mfd: htc-egpio: Use gpiochip data pointer
[linux-2.6/btrfs-unstable.git] / drivers / mtd / mtdconcat.c
blob239a8c806b6772df642bf6cb1385616147e975c8
1 /*
2 * MTD device concatenation layer
4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
7 * NAND support by Christian Gan <cgan@iders.ca>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
35 #include <asm/div64.h>
38 * Our storage structure:
39 * Subdev points to an array of pointers to struct mtd_info objects
40 * which is allocated along with this structure
43 struct mtd_concat {
44 struct mtd_info mtd;
45 int num_subdev;
46 struct mtd_info **subdev;
50 * how to calculate the size required for the above structure,
51 * including the pointer array subdev points to:
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
54 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
57 * Given a pointer to the MTD object in the mtd_concat structure,
58 * we can retrieve the pointer to that structure with this macro.
60 #define CONCAT(x) ((struct mtd_concat *)(x))
63 * MTD methods which look up the relevant subdevice, translate the
64 * effective address and pass through to the subdevice.
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69 size_t * retlen, u_char * buf)
71 struct mtd_concat *concat = CONCAT(mtd);
72 int ret = 0, err;
73 int i;
75 for (i = 0; i < concat->num_subdev; i++) {
76 struct mtd_info *subdev = concat->subdev[i];
77 size_t size, retsize;
79 if (from >= subdev->size) {
80 /* Not destined for this subdev */
81 size = 0;
82 from -= subdev->size;
83 continue;
85 if (from + len > subdev->size)
86 /* First part goes into this subdev */
87 size = subdev->size - from;
88 else
89 /* Entire transaction goes into this subdev */
90 size = len;
92 err = mtd_read(subdev, from, size, &retsize, buf);
94 /* Save information about bitflips! */
95 if (unlikely(err)) {
96 if (mtd_is_eccerr(err)) {
97 mtd->ecc_stats.failed++;
98 ret = err;
99 } else if (mtd_is_bitflip(err)) {
100 mtd->ecc_stats.corrected++;
101 /* Do not overwrite -EBADMSG !! */
102 if (!ret)
103 ret = err;
104 } else
105 return err;
108 *retlen += retsize;
109 len -= size;
110 if (len == 0)
111 return ret;
113 buf += size;
114 from = 0;
116 return -EINVAL;
119 static int
120 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121 size_t * retlen, const u_char * buf)
123 struct mtd_concat *concat = CONCAT(mtd);
124 int err = -EINVAL;
125 int i;
127 for (i = 0; i < concat->num_subdev; i++) {
128 struct mtd_info *subdev = concat->subdev[i];
129 size_t size, retsize;
131 if (to >= subdev->size) {
132 size = 0;
133 to -= subdev->size;
134 continue;
136 if (to + len > subdev->size)
137 size = subdev->size - to;
138 else
139 size = len;
141 err = mtd_write(subdev, to, size, &retsize, buf);
142 if (err)
143 break;
145 *retlen += retsize;
146 len -= size;
147 if (len == 0)
148 break;
150 err = -EINVAL;
151 buf += size;
152 to = 0;
154 return err;
157 static int
158 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
159 unsigned long count, loff_t to, size_t * retlen)
161 struct mtd_concat *concat = CONCAT(mtd);
162 struct kvec *vecs_copy;
163 unsigned long entry_low, entry_high;
164 size_t total_len = 0;
165 int i;
166 int err = -EINVAL;
168 /* Calculate total length of data */
169 for (i = 0; i < count; i++)
170 total_len += vecs[i].iov_len;
172 /* Check alignment */
173 if (mtd->writesize > 1) {
174 uint64_t __to = to;
175 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
176 return -EINVAL;
179 /* make a copy of vecs */
180 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
181 if (!vecs_copy)
182 return -ENOMEM;
184 entry_low = 0;
185 for (i = 0; i < concat->num_subdev; i++) {
186 struct mtd_info *subdev = concat->subdev[i];
187 size_t size, wsize, retsize, old_iov_len;
189 if (to >= subdev->size) {
190 to -= subdev->size;
191 continue;
194 size = min_t(uint64_t, total_len, subdev->size - to);
195 wsize = size; /* store for future use */
197 entry_high = entry_low;
198 while (entry_high < count) {
199 if (size <= vecs_copy[entry_high].iov_len)
200 break;
201 size -= vecs_copy[entry_high++].iov_len;
204 old_iov_len = vecs_copy[entry_high].iov_len;
205 vecs_copy[entry_high].iov_len = size;
207 err = mtd_writev(subdev, &vecs_copy[entry_low],
208 entry_high - entry_low + 1, to, &retsize);
210 vecs_copy[entry_high].iov_len = old_iov_len - size;
211 vecs_copy[entry_high].iov_base += size;
213 entry_low = entry_high;
215 if (err)
216 break;
218 *retlen += retsize;
219 total_len -= wsize;
221 if (total_len == 0)
222 break;
224 err = -EINVAL;
225 to = 0;
228 kfree(vecs_copy);
229 return err;
232 static int
233 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
235 struct mtd_concat *concat = CONCAT(mtd);
236 struct mtd_oob_ops devops = *ops;
237 int i, err, ret = 0;
239 ops->retlen = ops->oobretlen = 0;
241 for (i = 0; i < concat->num_subdev; i++) {
242 struct mtd_info *subdev = concat->subdev[i];
244 if (from >= subdev->size) {
245 from -= subdev->size;
246 continue;
249 /* partial read ? */
250 if (from + devops.len > subdev->size)
251 devops.len = subdev->size - from;
253 err = mtd_read_oob(subdev, from, &devops);
254 ops->retlen += devops.retlen;
255 ops->oobretlen += devops.oobretlen;
257 /* Save information about bitflips! */
258 if (unlikely(err)) {
259 if (mtd_is_eccerr(err)) {
260 mtd->ecc_stats.failed++;
261 ret = err;
262 } else if (mtd_is_bitflip(err)) {
263 mtd->ecc_stats.corrected++;
264 /* Do not overwrite -EBADMSG !! */
265 if (!ret)
266 ret = err;
267 } else
268 return err;
271 if (devops.datbuf) {
272 devops.len = ops->len - ops->retlen;
273 if (!devops.len)
274 return ret;
275 devops.datbuf += devops.retlen;
277 if (devops.oobbuf) {
278 devops.ooblen = ops->ooblen - ops->oobretlen;
279 if (!devops.ooblen)
280 return ret;
281 devops.oobbuf += ops->oobretlen;
284 from = 0;
286 return -EINVAL;
289 static int
290 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
292 struct mtd_concat *concat = CONCAT(mtd);
293 struct mtd_oob_ops devops = *ops;
294 int i, err;
296 if (!(mtd->flags & MTD_WRITEABLE))
297 return -EROFS;
299 ops->retlen = ops->oobretlen = 0;
301 for (i = 0; i < concat->num_subdev; i++) {
302 struct mtd_info *subdev = concat->subdev[i];
304 if (to >= subdev->size) {
305 to -= subdev->size;
306 continue;
309 /* partial write ? */
310 if (to + devops.len > subdev->size)
311 devops.len = subdev->size - to;
313 err = mtd_write_oob(subdev, to, &devops);
314 ops->retlen += devops.retlen;
315 ops->oobretlen += devops.oobretlen;
316 if (err)
317 return err;
319 if (devops.datbuf) {
320 devops.len = ops->len - ops->retlen;
321 if (!devops.len)
322 return 0;
323 devops.datbuf += devops.retlen;
325 if (devops.oobbuf) {
326 devops.ooblen = ops->ooblen - ops->oobretlen;
327 if (!devops.ooblen)
328 return 0;
329 devops.oobbuf += devops.oobretlen;
331 to = 0;
333 return -EINVAL;
336 static void concat_erase_callback(struct erase_info *instr)
338 wake_up((wait_queue_head_t *) instr->priv);
341 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
343 int err;
344 wait_queue_head_t waitq;
345 DECLARE_WAITQUEUE(wait, current);
348 * This code was stol^H^H^H^Hinspired by mtdchar.c
350 init_waitqueue_head(&waitq);
352 erase->mtd = mtd;
353 erase->callback = concat_erase_callback;
354 erase->priv = (unsigned long) &waitq;
357 * FIXME: Allow INTERRUPTIBLE. Which means
358 * not having the wait_queue head on the stack.
360 err = mtd_erase(mtd, erase);
361 if (!err) {
362 set_current_state(TASK_UNINTERRUPTIBLE);
363 add_wait_queue(&waitq, &wait);
364 if (erase->state != MTD_ERASE_DONE
365 && erase->state != MTD_ERASE_FAILED)
366 schedule();
367 remove_wait_queue(&waitq, &wait);
368 set_current_state(TASK_RUNNING);
370 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
372 return err;
375 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
377 struct mtd_concat *concat = CONCAT(mtd);
378 struct mtd_info *subdev;
379 int i, err;
380 uint64_t length, offset = 0;
381 struct erase_info *erase;
384 * Check for proper erase block alignment of the to-be-erased area.
385 * It is easier to do this based on the super device's erase
386 * region info rather than looking at each particular sub-device
387 * in turn.
389 if (!concat->mtd.numeraseregions) {
390 /* the easy case: device has uniform erase block size */
391 if (instr->addr & (concat->mtd.erasesize - 1))
392 return -EINVAL;
393 if (instr->len & (concat->mtd.erasesize - 1))
394 return -EINVAL;
395 } else {
396 /* device has variable erase size */
397 struct mtd_erase_region_info *erase_regions =
398 concat->mtd.eraseregions;
401 * Find the erase region where the to-be-erased area begins:
403 for (i = 0; i < concat->mtd.numeraseregions &&
404 instr->addr >= erase_regions[i].offset; i++) ;
405 --i;
408 * Now erase_regions[i] is the region in which the
409 * to-be-erased area begins. Verify that the starting
410 * offset is aligned to this region's erase size:
412 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
413 return -EINVAL;
416 * now find the erase region where the to-be-erased area ends:
418 for (; i < concat->mtd.numeraseregions &&
419 (instr->addr + instr->len) >= erase_regions[i].offset;
420 ++i) ;
421 --i;
423 * check if the ending offset is aligned to this region's erase size
425 if (i < 0 || ((instr->addr + instr->len) &
426 (erase_regions[i].erasesize - 1)))
427 return -EINVAL;
430 /* make a local copy of instr to avoid modifying the caller's struct */
431 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
433 if (!erase)
434 return -ENOMEM;
436 *erase = *instr;
437 length = instr->len;
440 * find the subdevice where the to-be-erased area begins, adjust
441 * starting offset to be relative to the subdevice start
443 for (i = 0; i < concat->num_subdev; i++) {
444 subdev = concat->subdev[i];
445 if (subdev->size <= erase->addr) {
446 erase->addr -= subdev->size;
447 offset += subdev->size;
448 } else {
449 break;
453 /* must never happen since size limit has been verified above */
454 BUG_ON(i >= concat->num_subdev);
456 /* now do the erase: */
457 err = 0;
458 for (; length > 0; i++) {
459 /* loop for all subdevices affected by this request */
460 subdev = concat->subdev[i]; /* get current subdevice */
462 /* limit length to subdevice's size: */
463 if (erase->addr + length > subdev->size)
464 erase->len = subdev->size - erase->addr;
465 else
466 erase->len = length;
468 length -= erase->len;
469 if ((err = concat_dev_erase(subdev, erase))) {
470 /* sanity check: should never happen since
471 * block alignment has been checked above */
472 BUG_ON(err == -EINVAL);
473 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
474 instr->fail_addr = erase->fail_addr + offset;
475 break;
478 * erase->addr specifies the offset of the area to be
479 * erased *within the current subdevice*. It can be
480 * non-zero only the first time through this loop, i.e.
481 * for the first subdevice where blocks need to be erased.
482 * All the following erases must begin at the start of the
483 * current subdevice, i.e. at offset zero.
485 erase->addr = 0;
486 offset += subdev->size;
488 instr->state = erase->state;
489 kfree(erase);
490 if (err)
491 return err;
493 if (instr->callback)
494 instr->callback(instr);
495 return 0;
498 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
500 struct mtd_concat *concat = CONCAT(mtd);
501 int i, err = -EINVAL;
503 for (i = 0; i < concat->num_subdev; i++) {
504 struct mtd_info *subdev = concat->subdev[i];
505 uint64_t size;
507 if (ofs >= subdev->size) {
508 size = 0;
509 ofs -= subdev->size;
510 continue;
512 if (ofs + len > subdev->size)
513 size = subdev->size - ofs;
514 else
515 size = len;
517 err = mtd_lock(subdev, ofs, size);
518 if (err)
519 break;
521 len -= size;
522 if (len == 0)
523 break;
525 err = -EINVAL;
526 ofs = 0;
529 return err;
532 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
534 struct mtd_concat *concat = CONCAT(mtd);
535 int i, err = 0;
537 for (i = 0; i < concat->num_subdev; i++) {
538 struct mtd_info *subdev = concat->subdev[i];
539 uint64_t size;
541 if (ofs >= subdev->size) {
542 size = 0;
543 ofs -= subdev->size;
544 continue;
546 if (ofs + len > subdev->size)
547 size = subdev->size - ofs;
548 else
549 size = len;
551 err = mtd_unlock(subdev, ofs, size);
552 if (err)
553 break;
555 len -= size;
556 if (len == 0)
557 break;
559 err = -EINVAL;
560 ofs = 0;
563 return err;
566 static void concat_sync(struct mtd_info *mtd)
568 struct mtd_concat *concat = CONCAT(mtd);
569 int i;
571 for (i = 0; i < concat->num_subdev; i++) {
572 struct mtd_info *subdev = concat->subdev[i];
573 mtd_sync(subdev);
577 static int concat_suspend(struct mtd_info *mtd)
579 struct mtd_concat *concat = CONCAT(mtd);
580 int i, rc = 0;
582 for (i = 0; i < concat->num_subdev; i++) {
583 struct mtd_info *subdev = concat->subdev[i];
584 if ((rc = mtd_suspend(subdev)) < 0)
585 return rc;
587 return rc;
590 static void concat_resume(struct mtd_info *mtd)
592 struct mtd_concat *concat = CONCAT(mtd);
593 int i;
595 for (i = 0; i < concat->num_subdev; i++) {
596 struct mtd_info *subdev = concat->subdev[i];
597 mtd_resume(subdev);
601 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
603 struct mtd_concat *concat = CONCAT(mtd);
604 int i, res = 0;
606 if (!mtd_can_have_bb(concat->subdev[0]))
607 return res;
609 for (i = 0; i < concat->num_subdev; i++) {
610 struct mtd_info *subdev = concat->subdev[i];
612 if (ofs >= subdev->size) {
613 ofs -= subdev->size;
614 continue;
617 res = mtd_block_isbad(subdev, ofs);
618 break;
621 return res;
624 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
626 struct mtd_concat *concat = CONCAT(mtd);
627 int i, err = -EINVAL;
629 for (i = 0; i < concat->num_subdev; i++) {
630 struct mtd_info *subdev = concat->subdev[i];
632 if (ofs >= subdev->size) {
633 ofs -= subdev->size;
634 continue;
637 err = mtd_block_markbad(subdev, ofs);
638 if (!err)
639 mtd->ecc_stats.badblocks++;
640 break;
643 return err;
647 * try to support NOMMU mmaps on concatenated devices
648 * - we don't support subdev spanning as we can't guarantee it'll work
650 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
651 unsigned long len,
652 unsigned long offset,
653 unsigned long flags)
655 struct mtd_concat *concat = CONCAT(mtd);
656 int i;
658 for (i = 0; i < concat->num_subdev; i++) {
659 struct mtd_info *subdev = concat->subdev[i];
661 if (offset >= subdev->size) {
662 offset -= subdev->size;
663 continue;
666 return mtd_get_unmapped_area(subdev, len, offset, flags);
669 return (unsigned long) -ENOSYS;
673 * This function constructs a virtual MTD device by concatenating
674 * num_devs MTD devices. A pointer to the new device object is
675 * stored to *new_dev upon success. This function does _not_
676 * register any devices: this is the caller's responsibility.
678 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
679 int num_devs, /* number of subdevices */
680 const char *name)
681 { /* name for the new device */
682 int i;
683 size_t size;
684 struct mtd_concat *concat;
685 uint32_t max_erasesize, curr_erasesize;
686 int num_erase_region;
687 int max_writebufsize = 0;
689 printk(KERN_NOTICE "Concatenating MTD devices:\n");
690 for (i = 0; i < num_devs; i++)
691 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
692 printk(KERN_NOTICE "into device \"%s\"\n", name);
694 /* allocate the device structure */
695 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
696 concat = kzalloc(size, GFP_KERNEL);
697 if (!concat) {
698 printk
699 ("memory allocation error while creating concatenated device \"%s\"\n",
700 name);
701 return NULL;
703 concat->subdev = (struct mtd_info **) (concat + 1);
706 * Set up the new "super" device's MTD object structure, check for
707 * incompatibilities between the subdevices.
709 concat->mtd.type = subdev[0]->type;
710 concat->mtd.flags = subdev[0]->flags;
711 concat->mtd.size = subdev[0]->size;
712 concat->mtd.erasesize = subdev[0]->erasesize;
713 concat->mtd.writesize = subdev[0]->writesize;
715 for (i = 0; i < num_devs; i++)
716 if (max_writebufsize < subdev[i]->writebufsize)
717 max_writebufsize = subdev[i]->writebufsize;
718 concat->mtd.writebufsize = max_writebufsize;
720 concat->mtd.subpage_sft = subdev[0]->subpage_sft;
721 concat->mtd.oobsize = subdev[0]->oobsize;
722 concat->mtd.oobavail = subdev[0]->oobavail;
723 if (subdev[0]->_writev)
724 concat->mtd._writev = concat_writev;
725 if (subdev[0]->_read_oob)
726 concat->mtd._read_oob = concat_read_oob;
727 if (subdev[0]->_write_oob)
728 concat->mtd._write_oob = concat_write_oob;
729 if (subdev[0]->_block_isbad)
730 concat->mtd._block_isbad = concat_block_isbad;
731 if (subdev[0]->_block_markbad)
732 concat->mtd._block_markbad = concat_block_markbad;
734 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
736 concat->subdev[0] = subdev[0];
738 for (i = 1; i < num_devs; i++) {
739 if (concat->mtd.type != subdev[i]->type) {
740 kfree(concat);
741 printk("Incompatible device type on \"%s\"\n",
742 subdev[i]->name);
743 return NULL;
745 if (concat->mtd.flags != subdev[i]->flags) {
747 * Expect all flags except MTD_WRITEABLE to be
748 * equal on all subdevices.
750 if ((concat->mtd.flags ^ subdev[i]->
751 flags) & ~MTD_WRITEABLE) {
752 kfree(concat);
753 printk("Incompatible device flags on \"%s\"\n",
754 subdev[i]->name);
755 return NULL;
756 } else
757 /* if writeable attribute differs,
758 make super device writeable */
759 concat->mtd.flags |=
760 subdev[i]->flags & MTD_WRITEABLE;
763 concat->mtd.size += subdev[i]->size;
764 concat->mtd.ecc_stats.badblocks +=
765 subdev[i]->ecc_stats.badblocks;
766 if (concat->mtd.writesize != subdev[i]->writesize ||
767 concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
768 concat->mtd.oobsize != subdev[i]->oobsize ||
769 !concat->mtd._read_oob != !subdev[i]->_read_oob ||
770 !concat->mtd._write_oob != !subdev[i]->_write_oob) {
771 kfree(concat);
772 printk("Incompatible OOB or ECC data on \"%s\"\n",
773 subdev[i]->name);
774 return NULL;
776 concat->subdev[i] = subdev[i];
780 concat->mtd.ecclayout = subdev[0]->ecclayout;
782 concat->num_subdev = num_devs;
783 concat->mtd.name = name;
785 concat->mtd._erase = concat_erase;
786 concat->mtd._read = concat_read;
787 concat->mtd._write = concat_write;
788 concat->mtd._sync = concat_sync;
789 concat->mtd._lock = concat_lock;
790 concat->mtd._unlock = concat_unlock;
791 concat->mtd._suspend = concat_suspend;
792 concat->mtd._resume = concat_resume;
793 concat->mtd._get_unmapped_area = concat_get_unmapped_area;
796 * Combine the erase block size info of the subdevices:
798 * first, walk the map of the new device and see how
799 * many changes in erase size we have
801 max_erasesize = curr_erasesize = subdev[0]->erasesize;
802 num_erase_region = 1;
803 for (i = 0; i < num_devs; i++) {
804 if (subdev[i]->numeraseregions == 0) {
805 /* current subdevice has uniform erase size */
806 if (subdev[i]->erasesize != curr_erasesize) {
807 /* if it differs from the last subdevice's erase size, count it */
808 ++num_erase_region;
809 curr_erasesize = subdev[i]->erasesize;
810 if (curr_erasesize > max_erasesize)
811 max_erasesize = curr_erasesize;
813 } else {
814 /* current subdevice has variable erase size */
815 int j;
816 for (j = 0; j < subdev[i]->numeraseregions; j++) {
818 /* walk the list of erase regions, count any changes */
819 if (subdev[i]->eraseregions[j].erasesize !=
820 curr_erasesize) {
821 ++num_erase_region;
822 curr_erasesize =
823 subdev[i]->eraseregions[j].
824 erasesize;
825 if (curr_erasesize > max_erasesize)
826 max_erasesize = curr_erasesize;
832 if (num_erase_region == 1) {
834 * All subdevices have the same uniform erase size.
835 * This is easy:
837 concat->mtd.erasesize = curr_erasesize;
838 concat->mtd.numeraseregions = 0;
839 } else {
840 uint64_t tmp64;
843 * erase block size varies across the subdevices: allocate
844 * space to store the data describing the variable erase regions
846 struct mtd_erase_region_info *erase_region_p;
847 uint64_t begin, position;
849 concat->mtd.erasesize = max_erasesize;
850 concat->mtd.numeraseregions = num_erase_region;
851 concat->mtd.eraseregions = erase_region_p =
852 kmalloc(num_erase_region *
853 sizeof (struct mtd_erase_region_info), GFP_KERNEL);
854 if (!erase_region_p) {
855 kfree(concat);
856 printk
857 ("memory allocation error while creating erase region list"
858 " for device \"%s\"\n", name);
859 return NULL;
863 * walk the map of the new device once more and fill in
864 * in erase region info:
866 curr_erasesize = subdev[0]->erasesize;
867 begin = position = 0;
868 for (i = 0; i < num_devs; i++) {
869 if (subdev[i]->numeraseregions == 0) {
870 /* current subdevice has uniform erase size */
871 if (subdev[i]->erasesize != curr_erasesize) {
873 * fill in an mtd_erase_region_info structure for the area
874 * we have walked so far:
876 erase_region_p->offset = begin;
877 erase_region_p->erasesize =
878 curr_erasesize;
879 tmp64 = position - begin;
880 do_div(tmp64, curr_erasesize);
881 erase_region_p->numblocks = tmp64;
882 begin = position;
884 curr_erasesize = subdev[i]->erasesize;
885 ++erase_region_p;
887 position += subdev[i]->size;
888 } else {
889 /* current subdevice has variable erase size */
890 int j;
891 for (j = 0; j < subdev[i]->numeraseregions; j++) {
892 /* walk the list of erase regions, count any changes */
893 if (subdev[i]->eraseregions[j].
894 erasesize != curr_erasesize) {
895 erase_region_p->offset = begin;
896 erase_region_p->erasesize =
897 curr_erasesize;
898 tmp64 = position - begin;
899 do_div(tmp64, curr_erasesize);
900 erase_region_p->numblocks = tmp64;
901 begin = position;
903 curr_erasesize =
904 subdev[i]->eraseregions[j].
905 erasesize;
906 ++erase_region_p;
908 position +=
909 subdev[i]->eraseregions[j].
910 numblocks * (uint64_t)curr_erasesize;
914 /* Now write the final entry */
915 erase_region_p->offset = begin;
916 erase_region_p->erasesize = curr_erasesize;
917 tmp64 = position - begin;
918 do_div(tmp64, curr_erasesize);
919 erase_region_p->numblocks = tmp64;
922 return &concat->mtd;
926 * This function destroys an MTD object obtained from concat_mtd_devs()
929 void mtd_concat_destroy(struct mtd_info *mtd)
931 struct mtd_concat *concat = CONCAT(mtd);
932 if (concat->mtd.numeraseregions)
933 kfree(concat->mtd.eraseregions);
934 kfree(concat);
937 EXPORT_SYMBOL(mtd_concat_create);
938 EXPORT_SYMBOL(mtd_concat_destroy);
940 MODULE_LICENSE("GPL");
941 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
942 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");