2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
7 #include <linux/sched.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/security.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/mman.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/userfaultfd_k.h>
18 #include <asm/sections.h>
19 #include <linux/uaccess.h>
23 static inline int is_kernel_rodata(unsigned long addr
)
25 return addr
>= (unsigned long)__start_rodata
&&
26 addr
< (unsigned long)__end_rodata
;
30 * kfree_const - conditionally free memory
31 * @x: pointer to the memory
33 * Function calls kfree only if @x is not in .rodata section.
35 void kfree_const(const void *x
)
37 if (!is_kernel_rodata((unsigned long)x
))
40 EXPORT_SYMBOL(kfree_const
);
43 * kstrdup - allocate space for and copy an existing string
44 * @s: the string to duplicate
45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
47 char *kstrdup(const char *s
, gfp_t gfp
)
56 buf
= kmalloc_track_caller(len
, gfp
);
61 EXPORT_SYMBOL(kstrdup
);
64 * kstrdup_const - conditionally duplicate an existing const string
65 * @s: the string to duplicate
66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
68 * Function returns source string if it is in .rodata section otherwise it
69 * fallbacks to kstrdup.
70 * Strings allocated by kstrdup_const should be freed by kfree_const.
72 const char *kstrdup_const(const char *s
, gfp_t gfp
)
74 if (is_kernel_rodata((unsigned long)s
))
77 return kstrdup(s
, gfp
);
79 EXPORT_SYMBOL(kstrdup_const
);
82 * kstrndup - allocate space for and copy an existing string
83 * @s: the string to duplicate
84 * @max: read at most @max chars from @s
85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
87 * Note: Use kmemdup_nul() instead if the size is known exactly.
89 char *kstrndup(const char *s
, size_t max
, gfp_t gfp
)
97 len
= strnlen(s
, max
);
98 buf
= kmalloc_track_caller(len
+1, gfp
);
105 EXPORT_SYMBOL(kstrndup
);
108 * kmemdup - duplicate region of memory
110 * @src: memory region to duplicate
111 * @len: memory region length
112 * @gfp: GFP mask to use
114 void *kmemdup(const void *src
, size_t len
, gfp_t gfp
)
118 p
= kmalloc_track_caller(len
, gfp
);
123 EXPORT_SYMBOL(kmemdup
);
126 * kmemdup_nul - Create a NUL-terminated string from unterminated data
127 * @s: The data to stringify
128 * @len: The size of the data
129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
131 char *kmemdup_nul(const char *s
, size_t len
, gfp_t gfp
)
138 buf
= kmalloc_track_caller(len
+ 1, gfp
);
145 EXPORT_SYMBOL(kmemdup_nul
);
148 * memdup_user - duplicate memory region from user space
150 * @src: source address in user space
151 * @len: number of bytes to copy
153 * Returns an ERR_PTR() on failure.
155 void *memdup_user(const void __user
*src
, size_t len
)
160 * Always use GFP_KERNEL, since copy_from_user() can sleep and
161 * cause pagefault, which makes it pointless to use GFP_NOFS
164 p
= kmalloc_track_caller(len
, GFP_KERNEL
);
166 return ERR_PTR(-ENOMEM
);
168 if (copy_from_user(p
, src
, len
)) {
170 return ERR_PTR(-EFAULT
);
175 EXPORT_SYMBOL(memdup_user
);
178 * strndup_user - duplicate an existing string from user space
179 * @s: The string to duplicate
180 * @n: Maximum number of bytes to copy, including the trailing NUL.
182 char *strndup_user(const char __user
*s
, long n
)
187 length
= strnlen_user(s
, n
);
190 return ERR_PTR(-EFAULT
);
193 return ERR_PTR(-EINVAL
);
195 p
= memdup_user(s
, length
);
200 p
[length
- 1] = '\0';
204 EXPORT_SYMBOL(strndup_user
);
207 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
209 * @src: source address in user space
210 * @len: number of bytes to copy
212 * Returns an ERR_PTR() on failure.
214 void *memdup_user_nul(const void __user
*src
, size_t len
)
219 * Always use GFP_KERNEL, since copy_from_user() can sleep and
220 * cause pagefault, which makes it pointless to use GFP_NOFS
223 p
= kmalloc_track_caller(len
+ 1, GFP_KERNEL
);
225 return ERR_PTR(-ENOMEM
);
227 if (copy_from_user(p
, src
, len
)) {
229 return ERR_PTR(-EFAULT
);
235 EXPORT_SYMBOL(memdup_user_nul
);
237 void __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
238 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
240 struct vm_area_struct
*next
;
244 next
= prev
->vm_next
;
249 next
= rb_entry(rb_parent
,
250 struct vm_area_struct
, vm_rb
);
259 /* Check if the vma is being used as a stack by this task */
260 int vma_is_stack_for_current(struct vm_area_struct
*vma
)
262 struct task_struct
* __maybe_unused t
= current
;
264 return (vma
->vm_start
<= KSTK_ESP(t
) && vma
->vm_end
>= KSTK_ESP(t
));
267 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
268 void arch_pick_mmap_layout(struct mm_struct
*mm
)
270 mm
->mmap_base
= TASK_UNMAPPED_BASE
;
271 mm
->get_unmapped_area
= arch_get_unmapped_area
;
276 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
277 * back to the regular GUP.
278 * If the architecture not support this function, simply return with no
281 int __weak
__get_user_pages_fast(unsigned long start
,
282 int nr_pages
, int write
, struct page
**pages
)
286 EXPORT_SYMBOL_GPL(__get_user_pages_fast
);
289 * get_user_pages_fast() - pin user pages in memory
290 * @start: starting user address
291 * @nr_pages: number of pages from start to pin
292 * @write: whether pages will be written to
293 * @pages: array that receives pointers to the pages pinned.
294 * Should be at least nr_pages long.
296 * Returns number of pages pinned. This may be fewer than the number
297 * requested. If nr_pages is 0 or negative, returns 0. If no pages
298 * were pinned, returns -errno.
300 * get_user_pages_fast provides equivalent functionality to get_user_pages,
301 * operating on current and current->mm, with force=0 and vma=NULL. However
302 * unlike get_user_pages, it must be called without mmap_sem held.
304 * get_user_pages_fast may take mmap_sem and page table locks, so no
305 * assumptions can be made about lack of locking. get_user_pages_fast is to be
306 * implemented in a way that is advantageous (vs get_user_pages()) when the
307 * user memory area is already faulted in and present in ptes. However if the
308 * pages have to be faulted in, it may turn out to be slightly slower so
309 * callers need to carefully consider what to use. On many architectures,
310 * get_user_pages_fast simply falls back to get_user_pages.
312 int __weak
get_user_pages_fast(unsigned long start
,
313 int nr_pages
, int write
, struct page
**pages
)
315 return get_user_pages_unlocked(start
, nr_pages
, pages
,
316 write
? FOLL_WRITE
: 0);
318 EXPORT_SYMBOL_GPL(get_user_pages_fast
);
320 unsigned long vm_mmap_pgoff(struct file
*file
, unsigned long addr
,
321 unsigned long len
, unsigned long prot
,
322 unsigned long flag
, unsigned long pgoff
)
325 struct mm_struct
*mm
= current
->mm
;
326 unsigned long populate
;
329 ret
= security_mmap_file(file
, prot
, flag
);
331 if (down_write_killable(&mm
->mmap_sem
))
333 ret
= do_mmap_pgoff(file
, addr
, len
, prot
, flag
, pgoff
,
335 up_write(&mm
->mmap_sem
);
336 userfaultfd_unmap_complete(mm
, &uf
);
338 mm_populate(ret
, populate
);
343 unsigned long vm_mmap(struct file
*file
, unsigned long addr
,
344 unsigned long len
, unsigned long prot
,
345 unsigned long flag
, unsigned long offset
)
347 if (unlikely(offset
+ PAGE_ALIGN(len
) < offset
))
349 if (unlikely(offset_in_page(offset
)))
352 return vm_mmap_pgoff(file
, addr
, len
, prot
, flag
, offset
>> PAGE_SHIFT
);
354 EXPORT_SYMBOL(vm_mmap
);
357 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
358 * failure, fall back to non-contiguous (vmalloc) allocation.
359 * @size: size of the request.
360 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
361 * @node: numa node to allocate from
363 * Uses kmalloc to get the memory but if the allocation fails then falls back
364 * to the vmalloc allocator. Use kvfree for freeing the memory.
366 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
367 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
368 * preferable to the vmalloc fallback, due to visible performance drawbacks.
370 * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
372 void *kvmalloc_node(size_t size
, gfp_t flags
, int node
)
374 gfp_t kmalloc_flags
= flags
;
378 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
379 * so the given set of flags has to be compatible.
381 WARN_ON_ONCE((flags
& GFP_KERNEL
) != GFP_KERNEL
);
384 * We want to attempt a large physically contiguous block first because
385 * it is less likely to fragment multiple larger blocks and therefore
386 * contribute to a long term fragmentation less than vmalloc fallback.
387 * However make sure that larger requests are not too disruptive - no
388 * OOM killer and no allocation failure warnings as we have a fallback.
390 if (size
> PAGE_SIZE
) {
391 kmalloc_flags
|= __GFP_NOWARN
;
393 if (!(kmalloc_flags
& __GFP_RETRY_MAYFAIL
))
394 kmalloc_flags
|= __GFP_NORETRY
;
397 ret
= kmalloc_node(size
, kmalloc_flags
, node
);
400 * It doesn't really make sense to fallback to vmalloc for sub page
403 if (ret
|| size
<= PAGE_SIZE
)
406 return __vmalloc_node_flags_caller(size
, node
, flags
,
407 __builtin_return_address(0));
409 EXPORT_SYMBOL(kvmalloc_node
);
411 void kvfree(const void *addr
)
413 if (is_vmalloc_addr(addr
))
418 EXPORT_SYMBOL(kvfree
);
420 static inline void *__page_rmapping(struct page
*page
)
422 unsigned long mapping
;
424 mapping
= (unsigned long)page
->mapping
;
425 mapping
&= ~PAGE_MAPPING_FLAGS
;
427 return (void *)mapping
;
430 /* Neutral page->mapping pointer to address_space or anon_vma or other */
431 void *page_rmapping(struct page
*page
)
433 page
= compound_head(page
);
434 return __page_rmapping(page
);
438 * Return true if this page is mapped into pagetables.
439 * For compound page it returns true if any subpage of compound page is mapped.
441 bool page_mapped(struct page
*page
)
445 if (likely(!PageCompound(page
)))
446 return atomic_read(&page
->_mapcount
) >= 0;
447 page
= compound_head(page
);
448 if (atomic_read(compound_mapcount_ptr(page
)) >= 0)
452 for (i
= 0; i
< hpage_nr_pages(page
); i
++) {
453 if (atomic_read(&page
[i
]._mapcount
) >= 0)
458 EXPORT_SYMBOL(page_mapped
);
460 struct anon_vma
*page_anon_vma(struct page
*page
)
462 unsigned long mapping
;
464 page
= compound_head(page
);
465 mapping
= (unsigned long)page
->mapping
;
466 if ((mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
468 return __page_rmapping(page
);
471 struct address_space
*page_mapping(struct page
*page
)
473 struct address_space
*mapping
;
475 page
= compound_head(page
);
477 /* This happens if someone calls flush_dcache_page on slab page */
478 if (unlikely(PageSlab(page
)))
481 if (unlikely(PageSwapCache(page
))) {
484 entry
.val
= page_private(page
);
485 return swap_address_space(entry
);
488 mapping
= page
->mapping
;
489 if ((unsigned long)mapping
& PAGE_MAPPING_ANON
)
492 return (void *)((unsigned long)mapping
& ~PAGE_MAPPING_FLAGS
);
494 EXPORT_SYMBOL(page_mapping
);
496 /* Slow path of page_mapcount() for compound pages */
497 int __page_mapcount(struct page
*page
)
501 ret
= atomic_read(&page
->_mapcount
) + 1;
503 * For file THP page->_mapcount contains total number of mapping
504 * of the page: no need to look into compound_mapcount.
506 if (!PageAnon(page
) && !PageHuge(page
))
508 page
= compound_head(page
);
509 ret
+= atomic_read(compound_mapcount_ptr(page
)) + 1;
510 if (PageDoubleMap(page
))
514 EXPORT_SYMBOL_GPL(__page_mapcount
);
516 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
;
517 int sysctl_overcommit_ratio __read_mostly
= 50;
518 unsigned long sysctl_overcommit_kbytes __read_mostly
;
519 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
520 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
521 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
523 int overcommit_ratio_handler(struct ctl_table
*table
, int write
,
524 void __user
*buffer
, size_t *lenp
,
529 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
530 if (ret
== 0 && write
)
531 sysctl_overcommit_kbytes
= 0;
535 int overcommit_kbytes_handler(struct ctl_table
*table
, int write
,
536 void __user
*buffer
, size_t *lenp
,
541 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
542 if (ret
== 0 && write
)
543 sysctl_overcommit_ratio
= 0;
548 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
550 unsigned long vm_commit_limit(void)
552 unsigned long allowed
;
554 if (sysctl_overcommit_kbytes
)
555 allowed
= sysctl_overcommit_kbytes
>> (PAGE_SHIFT
- 10);
557 allowed
= ((totalram_pages
- hugetlb_total_pages())
558 * sysctl_overcommit_ratio
/ 100);
559 allowed
+= total_swap_pages
;
565 * Make sure vm_committed_as in one cacheline and not cacheline shared with
566 * other variables. It can be updated by several CPUs frequently.
568 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
571 * The global memory commitment made in the system can be a metric
572 * that can be used to drive ballooning decisions when Linux is hosted
573 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
574 * balancing memory across competing virtual machines that are hosted.
575 * Several metrics drive this policy engine including the guest reported
578 unsigned long vm_memory_committed(void)
580 return percpu_counter_read_positive(&vm_committed_as
);
582 EXPORT_SYMBOL_GPL(vm_memory_committed
);
585 * Check that a process has enough memory to allocate a new virtual
586 * mapping. 0 means there is enough memory for the allocation to
587 * succeed and -ENOMEM implies there is not.
589 * We currently support three overcommit policies, which are set via the
590 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
592 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
593 * Additional code 2002 Jul 20 by Robert Love.
595 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
597 * Note this is a helper function intended to be used by LSMs which
598 * wish to use this logic.
600 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
602 long free
, allowed
, reserve
;
604 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as
) <
605 -(s64
)vm_committed_as_batch
* num_online_cpus(),
606 "memory commitment underflow");
608 vm_acct_memory(pages
);
611 * Sometimes we want to use more memory than we have
613 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
616 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
617 free
= global_zone_page_state(NR_FREE_PAGES
);
618 free
+= global_node_page_state(NR_FILE_PAGES
);
621 * shmem pages shouldn't be counted as free in this
622 * case, they can't be purged, only swapped out, and
623 * that won't affect the overall amount of available
624 * memory in the system.
626 free
-= global_node_page_state(NR_SHMEM
);
628 free
+= get_nr_swap_pages();
631 * Any slabs which are created with the
632 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
633 * which are reclaimable, under pressure. The dentry
634 * cache and most inode caches should fall into this
636 free
+= global_node_page_state(NR_SLAB_RECLAIMABLE
);
639 * Leave reserved pages. The pages are not for anonymous pages.
641 if (free
<= totalreserve_pages
)
644 free
-= totalreserve_pages
;
647 * Reserve some for root
650 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
658 allowed
= vm_commit_limit();
660 * Reserve some for root
663 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
666 * Don't let a single process grow so big a user can't recover
669 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
670 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
673 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
676 vm_unacct_memory(pages
);
682 * get_cmdline() - copy the cmdline value to a buffer.
683 * @task: the task whose cmdline value to copy.
684 * @buffer: the buffer to copy to.
685 * @buflen: the length of the buffer. Larger cmdline values are truncated
687 * Returns the size of the cmdline field copied. Note that the copy does
688 * not guarantee an ending NULL byte.
690 int get_cmdline(struct task_struct
*task
, char *buffer
, int buflen
)
694 struct mm_struct
*mm
= get_task_mm(task
);
695 unsigned long arg_start
, arg_end
, env_start
, env_end
;
699 goto out_mm
; /* Shh! No looking before we're done */
701 down_read(&mm
->mmap_sem
);
702 arg_start
= mm
->arg_start
;
703 arg_end
= mm
->arg_end
;
704 env_start
= mm
->env_start
;
705 env_end
= mm
->env_end
;
706 up_read(&mm
->mmap_sem
);
708 len
= arg_end
- arg_start
;
713 res
= access_process_vm(task
, arg_start
, buffer
, len
, FOLL_FORCE
);
716 * If the nul at the end of args has been overwritten, then
717 * assume application is using setproctitle(3).
719 if (res
> 0 && buffer
[res
-1] != '\0' && len
< buflen
) {
720 len
= strnlen(buffer
, res
);
724 len
= env_end
- env_start
;
725 if (len
> buflen
- res
)
727 res
+= access_process_vm(task
, env_start
,
730 res
= strnlen(buffer
, res
);