PF(bp) && !BP_NOMCP(bp)) {
11541 /* init fw_seq */
11542 bp->fw_seq =
11543 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11544 DRV_MSG_SEQ_NUMBER_MASK;
11545 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11547 bnx2x_prev_unload(bp);
11550 if (CHIP_REV_IS_FPGA(bp))
11551 dev_err(&bp->pdev->dev, "FPGA detected\n");
11553 if (BP_NOMCP(bp) && (func == 0))
11554 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11556 bp->disable_tpa = disable_tpa;
11557 bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11559 /* Set TPA flags */
11560 if (bp->disable_tpa) {
11561 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11562 bp->dev->features &= ~NETIF_F_LRO;
11563 } else {
11564 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11565 bp->dev->features |= NETIF_F_LRO;
11568 if (CHIP_IS_E1(bp))
11569 bp->dropless_fc = 0;
11570 else
11571 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11573 bp->mrrs = mrrs;
11575 bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11576 if (IS_VF(bp))
11577 bp->rx_ring_size = MAX_RX_AVAIL;
11579 /* make sure that the numbers are in the right granularity */
11580 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11581 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11583 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11585 init_timer(&bp->timer);
11586 bp->timer.expires = jiffies + bp->current_interval;
11587 bp->timer.data = (unsigned long) bp;
11588 bp->timer.function = bnx2x_timer;
11590 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11591 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11592 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11593 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11594 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11595 bnx2x_dcbx_init_params(bp);
11596 } else {
11597 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11600 if (CHIP_IS_E1x(bp))
11601 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11602 else
11603 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11605 /* multiple tx priority */
11606 if (IS_VF(bp))
11607 bp->max_cos = 1;
11608 else if (CHIP_IS_E1x(bp))
11609 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11610 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11611 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11612 else if (CHIP_IS_E3B0(bp))
11613 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11614 else
11615 BNX2X_ERR("unknown chip %x revision %x\n",
11616 CHIP_NUM(bp), CHIP_REV(bp));
11617 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11619 /* We need at least one default status block for slow-path events,
11620 * second status block for the L2 queue, and a third status block for
11621 * CNIC if supported.
11623 if (CNIC_SUPPORT(bp))
11624 bp->min_msix_vec_cnt = 3;
11625 else
11626 bp->min_msix_vec_cnt = 2;
11627 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11629 return rc;
11632 /****************************************************************************
11633 * General service functions
11634 ****************************************************************************/
11637 * net_device service functions
11640 /* called with rtnl_lock */
11641 static int bnx2x_open(struct net_device *dev)
11643 struct bnx2x *bp = netdev_priv(dev);
11644 bool global = false;
11645 int other_engine = BP_PATH(bp) ? 0 : 1;
11646 bool other_load_status, load_status;
11647 int rc;
11649 bp->stats_init = true;
11651 netif_carrier_off(dev);
11653 bnx2x_set_power_state(bp, PCI_D0);
11655 /* If parity had happen during the unload, then attentions
11656 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11657 * want the first function loaded on the current engine to
11658 * complete the recovery.
11659 * Parity recovery is only relevant for PF driver.
11661 if (IS_PF(bp)) {
11662 other_load_status = bnx2x_get_load_status(bp, other_engine);
11663 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11664 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11665 bnx2x_chk_parity_attn(bp, &global, true)) {
11666 do {
11667 /* If there are attentions and they are in a
11668 * global blocks, set the GLOBAL_RESET bit
11669 * regardless whether it will be this function
11670 * that will complete the recovery or not.
11672 if (global)
11673 bnx2x_set_reset_global(bp);
11675 /* Only the first function on the current
11676 * engine should try to recover in open. In case
11677 * of attentions in global blocks only the first
11678 * in the chip should try to recover.
11680 if ((!load_status &&
11681 (!global || !other_load_status)) &&
11682 bnx2x_trylock_leader_lock(bp) &&
11683 !bnx2x_leader_reset(bp)) {
11684 netdev_info(bp->dev,
11685 "Recovered in open\n");
11686 break;
11689 /* recovery has failed... */
11690 bnx2x_set_power_state(bp, PCI_D3hot);
11691 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11693 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11694 "If you still see this message after a few retries then power cycle is required.\n");
11696 return -EAGAIN;
11697 } while (0);
11701 bp->recovery_state = BNX2X_RECOVERY_DONE;
11702 rc = bnx2x_nic_load(bp, LOAD_OPEN);
11703 if (rc)
11704 return rc;
11705 return bnx2x_open_epilog(bp);
11708 /* called with rtnl_lock */
11709 static int bnx2x_close(struct net_device *dev)
11711 struct bnx2x *bp = netdev_priv(dev);
11713 /* Unload the driver, release IRQs */
11714 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11716 return 0;
11719 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11720 struct bnx2x_mcast_ramrod_params *p)
11722 int mc_count = netdev_mc_count(bp->dev);
11723 struct bnx2x_mcast_list_elem *mc_mac =
11724 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11725 struct netdev_hw_addr *ha;
11727 if (!mc_mac)
11728 return -ENOMEM;
11730 INIT_LIST_HEAD(&p->mcast_list);
11732 netdev_for_each_mc_addr(ha, bp->dev) {
11733 mc_mac->mac = bnx2x_mc_addr(ha);
11734 list_add_tail(&mc_mac->link, &p->mcast_list);
11735 mc_mac++;
11738 p->mcast_list_len = mc_count;
11740 return 0;
11743 static void bnx2x_free_mcast_macs_list(
11744 struct bnx2x_mcast_ramrod_params *p)
11746 struct bnx2x_mcast_list_elem *mc_mac =
11747 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11748 link);
11750 WARN_ON(!mc_mac);
11751 kfree(mc_mac);
11755 * bnx2x_set_uc_list - configure a new unicast MACs list.
11757 * @bp: driver handle
11759 * We will use zero (0) as a MAC type for these MACs.
11761 static int bnx2x_set_uc_list(struct bnx2x *bp)
11763 int rc;
11764 struct net_device *dev = bp->dev;
11765 struct netdev_hw_addr *ha;
11766 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11767 unsigned long ramrod_flags = 0;
11769 /* First schedule a cleanup up of old configuration */
11770 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11771 if (rc < 0) {
11772 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11773 return rc;
11776 netdev_for_each_uc_addr(ha, dev) {
11777 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11778 BNX2X_UC_LIST_MAC, &ramrod_flags);
11779 if (rc == -EEXIST) {
11780 DP(BNX2X_MSG_SP,
11781 "Failed to schedule ADD operations: %d\n", rc);
11782 /* do not treat adding same MAC as error */
11783 rc = 0;
11785 } else if (rc < 0) {
11787 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11788 rc);
11789 return rc;
11793 /* Execute the pending commands */
11794 __set_bit(RAMROD_CONT, &ramrod_flags);
11795 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11796 BNX2X_UC_LIST_MAC, &ramrod_flags);
11799 static int bnx2x_set_mc_list(struct bnx2x *bp)
11801 struct net_device *dev = bp->dev;
11802 struct bnx2x_mcast_ramrod_params rparam = {NULL};
11803 int rc = 0;
11805 rparam.mcast_obj = &bp->mcast_obj;
11807 /* first, clear all configured multicast MACs */
11808 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11809 if (rc < 0) {
11810 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11811 return rc;
11814 /* then, configure a new MACs list */
11815 if (netdev_mc_count(dev)) {
11816 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11817 if (rc) {
11818 BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11819 rc);
11820 return rc;
11823 /* Now add the new MACs */
11824 rc = bnx2x_config_mcast(bp, &rparam,
11825 BNX2X_MCAST_CMD_ADD);
11826 if (rc < 0)
11827 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11828 rc);
11830 bnx2x_free_mcast_macs_list(&rparam);
11833 return rc;
11836 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11837 void bnx2x_set_rx_mode(struct net_device *dev)
11839 struct bnx2x *bp = netdev_priv(dev);
11840 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11842 if (bp->state != BNX2X_STATE_OPEN) {
11843 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11844 return;
11847 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11849 if (dev->flags & IFF_PROMISC)
11850 rx_mode = BNX2X_RX_MODE_PROMISC;
11851 else if ((dev->flags & IFF_ALLMULTI) ||
11852 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11853 CHIP_IS_E1(bp)))
11854 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11855 else {
11856 if (IS_PF(bp)) {
11857 /* some multicasts */
11858 if (bnx2x_set_mc_list(bp) < 0)
11859 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11861 if (bnx2x_set_uc_list(bp) < 0)
11862 rx_mode = BNX2X_RX_MODE_PROMISC;
11863 } else {
11864 /* configuring mcast to a vf involves sleeping (when we
11865 * wait for the pf's response). Since this function is
11866 * called from non sleepable context we must schedule
11867 * a work item for this purpose
11869 smp_mb__before_clear_bit();
11870 set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11871 &bp->sp_rtnl_state);
11872 smp_mb__after_clear_bit();
11873 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11877 bp->rx_mode = rx_mode;
11878 /* handle ISCSI SD mode */
11879 if (IS_MF_ISCSI_SD(bp))
11880 bp->rx_mode = BNX2X_RX_MODE_NONE;
11882 /* Schedule the rx_mode command */
11883 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11884 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11885 return;
11888 if (IS_PF(bp)) {
11889 bnx2x_set_storm_rx_mode(bp);
11890 } else {
11891 /* configuring rx mode to storms in a vf involves sleeping (when
11892 * we wait for the pf's response). Since this function is
11893 * called from non sleepable context we must schedule
11894 * a work item for this purpose
11896 smp_mb__before_clear_bit();
11897 set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
11898 &bp->sp_rtnl_state);
11899 smp_mb__after_clear_bit();
11900 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11904 /* called with rtnl_lock */
11905 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11906 int devad, u16 addr)
11908 struct bnx2x *bp = netdev_priv(netdev);
11909 u16 value;
11910 int rc;
11912 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11913 prtad, devad, addr);
11915 /* The HW expects different devad if CL22 is used */
11916 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11918 bnx2x_acquire_phy_lock(bp);
11919 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11920 bnx2x_release_phy_lock(bp);
11921 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11923 if (!rc)
11924 rc = value;
11925 return rc;
11928 /* called with rtnl_lock */
11929 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11930 u16 addr, u16 value)
11932 struct bnx2x *bp = netdev_priv(netdev);
11933 int rc;
11935 DP(NETIF_MSG_LINK,
11936 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11937 prtad, devad, addr, value);
11939 /* The HW expects different devad if CL22 is used */
11940 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11942 bnx2x_acquire_phy_lock(bp);
11943 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11944 bnx2x_release_phy_lock(bp);
11945 return rc;
11948 /* called with rtnl_lock */
11949 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11951 struct bnx2x *bp = netdev_priv(dev);
11952 struct mii_ioctl_data *mdio = if_mii(ifr);
11954 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11955 mdio->phy_id, mdio->reg_num, mdio->val_in);
11957 if (!netif_running(dev))
11958 return -EAGAIN;
11960 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11963 #ifdef CONFIG_NET_POLL_CONTROLLER
11964 static void poll_bnx2x(struct net_device *dev)
11966 struct bnx2x *bp = netdev_priv(dev);
11967 int i;
11969 for_each_eth_queue(bp, i) {
11970 struct bnx2x_fastpath *fp = &bp->fp[i];
11971 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11974 #endif
11976 static int bnx2x_validate_addr(struct net_device *dev)
11978 struct bnx2x *bp = netdev_priv(dev);
11980 /* query the bulletin board for mac address configured by the PF */
11981 if (IS_VF(bp))
11982 bnx2x_sample_bulletin(bp);
11984 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11985 BNX2X_ERR("Non-valid Ethernet address\n");
11986 return -EADDRNOTAVAIL;
11988 return 0;
11991 static const struct net_device_ops bnx2x_netdev_ops = {
11992 .ndo_open = bnx2x_open,
11993 .ndo_stop = bnx2x_close,
11994 .ndo_start_xmit = bnx2x_start_xmit,
11995 .ndo_select_queue = bnx2x_select_queue,
11996 .ndo_set_rx_mode = bnx2x_set_rx_mode,
11997 .ndo_set_mac_address = bnx2x_change_mac_addr,
11998 .ndo_validate_addr = bnx2x_validate_addr,
11999 .ndo_do_ioctl = bnx2x_ioctl,
12000 .ndo_change_mtu = bnx2x_change_mtu,
12001 .ndo_fix_features = bnx2x_fix_features,
12002 .ndo_set_features = bnx2x_set_features,
12003 .ndo_tx_timeout = bnx2x_tx_timeout,
12004 #ifdef CONFIG_NET_POLL_CONTROLLER
12005 .ndo_poll_controller = poll_bnx2x,
12006 #endif
12007 .ndo_setup_tc = bnx2x_setup_tc,
12008 #ifdef CONFIG_BNX2X_SRIOV
12009 .ndo_set_vf_mac = bnx2x_set_vf_mac,
12010 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
12011 .ndo_get_vf_config = bnx2x_get_vf_config,
12012 #endif
12013 #ifdef NETDEV_FCOE_WWNN
12014 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
12015 #endif
12017 #ifdef CONFIG_NET_LL_RX_POLL
12018 .ndo_ll_poll = bnx2x_low_latency_recv,
12019 #endif
12022 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12024 struct device *dev = &bp->pdev->dev;
12026 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12027 bp->flags |= USING_DAC_FLAG;
12028 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12029 dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12030 return -EIO;
12032 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12033 dev_err(dev, "System does not support DMA, aborting\n");
12034 return -EIO;
12037 return 0;
12040 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12041 struct net_device *dev, unsigned long board_type)
12043 int rc;
12044 u32 pci_cfg_dword;
12045 bool chip_is_e1x = (board_type == BCM57710 ||
12046 board_type == BCM57711 ||
12047 board_type == BCM57711E);
12049 SET_NETDEV_DEV(dev, &pdev->dev);
12051 bp->dev = dev;
12052 bp->pdev = pdev;
12054 rc = pci_enable_device(pdev);
12055 if (rc) {
12056 dev_err(&bp->pdev->dev,
12057 "Cannot enable PCI device, aborting\n");
12058 goto err_out;
12061 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12062 dev_err(&bp->pdev->dev,
12063 "Cannot find PCI device base address, aborting\n");
12064 rc = -ENODEV;
12065 goto err_out_disable;
12068 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12069 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12070 rc = -ENODEV;
12071 goto err_out_disable;
12074 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12075 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12076 PCICFG_REVESION_ID_ERROR_VAL) {
12077 pr_err("PCI device error, probably due to fan failure, aborting\n");
12078 rc = -ENODEV;
12079 goto err_out_disable;
12082 if (atomic_read(&pdev->enable_cnt) == 1) {
12083 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12084 if (rc) {
12085 dev_err(&bp->pdev->dev,
12086 "Cannot obtain PCI resources, aborting\n");
12087 goto err_out_disable;
12090 pci_set_master(pdev);
12091 pci_save_state(pdev);
12094 if (IS_PF(bp)) {
12095 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
12096 if (bp->pm_cap == 0) {
12097 dev_err(&bp->pdev->dev,
12098 "Cannot find power management capability, aborting\n");
12099 rc = -EIO;
12100 goto err_out_release;
12104 if (!pci_is_pcie(pdev)) {
12105 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12106 rc = -EIO;
12107 goto err_out_release;
12110 rc = bnx2x_set_coherency_mask(bp);
12111 if (rc)
12112 goto err_out_release;
12114 dev->mem_start = pci_resource_start(pdev, 0);
12115 dev->base_addr = dev->mem_start;
12116 dev->mem_end = pci_resource_end(pdev, 0);
12118 dev->irq = pdev->irq;
12120 bp->regview = pci_ioremap_bar(pdev, 0);
12121 if (!bp->regview) {
12122 dev_err(&bp->pdev->dev,
12123 "Cannot map register space, aborting\n");
12124 rc = -ENOMEM;
12125 goto err_out_release;
12128 /* In E1/E1H use pci device function given by kernel.
12129 * In E2/E3 read physical function from ME register since these chips
12130 * support Physical Device Assignment where kernel BDF maybe arbitrary
12131 * (depending on hypervisor).
12133 if (chip_is_e1x) {
12134 bp->pf_num = PCI_FUNC(pdev->devfn);
12135 } else {
12136 /* chip is E2/3*/
12137 pci_read_config_dword(bp->pdev,
12138 PCICFG_ME_REGISTER, &pci_cfg_dword);
12139 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12140 ME_REG_ABS_PF_NUM_SHIFT);
12142 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12144 bnx2x_set_power_state(bp, PCI_D0);
12146 /* clean indirect addresses */
12147 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12148 PCICFG_VENDOR_ID_OFFSET);
12150 * Clean the following indirect addresses for all functions since it
12151 * is not used by the driver.
12153 if (IS_PF(bp)) {
12154 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12155 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12156 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12157 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12159 if (chip_is_e1x) {
12160 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12161 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12162 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12163 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12166 /* Enable internal target-read (in case we are probed after PF
12167 * FLR). Must be done prior to any BAR read access. Only for
12168 * 57712 and up
12170 if (!chip_is_e1x)
12171 REG_WR(bp,
12172 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12175 dev->watchdog_timeo = TX_TIMEOUT;
12177 dev->netdev_ops = &bnx2x_netdev_ops;
12178 bnx2x_set_ethtool_ops(bp, dev);
12180 dev->priv_flags |= IFF_UNICAST_FLT;
12182 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12183 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12184 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12185 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12186 if (!CHIP_IS_E1x(bp)) {
12187 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12188 dev->hw_enc_features =
12189 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12190 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12191 NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12194 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12195 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12197 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12198 if (bp->flags & USING_DAC_FLAG)
12199 dev->features |= NETIF_F_HIGHDMA;
12201 /* Add Loopback capability to the device */
12202 dev->hw_features |= NETIF_F_LOOPBACK;
12204 #ifdef BCM_DCBNL
12205 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12206 #endif
12208 /* get_port_hwinfo() will set prtad and mmds properly */
12209 bp->mdio.prtad = MDIO_PRTAD_NONE;
12210 bp->mdio.mmds = 0;
12211 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12212 bp->mdio.dev = dev;
12213 bp->mdio.mdio_read = bnx2x_mdio_read;
12214 bp->mdio.mdio_write = bnx2x_mdio_write;
12216 return 0;
12218 err_out_release:
12219 if (atomic_read(&pdev->enable_cnt) == 1)
12220 pci_release_regions(pdev);
12222 err_out_disable:
12223 pci_disable_device(pdev);
12224 pci_set_drvdata(pdev, NULL);
12226 err_out:
12227 return rc;
12230 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12231 enum bnx2x_pci_bus_speed *speed)
12233 u32 link_speed, val = 0;
12235 pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12236 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12238 link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12240 switch (link_speed) {
12241 case 3:
12242 *speed = BNX2X_PCI_LINK_SPEED_8000;
12243 break;
12244 case 2:
12245 *speed = BNX2X_PCI_LINK_SPEED_5000;
12246 break;
12247 default:
12248 *speed = BNX2X_PCI_LINK_SPEED_2500;
12252 static int bnx2x_check_firmware(struct bnx2x *bp)
12254 const struct firmware *firmware = bp->firmware;
12255 struct bnx2x_fw_file_hdr *fw_hdr;
12256 struct bnx2x_fw_file_section *sections;
12257 u32 offset, len, num_ops;
12258 __be16 *ops_offsets;
12259 int i;
12260 const u8 *fw_ver;
12262 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12263 BNX2X_ERR("Wrong FW size\n");
12264 return -EINVAL;
12267 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12268 sections = (struct bnx2x_fw_file_section *)fw_hdr;
12270 /* Make sure none of the offsets and sizes make us read beyond
12271 * the end of the firmware data */
12272 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12273 offset = be32_to_cpu(sections[i].offset);
12274 len = be32_to_cpu(sections[i].len);
12275 if (offset + len > firmware->size) {
12276 BNX2X_ERR("Section %d length is out of bounds\n", i);
12277 return -EINVAL;
12281 /* Likewise for the init_ops offsets */
12282 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12283 ops_offsets = (__force __be16 *)(firmware->data + offset);
12284 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12286 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12287 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12288 BNX2X_ERR("Section offset %d is out of bounds\n", i);
12289 return -EINVAL;
12293 /* Check FW version */
12294 offset = be32_to_cpu(fw_hdr->fw_version.offset);
12295 fw_ver = firmware->data + offset;
12296 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12297 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12298 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12299 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12300 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12301 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12302 BCM_5710_FW_MAJOR_VERSION,
12303 BCM_5710_FW_MINOR_VERSION,
12304 BCM_5710_FW_REVISION_VERSION,
12305 BCM_5710_FW_ENGINEERING_VERSION);
12306 return -EINVAL;
12309 return 0;
12312 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12314 const __be32 *source = (const __be32 *)_source;
12315 u32 *target = (u32 *)_target;
12316 u32 i;
12318 for (i = 0; i < n/4; i++)
12319 target[i] = be32_to_cpu(source[i]);
12323 Ops array is stored in the following format:
12324 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12326 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12328 const __be32 *source = (const __be32 *)_source;
12329 struct raw_op *target = (struct raw_op *)_target;
12330 u32 i, j, tmp;
12332 for (i = 0, j = 0; i < n/8; i++, j += 2) {
12333 tmp = be32_to_cpu(source[j]);
12334 target[i].op = (tmp >> 24) & 0xff;
12335 target[i].offset = tmp & 0xffffff;
12336 target[i].raw_data = be32_to_cpu(source[j + 1]);
12340 /* IRO array is stored in the following format:
12341 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12343 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12345 const __be32 *source = (const __be32 *)_source;
12346 struct iro *target = (struct iro *)_target;
12347 u32 i, j, tmp;
12349 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12350 target[i].base = be32_to_cpu(source[j]);
12351 j++;
12352 tmp = be32_to_cpu(source[j]);
12353 target[i].m1 = (tmp >> 16) & 0xffff;
12354 target[i].m2 = tmp & 0xffff;
12355 j++;
12356 tmp = be32_to_cpu(source[j]);
12357 target[i].m3 = (tmp >> 16) & 0xffff;
12358 target[i].size = tmp & 0xffff;
12359 j++;
12363 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12365 const __be16 *source = (const __be16 *)_source;
12366 u16 *target = (u16 *)_target;
12367 u32 i;
12369 for (i = 0; i < n/2; i++)
12370 target[i] = be16_to_cpu(source[i]);
12373 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
12374 do { \
12375 u32 len = be32_to_cpu(fw_hdr->arr.len); \
12376 bp->arr = kmalloc(len, GFP_KERNEL); \
12377 if (!bp->arr) \
12378 goto lbl; \
12379 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
12380 (u8 *)bp->arr, len); \
12381 } while (0)
12383 static int bnx2x_init_firmware(struct bnx2x *bp)
12385 const char *fw_file_name;
12386 struct bnx2x_fw_file_hdr *fw_hdr;
12387 int rc;
12389 if (bp->firmware)
12390 return 0;
12392 if (CHIP_IS_E1(bp))
12393 fw_file_name = FW_FILE_NAME_E1;
12394 else if (CHIP_IS_E1H(bp))
12395 fw_file_name = FW_FILE_NAME_E1H;
12396 else if (!CHIP_IS_E1x(bp))
12397 fw_file_name = FW_FILE_NAME_E2;
12398 else {
12399 BNX2X_ERR("Unsupported chip revision\n");
12400 return -EINVAL;
12402 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12404 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12405 if (rc) {
12406 BNX2X_ERR("Can't load firmware file %s\n",
12407 fw_file_name);
12408 goto request_firmware_exit;
12411 rc = bnx2x_check_firmware(bp);
12412 if (rc) {
12413 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12414 goto request_firmware_exit;
12417 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12419 /* Initialize the pointers to the init arrays */
12420 /* Blob */
12421 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12423 /* Opcodes */
12424 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12426 /* Offsets */
12427 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12428 be16_to_cpu_n);
12430 /* STORMs firmware */
12431 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12432 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12433 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
12434 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12435 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12436 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12437 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
12438 be32_to_cpu(fw_hdr->usem_pram_data.offset);
12439 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12440 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12441 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
12442 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12443 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12444 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12445 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
12446 be32_to_cpu(fw_hdr->csem_pram_data.offset);
12447 /* IRO */
12448 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12450 return 0;
12452 iro_alloc_err:
12453 kfree(bp->init_ops_offsets);
12454 init_offsets_alloc_err:
12455 kfree(bp->init_ops);
12456 init_ops_alloc_err:
12457 kfree(bp->init_data);
12458 request_firmware_exit:
12459 release_firmware(bp->firmware);
12460 bp->firmware = NULL;
12462 return rc;
12465 static void bnx2x_release_firmware(struct bnx2x *bp)
12467 kfree(bp->init_ops_offsets);
12468 kfree(bp->init_ops);
12469 kfree(bp->init_data);
12470 release_firmware(bp->firmware);
12471 bp->firmware = NULL;
12474 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12475 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12476 .init_hw_cmn = bnx2x_init_hw_common,
12477 .init_hw_port = bnx2x_init_hw_port,
12478 .init_hw_func = bnx2x_init_hw_func,
12480 .reset_hw_cmn = bnx2x_reset_common,
12481 .reset_hw_port = bnx2x_reset_port,
12482 .reset_hw_func = bnx2x_reset_func,
12484 .gunzip_init = bnx2x_gunzip_init,
12485 .gunzip_end = bnx2x_gunzip_end,
12487 .init_fw = bnx2x_init_firmware,
12488 .release_fw = bnx2x_release_firmware,
12491 void bnx2x__init_func_obj(struct bnx2x *bp)
12493 /* Prepare DMAE related driver resources */
12494 bnx2x_setup_dmae(bp);
12496 bnx2x_init_func_obj(bp, &bp->func_obj,
12497 bnx2x_sp(bp, func_rdata),
12498 bnx2x_sp_mapping(bp, func_rdata),
12499 bnx2x_sp(bp, func_afex_rdata),
12500 bnx2x_sp_mapping(bp, func_afex_rdata),
12501 &bnx2x_func_sp_drv);
12504 /* must be called after sriov-enable */
12505 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12507 int cid_count = BNX2X_L2_MAX_CID(bp);
12509 if (IS_SRIOV(bp))
12510 cid_count += BNX2X_VF_CIDS;
12512 if (CNIC_SUPPORT(bp))
12513 cid_count += CNIC_CID_MAX;
12515 return roundup(cid_count, QM_CID_ROUND);
12519 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12521 * @dev: pci device
12524 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12525 int cnic_cnt, bool is_vf)
12527 int pos, index;
12528 u16 control = 0;
12530 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12533 * If MSI-X is not supported - return number of SBs needed to support
12534 * one fast path queue: one FP queue + SB for CNIC
12536 if (!pos) {
12537 dev_info(&pdev->dev, "no msix capability found\n");
12538 return 1 + cnic_cnt;
12540 dev_info(&pdev->dev, "msix capability found\n");
12543 * The value in the PCI configuration space is the index of the last
12544 * entry, namely one less than the actual size of the table, which is
12545 * exactly what we want to return from this function: number of all SBs
12546 * without the default SB.
12547 * For VFs there is no default SB, then we return (index+1).
12549 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
12551 index = control & PCI_MSIX_FLAGS_QSIZE;
12553 return is_vf ? index + 1 : index;
12556 static int set_max_cos_est(int chip_id)
12558 switch (chip_id) {
12559 case BCM57710:
12560 case BCM57711:
12561 case BCM57711E:
12562 return BNX2X_MULTI_TX_COS_E1X;
12563 case BCM57712:
12564 case BCM57712_MF:
12565 case BCM57712_VF:
12566 return BNX2X_MULTI_TX_COS_E2_E3A0;
12567 case BCM57800:
12568 case BCM57800_MF:
12569 case BCM57800_VF:
12570 case BCM57810:
12571 case BCM57810_MF:
12572 case BCM57840_4_10:
12573 case BCM57840_2_20:
12574 case BCM57840_O:
12575 case BCM57840_MFO:
12576 case BCM57810_VF:
12577 case BCM57840_MF:
12578 case BCM57840_VF:
12579 case BCM57811:
12580 case BCM57811_MF:
12581 case BCM57811_VF:
12582 return BNX2X_MULTI_TX_COS_E3B0;
12583 return 1;
12584 default:
12585 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12586 return -ENODEV;
12590 static int set_is_vf(int chip_id)
12592 switch (chip_id) {
12593 case BCM57712_VF:
12594 case BCM57800_VF:
12595 case BCM57810_VF:
12596 case BCM57840_VF:
12597 case BCM57811_VF:
12598 return true;
12599 default:
12600 return false;
12604 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12606 static int bnx2x_init_one(struct pci_dev *pdev,
12607 const struct pci_device_id *ent)
12609 struct net_device *dev = NULL;
12610 struct bnx2x *bp;
12611 int pcie_width;
12612 enum bnx2x_pci_bus_speed pcie_speed;
12613 int rc, max_non_def_sbs;
12614 int rx_count, tx_count, rss_count, doorbell_size;
12615 int max_cos_est;
12616 bool is_vf;
12617 int cnic_cnt;
12619 /* An estimated maximum supported CoS number according to the chip
12620 * version.
12621 * We will try to roughly estimate the maximum number of CoSes this chip
12622 * may support in order to minimize the memory allocated for Tx
12623 * netdev_queue's. This number will be accurately calculated during the
12624 * initialization of bp->max_cos based on the chip versions AND chip
12625 * revision in the bnx2x_init_bp().
12627 max_cos_est = set_max_cos_est(ent->driver_data);
12628 if (max_cos_est < 0)
12629 return max_cos_est;
12630 is_vf = set_is_vf(ent->driver_data);
12631 cnic_cnt = is_vf ? 0 : 1;
12633 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12635 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12636 rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12638 if (rss_count < 1)
12639 return -EINVAL;
12641 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12642 rx_count = rss_count + cnic_cnt;
12644 /* Maximum number of netdev Tx queues:
12645 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
12647 tx_count = rss_count * max_cos_est + cnic_cnt;
12649 /* dev zeroed in init_etherdev */
12650 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12651 if (!dev)
12652 return -ENOMEM;
12654 bp = netdev_priv(dev);
12656 bp->flags = 0;
12657 if (is_vf)
12658 bp->flags |= IS_VF_FLAG;
12660 bp->igu_sb_cnt = max_non_def_sbs;
12661 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12662 bp->msg_enable = debug;
12663 bp->cnic_support = cnic_cnt;
12664 bp->cnic_probe = bnx2x_cnic_probe;
12666 pci_set_drvdata(pdev, dev);
12668 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12669 if (rc < 0) {
12670 free_netdev(dev);
12671 return rc;
12674 BNX2X_DEV_INFO("This is a %s function\n",
12675 IS_PF(bp) ? "physical" : "virtual");
12676 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12677 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12678 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12679 tx_count, rx_count);
12681 rc = bnx2x_init_bp(bp);
12682 if (rc)
12683 goto init_one_exit;
12685 /* Map doorbells here as we need the real value of bp->max_cos which
12686 * is initialized in bnx2x_init_bp() to determine the number of
12687 * l2 connections.
12689 if (IS_VF(bp)) {
12690 bp->doorbells = bnx2x_vf_doorbells(bp);
12691 rc = bnx2x_vf_pci_alloc(bp);
12692 if (rc)
12693 goto init_one_exit;
12694 } else {
12695 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12696 if (doorbell_size > pci_resource_len(pdev, 2)) {
12697 dev_err(&bp->pdev->dev,
12698 "Cannot map doorbells, bar size too small, aborting\n");
12699 rc = -ENOMEM;
12700 goto init_one_exit;
12702 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12703 doorbell_size);
12705 if (!bp->doorbells) {
12706 dev_err(&bp->pdev->dev,
12707 "Cannot map doorbell space, aborting\n");
12708 rc = -ENOMEM;
12709 goto init_one_exit;
12712 if (IS_VF(bp)) {
12713 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12714 if (rc)
12715 goto init_one_exit;
12718 /* Enable SRIOV if capability found in configuration space */
12719 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12720 if (rc)
12721 goto init_one_exit;
12723 /* calc qm_cid_count */
12724 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12725 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12727 /* disable FCOE L2 queue for E1x*/
12728 if (CHIP_IS_E1x(bp))
12729 bp->flags |= NO_FCOE_FLAG;
12731 /* Set bp->num_queues for MSI-X mode*/
12732 bnx2x_set_num_queues(bp);
12734 /* Configure interrupt mode: try to enable MSI-X/MSI if
12735 * needed.
12737 rc = bnx2x_set_int_mode(bp);
12738 if (rc) {
12739 dev_err(&pdev->dev, "Cannot set interrupts\n");
12740 goto init_one_exit;
12742 BNX2X_DEV_INFO("set interrupts successfully\n");
12744 /* register the net device */
12745 rc = register_netdev(dev);
12746 if (rc) {
12747 dev_err(&pdev->dev, "Cannot register net device\n");
12748 goto init_one_exit;
12750 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12752 if (!NO_FCOE(bp)) {
12753 /* Add storage MAC address */
12754 rtnl_lock();
12755 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12756 rtnl_unlock();
12759 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12760 BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12761 pcie_width, pcie_speed);
12763 BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12764 board_info[ent->driver_data].name,
12765 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12766 pcie_width,
12767 pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12768 pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12769 pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12770 "Unknown",
12771 dev->base_addr, bp->pdev->irq, dev->dev_addr);
12773 return 0;
12775 init_one_exit:
12776 if (bp->regview)
12777 iounmap(bp->regview);
12779 if (IS_PF(bp) && bp->doorbells)
12780 iounmap(bp->doorbells);
12782 free_netdev(dev);
12784 if (atomic_read(&pdev->enable_cnt) == 1)
12785 pci_release_regions(pdev);
12787 pci_disable_device(pdev);
12788 pci_set_drvdata(pdev, NULL);
12790 return rc;
12793 static void __bnx2x_remove(struct pci_dev *pdev,
12794 struct net_device *dev,
12795 struct bnx2x *bp,
12796 bool remove_netdev)
12798 /* Delete storage MAC address */
12799 if (!NO_FCOE(bp)) {
12800 rtnl_lock();
12801 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12802 rtnl_unlock();
12805 #ifdef BCM_DCBNL
12806 /* Delete app tlvs from dcbnl */
12807 bnx2x_dcbnl_update_applist(bp, true);
12808 #endif
12810 /* Close the interface - either directly or implicitly */
12811 if (remove_netdev) {
12812 unregister_netdev(dev);
12813 } else {
12814 rtnl_lock();
12815 if (netif_running(dev))
12816 bnx2x_close(dev);
12817 rtnl_unlock();
12820 /* Power on: we can't let PCI layer write to us while we are in D3 */
12821 if (IS_PF(bp))
12822 bnx2x_set_power_state(bp, PCI_D0);
12824 /* Disable MSI/MSI-X */
12825 bnx2x_disable_msi(bp);
12827 /* Power off */
12828 if (IS_PF(bp))
12829 bnx2x_set_power_state(bp, PCI_D3hot);
12831 /* Make sure RESET task is not scheduled before continuing */
12832 cancel_delayed_work_sync(&bp->sp_rtnl_task);
12834 bnx2x_iov_remove_one(bp);
12836 /* send message via vfpf channel to release the resources of this vf */
12837 if (IS_VF(bp))
12838 bnx2x_vfpf_release(bp);
12840 /* Assumes no further PCIe PM changes will occur */
12841 if (system_state == SYSTEM_POWER_OFF) {
12842 pci_wake_from_d3(pdev, bp->wol);
12843 pci_set_power_state(pdev, PCI_D3hot);
12846 if (bp->regview)
12847 iounmap(bp->regview);
12849 /* for vf doorbells are part of the regview and were unmapped along with
12850 * it. FW is only loaded by PF.
12852 if (IS_PF(bp)) {
12853 if (bp->doorbells)
12854 iounmap(bp->doorbells);
12856 bnx2x_release_firmware(bp);
12858 bnx2x_free_mem_bp(bp);
12860 if (remove_netdev)
12861 free_netdev(dev);
12863 if (atomic_read(&pdev->enable_cnt) == 1)
12864 pci_release_regions(pdev);
12866 pci_disable_device(pdev);
12867 pci_set_drvdata(pdev, NULL);
12870 static void bnx2x_remove_one(struct pci_dev *pdev)
12872 struct net_device *dev = pci_get_drvdata(pdev);
12873 struct bnx2x *bp;
12875 if (!dev) {
12876 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12877 return;
12879 bp = netdev_priv(dev);
12881 __bnx2x_remove(pdev, dev, bp, true);
12884 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12886 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12888 bp->rx_mode = BNX2X_RX_MODE_NONE;
12890 if (CNIC_LOADED(bp))
12891 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12893 /* Stop Tx */
12894 bnx2x_tx_disable(bp);
12895 /* Delete all NAPI objects */
12896 bnx2x_del_all_napi(bp);
12897 if (CNIC_LOADED(bp))
12898 bnx2x_del_all_napi_cnic(bp);
12899 netdev_reset_tc(bp->dev);
12901 del_timer_sync(&bp->timer);
12902 cancel_delayed_work(&bp->sp_task);
12903 cancel_delayed_work(&bp->period_task);
12905 spin_lock_bh(&bp->stats_lock);
12906 bp->stats_state = STATS_STATE_DISABLED;
12907 spin_unlock_bh(&bp->stats_lock);
12909 bnx2x_save_statistics(bp);
12911 netif_carrier_off(bp->dev);
12913 return 0;
12917 * bnx2x_io_error_detected - called when PCI error is detected
12918 * @pdev: Pointer to PCI device
12919 * @state: The current pci connection state
12921 * This function is called after a PCI bus error affecting
12922 * this device has been detected.
12924 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12925 pci_channel_state_t state)
12927 struct net_device *dev = pci_get_drvdata(pdev);
12928 struct bnx2x *bp = netdev_priv(dev);
12930 rtnl_lock();
12932 BNX2X_ERR("IO error detected\n");
12934 netif_device_detach(dev);
12936 if (state == pci_channel_io_perm_failure) {
12937 rtnl_unlock();
12938 return PCI_ERS_RESULT_DISCONNECT;
12941 if (netif_running(dev))
12942 bnx2x_eeh_nic_unload(bp);
12944 bnx2x_prev_path_mark_eeh(bp);
12946 pci_disable_device(pdev);
12948 rtnl_unlock();
12950 /* Request a slot reset */
12951 return PCI_ERS_RESULT_NEED_RESET;
12955 * bnx2x_io_slot_reset - called after the PCI bus has been reset
12956 * @pdev: Pointer to PCI device
12958 * Restart the card from scratch, as if from a cold-boot.
12960 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12962 struct net_device *dev = pci_get_drvdata(pdev);
12963 struct bnx2x *bp = netdev_priv(dev);
12964 int i;
12966 rtnl_lock();
12967 BNX2X_ERR("IO slot reset initializing...\n");
12968 if (pci_enable_device(pdev)) {
12969 dev_err(&pdev->dev,
12970 "Cannot re-enable PCI device after reset\n");
12971 rtnl_unlock();
12972 return PCI_ERS_RESULT_DISCONNECT;
12975 pci_set_master(pdev);
12976 pci_restore_state(pdev);
12977 pci_save_state(pdev);
12979 if (netif_running(dev))
12980 bnx2x_set_power_state(bp, PCI_D0);
12982 if (netif_running(dev)) {
12983 BNX2X_ERR("IO slot reset --> driver unload\n");
12985 /* MCP should have been reset; Need to wait for validity */
12986 bnx2x_init_shmem(bp);
12988 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
12989 u32 v;
12991 v = SHMEM2_RD(bp,
12992 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
12993 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
12994 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
12996 bnx2x_drain_tx_queues(bp);
12997 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
12998 bnx2x_netif_stop(bp, 1);
12999 bnx2x_free_irq(bp);
13001 /* Report UNLOAD_DONE to MCP */
13002 bnx2x_send_unload_done(bp, true);
13004 bp->sp_state = 0;
13005 bp->port.pmf = 0;
13007 bnx2x_prev_unload(bp);
13009 /* We should have reseted the engine, so It's fair to
13010 * assume the FW will no longer write to the bnx2x driver.
13012 bnx2x_squeeze_objects(bp);
13013 bnx2x_free_skbs(bp);
13014 for_each_rx_queue(bp, i)
13015 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13016 bnx2x_free_fp_mem(bp);
13017 bnx2x_free_mem(bp);
13019 bp->state = BNX2X_STATE_CLOSED;
13022 rtnl_unlock();
13024 return PCI_ERS_RESULT_RECOVERED;
13028 * bnx2x_io_resume - called when traffic can start flowing again
13029 * @pdev: Pointer to PCI device
13031 * This callback is called when the error recovery driver tells us that
13032 * its OK to resume normal operation.
13034 static void bnx2x_io_resume(struct pci_dev *pdev)
13036 struct net_device *dev = pci_get_drvdata(pdev);
13037 struct bnx2x *bp = netdev_priv(dev);
13039 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13040 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13041 return;
13044 rtnl_lock();
13046 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13047 DRV_MSG_SEQ_NUMBER_MASK;
13049 if (netif_running(dev))
13050 bnx2x_nic_load(bp, LOAD_NORMAL);
13052 netif_device_attach(dev);
13054 rtnl_unlock();
13057 static const struct pci_error_handlers bnx2x_err_handler = {
13058 .error_detected = bnx2x_io_error_detected,
13059 .slot_reset = bnx2x_io_slot_reset,
13060 .resume = bnx2x_io_resume,
13063 static void bnx2x_shutdown(struct pci_dev *pdev)
13065 struct net_device *dev = pci_get_drvdata(pdev);
13066 struct bnx2x *bp;
13068 if (!dev)
13069 return;
13071 bp = netdev_priv(dev);
13072 if (!bp)
13073 return;
13075 rtnl_lock();
13076 netif_device_detach(dev);
13077 rtnl_unlock();
13079 /* Don't remove the netdevice, as there are scenarios which will cause
13080 * the kernel to hang, e.g., when trying to remove bnx2i while the
13081 * rootfs is mounted from SAN.
13083 __bnx2x_remove(pdev, dev, bp, false);
13086 static struct pci_driver bnx2x_pci_driver = {
13087 .name = DRV_MODULE_NAME,
13088 .id_table = bnx2x_pci_tbl,
13089 .probe = bnx2x_init_one,
13090 .remove = bnx2x_remove_one,
13091 .suspend = bnx2x_suspend,
13092 .resume = bnx2x_resume,
13093 .err_handler = &bnx2x_err_handler,
13094 #ifdef CONFIG_BNX2X_SRIOV
13095 .sriov_configure = bnx2x_sriov_configure,
13096 #endif
13097 .shutdown = bnx2x_shutdown,
13100 static int __init bnx2x_init(void)
13102 int ret;
13104 pr_info("%s", version);
13106 bnx2x_wq = create_singlethread_workqueue("bnx2x");
13107 if (bnx2x_wq == NULL) {
13108 pr_err("Cannot create workqueue\n");
13109 return -ENOMEM;
13112 ret = pci_register_driver(&bnx2x_pci_driver);
13113 if (ret) {
13114 pr_err("Cannot register driver\n");
13115 destroy_workqueue(bnx2x_wq);
13117 return ret;
13120 static void __exit bnx2x_cleanup(void)
13122 struct list_head *pos, *q;
13124 pci_unregister_driver(&bnx2x_pci_driver);
13126 destroy_workqueue(bnx2x_wq);
13128 /* Free globally allocated resources */
13129 list_for_each_safe(pos, q, &bnx2x_prev_list) {
13130 struct bnx2x_prev_path_list *tmp =
13131 list_entry(pos, struct bnx2x_prev_path_list, list);
13132 list_del(pos);
13133 kfree(tmp);
13137 void bnx2x_notify_link_changed(struct bnx2x *bp)
13139 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13142 module_init(bnx2x_init);
13143 module_exit(bnx2x_cleanup);
13146 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13148 * @bp: driver handle
13149 * @set: set or clear the CAM entry
13151 * This function will wait until the ramrod completion returns.
13152 * Return 0 if success, -ENODEV if ramrod doesn't return.
13154 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13156 unsigned long ramrod_flags = 0;
13158 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13159 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13160 &bp->iscsi_l2_mac_obj, true,
13161 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13164 /* count denotes the number of new completions we have seen */
13165 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13167 struct eth_spe *spe;
13168 int cxt_index, cxt_offset;
13170 #ifdef BNX2X_STOP_ON_ERROR
13171 if (unlikely(bp->panic))
13172 return;
13173 #endif
13175 spin_lock_bh(&bp->spq_lock);
13176 BUG_ON(bp->cnic_spq_pending < count);
13177 bp->cnic_spq_pending -= count;
13179 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13180 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13181 & SPE_HDR_CONN_TYPE) >>
13182 SPE_HDR_CONN_TYPE_SHIFT;
13183 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13184 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13186 /* Set validation for iSCSI L2 client before sending SETUP
13187 * ramrod
13189 if (type == ETH_CONNECTION_TYPE) {
13190 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13191 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13192 ILT_PAGE_CIDS;
13193 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13194 (cxt_index * ILT_PAGE_CIDS);
13195 bnx2x_set_ctx_validation(bp,
13196 &bp->context[cxt_index].
13197 vcxt[cxt_offset].eth,
13198 BNX2X_ISCSI_ETH_CID(bp));
13203 * There may be not more than 8 L2, not more than 8 L5 SPEs
13204 * and in the air. We also check that number of outstanding
13205 * COMMON ramrods is not more than the EQ and SPQ can
13206 * accommodate.
13208 if (type == ETH_CONNECTION_TYPE) {
13209 if (!atomic_read(&bp->cq_spq_left))
13210 break;
13211 else
13212 atomic_dec(&bp->cq_spq_left);
13213 } else if (type == NONE_CONNECTION_TYPE) {
13214 if (!atomic_read(&bp->eq_spq_left))
13215 break;
13216 else
13217 atomic_dec(&bp->eq_spq_left);
13218 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13219 (type == FCOE_CONNECTION_TYPE)) {
13220 if (bp->cnic_spq_pending >=
13221 bp->cnic_eth_dev.max_kwqe_pending)
13222 break;
13223 else
13224 bp->cnic_spq_pending++;
13225 } else {
13226 BNX2X_ERR("Unknown SPE type: %d\n", type);
13227 bnx2x_panic();
13228 break;
13231 spe = bnx2x_sp_get_next(bp);
13232 *spe = *bp->cnic_kwq_cons;
13234 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13235 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13237 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13238 bp->cnic_kwq_cons = bp->cnic_kwq;
13239 else
13240 bp->cnic_kwq_cons++;
13242 bnx2x_sp_prod_update(bp);
13243 spin_unlock_bh(&bp->spq_lock);
13246 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13247 struct kwqe_16 *kwqes[], u32 count)
13249 struct bnx2x *bp = netdev_priv(dev);
13250 int i;
13252 #ifdef BNX2X_STOP_ON_ERROR
13253 if (unlikely(bp->panic)) {
13254 BNX2X_ERR("Can't post to SP queue while panic\n");
13255 return -EIO;
13257 #endif
13259 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13260 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13261 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13262 return -EAGAIN;
13265 spin_lock_bh(&bp->spq_lock);
13267 for (i = 0; i < count; i++) {
13268 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13270 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13271 break;
13273 *bp->cnic_kwq_prod = *spe;
13275 bp->cnic_kwq_pending++;
13277 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13278 spe->hdr.conn_and_cmd_data, spe->hdr.type,
13279 spe->data.update_data_addr.hi,
13280 spe->data.update_data_addr.lo,
13281 bp->cnic_kwq_pending);
13283 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13284 bp->cnic_kwq_prod = bp->cnic_kwq;
13285 else
13286 bp->cnic_kwq_prod++;
13289 spin_unlock_bh(&bp->spq_lock);
13291 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13292 bnx2x_cnic_sp_post(bp, 0);
13294 return i;
13297 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13299 struct cnic_ops *c_ops;
13300 int rc = 0;
13302 mutex_lock(&bp->cnic_mutex);
13303 c_ops = rcu_dereference_protected(bp->cnic_ops,
13304 lockdep_is_held(&bp->cnic_mutex));
13305 if (c_ops)
13306 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13307 mutex_unlock(&bp->cnic_mutex);
13309 return rc;
13312 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13314 struct cnic_ops *c_ops;
13315 int rc = 0;
13317 rcu_read_lock();
13318 c_ops = rcu_dereference(bp->cnic_ops);
13319 if (c_ops)
13320 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13321 rcu_read_unlock();
13323 return rc;
13327 * for commands that have no data
13329 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13331 struct cnic_ctl_info ctl = {0};
13333 ctl.cmd = cmd;
13335 return bnx2x_cnic_ctl_send(bp, &ctl);
13338 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13340 struct cnic_ctl_info ctl = {0};
13342 /* first we tell CNIC and only then we count this as a completion */
13343 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13344 ctl.data.comp.cid = cid;
13345 ctl.data.comp.error = err;
13347 bnx2x_cnic_ctl_send_bh(bp, &ctl);
13348 bnx2x_cnic_sp_post(bp, 0);
13351 /* Called with netif_addr_lock_bh() taken.
13352 * Sets an rx_mode config for an iSCSI ETH client.
13353 * Doesn't block.
13354 * Completion should be checked outside.
13356 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13358 unsigned long accept_flags = 0, ramrod_flags = 0;
13359 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13360 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13362 if (start) {
13363 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13364 * because it's the only way for UIO Queue to accept
13365 * multicasts (in non-promiscuous mode only one Queue per
13366 * function will receive multicast packets (leading in our
13367 * case).
13369 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13370 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13371 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13372 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13374 /* Clear STOP_PENDING bit if START is requested */
13375 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13377 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13378 } else
13379 /* Clear START_PENDING bit if STOP is requested */
13380 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13382 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13383 set_bit(sched_state, &bp->sp_state);
13384 else {
13385 __set_bit(RAMROD_RX, &ramrod_flags);
13386 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13387 ramrod_flags);
13391 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13393 struct bnx2x *bp = netdev_priv(dev);
13394 int rc = 0;
13396 switch (ctl->cmd) {
13397 case DRV_CTL_CTXTBL_WR_CMD: {
13398 u32 index = ctl->data.io.offset;
13399 dma_addr_t addr = ctl->data.io.dma_addr;
13401 bnx2x_ilt_wr(bp, index, addr);
13402 break;
13405 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13406 int count = ctl->data.credit.credit_count;
13408 bnx2x_cnic_sp_post(bp, count);
13409 break;
13412 /* rtnl_lock is held. */
13413 case DRV_CTL_START_L2_CMD: {
13414 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13415 unsigned long sp_bits = 0;
13417 /* Configure the iSCSI classification object */
13418 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13419 cp->iscsi_l2_client_id,
13420 cp->iscsi_l2_cid, BP_FUNC(bp),
13421 bnx2x_sp(bp, mac_rdata),
13422 bnx2x_sp_mapping(bp, mac_rdata),
13423 BNX2X_FILTER_MAC_PENDING,
13424 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13425 &bp->macs_pool);
13427 /* Set iSCSI MAC address */
13428 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13429 if (rc)
13430 break;
13432 mmiowb();
13433 barrier();
13435 /* Start accepting on iSCSI L2 ring */
13437 netif_addr_lock_bh(dev);
13438 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13439 netif_addr_unlock_bh(dev);
13441 /* bits to wait on */
13442 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13443 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13445 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13446 BNX2X_ERR("rx_mode completion timed out!\n");
13448 break;
13451 /* rtnl_lock is held. */
13452 case DRV_CTL_STOP_L2_CMD: {
13453 unsigned long sp_bits = 0;
13455 /* Stop accepting on iSCSI L2 ring */
13456 netif_addr_lock_bh(dev);
13457 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13458 netif_addr_unlock_bh(dev);
13460 /* bits to wait on */
13461 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13462 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13464 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13465 BNX2X_ERR("rx_mode completion timed out!\n");
13467 mmiowb();
13468 barrier();
13470 /* Unset iSCSI L2 MAC */
13471 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13472 BNX2X_ISCSI_ETH_MAC, true);
13473 break;
13475 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13476 int count = ctl->data.credit.credit_count;
13478 smp_mb__before_atomic_inc();
13479 atomic_add(count, &bp->cq_spq_left);
13480 smp_mb__after_atomic_inc();
13481 break;
13483 case DRV_CTL_ULP_REGISTER_CMD: {
13484 int ulp_type = ctl->data.register_data.ulp_type;
13486 if (CHIP_IS_E3(bp)) {
13487 int idx = BP_FW_MB_IDX(bp);
13488 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13489 int path = BP_PATH(bp);
13490 int port = BP_PORT(bp);
13491 int i;
13492 u32 scratch_offset;
13493 u32 *host_addr;
13495 /* first write capability to shmem2 */
13496 if (ulp_type == CNIC_ULP_ISCSI)
13497 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13498 else if (ulp_type == CNIC_ULP_FCOE)
13499 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13500 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13502 if ((ulp_type != CNIC_ULP_FCOE) ||
13503 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13504 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
13505 break;
13507 /* if reached here - should write fcoe capabilities */
13508 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13509 if (!scratch_offset)
13510 break;
13511 scratch_offset += offsetof(struct glob_ncsi_oem_data,
13512 fcoe_features[path][port]);
13513 host_addr = (u32 *) &(ctl->data.register_data.
13514 fcoe_features);
13515 for (i = 0; i < sizeof(struct fcoe_capabilities);
13516 i += 4)
13517 REG_WR(bp, scratch_offset + i,
13518 *(host_addr + i/4));
13520 break;
13523 case DRV_CTL_ULP_UNREGISTER_CMD: {
13524 int ulp_type = ctl->data.ulp_type;
13526 if (CHIP_IS_E3(bp)) {
13527 int idx = BP_FW_MB_IDX(bp);
13528 u32 cap;
13530 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13531 if (ulp_type == CNIC_ULP_ISCSI)
13532 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13533 else if (ulp_type == CNIC_ULP_FCOE)
13534 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13535 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13537 break;
13540 default:
13541 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13542 rc = -EINVAL;
13545 return rc;
13548 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13550 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13552 if (bp->flags & USING_MSIX_FLAG) {
13553 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13554 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13555 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13556 } else {
13557 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13558 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13560 if (!CHIP_IS_E1x(bp))
13561 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13562 else
13563 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13565 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
13566 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13567 cp->irq_arr[1].status_blk = bp->def_status_blk;
13568 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13569 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13571 cp->num_irq = 2;
13574 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13576 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13578 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13579 bnx2x_cid_ilt_lines(bp);
13580 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13581 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13582 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13584 if (NO_ISCSI_OOO(bp))
13585 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13588 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13589 void *data)
13591 struct bnx2x *bp = netdev_priv(dev);
13592 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13593 int rc;
13595 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13597 if (ops == NULL) {
13598 BNX2X_ERR("NULL ops received\n");
13599 return -EINVAL;
13602 if (!CNIC_SUPPORT(bp)) {
13603 BNX2X_ERR("Can't register CNIC when not supported\n");
13604 return -EOPNOTSUPP;
13607 if (!CNIC_LOADED(bp)) {
13608 rc = bnx2x_load_cnic(bp);
13609 if (rc) {
13610 BNX2X_ERR("CNIC-related load failed\n");
13611 return rc;
13615 bp->cnic_enabled = true;
13617 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13618 if (!bp->cnic_kwq)
13619 return -ENOMEM;
13621 bp->cnic_kwq_cons = bp->cnic_kwq;
13622 bp->cnic_kwq_prod = bp->cnic_kwq;
13623 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13625 bp->cnic_spq_pending = 0;
13626 bp->cnic_kwq_pending = 0;
13628 bp->cnic_data = data;
13630 cp->num_irq = 0;
13631 cp->drv_state |= CNIC_DRV_STATE_REGD;
13632 cp->iro_arr = bp->iro_arr;
13634 bnx2x_setup_cnic_irq_info(bp);
13636 rcu_assign_pointer(bp->cnic_ops, ops);
13638 return 0;
13641 static int bnx2x_unregister_cnic(struct net_device *dev)
13643 struct bnx2x *bp = netdev_priv(dev);
13644 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13646 mutex_lock(&bp->cnic_mutex);
13647 cp->drv_state = 0;
13648 RCU_INIT_POINTER(bp->cnic_ops, NULL);
13649 mutex_unlock(&bp->cnic_mutex);
13650 synchronize_rcu();
13651 bp->cnic_enabled = false;
13652 kfree(bp->cnic_kwq);
13653 bp->cnic_kwq = NULL;
13655 return 0;
13658 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13660 struct bnx2x *bp = netdev_priv(dev);
13661 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13663 /* If both iSCSI and FCoE are disabled - return NULL in
13664 * order to indicate CNIC that it should not try to work
13665 * with this device.
13667 if (NO_ISCSI(bp) && NO_FCOE(bp))
13668 return NULL;
13670 cp->drv_owner = THIS_MODULE;
13671 cp->chip_id = CHIP_ID(bp);
13672 cp->pdev = bp->pdev;
13673 cp->io_base = bp->regview;
13674 cp->io_base2 = bp->doorbells;
13675 cp->max_kwqe_pending = 8;
13676 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13677 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13678 bnx2x_cid_ilt_lines(bp);
13679 cp->ctx_tbl_len = CNIC_ILT_LINES;
13680 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13681 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13682 cp->drv_ctl = bnx2x_drv_ctl;
13683 cp->drv_register_cnic = bnx2x_register_cnic;
13684 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13685 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13686 cp->iscsi_l2_client_id =
13687 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13688 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13690 if (NO_ISCSI_OOO(bp))
13691 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13693 if (NO_ISCSI(bp))
13694 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13696 if (NO_FCOE(bp))
13697 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13699 BNX2X_DEV_INFO(
13700 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13701 cp->ctx_blk_size,
13702 cp->ctx_tbl_offset,
13703 cp->ctx_tbl_len,
13704 cp->starting_cid);
13705 return cp;
13708 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13710 struct bnx2x *bp = fp->bp;
13711 u32 offset = BAR_USTRORM_INTMEM;
13713 if (IS_VF(bp))
13714 return bnx2x_vf_ustorm_prods_offset(bp, fp);
13715 else if (!CHIP_IS_E1x(bp))
13716 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13717 else
13718 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13720 return offset;
13723 /* called only on E1H or E2.
13724 * When pretending to be PF, the pretend value is the function number 0...7
13725 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13726 * combination
13728 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13730 u32 pretend_reg;
13732 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13733 return -1;
13735 /* get my own pretend register */
13736 pretend_reg = bnx2x_get_pretend_reg(bp);
13737 REG_WR(bp, pretend_reg, pretend_func_val);
13738 REG_RD(bp, pretend_reg);
13739 return 0;