ASoC: Intel: Skylake: Add Nuvoton Maxim machine driver
[linux-2.6/btrfs-unstable.git] / net / rfkill / core.c
blobb41e9ea2ffff461847465d621a3284480f433cc5
1 /*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/workqueue.h>
24 #include <linux/capability.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/rfkill.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 #include <linux/slab.h>
37 #include "rfkill.h"
39 #define POLL_INTERVAL (5 * HZ)
41 #define RFKILL_BLOCK_HW BIT(0)
42 #define RFKILL_BLOCK_SW BIT(1)
43 #define RFKILL_BLOCK_SW_PREV BIT(2)
44 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
45 RFKILL_BLOCK_SW |\
46 RFKILL_BLOCK_SW_PREV)
47 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
49 struct rfkill {
50 spinlock_t lock;
52 const char *name;
53 enum rfkill_type type;
55 unsigned long state;
57 u32 idx;
59 bool registered;
60 bool persistent;
62 const struct rfkill_ops *ops;
63 void *data;
65 #ifdef CONFIG_RFKILL_LEDS
66 struct led_trigger led_trigger;
67 const char *ledtrigname;
68 #endif
70 struct device dev;
71 struct list_head node;
73 struct delayed_work poll_work;
74 struct work_struct uevent_work;
75 struct work_struct sync_work;
77 #define to_rfkill(d) container_of(d, struct rfkill, dev)
79 struct rfkill_int_event {
80 struct list_head list;
81 struct rfkill_event ev;
84 struct rfkill_data {
85 struct list_head list;
86 struct list_head events;
87 struct mutex mtx;
88 wait_queue_head_t read_wait;
89 bool input_handler;
93 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
94 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
95 MODULE_DESCRIPTION("RF switch support");
96 MODULE_LICENSE("GPL");
100 * The locking here should be made much smarter, we currently have
101 * a bit of a stupid situation because drivers might want to register
102 * the rfkill struct under their own lock, and take this lock during
103 * rfkill method calls -- which will cause an AB-BA deadlock situation.
105 * To fix that, we need to rework this code here to be mostly lock-free
106 * and only use the mutex for list manipulations, not to protect the
107 * various other global variables. Then we can avoid holding the mutex
108 * around driver operations, and all is happy.
110 static LIST_HEAD(rfkill_list); /* list of registered rf switches */
111 static DEFINE_MUTEX(rfkill_global_mutex);
112 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
114 static unsigned int rfkill_default_state = 1;
115 module_param_named(default_state, rfkill_default_state, uint, 0444);
116 MODULE_PARM_DESC(default_state,
117 "Default initial state for all radio types, 0 = radio off");
119 static struct {
120 bool cur, sav;
121 } rfkill_global_states[NUM_RFKILL_TYPES];
123 static bool rfkill_epo_lock_active;
126 #ifdef CONFIG_RFKILL_LEDS
127 static void rfkill_led_trigger_event(struct rfkill *rfkill)
129 struct led_trigger *trigger;
131 if (!rfkill->registered)
132 return;
134 trigger = &rfkill->led_trigger;
136 if (rfkill->state & RFKILL_BLOCK_ANY)
137 led_trigger_event(trigger, LED_OFF);
138 else
139 led_trigger_event(trigger, LED_FULL);
142 static void rfkill_led_trigger_activate(struct led_classdev *led)
144 struct rfkill *rfkill;
146 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
148 rfkill_led_trigger_event(rfkill);
151 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
153 return rfkill->led_trigger.name;
155 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
157 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
159 BUG_ON(!rfkill);
161 rfkill->ledtrigname = name;
163 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
165 static int rfkill_led_trigger_register(struct rfkill *rfkill)
167 rfkill->led_trigger.name = rfkill->ledtrigname
168 ? : dev_name(&rfkill->dev);
169 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
170 return led_trigger_register(&rfkill->led_trigger);
173 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
175 led_trigger_unregister(&rfkill->led_trigger);
177 #else
178 static void rfkill_led_trigger_event(struct rfkill *rfkill)
182 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
184 return 0;
187 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
190 #endif /* CONFIG_RFKILL_LEDS */
192 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
193 enum rfkill_operation op)
195 unsigned long flags;
197 ev->idx = rfkill->idx;
198 ev->type = rfkill->type;
199 ev->op = op;
201 spin_lock_irqsave(&rfkill->lock, flags);
202 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
203 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
204 RFKILL_BLOCK_SW_PREV));
205 spin_unlock_irqrestore(&rfkill->lock, flags);
208 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
210 struct rfkill_data *data;
211 struct rfkill_int_event *ev;
213 list_for_each_entry(data, &rfkill_fds, list) {
214 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
215 if (!ev)
216 continue;
217 rfkill_fill_event(&ev->ev, rfkill, op);
218 mutex_lock(&data->mtx);
219 list_add_tail(&ev->list, &data->events);
220 mutex_unlock(&data->mtx);
221 wake_up_interruptible(&data->read_wait);
225 static void rfkill_event(struct rfkill *rfkill)
227 if (!rfkill->registered)
228 return;
230 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
232 /* also send event to /dev/rfkill */
233 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
236 static bool __rfkill_set_hw_state(struct rfkill *rfkill,
237 bool blocked, bool *change)
239 unsigned long flags;
240 bool prev, any;
242 BUG_ON(!rfkill);
244 spin_lock_irqsave(&rfkill->lock, flags);
245 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
246 if (blocked)
247 rfkill->state |= RFKILL_BLOCK_HW;
248 else
249 rfkill->state &= ~RFKILL_BLOCK_HW;
250 *change = prev != blocked;
251 any = !!(rfkill->state & RFKILL_BLOCK_ANY);
252 spin_unlock_irqrestore(&rfkill->lock, flags);
254 rfkill_led_trigger_event(rfkill);
256 return any;
260 * rfkill_set_block - wrapper for set_block method
262 * @rfkill: the rfkill struct to use
263 * @blocked: the new software state
265 * Calls the set_block method (when applicable) and handles notifications
266 * etc. as well.
268 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
270 unsigned long flags;
271 bool prev, curr;
272 int err;
274 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
275 return;
278 * Some platforms (...!) generate input events which affect the
279 * _hard_ kill state -- whenever something tries to change the
280 * current software state query the hardware state too.
282 if (rfkill->ops->query)
283 rfkill->ops->query(rfkill, rfkill->data);
285 spin_lock_irqsave(&rfkill->lock, flags);
286 prev = rfkill->state & RFKILL_BLOCK_SW;
288 if (rfkill->state & RFKILL_BLOCK_SW)
289 rfkill->state |= RFKILL_BLOCK_SW_PREV;
290 else
291 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
293 if (blocked)
294 rfkill->state |= RFKILL_BLOCK_SW;
295 else
296 rfkill->state &= ~RFKILL_BLOCK_SW;
298 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
299 spin_unlock_irqrestore(&rfkill->lock, flags);
301 err = rfkill->ops->set_block(rfkill->data, blocked);
303 spin_lock_irqsave(&rfkill->lock, flags);
304 if (err) {
306 * Failed -- reset status to _prev, this may be different
307 * from what set set _PREV to earlier in this function
308 * if rfkill_set_sw_state was invoked.
310 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
311 rfkill->state |= RFKILL_BLOCK_SW;
312 else
313 rfkill->state &= ~RFKILL_BLOCK_SW;
315 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
316 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
317 curr = rfkill->state & RFKILL_BLOCK_SW;
318 spin_unlock_irqrestore(&rfkill->lock, flags);
320 rfkill_led_trigger_event(rfkill);
322 if (prev != curr)
323 rfkill_event(rfkill);
326 #ifdef CONFIG_RFKILL_INPUT
327 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
330 * __rfkill_switch_all - Toggle state of all switches of given type
331 * @type: type of interfaces to be affected
332 * @blocked: the new state
334 * This function sets the state of all switches of given type,
335 * unless a specific switch is claimed by userspace (in which case,
336 * that switch is left alone) or suspended.
338 * Caller must have acquired rfkill_global_mutex.
340 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
342 struct rfkill *rfkill;
344 if (type == RFKILL_TYPE_ALL) {
345 int i;
347 for (i = 0; i < NUM_RFKILL_TYPES; i++)
348 rfkill_global_states[i].cur = blocked;
349 } else {
350 rfkill_global_states[type].cur = blocked;
353 list_for_each_entry(rfkill, &rfkill_list, node) {
354 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
355 continue;
357 rfkill_set_block(rfkill, blocked);
362 * rfkill_switch_all - Toggle state of all switches of given type
363 * @type: type of interfaces to be affected
364 * @blocked: the new state
366 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
367 * Please refer to __rfkill_switch_all() for details.
369 * Does nothing if the EPO lock is active.
371 void rfkill_switch_all(enum rfkill_type type, bool blocked)
373 if (atomic_read(&rfkill_input_disabled))
374 return;
376 mutex_lock(&rfkill_global_mutex);
378 if (!rfkill_epo_lock_active)
379 __rfkill_switch_all(type, blocked);
381 mutex_unlock(&rfkill_global_mutex);
385 * rfkill_epo - emergency power off all transmitters
387 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
388 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
390 * The global state before the EPO is saved and can be restored later
391 * using rfkill_restore_states().
393 void rfkill_epo(void)
395 struct rfkill *rfkill;
396 int i;
398 if (atomic_read(&rfkill_input_disabled))
399 return;
401 mutex_lock(&rfkill_global_mutex);
403 rfkill_epo_lock_active = true;
404 list_for_each_entry(rfkill, &rfkill_list, node)
405 rfkill_set_block(rfkill, true);
407 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
408 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
409 rfkill_global_states[i].cur = true;
412 mutex_unlock(&rfkill_global_mutex);
416 * rfkill_restore_states - restore global states
418 * Restore (and sync switches to) the global state from the
419 * states in rfkill_default_states. This can undo the effects of
420 * a call to rfkill_epo().
422 void rfkill_restore_states(void)
424 int i;
426 if (atomic_read(&rfkill_input_disabled))
427 return;
429 mutex_lock(&rfkill_global_mutex);
431 rfkill_epo_lock_active = false;
432 for (i = 0; i < NUM_RFKILL_TYPES; i++)
433 __rfkill_switch_all(i, rfkill_global_states[i].sav);
434 mutex_unlock(&rfkill_global_mutex);
438 * rfkill_remove_epo_lock - unlock state changes
440 * Used by rfkill-input manually unlock state changes, when
441 * the EPO switch is deactivated.
443 void rfkill_remove_epo_lock(void)
445 if (atomic_read(&rfkill_input_disabled))
446 return;
448 mutex_lock(&rfkill_global_mutex);
449 rfkill_epo_lock_active = false;
450 mutex_unlock(&rfkill_global_mutex);
454 * rfkill_is_epo_lock_active - returns true EPO is active
456 * Returns 0 (false) if there is NOT an active EPO contidion,
457 * and 1 (true) if there is an active EPO contition, which
458 * locks all radios in one of the BLOCKED states.
460 * Can be called in atomic context.
462 bool rfkill_is_epo_lock_active(void)
464 return rfkill_epo_lock_active;
468 * rfkill_get_global_sw_state - returns global state for a type
469 * @type: the type to get the global state of
471 * Returns the current global state for a given wireless
472 * device type.
474 bool rfkill_get_global_sw_state(const enum rfkill_type type)
476 return rfkill_global_states[type].cur;
478 #endif
481 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
483 bool ret, change;
485 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
487 if (!rfkill->registered)
488 return ret;
490 if (change)
491 schedule_work(&rfkill->uevent_work);
493 return ret;
495 EXPORT_SYMBOL(rfkill_set_hw_state);
497 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
499 u32 bit = RFKILL_BLOCK_SW;
501 /* if in a ops->set_block right now, use other bit */
502 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
503 bit = RFKILL_BLOCK_SW_PREV;
505 if (blocked)
506 rfkill->state |= bit;
507 else
508 rfkill->state &= ~bit;
511 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
513 unsigned long flags;
514 bool prev, hwblock;
516 BUG_ON(!rfkill);
518 spin_lock_irqsave(&rfkill->lock, flags);
519 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
520 __rfkill_set_sw_state(rfkill, blocked);
521 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
522 blocked = blocked || hwblock;
523 spin_unlock_irqrestore(&rfkill->lock, flags);
525 if (!rfkill->registered)
526 return blocked;
528 if (prev != blocked && !hwblock)
529 schedule_work(&rfkill->uevent_work);
531 rfkill_led_trigger_event(rfkill);
533 return blocked;
535 EXPORT_SYMBOL(rfkill_set_sw_state);
537 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
539 unsigned long flags;
541 BUG_ON(!rfkill);
542 BUG_ON(rfkill->registered);
544 spin_lock_irqsave(&rfkill->lock, flags);
545 __rfkill_set_sw_state(rfkill, blocked);
546 rfkill->persistent = true;
547 spin_unlock_irqrestore(&rfkill->lock, flags);
549 EXPORT_SYMBOL(rfkill_init_sw_state);
551 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
553 unsigned long flags;
554 bool swprev, hwprev;
556 BUG_ON(!rfkill);
558 spin_lock_irqsave(&rfkill->lock, flags);
561 * No need to care about prev/setblock ... this is for uevent only
562 * and that will get triggered by rfkill_set_block anyway.
564 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
565 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
566 __rfkill_set_sw_state(rfkill, sw);
567 if (hw)
568 rfkill->state |= RFKILL_BLOCK_HW;
569 else
570 rfkill->state &= ~RFKILL_BLOCK_HW;
572 spin_unlock_irqrestore(&rfkill->lock, flags);
574 if (!rfkill->registered) {
575 rfkill->persistent = true;
576 } else {
577 if (swprev != sw || hwprev != hw)
578 schedule_work(&rfkill->uevent_work);
580 rfkill_led_trigger_event(rfkill);
583 EXPORT_SYMBOL(rfkill_set_states);
585 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
586 char *buf)
588 struct rfkill *rfkill = to_rfkill(dev);
590 return sprintf(buf, "%s\n", rfkill->name);
592 static DEVICE_ATTR_RO(name);
594 static const char *rfkill_get_type_str(enum rfkill_type type)
596 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1);
598 switch (type) {
599 case RFKILL_TYPE_WLAN:
600 return "wlan";
601 case RFKILL_TYPE_BLUETOOTH:
602 return "bluetooth";
603 case RFKILL_TYPE_UWB:
604 return "ultrawideband";
605 case RFKILL_TYPE_WIMAX:
606 return "wimax";
607 case RFKILL_TYPE_WWAN:
608 return "wwan";
609 case RFKILL_TYPE_GPS:
610 return "gps";
611 case RFKILL_TYPE_FM:
612 return "fm";
613 case RFKILL_TYPE_NFC:
614 return "nfc";
615 default:
616 BUG();
620 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
621 char *buf)
623 struct rfkill *rfkill = to_rfkill(dev);
625 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
627 static DEVICE_ATTR_RO(type);
629 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
630 char *buf)
632 struct rfkill *rfkill = to_rfkill(dev);
634 return sprintf(buf, "%d\n", rfkill->idx);
636 static DEVICE_ATTR_RO(index);
638 static ssize_t persistent_show(struct device *dev,
639 struct device_attribute *attr, char *buf)
641 struct rfkill *rfkill = to_rfkill(dev);
643 return sprintf(buf, "%d\n", rfkill->persistent);
645 static DEVICE_ATTR_RO(persistent);
647 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
648 char *buf)
650 struct rfkill *rfkill = to_rfkill(dev);
652 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
654 static DEVICE_ATTR_RO(hard);
656 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
657 char *buf)
659 struct rfkill *rfkill = to_rfkill(dev);
661 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
664 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
665 const char *buf, size_t count)
667 struct rfkill *rfkill = to_rfkill(dev);
668 unsigned long state;
669 int err;
671 if (!capable(CAP_NET_ADMIN))
672 return -EPERM;
674 err = kstrtoul(buf, 0, &state);
675 if (err)
676 return err;
678 if (state > 1 )
679 return -EINVAL;
681 mutex_lock(&rfkill_global_mutex);
682 rfkill_set_block(rfkill, state);
683 mutex_unlock(&rfkill_global_mutex);
685 return count;
687 static DEVICE_ATTR_RW(soft);
689 static u8 user_state_from_blocked(unsigned long state)
691 if (state & RFKILL_BLOCK_HW)
692 return RFKILL_USER_STATE_HARD_BLOCKED;
693 if (state & RFKILL_BLOCK_SW)
694 return RFKILL_USER_STATE_SOFT_BLOCKED;
696 return RFKILL_USER_STATE_UNBLOCKED;
699 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
700 char *buf)
702 struct rfkill *rfkill = to_rfkill(dev);
704 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
707 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
708 const char *buf, size_t count)
710 struct rfkill *rfkill = to_rfkill(dev);
711 unsigned long state;
712 int err;
714 if (!capable(CAP_NET_ADMIN))
715 return -EPERM;
717 err = kstrtoul(buf, 0, &state);
718 if (err)
719 return err;
721 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
722 state != RFKILL_USER_STATE_UNBLOCKED)
723 return -EINVAL;
725 mutex_lock(&rfkill_global_mutex);
726 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
727 mutex_unlock(&rfkill_global_mutex);
729 return count;
731 static DEVICE_ATTR_RW(state);
733 static ssize_t claim_show(struct device *dev, struct device_attribute *attr,
734 char *buf)
736 return sprintf(buf, "%d\n", 0);
738 static DEVICE_ATTR_RO(claim);
740 static struct attribute *rfkill_dev_attrs[] = {
741 &dev_attr_name.attr,
742 &dev_attr_type.attr,
743 &dev_attr_index.attr,
744 &dev_attr_persistent.attr,
745 &dev_attr_state.attr,
746 &dev_attr_claim.attr,
747 &dev_attr_soft.attr,
748 &dev_attr_hard.attr,
749 NULL,
751 ATTRIBUTE_GROUPS(rfkill_dev);
753 static void rfkill_release(struct device *dev)
755 struct rfkill *rfkill = to_rfkill(dev);
757 kfree(rfkill);
760 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
762 struct rfkill *rfkill = to_rfkill(dev);
763 unsigned long flags;
764 u32 state;
765 int error;
767 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
768 if (error)
769 return error;
770 error = add_uevent_var(env, "RFKILL_TYPE=%s",
771 rfkill_get_type_str(rfkill->type));
772 if (error)
773 return error;
774 spin_lock_irqsave(&rfkill->lock, flags);
775 state = rfkill->state;
776 spin_unlock_irqrestore(&rfkill->lock, flags);
777 error = add_uevent_var(env, "RFKILL_STATE=%d",
778 user_state_from_blocked(state));
779 return error;
782 void rfkill_pause_polling(struct rfkill *rfkill)
784 BUG_ON(!rfkill);
786 if (!rfkill->ops->poll)
787 return;
789 cancel_delayed_work_sync(&rfkill->poll_work);
791 EXPORT_SYMBOL(rfkill_pause_polling);
793 void rfkill_resume_polling(struct rfkill *rfkill)
795 BUG_ON(!rfkill);
797 if (!rfkill->ops->poll)
798 return;
800 queue_delayed_work(system_power_efficient_wq,
801 &rfkill->poll_work, 0);
803 EXPORT_SYMBOL(rfkill_resume_polling);
805 #ifdef CONFIG_PM_SLEEP
806 static int rfkill_suspend(struct device *dev)
808 struct rfkill *rfkill = to_rfkill(dev);
810 rfkill_pause_polling(rfkill);
812 return 0;
815 static int rfkill_resume(struct device *dev)
817 struct rfkill *rfkill = to_rfkill(dev);
818 bool cur;
820 if (!rfkill->persistent) {
821 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
822 rfkill_set_block(rfkill, cur);
825 rfkill_resume_polling(rfkill);
827 return 0;
830 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
831 #define RFKILL_PM_OPS (&rfkill_pm_ops)
832 #else
833 #define RFKILL_PM_OPS NULL
834 #endif
836 static struct class rfkill_class = {
837 .name = "rfkill",
838 .dev_release = rfkill_release,
839 .dev_groups = rfkill_dev_groups,
840 .dev_uevent = rfkill_dev_uevent,
841 .pm = RFKILL_PM_OPS,
844 bool rfkill_blocked(struct rfkill *rfkill)
846 unsigned long flags;
847 u32 state;
849 spin_lock_irqsave(&rfkill->lock, flags);
850 state = rfkill->state;
851 spin_unlock_irqrestore(&rfkill->lock, flags);
853 return !!(state & RFKILL_BLOCK_ANY);
855 EXPORT_SYMBOL(rfkill_blocked);
858 struct rfkill * __must_check rfkill_alloc(const char *name,
859 struct device *parent,
860 const enum rfkill_type type,
861 const struct rfkill_ops *ops,
862 void *ops_data)
864 struct rfkill *rfkill;
865 struct device *dev;
867 if (WARN_ON(!ops))
868 return NULL;
870 if (WARN_ON(!ops->set_block))
871 return NULL;
873 if (WARN_ON(!name))
874 return NULL;
876 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
877 return NULL;
879 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
880 if (!rfkill)
881 return NULL;
883 spin_lock_init(&rfkill->lock);
884 INIT_LIST_HEAD(&rfkill->node);
885 rfkill->type = type;
886 rfkill->name = name;
887 rfkill->ops = ops;
888 rfkill->data = ops_data;
890 dev = &rfkill->dev;
891 dev->class = &rfkill_class;
892 dev->parent = parent;
893 device_initialize(dev);
895 return rfkill;
897 EXPORT_SYMBOL(rfkill_alloc);
899 static void rfkill_poll(struct work_struct *work)
901 struct rfkill *rfkill;
903 rfkill = container_of(work, struct rfkill, poll_work.work);
906 * Poll hardware state -- driver will use one of the
907 * rfkill_set{,_hw,_sw}_state functions and use its
908 * return value to update the current status.
910 rfkill->ops->poll(rfkill, rfkill->data);
912 queue_delayed_work(system_power_efficient_wq,
913 &rfkill->poll_work,
914 round_jiffies_relative(POLL_INTERVAL));
917 static void rfkill_uevent_work(struct work_struct *work)
919 struct rfkill *rfkill;
921 rfkill = container_of(work, struct rfkill, uevent_work);
923 mutex_lock(&rfkill_global_mutex);
924 rfkill_event(rfkill);
925 mutex_unlock(&rfkill_global_mutex);
928 static void rfkill_sync_work(struct work_struct *work)
930 struct rfkill *rfkill;
931 bool cur;
933 rfkill = container_of(work, struct rfkill, sync_work);
935 mutex_lock(&rfkill_global_mutex);
936 cur = rfkill_global_states[rfkill->type].cur;
937 rfkill_set_block(rfkill, cur);
938 mutex_unlock(&rfkill_global_mutex);
941 int __must_check rfkill_register(struct rfkill *rfkill)
943 static unsigned long rfkill_no;
944 struct device *dev = &rfkill->dev;
945 int error;
947 BUG_ON(!rfkill);
949 mutex_lock(&rfkill_global_mutex);
951 if (rfkill->registered) {
952 error = -EALREADY;
953 goto unlock;
956 rfkill->idx = rfkill_no;
957 dev_set_name(dev, "rfkill%lu", rfkill_no);
958 rfkill_no++;
960 list_add_tail(&rfkill->node, &rfkill_list);
962 error = device_add(dev);
963 if (error)
964 goto remove;
966 error = rfkill_led_trigger_register(rfkill);
967 if (error)
968 goto devdel;
970 rfkill->registered = true;
972 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
973 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
974 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
976 if (rfkill->ops->poll)
977 queue_delayed_work(system_power_efficient_wq,
978 &rfkill->poll_work,
979 round_jiffies_relative(POLL_INTERVAL));
981 if (!rfkill->persistent || rfkill_epo_lock_active) {
982 schedule_work(&rfkill->sync_work);
983 } else {
984 #ifdef CONFIG_RFKILL_INPUT
985 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
987 if (!atomic_read(&rfkill_input_disabled))
988 __rfkill_switch_all(rfkill->type, soft_blocked);
989 #endif
992 rfkill_send_events(rfkill, RFKILL_OP_ADD);
994 mutex_unlock(&rfkill_global_mutex);
995 return 0;
997 devdel:
998 device_del(&rfkill->dev);
999 remove:
1000 list_del_init(&rfkill->node);
1001 unlock:
1002 mutex_unlock(&rfkill_global_mutex);
1003 return error;
1005 EXPORT_SYMBOL(rfkill_register);
1007 void rfkill_unregister(struct rfkill *rfkill)
1009 BUG_ON(!rfkill);
1011 if (rfkill->ops->poll)
1012 cancel_delayed_work_sync(&rfkill->poll_work);
1014 cancel_work_sync(&rfkill->uevent_work);
1015 cancel_work_sync(&rfkill->sync_work);
1017 rfkill->registered = false;
1019 device_del(&rfkill->dev);
1021 mutex_lock(&rfkill_global_mutex);
1022 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1023 list_del_init(&rfkill->node);
1024 mutex_unlock(&rfkill_global_mutex);
1026 rfkill_led_trigger_unregister(rfkill);
1028 EXPORT_SYMBOL(rfkill_unregister);
1030 void rfkill_destroy(struct rfkill *rfkill)
1032 if (rfkill)
1033 put_device(&rfkill->dev);
1035 EXPORT_SYMBOL(rfkill_destroy);
1037 static int rfkill_fop_open(struct inode *inode, struct file *file)
1039 struct rfkill_data *data;
1040 struct rfkill *rfkill;
1041 struct rfkill_int_event *ev, *tmp;
1043 data = kzalloc(sizeof(*data), GFP_KERNEL);
1044 if (!data)
1045 return -ENOMEM;
1047 INIT_LIST_HEAD(&data->events);
1048 mutex_init(&data->mtx);
1049 init_waitqueue_head(&data->read_wait);
1051 mutex_lock(&rfkill_global_mutex);
1052 mutex_lock(&data->mtx);
1054 * start getting events from elsewhere but hold mtx to get
1055 * startup events added first
1058 list_for_each_entry(rfkill, &rfkill_list, node) {
1059 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1060 if (!ev)
1061 goto free;
1062 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1063 list_add_tail(&ev->list, &data->events);
1065 list_add(&data->list, &rfkill_fds);
1066 mutex_unlock(&data->mtx);
1067 mutex_unlock(&rfkill_global_mutex);
1069 file->private_data = data;
1071 return nonseekable_open(inode, file);
1073 free:
1074 mutex_unlock(&data->mtx);
1075 mutex_unlock(&rfkill_global_mutex);
1076 mutex_destroy(&data->mtx);
1077 list_for_each_entry_safe(ev, tmp, &data->events, list)
1078 kfree(ev);
1079 kfree(data);
1080 return -ENOMEM;
1083 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1085 struct rfkill_data *data = file->private_data;
1086 unsigned int res = POLLOUT | POLLWRNORM;
1088 poll_wait(file, &data->read_wait, wait);
1090 mutex_lock(&data->mtx);
1091 if (!list_empty(&data->events))
1092 res = POLLIN | POLLRDNORM;
1093 mutex_unlock(&data->mtx);
1095 return res;
1098 static bool rfkill_readable(struct rfkill_data *data)
1100 bool r;
1102 mutex_lock(&data->mtx);
1103 r = !list_empty(&data->events);
1104 mutex_unlock(&data->mtx);
1106 return r;
1109 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1110 size_t count, loff_t *pos)
1112 struct rfkill_data *data = file->private_data;
1113 struct rfkill_int_event *ev;
1114 unsigned long sz;
1115 int ret;
1117 mutex_lock(&data->mtx);
1119 while (list_empty(&data->events)) {
1120 if (file->f_flags & O_NONBLOCK) {
1121 ret = -EAGAIN;
1122 goto out;
1124 mutex_unlock(&data->mtx);
1125 ret = wait_event_interruptible(data->read_wait,
1126 rfkill_readable(data));
1127 mutex_lock(&data->mtx);
1129 if (ret)
1130 goto out;
1133 ev = list_first_entry(&data->events, struct rfkill_int_event,
1134 list);
1136 sz = min_t(unsigned long, sizeof(ev->ev), count);
1137 ret = sz;
1138 if (copy_to_user(buf, &ev->ev, sz))
1139 ret = -EFAULT;
1141 list_del(&ev->list);
1142 kfree(ev);
1143 out:
1144 mutex_unlock(&data->mtx);
1145 return ret;
1148 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1149 size_t count, loff_t *pos)
1151 struct rfkill *rfkill;
1152 struct rfkill_event ev;
1154 /* we don't need the 'hard' variable but accept it */
1155 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1156 return -EINVAL;
1159 * Copy as much data as we can accept into our 'ev' buffer,
1160 * but tell userspace how much we've copied so it can determine
1161 * our API version even in a write() call, if it cares.
1163 count = min(count, sizeof(ev));
1164 if (copy_from_user(&ev, buf, count))
1165 return -EFAULT;
1167 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1168 return -EINVAL;
1170 if (ev.type >= NUM_RFKILL_TYPES)
1171 return -EINVAL;
1173 mutex_lock(&rfkill_global_mutex);
1175 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1176 if (ev.type == RFKILL_TYPE_ALL) {
1177 enum rfkill_type i;
1178 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1179 rfkill_global_states[i].cur = ev.soft;
1180 } else {
1181 rfkill_global_states[ev.type].cur = ev.soft;
1185 list_for_each_entry(rfkill, &rfkill_list, node) {
1186 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1187 continue;
1189 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1190 continue;
1192 rfkill_set_block(rfkill, ev.soft);
1194 mutex_unlock(&rfkill_global_mutex);
1196 return count;
1199 static int rfkill_fop_release(struct inode *inode, struct file *file)
1201 struct rfkill_data *data = file->private_data;
1202 struct rfkill_int_event *ev, *tmp;
1204 mutex_lock(&rfkill_global_mutex);
1205 list_del(&data->list);
1206 mutex_unlock(&rfkill_global_mutex);
1208 mutex_destroy(&data->mtx);
1209 list_for_each_entry_safe(ev, tmp, &data->events, list)
1210 kfree(ev);
1212 #ifdef CONFIG_RFKILL_INPUT
1213 if (data->input_handler)
1214 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1215 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1216 #endif
1218 kfree(data);
1220 return 0;
1223 #ifdef CONFIG_RFKILL_INPUT
1224 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1225 unsigned long arg)
1227 struct rfkill_data *data = file->private_data;
1229 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1230 return -ENOSYS;
1232 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1233 return -ENOSYS;
1235 mutex_lock(&data->mtx);
1237 if (!data->input_handler) {
1238 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1239 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1240 data->input_handler = true;
1243 mutex_unlock(&data->mtx);
1245 return 0;
1247 #endif
1249 static const struct file_operations rfkill_fops = {
1250 .owner = THIS_MODULE,
1251 .open = rfkill_fop_open,
1252 .read = rfkill_fop_read,
1253 .write = rfkill_fop_write,
1254 .poll = rfkill_fop_poll,
1255 .release = rfkill_fop_release,
1256 #ifdef CONFIG_RFKILL_INPUT
1257 .unlocked_ioctl = rfkill_fop_ioctl,
1258 .compat_ioctl = rfkill_fop_ioctl,
1259 #endif
1260 .llseek = no_llseek,
1263 static struct miscdevice rfkill_miscdev = {
1264 .name = "rfkill",
1265 .fops = &rfkill_fops,
1266 .minor = MISC_DYNAMIC_MINOR,
1269 static int __init rfkill_init(void)
1271 int error;
1272 int i;
1274 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1275 rfkill_global_states[i].cur = !rfkill_default_state;
1277 error = class_register(&rfkill_class);
1278 if (error)
1279 goto out;
1281 error = misc_register(&rfkill_miscdev);
1282 if (error) {
1283 class_unregister(&rfkill_class);
1284 goto out;
1287 #ifdef CONFIG_RFKILL_INPUT
1288 error = rfkill_handler_init();
1289 if (error) {
1290 misc_deregister(&rfkill_miscdev);
1291 class_unregister(&rfkill_class);
1292 goto out;
1294 #endif
1296 out:
1297 return error;
1299 subsys_initcall(rfkill_init);
1301 static void __exit rfkill_exit(void)
1303 #ifdef CONFIG_RFKILL_INPUT
1304 rfkill_handler_exit();
1305 #endif
1306 misc_deregister(&rfkill_miscdev);
1307 class_unregister(&rfkill_class);
1309 module_exit(rfkill_exit);