drm/i915: Treat using a purged buffer as a source of EFAULT
[linux-2.6/btrfs-unstable.git] / drivers / gpu / drm / i915 / i915_gem.c
bloba8a069f97c56f63e21677fb0c7b93df317934666
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
82 return obj->pin_display;
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
93 obj->fence_dirty = false;
94 obj->fence_reg = I915_FENCE_REG_NONE;
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
110 spin_lock(&dev_priv->mm.object_stat_lock);
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
113 spin_unlock(&dev_priv->mm.object_stat_lock);
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
119 int ret;
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
123 if (EXIT_COND)
124 return 0;
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
138 return ret;
140 #undef EXIT_COND
142 return 0;
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 int ret;
150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 if (ret)
152 return ret;
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
158 WARN_ON(i915_verify_lists(dev));
159 return 0;
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
165 return i915_gem_obj_bound_any(obj) && !obj->active;
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_init *args = data;
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
186 mutex_lock(&dev->struct_mutex);
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
189 dev_priv->gtt.mappable_end = args->gtt_end;
190 mutex_unlock(&dev->struct_mutex);
192 return 0;
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_i915_gem_get_aperture *args = data;
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
204 pinned = 0;
205 mutex_lock(&dev->struct_mutex);
206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 if (i915_gem_obj_is_pinned(obj))
208 pinned += i915_gem_obj_ggtt_size(obj);
209 mutex_unlock(&dev->struct_mutex);
211 args->aper_size = dev_priv->gtt.base.total;
212 args->aper_available_size = args->aper_size - pinned;
214 return 0;
217 void *i915_gem_object_alloc(struct drm_device *dev)
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
229 static int
230 i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
235 struct drm_i915_gem_object *obj;
236 int ret;
237 u32 handle;
239 size = roundup(size, PAGE_SIZE);
240 if (size == 0)
241 return -EINVAL;
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, size);
245 if (obj == NULL)
246 return -ENOMEM;
248 ret = drm_gem_handle_create(file, &obj->base, &handle);
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
254 *handle_p = handle;
255 return 0;
259 i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
263 /* have to work out size/pitch and return them */
264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
271 * Creates a new mm object and returns a handle to it.
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
277 struct drm_i915_gem_create *args = data;
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
288 int ret, cpu_offset = 0;
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
306 return 0;
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
312 int length)
314 int ret, cpu_offset = 0;
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
332 return 0;
335 /* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
343 char *vaddr;
344 int ret;
346 if (unlikely(page_do_bit17_swizzling))
347 return -EINVAL;
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
358 return ret ? -EFAULT : 0;
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
365 if (unlikely(swizzled)) {
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
383 /* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
390 char *vaddr;
391 int ret;
393 vaddr = kmap(page);
394 if (needs_clflush)
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
409 return ret ? - EFAULT : 0;
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
418 char __user *user_data;
419 ssize_t remain;
420 loff_t offset;
421 int shmem_page_offset, page_length, ret = 0;
422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 int prefaulted = 0;
424 int needs_clflush = 0;
425 struct sg_page_iter sg_iter;
427 user_data = to_user_ptr(args->data_ptr);
428 remain = args->size;
430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
447 i915_gem_object_pin_pages(obj);
449 offset = args->offset;
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
453 struct page *page = sg_page_iter_page(&sg_iter);
455 if (remain <= 0)
456 break;
458 /* Operation in this page
460 * shmem_page_offset = offset within page in shmem file
461 * page_length = bytes to copy for this page
463 shmem_page_offset = offset_in_page(offset);
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
477 mutex_unlock(&dev->struct_mutex);
479 if (likely(!i915.prefault_disable) && !prefaulted) {
480 ret = fault_in_multipages_writeable(user_data, remain);
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
493 mutex_lock(&dev->struct_mutex);
495 next_page:
496 mark_page_accessed(page);
498 if (ret)
499 goto out;
501 remain -= page_length;
502 user_data += page_length;
503 offset += page_length;
506 out:
507 i915_gem_object_unpin_pages(obj);
509 return ret;
513 * Reads data from the object referenced by handle.
515 * On error, the contents of *data are undefined.
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
525 if (args->size == 0)
526 return 0;
528 if (!access_ok(VERIFY_WRITE,
529 to_user_ptr(args->data_ptr),
530 args->size))
531 return -EFAULT;
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 if (ret)
610 goto out;
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
620 user_data = to_user_ptr(args->data_ptr);
621 remain = args->size;
623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
625 while (remain > 0) {
626 /* Operation in this page
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
653 out_unpin:
654 i915_gem_object_ggtt_unpin(obj);
655 out:
656 return ret;
659 /* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
670 char *vaddr;
671 int ret;
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
688 return ret ? -EFAULT : 0;
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
700 char *vaddr;
701 int ret;
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
722 return ret ? -EFAULT : 0;
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
731 ssize_t remain;
732 loff_t offset;
733 char __user *user_data;
734 int shmem_page_offset, page_length, ret = 0;
735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 int hit_slowpath = 0;
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
739 struct sg_page_iter sg_iter;
741 user_data = to_user_ptr(args->data_ptr);
742 remain = args->size;
744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
751 needs_clflush_after = cpu_write_needs_clflush(obj);
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
766 i915_gem_object_pin_pages(obj);
768 offset = args->offset;
769 obj->dirty = 1;
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
773 struct page *page = sg_page_iter_page(&sg_iter);
774 int partial_cacheline_write;
776 if (remain <= 0)
777 break;
779 /* Operation in this page
781 * shmem_page_offset = offset within page in shmem file
782 * page_length = bytes to copy for this page
784 shmem_page_offset = offset_in_page(offset);
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
807 hit_slowpath = 1;
808 mutex_unlock(&dev->struct_mutex);
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
814 mutex_lock(&dev->struct_mutex);
816 next_page:
817 set_page_dirty(page);
818 mark_page_accessed(page);
820 if (ret)
821 goto out;
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
828 out:
829 i915_gem_object_unpin_pages(obj);
831 if (hit_slowpath) {
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
844 if (needs_clflush_after)
845 i915_gem_chipset_flush(dev);
847 return ret;
851 * Writes data to the object referenced by handle.
853 * On error, the contents of the buffer that were to be modified are undefined.
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 struct drm_file *file)
859 struct drm_i915_gem_pwrite *args = data;
860 struct drm_i915_gem_object *obj;
861 int ret;
863 if (args->size == 0)
864 return 0;
866 if (!access_ok(VERIFY_READ,
867 to_user_ptr(args->data_ptr),
868 args->size))
869 return -EFAULT;
871 if (likely(!i915.prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
878 ret = i915_mutex_lock_interruptible(dev);
879 if (ret)
880 return ret;
882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 if (&obj->base == NULL) {
884 ret = -ENOENT;
885 goto unlock;
888 /* Bounds check destination. */
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
891 ret = -EINVAL;
892 goto out;
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
905 ret = -EFAULT;
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
912 if (obj->phys_obj) {
913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 goto out;
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
926 if (ret == -EFAULT || ret == -ENOSPC)
927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
929 out:
930 drm_gem_object_unreference(&obj->base);
931 unlock:
932 mutex_unlock(&dev->struct_mutex);
933 return ret;
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938 bool interruptible)
940 if (i915_reset_in_progress(error)) {
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
948 return -EIO;
950 return -EAGAIN;
953 return 0;
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
963 int ret;
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
967 ret = 0;
968 if (seqno == ring->outstanding_lazy_seqno)
969 ret = i915_add_request(ring, NULL);
971 return ret;
974 static void fake_irq(unsigned long data)
976 wake_up_process((struct task_struct *)data);
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
987 if (file_priv == NULL)
988 return true;
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
997 * @reset_counter: reset sequence associated with the given seqno
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012 unsigned reset_counter,
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018 const bool irq_test_in_progress =
1019 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1020 struct timespec before, now;
1021 DEFINE_WAIT(wait);
1022 unsigned long timeout_expire;
1023 int ret;
1025 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1027 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028 return 0;
1030 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1032 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033 gen6_rps_boost(dev_priv);
1034 if (file_priv)
1035 mod_delayed_work(dev_priv->wq,
1036 &file_priv->mm.idle_work,
1037 msecs_to_jiffies(100));
1040 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1041 return -ENODEV;
1043 /* Record current time in case interrupted by signal, or wedged */
1044 trace_i915_gem_request_wait_begin(ring, seqno);
1045 getrawmonotonic(&before);
1046 for (;;) {
1047 struct timer_list timer;
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1073 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1074 ret = -ETIME;
1075 break;
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 unsigned long expire;
1082 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1083 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1084 mod_timer(&timer, expire);
1087 io_schedule();
1089 if (timer.function) {
1090 del_singleshot_timer_sync(&timer);
1091 destroy_timer_on_stack(&timer);
1094 getrawmonotonic(&now);
1095 trace_i915_gem_request_wait_end(ring, seqno);
1097 if (!irq_test_in_progress)
1098 ring->irq_put(ring);
1100 finish_wait(&ring->irq_queue, &wait);
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
1109 return ret;
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128 if (ret)
1129 return ret;
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
1137 interruptible, NULL, NULL);
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1144 i915_gem_retire_requests_ring(ring);
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1156 return 0;
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1179 return i915_gem_object_wait_rendering__tail(obj, ring);
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187 struct drm_file *file,
1188 bool readonly)
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
1193 unsigned reset_counter;
1194 u32 seqno;
1195 int ret;
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205 if (ret)
1206 return ret;
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213 mutex_unlock(&dev->struct_mutex);
1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215 mutex_lock(&dev->struct_mutex);
1216 if (ret)
1217 return ret;
1219 return i915_gem_object_wait_rendering__tail(obj, ring);
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228 struct drm_file *file)
1230 struct drm_i915_gem_set_domain *args = data;
1231 struct drm_i915_gem_object *obj;
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
1234 int ret;
1236 /* Only handle setting domains to types used by the CPU. */
1237 if (write_domain & I915_GEM_GPU_DOMAINS)
1238 return -EINVAL;
1240 if (read_domains & I915_GEM_GPU_DOMAINS)
1241 return -EINVAL;
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264 if (ret)
1265 goto unref;
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1274 if (ret == -EINVAL)
1275 ret = 0;
1276 } else {
1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1280 unref:
1281 drm_gem_object_unreference(&obj->base);
1282 unlock:
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1288 * Called when user space has done writes to this buffer
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1294 struct drm_i915_gem_sw_finish *args = data;
1295 struct drm_i915_gem_object *obj;
1296 int ret = 0;
1298 ret = i915_mutex_lock_interruptible(dev);
1299 if (ret)
1300 return ret;
1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303 if (&obj->base == NULL) {
1304 ret = -ENOENT;
1305 goto unlock;
1308 /* Pinned buffers may be scanout, so flush the cache */
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
1312 drm_gem_object_unreference(&obj->base);
1313 unlock:
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327 struct drm_file *file)
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
1331 unsigned long addr;
1333 obj = drm_gem_object_lookup(dev, file, args->handle);
1334 if (obj == NULL)
1335 return -ENOENT;
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1345 addr = vm_mmap(obj->filp, 0, args->size,
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
1348 drm_gem_object_unreference_unlocked(obj);
1349 if (IS_ERR((void *)addr))
1350 return addr;
1352 args->addr_ptr = (uint64_t) addr;
1354 return 0;
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
1377 drm_i915_private_t *dev_priv = dev->dev_private;
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1383 intel_runtime_pm_get(dev_priv);
1385 /* We don't use vmf->pgoff since that has the fake offset */
1386 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387 PAGE_SHIFT;
1389 ret = i915_mutex_lock_interruptible(dev);
1390 if (ret)
1391 goto out;
1393 trace_i915_gem_object_fault(obj, page_offset, true, write);
1395 /* Access to snoopable pages through the GTT is incoherent. */
1396 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397 ret = -EINVAL;
1398 goto unlock;
1401 /* Now bind it into the GTT if needed */
1402 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1403 if (ret)
1404 goto unlock;
1406 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407 if (ret)
1408 goto unpin;
1410 ret = i915_gem_object_get_fence(obj);
1411 if (ret)
1412 goto unpin;
1414 obj->fault_mappable = true;
1416 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417 pfn >>= PAGE_SHIFT;
1418 pfn += page_offset;
1420 /* Finally, remap it using the new GTT offset */
1421 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1422 unpin:
1423 i915_gem_object_ggtt_unpin(obj);
1424 unlock:
1425 mutex_unlock(&dev->struct_mutex);
1426 out:
1427 switch (ret) {
1428 case -EIO:
1429 /* If this -EIO is due to a gpu hang, give the reset code a
1430 * chance to clean up the mess. Otherwise return the proper
1431 * SIGBUS. */
1432 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433 ret = VM_FAULT_SIGBUS;
1434 break;
1436 case -EAGAIN:
1438 * EAGAIN means the gpu is hung and we'll wait for the error
1439 * handler to reset everything when re-faulting in
1440 * i915_mutex_lock_interruptible.
1442 case 0:
1443 case -ERESTARTSYS:
1444 case -EINTR:
1445 case -EBUSY:
1447 * EBUSY is ok: this just means that another thread
1448 * already did the job.
1450 ret = VM_FAULT_NOPAGE;
1451 break;
1452 case -ENOMEM:
1453 ret = VM_FAULT_OOM;
1454 break;
1455 case -ENOSPC:
1456 case -EFAULT:
1457 ret = VM_FAULT_SIGBUS;
1458 break;
1459 default:
1460 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1461 ret = VM_FAULT_SIGBUS;
1462 break;
1465 intel_runtime_pm_put(dev_priv);
1466 return ret;
1469 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1471 struct i915_vma *vma;
1474 * Only the global gtt is relevant for gtt memory mappings, so restrict
1475 * list traversal to objects bound into the global address space. Note
1476 * that the active list should be empty, but better safe than sorry.
1478 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1479 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1480 i915_gem_release_mmap(vma->obj);
1481 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1482 i915_gem_release_mmap(vma->obj);
1486 * i915_gem_release_mmap - remove physical page mappings
1487 * @obj: obj in question
1489 * Preserve the reservation of the mmapping with the DRM core code, but
1490 * relinquish ownership of the pages back to the system.
1492 * It is vital that we remove the page mapping if we have mapped a tiled
1493 * object through the GTT and then lose the fence register due to
1494 * resource pressure. Similarly if the object has been moved out of the
1495 * aperture, than pages mapped into userspace must be revoked. Removing the
1496 * mapping will then trigger a page fault on the next user access, allowing
1497 * fixup by i915_gem_fault().
1499 void
1500 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1502 if (!obj->fault_mappable)
1503 return;
1505 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1506 obj->fault_mappable = false;
1509 uint32_t
1510 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1512 uint32_t gtt_size;
1514 if (INTEL_INFO(dev)->gen >= 4 ||
1515 tiling_mode == I915_TILING_NONE)
1516 return size;
1518 /* Previous chips need a power-of-two fence region when tiling */
1519 if (INTEL_INFO(dev)->gen == 3)
1520 gtt_size = 1024*1024;
1521 else
1522 gtt_size = 512*1024;
1524 while (gtt_size < size)
1525 gtt_size <<= 1;
1527 return gtt_size;
1531 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1532 * @obj: object to check
1534 * Return the required GTT alignment for an object, taking into account
1535 * potential fence register mapping.
1537 uint32_t
1538 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1539 int tiling_mode, bool fenced)
1542 * Minimum alignment is 4k (GTT page size), but might be greater
1543 * if a fence register is needed for the object.
1545 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1546 tiling_mode == I915_TILING_NONE)
1547 return 4096;
1550 * Previous chips need to be aligned to the size of the smallest
1551 * fence register that can contain the object.
1553 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1556 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1558 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1559 int ret;
1561 if (drm_vma_node_has_offset(&obj->base.vma_node))
1562 return 0;
1564 dev_priv->mm.shrinker_no_lock_stealing = true;
1566 ret = drm_gem_create_mmap_offset(&obj->base);
1567 if (ret != -ENOSPC)
1568 goto out;
1570 /* Badly fragmented mmap space? The only way we can recover
1571 * space is by destroying unwanted objects. We can't randomly release
1572 * mmap_offsets as userspace expects them to be persistent for the
1573 * lifetime of the objects. The closest we can is to release the
1574 * offsets on purgeable objects by truncating it and marking it purged,
1575 * which prevents userspace from ever using that object again.
1577 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1578 ret = drm_gem_create_mmap_offset(&obj->base);
1579 if (ret != -ENOSPC)
1580 goto out;
1582 i915_gem_shrink_all(dev_priv);
1583 ret = drm_gem_create_mmap_offset(&obj->base);
1584 out:
1585 dev_priv->mm.shrinker_no_lock_stealing = false;
1587 return ret;
1590 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1592 drm_gem_free_mmap_offset(&obj->base);
1596 i915_gem_mmap_gtt(struct drm_file *file,
1597 struct drm_device *dev,
1598 uint32_t handle,
1599 uint64_t *offset)
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 struct drm_i915_gem_object *obj;
1603 int ret;
1605 ret = i915_mutex_lock_interruptible(dev);
1606 if (ret)
1607 return ret;
1609 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1610 if (&obj->base == NULL) {
1611 ret = -ENOENT;
1612 goto unlock;
1615 if (obj->base.size > dev_priv->gtt.mappable_end) {
1616 ret = -E2BIG;
1617 goto out;
1620 if (obj->madv != I915_MADV_WILLNEED) {
1621 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1622 ret = -EFAULT;
1623 goto out;
1626 ret = i915_gem_object_create_mmap_offset(obj);
1627 if (ret)
1628 goto out;
1630 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1632 out:
1633 drm_gem_object_unreference(&obj->base);
1634 unlock:
1635 mutex_unlock(&dev->struct_mutex);
1636 return ret;
1640 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1641 * @dev: DRM device
1642 * @data: GTT mapping ioctl data
1643 * @file: GEM object info
1645 * Simply returns the fake offset to userspace so it can mmap it.
1646 * The mmap call will end up in drm_gem_mmap(), which will set things
1647 * up so we can get faults in the handler above.
1649 * The fault handler will take care of binding the object into the GTT
1650 * (since it may have been evicted to make room for something), allocating
1651 * a fence register, and mapping the appropriate aperture address into
1652 * userspace.
1655 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1656 struct drm_file *file)
1658 struct drm_i915_gem_mmap_gtt *args = data;
1660 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1663 /* Immediately discard the backing storage */
1664 static void
1665 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1667 struct inode *inode;
1669 i915_gem_object_free_mmap_offset(obj);
1671 if (obj->base.filp == NULL)
1672 return;
1674 /* Our goal here is to return as much of the memory as
1675 * is possible back to the system as we are called from OOM.
1676 * To do this we must instruct the shmfs to drop all of its
1677 * backing pages, *now*.
1679 inode = file_inode(obj->base.filp);
1680 shmem_truncate_range(inode, 0, (loff_t)-1);
1682 obj->madv = __I915_MADV_PURGED;
1685 static inline int
1686 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1688 return obj->madv == I915_MADV_DONTNEED;
1691 static void
1692 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1694 struct sg_page_iter sg_iter;
1695 int ret;
1697 BUG_ON(obj->madv == __I915_MADV_PURGED);
1699 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1700 if (ret) {
1701 /* In the event of a disaster, abandon all caches and
1702 * hope for the best.
1704 WARN_ON(ret != -EIO);
1705 i915_gem_clflush_object(obj, true);
1706 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1709 if (i915_gem_object_needs_bit17_swizzle(obj))
1710 i915_gem_object_save_bit_17_swizzle(obj);
1712 if (obj->madv == I915_MADV_DONTNEED)
1713 obj->dirty = 0;
1715 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1716 struct page *page = sg_page_iter_page(&sg_iter);
1718 if (obj->dirty)
1719 set_page_dirty(page);
1721 if (obj->madv == I915_MADV_WILLNEED)
1722 mark_page_accessed(page);
1724 page_cache_release(page);
1726 obj->dirty = 0;
1728 sg_free_table(obj->pages);
1729 kfree(obj->pages);
1733 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1735 const struct drm_i915_gem_object_ops *ops = obj->ops;
1737 if (obj->pages == NULL)
1738 return 0;
1740 if (obj->pages_pin_count)
1741 return -EBUSY;
1743 BUG_ON(i915_gem_obj_bound_any(obj));
1745 /* ->put_pages might need to allocate memory for the bit17 swizzle
1746 * array, hence protect them from being reaped by removing them from gtt
1747 * lists early. */
1748 list_del(&obj->global_list);
1750 ops->put_pages(obj);
1751 obj->pages = NULL;
1753 if (i915_gem_object_is_purgeable(obj))
1754 i915_gem_object_truncate(obj);
1756 return 0;
1759 static unsigned long
1760 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1761 bool purgeable_only)
1763 struct list_head still_bound_list;
1764 struct drm_i915_gem_object *obj, *next;
1765 unsigned long count = 0;
1767 list_for_each_entry_safe(obj, next,
1768 &dev_priv->mm.unbound_list,
1769 global_list) {
1770 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1771 i915_gem_object_put_pages(obj) == 0) {
1772 count += obj->base.size >> PAGE_SHIFT;
1773 if (count >= target)
1774 return count;
1779 * As we may completely rewrite the bound list whilst unbinding
1780 * (due to retiring requests) we have to strictly process only
1781 * one element of the list at the time, and recheck the list
1782 * on every iteration.
1784 INIT_LIST_HEAD(&still_bound_list);
1785 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1786 struct i915_vma *vma, *v;
1788 obj = list_first_entry(&dev_priv->mm.bound_list,
1789 typeof(*obj), global_list);
1790 list_move_tail(&obj->global_list, &still_bound_list);
1792 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1793 continue;
1796 * Hold a reference whilst we unbind this object, as we may
1797 * end up waiting for and retiring requests. This might
1798 * release the final reference (held by the active list)
1799 * and result in the object being freed from under us.
1800 * in this object being freed.
1802 * Note 1: Shrinking the bound list is special since only active
1803 * (and hence bound objects) can contain such limbo objects, so
1804 * we don't need special tricks for shrinking the unbound list.
1805 * The only other place where we have to be careful with active
1806 * objects suddenly disappearing due to retiring requests is the
1807 * eviction code.
1809 * Note 2: Even though the bound list doesn't hold a reference
1810 * to the object we can safely grab one here: The final object
1811 * unreferencing and the bound_list are both protected by the
1812 * dev->struct_mutex and so we won't ever be able to observe an
1813 * object on the bound_list with a reference count equals 0.
1815 drm_gem_object_reference(&obj->base);
1817 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1818 if (i915_vma_unbind(vma))
1819 break;
1821 if (i915_gem_object_put_pages(obj) == 0)
1822 count += obj->base.size >> PAGE_SHIFT;
1824 drm_gem_object_unreference(&obj->base);
1826 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1828 return count;
1831 static unsigned long
1832 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1834 return __i915_gem_shrink(dev_priv, target, true);
1837 static unsigned long
1838 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1840 struct drm_i915_gem_object *obj, *next;
1841 long freed = 0;
1843 i915_gem_evict_everything(dev_priv->dev);
1845 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1846 global_list) {
1847 if (i915_gem_object_put_pages(obj) == 0)
1848 freed += obj->base.size >> PAGE_SHIFT;
1850 return freed;
1853 static int
1854 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1856 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1857 int page_count, i;
1858 struct address_space *mapping;
1859 struct sg_table *st;
1860 struct scatterlist *sg;
1861 struct sg_page_iter sg_iter;
1862 struct page *page;
1863 unsigned long last_pfn = 0; /* suppress gcc warning */
1864 gfp_t gfp;
1866 /* Assert that the object is not currently in any GPU domain. As it
1867 * wasn't in the GTT, there shouldn't be any way it could have been in
1868 * a GPU cache
1870 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1871 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1873 st = kmalloc(sizeof(*st), GFP_KERNEL);
1874 if (st == NULL)
1875 return -ENOMEM;
1877 page_count = obj->base.size / PAGE_SIZE;
1878 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1879 kfree(st);
1880 return -ENOMEM;
1883 /* Get the list of pages out of our struct file. They'll be pinned
1884 * at this point until we release them.
1886 * Fail silently without starting the shrinker
1888 mapping = file_inode(obj->base.filp)->i_mapping;
1889 gfp = mapping_gfp_mask(mapping);
1890 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1891 gfp &= ~(__GFP_IO | __GFP_WAIT);
1892 sg = st->sgl;
1893 st->nents = 0;
1894 for (i = 0; i < page_count; i++) {
1895 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1896 if (IS_ERR(page)) {
1897 i915_gem_purge(dev_priv, page_count);
1898 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1900 if (IS_ERR(page)) {
1901 /* We've tried hard to allocate the memory by reaping
1902 * our own buffer, now let the real VM do its job and
1903 * go down in flames if truly OOM.
1905 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1906 gfp |= __GFP_IO | __GFP_WAIT;
1908 i915_gem_shrink_all(dev_priv);
1909 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1910 if (IS_ERR(page))
1911 goto err_pages;
1913 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1914 gfp &= ~(__GFP_IO | __GFP_WAIT);
1916 #ifdef CONFIG_SWIOTLB
1917 if (swiotlb_nr_tbl()) {
1918 st->nents++;
1919 sg_set_page(sg, page, PAGE_SIZE, 0);
1920 sg = sg_next(sg);
1921 continue;
1923 #endif
1924 if (!i || page_to_pfn(page) != last_pfn + 1) {
1925 if (i)
1926 sg = sg_next(sg);
1927 st->nents++;
1928 sg_set_page(sg, page, PAGE_SIZE, 0);
1929 } else {
1930 sg->length += PAGE_SIZE;
1932 last_pfn = page_to_pfn(page);
1934 /* Check that the i965g/gm workaround works. */
1935 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1937 #ifdef CONFIG_SWIOTLB
1938 if (!swiotlb_nr_tbl())
1939 #endif
1940 sg_mark_end(sg);
1941 obj->pages = st;
1943 if (i915_gem_object_needs_bit17_swizzle(obj))
1944 i915_gem_object_do_bit_17_swizzle(obj);
1946 return 0;
1948 err_pages:
1949 sg_mark_end(sg);
1950 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1951 page_cache_release(sg_page_iter_page(&sg_iter));
1952 sg_free_table(st);
1953 kfree(st);
1954 return PTR_ERR(page);
1957 /* Ensure that the associated pages are gathered from the backing storage
1958 * and pinned into our object. i915_gem_object_get_pages() may be called
1959 * multiple times before they are released by a single call to
1960 * i915_gem_object_put_pages() - once the pages are no longer referenced
1961 * either as a result of memory pressure (reaping pages under the shrinker)
1962 * or as the object is itself released.
1965 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1967 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1968 const struct drm_i915_gem_object_ops *ops = obj->ops;
1969 int ret;
1971 if (obj->pages)
1972 return 0;
1974 if (obj->madv != I915_MADV_WILLNEED) {
1975 DRM_ERROR("Attempting to obtain a purgeable object\n");
1976 return -EFAULT;
1979 BUG_ON(obj->pages_pin_count);
1981 ret = ops->get_pages(obj);
1982 if (ret)
1983 return ret;
1985 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1986 return 0;
1989 static void
1990 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1991 struct intel_ring_buffer *ring)
1993 struct drm_device *dev = obj->base.dev;
1994 struct drm_i915_private *dev_priv = dev->dev_private;
1995 u32 seqno = intel_ring_get_seqno(ring);
1997 BUG_ON(ring == NULL);
1998 if (obj->ring != ring && obj->last_write_seqno) {
1999 /* Keep the seqno relative to the current ring */
2000 obj->last_write_seqno = seqno;
2002 obj->ring = ring;
2004 /* Add a reference if we're newly entering the active list. */
2005 if (!obj->active) {
2006 drm_gem_object_reference(&obj->base);
2007 obj->active = 1;
2010 list_move_tail(&obj->ring_list, &ring->active_list);
2012 obj->last_read_seqno = seqno;
2014 if (obj->fenced_gpu_access) {
2015 obj->last_fenced_seqno = seqno;
2017 /* Bump MRU to take account of the delayed flush */
2018 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2019 struct drm_i915_fence_reg *reg;
2021 reg = &dev_priv->fence_regs[obj->fence_reg];
2022 list_move_tail(&reg->lru_list,
2023 &dev_priv->mm.fence_list);
2028 void i915_vma_move_to_active(struct i915_vma *vma,
2029 struct intel_ring_buffer *ring)
2031 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2032 return i915_gem_object_move_to_active(vma->obj, ring);
2035 static void
2036 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2038 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2039 struct i915_address_space *vm;
2040 struct i915_vma *vma;
2042 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2043 BUG_ON(!obj->active);
2045 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2046 vma = i915_gem_obj_to_vma(obj, vm);
2047 if (vma && !list_empty(&vma->mm_list))
2048 list_move_tail(&vma->mm_list, &vm->inactive_list);
2051 list_del_init(&obj->ring_list);
2052 obj->ring = NULL;
2054 obj->last_read_seqno = 0;
2055 obj->last_write_seqno = 0;
2056 obj->base.write_domain = 0;
2058 obj->last_fenced_seqno = 0;
2059 obj->fenced_gpu_access = false;
2061 obj->active = 0;
2062 drm_gem_object_unreference(&obj->base);
2064 WARN_ON(i915_verify_lists(dev));
2067 static int
2068 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2070 struct drm_i915_private *dev_priv = dev->dev_private;
2071 struct intel_ring_buffer *ring;
2072 int ret, i, j;
2074 /* Carefully retire all requests without writing to the rings */
2075 for_each_ring(ring, dev_priv, i) {
2076 ret = intel_ring_idle(ring);
2077 if (ret)
2078 return ret;
2080 i915_gem_retire_requests(dev);
2082 /* Finally reset hw state */
2083 for_each_ring(ring, dev_priv, i) {
2084 intel_ring_init_seqno(ring, seqno);
2086 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2087 ring->sync_seqno[j] = 0;
2090 return 0;
2093 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 int ret;
2098 if (seqno == 0)
2099 return -EINVAL;
2101 /* HWS page needs to be set less than what we
2102 * will inject to ring
2104 ret = i915_gem_init_seqno(dev, seqno - 1);
2105 if (ret)
2106 return ret;
2108 /* Carefully set the last_seqno value so that wrap
2109 * detection still works
2111 dev_priv->next_seqno = seqno;
2112 dev_priv->last_seqno = seqno - 1;
2113 if (dev_priv->last_seqno == 0)
2114 dev_priv->last_seqno--;
2116 return 0;
2120 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2124 /* reserve 0 for non-seqno */
2125 if (dev_priv->next_seqno == 0) {
2126 int ret = i915_gem_init_seqno(dev, 0);
2127 if (ret)
2128 return ret;
2130 dev_priv->next_seqno = 1;
2133 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2134 return 0;
2137 int __i915_add_request(struct intel_ring_buffer *ring,
2138 struct drm_file *file,
2139 struct drm_i915_gem_object *obj,
2140 u32 *out_seqno)
2142 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2143 struct drm_i915_gem_request *request;
2144 u32 request_ring_position, request_start;
2145 int was_empty;
2146 int ret;
2148 request_start = intel_ring_get_tail(ring);
2150 * Emit any outstanding flushes - execbuf can fail to emit the flush
2151 * after having emitted the batchbuffer command. Hence we need to fix
2152 * things up similar to emitting the lazy request. The difference here
2153 * is that the flush _must_ happen before the next request, no matter
2154 * what.
2156 ret = intel_ring_flush_all_caches(ring);
2157 if (ret)
2158 return ret;
2160 request = ring->preallocated_lazy_request;
2161 if (WARN_ON(request == NULL))
2162 return -ENOMEM;
2164 /* Record the position of the start of the request so that
2165 * should we detect the updated seqno part-way through the
2166 * GPU processing the request, we never over-estimate the
2167 * position of the head.
2169 request_ring_position = intel_ring_get_tail(ring);
2171 ret = ring->add_request(ring);
2172 if (ret)
2173 return ret;
2175 request->seqno = intel_ring_get_seqno(ring);
2176 request->ring = ring;
2177 request->head = request_start;
2178 request->tail = request_ring_position;
2180 /* Whilst this request exists, batch_obj will be on the
2181 * active_list, and so will hold the active reference. Only when this
2182 * request is retired will the the batch_obj be moved onto the
2183 * inactive_list and lose its active reference. Hence we do not need
2184 * to explicitly hold another reference here.
2186 request->batch_obj = obj;
2188 /* Hold a reference to the current context so that we can inspect
2189 * it later in case a hangcheck error event fires.
2191 request->ctx = ring->last_context;
2192 if (request->ctx)
2193 i915_gem_context_reference(request->ctx);
2195 request->emitted_jiffies = jiffies;
2196 was_empty = list_empty(&ring->request_list);
2197 list_add_tail(&request->list, &ring->request_list);
2198 request->file_priv = NULL;
2200 if (file) {
2201 struct drm_i915_file_private *file_priv = file->driver_priv;
2203 spin_lock(&file_priv->mm.lock);
2204 request->file_priv = file_priv;
2205 list_add_tail(&request->client_list,
2206 &file_priv->mm.request_list);
2207 spin_unlock(&file_priv->mm.lock);
2210 trace_i915_gem_request_add(ring, request->seqno);
2211 ring->outstanding_lazy_seqno = 0;
2212 ring->preallocated_lazy_request = NULL;
2214 if (!dev_priv->ums.mm_suspended) {
2215 i915_queue_hangcheck(ring->dev);
2217 if (was_empty) {
2218 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2219 queue_delayed_work(dev_priv->wq,
2220 &dev_priv->mm.retire_work,
2221 round_jiffies_up_relative(HZ));
2222 intel_mark_busy(dev_priv->dev);
2226 if (out_seqno)
2227 *out_seqno = request->seqno;
2228 return 0;
2231 static inline void
2232 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2234 struct drm_i915_file_private *file_priv = request->file_priv;
2236 if (!file_priv)
2237 return;
2239 spin_lock(&file_priv->mm.lock);
2240 list_del(&request->client_list);
2241 request->file_priv = NULL;
2242 spin_unlock(&file_priv->mm.lock);
2245 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2246 const struct i915_hw_context *ctx)
2248 unsigned long elapsed;
2250 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2252 if (ctx->hang_stats.banned)
2253 return true;
2255 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2256 if (dev_priv->gpu_error.stop_rings == 0 &&
2257 i915_gem_context_is_default(ctx)) {
2258 DRM_ERROR("gpu hanging too fast, banning!\n");
2259 } else {
2260 DRM_DEBUG("context hanging too fast, banning!\n");
2263 return true;
2266 return false;
2269 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2270 struct i915_hw_context *ctx,
2271 const bool guilty)
2273 struct i915_ctx_hang_stats *hs;
2275 if (WARN_ON(!ctx))
2276 return;
2278 hs = &ctx->hang_stats;
2280 if (guilty) {
2281 hs->banned = i915_context_is_banned(dev_priv, ctx);
2282 hs->batch_active++;
2283 hs->guilty_ts = get_seconds();
2284 } else {
2285 hs->batch_pending++;
2289 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2291 list_del(&request->list);
2292 i915_gem_request_remove_from_client(request);
2294 if (request->ctx)
2295 i915_gem_context_unreference(request->ctx);
2297 kfree(request);
2300 static struct drm_i915_gem_request *
2301 i915_gem_find_first_non_complete(struct intel_ring_buffer *ring)
2303 struct drm_i915_gem_request *request;
2304 const u32 completed_seqno = ring->get_seqno(ring, false);
2306 list_for_each_entry(request, &ring->request_list, list) {
2307 if (i915_seqno_passed(completed_seqno, request->seqno))
2308 continue;
2310 return request;
2313 return NULL;
2316 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2317 struct intel_ring_buffer *ring)
2319 struct drm_i915_gem_request *request;
2320 bool ring_hung;
2322 request = i915_gem_find_first_non_complete(ring);
2324 if (request == NULL)
2325 return;
2327 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2329 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2331 list_for_each_entry_continue(request, &ring->request_list, list)
2332 i915_set_reset_status(dev_priv, request->ctx, false);
2335 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2336 struct intel_ring_buffer *ring)
2338 while (!list_empty(&ring->active_list)) {
2339 struct drm_i915_gem_object *obj;
2341 obj = list_first_entry(&ring->active_list,
2342 struct drm_i915_gem_object,
2343 ring_list);
2345 i915_gem_object_move_to_inactive(obj);
2349 * We must free the requests after all the corresponding objects have
2350 * been moved off active lists. Which is the same order as the normal
2351 * retire_requests function does. This is important if object hold
2352 * implicit references on things like e.g. ppgtt address spaces through
2353 * the request.
2355 while (!list_empty(&ring->request_list)) {
2356 struct drm_i915_gem_request *request;
2358 request = list_first_entry(&ring->request_list,
2359 struct drm_i915_gem_request,
2360 list);
2362 i915_gem_free_request(request);
2366 void i915_gem_restore_fences(struct drm_device *dev)
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 int i;
2371 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2372 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2375 * Commit delayed tiling changes if we have an object still
2376 * attached to the fence, otherwise just clear the fence.
2378 if (reg->obj) {
2379 i915_gem_object_update_fence(reg->obj, reg,
2380 reg->obj->tiling_mode);
2381 } else {
2382 i915_gem_write_fence(dev, i, NULL);
2387 void i915_gem_reset(struct drm_device *dev)
2389 struct drm_i915_private *dev_priv = dev->dev_private;
2390 struct intel_ring_buffer *ring;
2391 int i;
2394 * Before we free the objects from the requests, we need to inspect
2395 * them for finding the guilty party. As the requests only borrow
2396 * their reference to the objects, the inspection must be done first.
2398 for_each_ring(ring, dev_priv, i)
2399 i915_gem_reset_ring_status(dev_priv, ring);
2401 for_each_ring(ring, dev_priv, i)
2402 i915_gem_reset_ring_cleanup(dev_priv, ring);
2404 i915_gem_cleanup_ringbuffer(dev);
2406 i915_gem_context_reset(dev);
2408 i915_gem_restore_fences(dev);
2412 * This function clears the request list as sequence numbers are passed.
2414 void
2415 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2417 uint32_t seqno;
2419 if (list_empty(&ring->request_list))
2420 return;
2422 WARN_ON(i915_verify_lists(ring->dev));
2424 seqno = ring->get_seqno(ring, true);
2426 /* Move any buffers on the active list that are no longer referenced
2427 * by the ringbuffer to the flushing/inactive lists as appropriate,
2428 * before we free the context associated with the requests.
2430 while (!list_empty(&ring->active_list)) {
2431 struct drm_i915_gem_object *obj;
2433 obj = list_first_entry(&ring->active_list,
2434 struct drm_i915_gem_object,
2435 ring_list);
2437 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2438 break;
2440 i915_gem_object_move_to_inactive(obj);
2444 while (!list_empty(&ring->request_list)) {
2445 struct drm_i915_gem_request *request;
2447 request = list_first_entry(&ring->request_list,
2448 struct drm_i915_gem_request,
2449 list);
2451 if (!i915_seqno_passed(seqno, request->seqno))
2452 break;
2454 trace_i915_gem_request_retire(ring, request->seqno);
2455 /* We know the GPU must have read the request to have
2456 * sent us the seqno + interrupt, so use the position
2457 * of tail of the request to update the last known position
2458 * of the GPU head.
2460 ring->last_retired_head = request->tail;
2462 i915_gem_free_request(request);
2465 if (unlikely(ring->trace_irq_seqno &&
2466 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2467 ring->irq_put(ring);
2468 ring->trace_irq_seqno = 0;
2471 WARN_ON(i915_verify_lists(ring->dev));
2474 bool
2475 i915_gem_retire_requests(struct drm_device *dev)
2477 drm_i915_private_t *dev_priv = dev->dev_private;
2478 struct intel_ring_buffer *ring;
2479 bool idle = true;
2480 int i;
2482 for_each_ring(ring, dev_priv, i) {
2483 i915_gem_retire_requests_ring(ring);
2484 idle &= list_empty(&ring->request_list);
2487 if (idle)
2488 mod_delayed_work(dev_priv->wq,
2489 &dev_priv->mm.idle_work,
2490 msecs_to_jiffies(100));
2492 return idle;
2495 static void
2496 i915_gem_retire_work_handler(struct work_struct *work)
2498 struct drm_i915_private *dev_priv =
2499 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2500 struct drm_device *dev = dev_priv->dev;
2501 bool idle;
2503 /* Come back later if the device is busy... */
2504 idle = false;
2505 if (mutex_trylock(&dev->struct_mutex)) {
2506 idle = i915_gem_retire_requests(dev);
2507 mutex_unlock(&dev->struct_mutex);
2509 if (!idle)
2510 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2511 round_jiffies_up_relative(HZ));
2514 static void
2515 i915_gem_idle_work_handler(struct work_struct *work)
2517 struct drm_i915_private *dev_priv =
2518 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2520 intel_mark_idle(dev_priv->dev);
2524 * Ensures that an object will eventually get non-busy by flushing any required
2525 * write domains, emitting any outstanding lazy request and retiring and
2526 * completed requests.
2528 static int
2529 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2531 int ret;
2533 if (obj->active) {
2534 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2535 if (ret)
2536 return ret;
2538 i915_gem_retire_requests_ring(obj->ring);
2541 return 0;
2545 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2546 * @DRM_IOCTL_ARGS: standard ioctl arguments
2548 * Returns 0 if successful, else an error is returned with the remaining time in
2549 * the timeout parameter.
2550 * -ETIME: object is still busy after timeout
2551 * -ERESTARTSYS: signal interrupted the wait
2552 * -ENONENT: object doesn't exist
2553 * Also possible, but rare:
2554 * -EAGAIN: GPU wedged
2555 * -ENOMEM: damn
2556 * -ENODEV: Internal IRQ fail
2557 * -E?: The add request failed
2559 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2560 * non-zero timeout parameter the wait ioctl will wait for the given number of
2561 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2562 * without holding struct_mutex the object may become re-busied before this
2563 * function completes. A similar but shorter * race condition exists in the busy
2564 * ioctl
2567 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2569 drm_i915_private_t *dev_priv = dev->dev_private;
2570 struct drm_i915_gem_wait *args = data;
2571 struct drm_i915_gem_object *obj;
2572 struct intel_ring_buffer *ring = NULL;
2573 struct timespec timeout_stack, *timeout = NULL;
2574 unsigned reset_counter;
2575 u32 seqno = 0;
2576 int ret = 0;
2578 if (args->timeout_ns >= 0) {
2579 timeout_stack = ns_to_timespec(args->timeout_ns);
2580 timeout = &timeout_stack;
2583 ret = i915_mutex_lock_interruptible(dev);
2584 if (ret)
2585 return ret;
2587 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2588 if (&obj->base == NULL) {
2589 mutex_unlock(&dev->struct_mutex);
2590 return -ENOENT;
2593 /* Need to make sure the object gets inactive eventually. */
2594 ret = i915_gem_object_flush_active(obj);
2595 if (ret)
2596 goto out;
2598 if (obj->active) {
2599 seqno = obj->last_read_seqno;
2600 ring = obj->ring;
2603 if (seqno == 0)
2604 goto out;
2606 /* Do this after OLR check to make sure we make forward progress polling
2607 * on this IOCTL with a 0 timeout (like busy ioctl)
2609 if (!args->timeout_ns) {
2610 ret = -ETIME;
2611 goto out;
2614 drm_gem_object_unreference(&obj->base);
2615 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2616 mutex_unlock(&dev->struct_mutex);
2618 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2619 if (timeout)
2620 args->timeout_ns = timespec_to_ns(timeout);
2621 return ret;
2623 out:
2624 drm_gem_object_unreference(&obj->base);
2625 mutex_unlock(&dev->struct_mutex);
2626 return ret;
2630 * i915_gem_object_sync - sync an object to a ring.
2632 * @obj: object which may be in use on another ring.
2633 * @to: ring we wish to use the object on. May be NULL.
2635 * This code is meant to abstract object synchronization with the GPU.
2636 * Calling with NULL implies synchronizing the object with the CPU
2637 * rather than a particular GPU ring.
2639 * Returns 0 if successful, else propagates up the lower layer error.
2642 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2643 struct intel_ring_buffer *to)
2645 struct intel_ring_buffer *from = obj->ring;
2646 u32 seqno;
2647 int ret, idx;
2649 if (from == NULL || to == from)
2650 return 0;
2652 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2653 return i915_gem_object_wait_rendering(obj, false);
2655 idx = intel_ring_sync_index(from, to);
2657 seqno = obj->last_read_seqno;
2658 if (seqno <= from->sync_seqno[idx])
2659 return 0;
2661 ret = i915_gem_check_olr(obj->ring, seqno);
2662 if (ret)
2663 return ret;
2665 trace_i915_gem_ring_sync_to(from, to, seqno);
2666 ret = to->sync_to(to, from, seqno);
2667 if (!ret)
2668 /* We use last_read_seqno because sync_to()
2669 * might have just caused seqno wrap under
2670 * the radar.
2672 from->sync_seqno[idx] = obj->last_read_seqno;
2674 return ret;
2677 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2679 u32 old_write_domain, old_read_domains;
2681 /* Force a pagefault for domain tracking on next user access */
2682 i915_gem_release_mmap(obj);
2684 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2685 return;
2687 /* Wait for any direct GTT access to complete */
2688 mb();
2690 old_read_domains = obj->base.read_domains;
2691 old_write_domain = obj->base.write_domain;
2693 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2694 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2696 trace_i915_gem_object_change_domain(obj,
2697 old_read_domains,
2698 old_write_domain);
2701 int i915_vma_unbind(struct i915_vma *vma)
2703 struct drm_i915_gem_object *obj = vma->obj;
2704 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2705 int ret;
2707 if (list_empty(&vma->vma_link))
2708 return 0;
2710 if (!drm_mm_node_allocated(&vma->node)) {
2711 i915_gem_vma_destroy(vma);
2713 return 0;
2716 if (vma->pin_count)
2717 return -EBUSY;
2719 BUG_ON(obj->pages == NULL);
2721 ret = i915_gem_object_finish_gpu(obj);
2722 if (ret)
2723 return ret;
2724 /* Continue on if we fail due to EIO, the GPU is hung so we
2725 * should be safe and we need to cleanup or else we might
2726 * cause memory corruption through use-after-free.
2729 i915_gem_object_finish_gtt(obj);
2731 /* release the fence reg _after_ flushing */
2732 ret = i915_gem_object_put_fence(obj);
2733 if (ret)
2734 return ret;
2736 trace_i915_vma_unbind(vma);
2738 vma->unbind_vma(vma);
2740 i915_gem_gtt_finish_object(obj);
2742 list_del(&vma->mm_list);
2743 /* Avoid an unnecessary call to unbind on rebind. */
2744 if (i915_is_ggtt(vma->vm))
2745 obj->map_and_fenceable = true;
2747 drm_mm_remove_node(&vma->node);
2748 i915_gem_vma_destroy(vma);
2750 /* Since the unbound list is global, only move to that list if
2751 * no more VMAs exist. */
2752 if (list_empty(&obj->vma_list))
2753 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2755 /* And finally now the object is completely decoupled from this vma,
2756 * we can drop its hold on the backing storage and allow it to be
2757 * reaped by the shrinker.
2759 i915_gem_object_unpin_pages(obj);
2761 return 0;
2765 * Unbinds an object from the global GTT aperture.
2768 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2770 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2771 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2773 if (!i915_gem_obj_ggtt_bound(obj))
2774 return 0;
2776 if (i915_gem_obj_to_ggtt(obj)->pin_count)
2777 return -EBUSY;
2779 BUG_ON(obj->pages == NULL);
2781 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2784 int i915_gpu_idle(struct drm_device *dev)
2786 drm_i915_private_t *dev_priv = dev->dev_private;
2787 struct intel_ring_buffer *ring;
2788 int ret, i;
2790 /* Flush everything onto the inactive list. */
2791 for_each_ring(ring, dev_priv, i) {
2792 ret = i915_switch_context(ring, NULL, ring->default_context);
2793 if (ret)
2794 return ret;
2796 ret = intel_ring_idle(ring);
2797 if (ret)
2798 return ret;
2801 return 0;
2804 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2805 struct drm_i915_gem_object *obj)
2807 drm_i915_private_t *dev_priv = dev->dev_private;
2808 int fence_reg;
2809 int fence_pitch_shift;
2811 if (INTEL_INFO(dev)->gen >= 6) {
2812 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2813 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2814 } else {
2815 fence_reg = FENCE_REG_965_0;
2816 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2819 fence_reg += reg * 8;
2821 /* To w/a incoherency with non-atomic 64-bit register updates,
2822 * we split the 64-bit update into two 32-bit writes. In order
2823 * for a partial fence not to be evaluated between writes, we
2824 * precede the update with write to turn off the fence register,
2825 * and only enable the fence as the last step.
2827 * For extra levels of paranoia, we make sure each step lands
2828 * before applying the next step.
2830 I915_WRITE(fence_reg, 0);
2831 POSTING_READ(fence_reg);
2833 if (obj) {
2834 u32 size = i915_gem_obj_ggtt_size(obj);
2835 uint64_t val;
2837 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2838 0xfffff000) << 32;
2839 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2840 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2841 if (obj->tiling_mode == I915_TILING_Y)
2842 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2843 val |= I965_FENCE_REG_VALID;
2845 I915_WRITE(fence_reg + 4, val >> 32);
2846 POSTING_READ(fence_reg + 4);
2848 I915_WRITE(fence_reg + 0, val);
2849 POSTING_READ(fence_reg);
2850 } else {
2851 I915_WRITE(fence_reg + 4, 0);
2852 POSTING_READ(fence_reg + 4);
2856 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2857 struct drm_i915_gem_object *obj)
2859 drm_i915_private_t *dev_priv = dev->dev_private;
2860 u32 val;
2862 if (obj) {
2863 u32 size = i915_gem_obj_ggtt_size(obj);
2864 int pitch_val;
2865 int tile_width;
2867 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2868 (size & -size) != size ||
2869 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2870 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2871 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2873 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2874 tile_width = 128;
2875 else
2876 tile_width = 512;
2878 /* Note: pitch better be a power of two tile widths */
2879 pitch_val = obj->stride / tile_width;
2880 pitch_val = ffs(pitch_val) - 1;
2882 val = i915_gem_obj_ggtt_offset(obj);
2883 if (obj->tiling_mode == I915_TILING_Y)
2884 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2885 val |= I915_FENCE_SIZE_BITS(size);
2886 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2887 val |= I830_FENCE_REG_VALID;
2888 } else
2889 val = 0;
2891 if (reg < 8)
2892 reg = FENCE_REG_830_0 + reg * 4;
2893 else
2894 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2896 I915_WRITE(reg, val);
2897 POSTING_READ(reg);
2900 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2901 struct drm_i915_gem_object *obj)
2903 drm_i915_private_t *dev_priv = dev->dev_private;
2904 uint32_t val;
2906 if (obj) {
2907 u32 size = i915_gem_obj_ggtt_size(obj);
2908 uint32_t pitch_val;
2910 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2911 (size & -size) != size ||
2912 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2913 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2914 i915_gem_obj_ggtt_offset(obj), size);
2916 pitch_val = obj->stride / 128;
2917 pitch_val = ffs(pitch_val) - 1;
2919 val = i915_gem_obj_ggtt_offset(obj);
2920 if (obj->tiling_mode == I915_TILING_Y)
2921 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2922 val |= I830_FENCE_SIZE_BITS(size);
2923 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2924 val |= I830_FENCE_REG_VALID;
2925 } else
2926 val = 0;
2928 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2929 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2932 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2934 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2937 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2938 struct drm_i915_gem_object *obj)
2940 struct drm_i915_private *dev_priv = dev->dev_private;
2942 /* Ensure that all CPU reads are completed before installing a fence
2943 * and all writes before removing the fence.
2945 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2946 mb();
2948 WARN(obj && (!obj->stride || !obj->tiling_mode),
2949 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2950 obj->stride, obj->tiling_mode);
2952 switch (INTEL_INFO(dev)->gen) {
2953 case 8:
2954 case 7:
2955 case 6:
2956 case 5:
2957 case 4: i965_write_fence_reg(dev, reg, obj); break;
2958 case 3: i915_write_fence_reg(dev, reg, obj); break;
2959 case 2: i830_write_fence_reg(dev, reg, obj); break;
2960 default: BUG();
2963 /* And similarly be paranoid that no direct access to this region
2964 * is reordered to before the fence is installed.
2966 if (i915_gem_object_needs_mb(obj))
2967 mb();
2970 static inline int fence_number(struct drm_i915_private *dev_priv,
2971 struct drm_i915_fence_reg *fence)
2973 return fence - dev_priv->fence_regs;
2976 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2977 struct drm_i915_fence_reg *fence,
2978 bool enable)
2980 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2981 int reg = fence_number(dev_priv, fence);
2983 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2985 if (enable) {
2986 obj->fence_reg = reg;
2987 fence->obj = obj;
2988 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2989 } else {
2990 obj->fence_reg = I915_FENCE_REG_NONE;
2991 fence->obj = NULL;
2992 list_del_init(&fence->lru_list);
2994 obj->fence_dirty = false;
2997 static int
2998 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3000 if (obj->last_fenced_seqno) {
3001 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3002 if (ret)
3003 return ret;
3005 obj->last_fenced_seqno = 0;
3008 obj->fenced_gpu_access = false;
3009 return 0;
3013 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3015 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3016 struct drm_i915_fence_reg *fence;
3017 int ret;
3019 ret = i915_gem_object_wait_fence(obj);
3020 if (ret)
3021 return ret;
3023 if (obj->fence_reg == I915_FENCE_REG_NONE)
3024 return 0;
3026 fence = &dev_priv->fence_regs[obj->fence_reg];
3028 i915_gem_object_fence_lost(obj);
3029 i915_gem_object_update_fence(obj, fence, false);
3031 return 0;
3034 static struct drm_i915_fence_reg *
3035 i915_find_fence_reg(struct drm_device *dev)
3037 struct drm_i915_private *dev_priv = dev->dev_private;
3038 struct drm_i915_fence_reg *reg, *avail;
3039 int i;
3041 /* First try to find a free reg */
3042 avail = NULL;
3043 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3044 reg = &dev_priv->fence_regs[i];
3045 if (!reg->obj)
3046 return reg;
3048 if (!reg->pin_count)
3049 avail = reg;
3052 if (avail == NULL)
3053 goto deadlock;
3055 /* None available, try to steal one or wait for a user to finish */
3056 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3057 if (reg->pin_count)
3058 continue;
3060 return reg;
3063 deadlock:
3064 /* Wait for completion of pending flips which consume fences */
3065 if (intel_has_pending_fb_unpin(dev))
3066 return ERR_PTR(-EAGAIN);
3068 return ERR_PTR(-EDEADLK);
3072 * i915_gem_object_get_fence - set up fencing for an object
3073 * @obj: object to map through a fence reg
3075 * When mapping objects through the GTT, userspace wants to be able to write
3076 * to them without having to worry about swizzling if the object is tiled.
3077 * This function walks the fence regs looking for a free one for @obj,
3078 * stealing one if it can't find any.
3080 * It then sets up the reg based on the object's properties: address, pitch
3081 * and tiling format.
3083 * For an untiled surface, this removes any existing fence.
3086 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3088 struct drm_device *dev = obj->base.dev;
3089 struct drm_i915_private *dev_priv = dev->dev_private;
3090 bool enable = obj->tiling_mode != I915_TILING_NONE;
3091 struct drm_i915_fence_reg *reg;
3092 int ret;
3094 /* Have we updated the tiling parameters upon the object and so
3095 * will need to serialise the write to the associated fence register?
3097 if (obj->fence_dirty) {
3098 ret = i915_gem_object_wait_fence(obj);
3099 if (ret)
3100 return ret;
3103 /* Just update our place in the LRU if our fence is getting reused. */
3104 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3105 reg = &dev_priv->fence_regs[obj->fence_reg];
3106 if (!obj->fence_dirty) {
3107 list_move_tail(&reg->lru_list,
3108 &dev_priv->mm.fence_list);
3109 return 0;
3111 } else if (enable) {
3112 reg = i915_find_fence_reg(dev);
3113 if (IS_ERR(reg))
3114 return PTR_ERR(reg);
3116 if (reg->obj) {
3117 struct drm_i915_gem_object *old = reg->obj;
3119 ret = i915_gem_object_wait_fence(old);
3120 if (ret)
3121 return ret;
3123 i915_gem_object_fence_lost(old);
3125 } else
3126 return 0;
3128 i915_gem_object_update_fence(obj, reg, enable);
3130 return 0;
3133 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3134 struct drm_mm_node *gtt_space,
3135 unsigned long cache_level)
3137 struct drm_mm_node *other;
3139 /* On non-LLC machines we have to be careful when putting differing
3140 * types of snoopable memory together to avoid the prefetcher
3141 * crossing memory domains and dying.
3143 if (HAS_LLC(dev))
3144 return true;
3146 if (!drm_mm_node_allocated(gtt_space))
3147 return true;
3149 if (list_empty(&gtt_space->node_list))
3150 return true;
3152 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3153 if (other->allocated && !other->hole_follows && other->color != cache_level)
3154 return false;
3156 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3157 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3158 return false;
3160 return true;
3163 static void i915_gem_verify_gtt(struct drm_device *dev)
3165 #if WATCH_GTT
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct drm_i915_gem_object *obj;
3168 int err = 0;
3170 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3171 if (obj->gtt_space == NULL) {
3172 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3173 err++;
3174 continue;
3177 if (obj->cache_level != obj->gtt_space->color) {
3178 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3179 i915_gem_obj_ggtt_offset(obj),
3180 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3181 obj->cache_level,
3182 obj->gtt_space->color);
3183 err++;
3184 continue;
3187 if (!i915_gem_valid_gtt_space(dev,
3188 obj->gtt_space,
3189 obj->cache_level)) {
3190 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3191 i915_gem_obj_ggtt_offset(obj),
3192 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3193 obj->cache_level);
3194 err++;
3195 continue;
3199 WARN_ON(err);
3200 #endif
3204 * Finds free space in the GTT aperture and binds the object there.
3206 static int
3207 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3208 struct i915_address_space *vm,
3209 unsigned alignment,
3210 bool map_and_fenceable,
3211 bool nonblocking)
3213 struct drm_device *dev = obj->base.dev;
3214 drm_i915_private_t *dev_priv = dev->dev_private;
3215 u32 size, fence_size, fence_alignment, unfenced_alignment;
3216 size_t gtt_max =
3217 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3218 struct i915_vma *vma;
3219 int ret;
3221 fence_size = i915_gem_get_gtt_size(dev,
3222 obj->base.size,
3223 obj->tiling_mode);
3224 fence_alignment = i915_gem_get_gtt_alignment(dev,
3225 obj->base.size,
3226 obj->tiling_mode, true);
3227 unfenced_alignment =
3228 i915_gem_get_gtt_alignment(dev,
3229 obj->base.size,
3230 obj->tiling_mode, false);
3232 if (alignment == 0)
3233 alignment = map_and_fenceable ? fence_alignment :
3234 unfenced_alignment;
3235 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3236 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3237 return -EINVAL;
3240 size = map_and_fenceable ? fence_size : obj->base.size;
3242 /* If the object is bigger than the entire aperture, reject it early
3243 * before evicting everything in a vain attempt to find space.
3245 if (obj->base.size > gtt_max) {
3246 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3247 obj->base.size,
3248 map_and_fenceable ? "mappable" : "total",
3249 gtt_max);
3250 return -E2BIG;
3253 ret = i915_gem_object_get_pages(obj);
3254 if (ret)
3255 return ret;
3257 i915_gem_object_pin_pages(obj);
3259 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3260 if (IS_ERR(vma)) {
3261 ret = PTR_ERR(vma);
3262 goto err_unpin;
3265 search_free:
3266 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3267 size, alignment,
3268 obj->cache_level, 0, gtt_max,
3269 DRM_MM_SEARCH_DEFAULT);
3270 if (ret) {
3271 ret = i915_gem_evict_something(dev, vm, size, alignment,
3272 obj->cache_level,
3273 map_and_fenceable,
3274 nonblocking);
3275 if (ret == 0)
3276 goto search_free;
3278 goto err_free_vma;
3280 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3281 obj->cache_level))) {
3282 ret = -EINVAL;
3283 goto err_remove_node;
3286 ret = i915_gem_gtt_prepare_object(obj);
3287 if (ret)
3288 goto err_remove_node;
3290 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3291 list_add_tail(&vma->mm_list, &vm->inactive_list);
3293 if (i915_is_ggtt(vm)) {
3294 bool mappable, fenceable;
3296 fenceable = (vma->node.size == fence_size &&
3297 (vma->node.start & (fence_alignment - 1)) == 0);
3299 mappable = (vma->node.start + obj->base.size <=
3300 dev_priv->gtt.mappable_end);
3302 obj->map_and_fenceable = mappable && fenceable;
3305 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3307 trace_i915_vma_bind(vma, map_and_fenceable);
3308 i915_gem_verify_gtt(dev);
3309 return 0;
3311 err_remove_node:
3312 drm_mm_remove_node(&vma->node);
3313 err_free_vma:
3314 i915_gem_vma_destroy(vma);
3315 err_unpin:
3316 i915_gem_object_unpin_pages(obj);
3317 return ret;
3320 bool
3321 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3322 bool force)
3324 /* If we don't have a page list set up, then we're not pinned
3325 * to GPU, and we can ignore the cache flush because it'll happen
3326 * again at bind time.
3328 if (obj->pages == NULL)
3329 return false;
3332 * Stolen memory is always coherent with the GPU as it is explicitly
3333 * marked as wc by the system, or the system is cache-coherent.
3335 if (obj->stolen)
3336 return false;
3338 /* If the GPU is snooping the contents of the CPU cache,
3339 * we do not need to manually clear the CPU cache lines. However,
3340 * the caches are only snooped when the render cache is
3341 * flushed/invalidated. As we always have to emit invalidations
3342 * and flushes when moving into and out of the RENDER domain, correct
3343 * snooping behaviour occurs naturally as the result of our domain
3344 * tracking.
3346 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3347 return false;
3349 trace_i915_gem_object_clflush(obj);
3350 drm_clflush_sg(obj->pages);
3352 return true;
3355 /** Flushes the GTT write domain for the object if it's dirty. */
3356 static void
3357 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3359 uint32_t old_write_domain;
3361 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3362 return;
3364 /* No actual flushing is required for the GTT write domain. Writes
3365 * to it immediately go to main memory as far as we know, so there's
3366 * no chipset flush. It also doesn't land in render cache.
3368 * However, we do have to enforce the order so that all writes through
3369 * the GTT land before any writes to the device, such as updates to
3370 * the GATT itself.
3372 wmb();
3374 old_write_domain = obj->base.write_domain;
3375 obj->base.write_domain = 0;
3377 trace_i915_gem_object_change_domain(obj,
3378 obj->base.read_domains,
3379 old_write_domain);
3382 /** Flushes the CPU write domain for the object if it's dirty. */
3383 static void
3384 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3385 bool force)
3387 uint32_t old_write_domain;
3389 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3390 return;
3392 if (i915_gem_clflush_object(obj, force))
3393 i915_gem_chipset_flush(obj->base.dev);
3395 old_write_domain = obj->base.write_domain;
3396 obj->base.write_domain = 0;
3398 trace_i915_gem_object_change_domain(obj,
3399 obj->base.read_domains,
3400 old_write_domain);
3404 * Moves a single object to the GTT read, and possibly write domain.
3406 * This function returns when the move is complete, including waiting on
3407 * flushes to occur.
3410 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3412 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3413 uint32_t old_write_domain, old_read_domains;
3414 int ret;
3416 /* Not valid to be called on unbound objects. */
3417 if (!i915_gem_obj_bound_any(obj))
3418 return -EINVAL;
3420 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3421 return 0;
3423 ret = i915_gem_object_wait_rendering(obj, !write);
3424 if (ret)
3425 return ret;
3427 i915_gem_object_flush_cpu_write_domain(obj, false);
3429 /* Serialise direct access to this object with the barriers for
3430 * coherent writes from the GPU, by effectively invalidating the
3431 * GTT domain upon first access.
3433 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3434 mb();
3436 old_write_domain = obj->base.write_domain;
3437 old_read_domains = obj->base.read_domains;
3439 /* It should now be out of any other write domains, and we can update
3440 * the domain values for our changes.
3442 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3443 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3444 if (write) {
3445 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3446 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3447 obj->dirty = 1;
3450 trace_i915_gem_object_change_domain(obj,
3451 old_read_domains,
3452 old_write_domain);
3454 /* And bump the LRU for this access */
3455 if (i915_gem_object_is_inactive(obj)) {
3456 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3457 if (vma)
3458 list_move_tail(&vma->mm_list,
3459 &dev_priv->gtt.base.inactive_list);
3463 return 0;
3466 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3467 enum i915_cache_level cache_level)
3469 struct drm_device *dev = obj->base.dev;
3470 struct i915_vma *vma;
3471 int ret;
3473 if (obj->cache_level == cache_level)
3474 return 0;
3476 if (i915_gem_obj_is_pinned(obj)) {
3477 DRM_DEBUG("can not change the cache level of pinned objects\n");
3478 return -EBUSY;
3481 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3482 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3483 ret = i915_vma_unbind(vma);
3484 if (ret)
3485 return ret;
3487 break;
3491 if (i915_gem_obj_bound_any(obj)) {
3492 ret = i915_gem_object_finish_gpu(obj);
3493 if (ret)
3494 return ret;
3496 i915_gem_object_finish_gtt(obj);
3498 /* Before SandyBridge, you could not use tiling or fence
3499 * registers with snooped memory, so relinquish any fences
3500 * currently pointing to our region in the aperture.
3502 if (INTEL_INFO(dev)->gen < 6) {
3503 ret = i915_gem_object_put_fence(obj);
3504 if (ret)
3505 return ret;
3508 list_for_each_entry(vma, &obj->vma_list, vma_link)
3509 vma->bind_vma(vma, cache_level, 0);
3512 list_for_each_entry(vma, &obj->vma_list, vma_link)
3513 vma->node.color = cache_level;
3514 obj->cache_level = cache_level;
3516 if (cpu_write_needs_clflush(obj)) {
3517 u32 old_read_domains, old_write_domain;
3519 /* If we're coming from LLC cached, then we haven't
3520 * actually been tracking whether the data is in the
3521 * CPU cache or not, since we only allow one bit set
3522 * in obj->write_domain and have been skipping the clflushes.
3523 * Just set it to the CPU cache for now.
3525 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3527 old_read_domains = obj->base.read_domains;
3528 old_write_domain = obj->base.write_domain;
3530 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3531 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3533 trace_i915_gem_object_change_domain(obj,
3534 old_read_domains,
3535 old_write_domain);
3538 i915_gem_verify_gtt(dev);
3539 return 0;
3542 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3543 struct drm_file *file)
3545 struct drm_i915_gem_caching *args = data;
3546 struct drm_i915_gem_object *obj;
3547 int ret;
3549 ret = i915_mutex_lock_interruptible(dev);
3550 if (ret)
3551 return ret;
3553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3554 if (&obj->base == NULL) {
3555 ret = -ENOENT;
3556 goto unlock;
3559 switch (obj->cache_level) {
3560 case I915_CACHE_LLC:
3561 case I915_CACHE_L3_LLC:
3562 args->caching = I915_CACHING_CACHED;
3563 break;
3565 case I915_CACHE_WT:
3566 args->caching = I915_CACHING_DISPLAY;
3567 break;
3569 default:
3570 args->caching = I915_CACHING_NONE;
3571 break;
3574 drm_gem_object_unreference(&obj->base);
3575 unlock:
3576 mutex_unlock(&dev->struct_mutex);
3577 return ret;
3580 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3581 struct drm_file *file)
3583 struct drm_i915_gem_caching *args = data;
3584 struct drm_i915_gem_object *obj;
3585 enum i915_cache_level level;
3586 int ret;
3588 switch (args->caching) {
3589 case I915_CACHING_NONE:
3590 level = I915_CACHE_NONE;
3591 break;
3592 case I915_CACHING_CACHED:
3593 level = I915_CACHE_LLC;
3594 break;
3595 case I915_CACHING_DISPLAY:
3596 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3597 break;
3598 default:
3599 return -EINVAL;
3602 ret = i915_mutex_lock_interruptible(dev);
3603 if (ret)
3604 return ret;
3606 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3607 if (&obj->base == NULL) {
3608 ret = -ENOENT;
3609 goto unlock;
3612 ret = i915_gem_object_set_cache_level(obj, level);
3614 drm_gem_object_unreference(&obj->base);
3615 unlock:
3616 mutex_unlock(&dev->struct_mutex);
3617 return ret;
3620 static bool is_pin_display(struct drm_i915_gem_object *obj)
3622 /* There are 3 sources that pin objects:
3623 * 1. The display engine (scanouts, sprites, cursors);
3624 * 2. Reservations for execbuffer;
3625 * 3. The user.
3627 * We can ignore reservations as we hold the struct_mutex and
3628 * are only called outside of the reservation path. The user
3629 * can only increment pin_count once, and so if after
3630 * subtracting the potential reference by the user, any pin_count
3631 * remains, it must be due to another use by the display engine.
3633 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3637 * Prepare buffer for display plane (scanout, cursors, etc).
3638 * Can be called from an uninterruptible phase (modesetting) and allows
3639 * any flushes to be pipelined (for pageflips).
3642 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3643 u32 alignment,
3644 struct intel_ring_buffer *pipelined)
3646 u32 old_read_domains, old_write_domain;
3647 int ret;
3649 if (pipelined != obj->ring) {
3650 ret = i915_gem_object_sync(obj, pipelined);
3651 if (ret)
3652 return ret;
3655 /* Mark the pin_display early so that we account for the
3656 * display coherency whilst setting up the cache domains.
3658 obj->pin_display = true;
3660 /* The display engine is not coherent with the LLC cache on gen6. As
3661 * a result, we make sure that the pinning that is about to occur is
3662 * done with uncached PTEs. This is lowest common denominator for all
3663 * chipsets.
3665 * However for gen6+, we could do better by using the GFDT bit instead
3666 * of uncaching, which would allow us to flush all the LLC-cached data
3667 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3669 ret = i915_gem_object_set_cache_level(obj,
3670 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3671 if (ret)
3672 goto err_unpin_display;
3674 /* As the user may map the buffer once pinned in the display plane
3675 * (e.g. libkms for the bootup splash), we have to ensure that we
3676 * always use map_and_fenceable for all scanout buffers.
3678 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3679 if (ret)
3680 goto err_unpin_display;
3682 i915_gem_object_flush_cpu_write_domain(obj, true);
3684 old_write_domain = obj->base.write_domain;
3685 old_read_domains = obj->base.read_domains;
3687 /* It should now be out of any other write domains, and we can update
3688 * the domain values for our changes.
3690 obj->base.write_domain = 0;
3691 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3693 trace_i915_gem_object_change_domain(obj,
3694 old_read_domains,
3695 old_write_domain);
3697 return 0;
3699 err_unpin_display:
3700 obj->pin_display = is_pin_display(obj);
3701 return ret;
3704 void
3705 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3707 i915_gem_object_ggtt_unpin(obj);
3708 obj->pin_display = is_pin_display(obj);
3712 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3714 int ret;
3716 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3717 return 0;
3719 ret = i915_gem_object_wait_rendering(obj, false);
3720 if (ret)
3721 return ret;
3723 /* Ensure that we invalidate the GPU's caches and TLBs. */
3724 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3725 return 0;
3729 * Moves a single object to the CPU read, and possibly write domain.
3731 * This function returns when the move is complete, including waiting on
3732 * flushes to occur.
3735 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3737 uint32_t old_write_domain, old_read_domains;
3738 int ret;
3740 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3741 return 0;
3743 ret = i915_gem_object_wait_rendering(obj, !write);
3744 if (ret)
3745 return ret;
3747 i915_gem_object_flush_gtt_write_domain(obj);
3749 old_write_domain = obj->base.write_domain;
3750 old_read_domains = obj->base.read_domains;
3752 /* Flush the CPU cache if it's still invalid. */
3753 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3754 i915_gem_clflush_object(obj, false);
3756 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3759 /* It should now be out of any other write domains, and we can update
3760 * the domain values for our changes.
3762 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3764 /* If we're writing through the CPU, then the GPU read domains will
3765 * need to be invalidated at next use.
3767 if (write) {
3768 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3769 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3772 trace_i915_gem_object_change_domain(obj,
3773 old_read_domains,
3774 old_write_domain);
3776 return 0;
3779 /* Throttle our rendering by waiting until the ring has completed our requests
3780 * emitted over 20 msec ago.
3782 * Note that if we were to use the current jiffies each time around the loop,
3783 * we wouldn't escape the function with any frames outstanding if the time to
3784 * render a frame was over 20ms.
3786 * This should get us reasonable parallelism between CPU and GPU but also
3787 * relatively low latency when blocking on a particular request to finish.
3789 static int
3790 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3792 struct drm_i915_private *dev_priv = dev->dev_private;
3793 struct drm_i915_file_private *file_priv = file->driver_priv;
3794 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3795 struct drm_i915_gem_request *request;
3796 struct intel_ring_buffer *ring = NULL;
3797 unsigned reset_counter;
3798 u32 seqno = 0;
3799 int ret;
3801 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3802 if (ret)
3803 return ret;
3805 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3806 if (ret)
3807 return ret;
3809 spin_lock(&file_priv->mm.lock);
3810 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3811 if (time_after_eq(request->emitted_jiffies, recent_enough))
3812 break;
3814 ring = request->ring;
3815 seqno = request->seqno;
3817 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3818 spin_unlock(&file_priv->mm.lock);
3820 if (seqno == 0)
3821 return 0;
3823 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3824 if (ret == 0)
3825 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3827 return ret;
3831 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3832 struct i915_address_space *vm,
3833 uint32_t alignment,
3834 bool map_and_fenceable,
3835 bool nonblocking)
3837 const u32 flags = map_and_fenceable ? GLOBAL_BIND : 0;
3838 struct i915_vma *vma;
3839 int ret;
3841 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3843 vma = i915_gem_obj_to_vma(obj, vm);
3845 if (vma) {
3846 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3847 return -EBUSY;
3849 if ((alignment &&
3850 vma->node.start & (alignment - 1)) ||
3851 (map_and_fenceable && !obj->map_and_fenceable)) {
3852 WARN(vma->pin_count,
3853 "bo is already pinned with incorrect alignment:"
3854 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3855 " obj->map_and_fenceable=%d\n",
3856 i915_gem_obj_offset(obj, vm), alignment,
3857 map_and_fenceable,
3858 obj->map_and_fenceable);
3859 ret = i915_vma_unbind(vma);
3860 if (ret)
3861 return ret;
3865 if (!i915_gem_obj_bound(obj, vm)) {
3866 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3867 map_and_fenceable,
3868 nonblocking);
3869 if (ret)
3870 return ret;
3874 vma = i915_gem_obj_to_vma(obj, vm);
3876 vma->bind_vma(vma, obj->cache_level, flags);
3878 i915_gem_obj_to_vma(obj, vm)->pin_count++;
3879 obj->pin_mappable |= map_and_fenceable;
3881 return 0;
3884 void
3885 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3887 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3889 BUG_ON(!vma);
3890 BUG_ON(vma->pin_count == 0);
3891 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3893 if (--vma->pin_count == 0)
3894 obj->pin_mappable = false;
3898 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3899 struct drm_file *file)
3901 struct drm_i915_gem_pin *args = data;
3902 struct drm_i915_gem_object *obj;
3903 int ret;
3905 if (INTEL_INFO(dev)->gen >= 6)
3906 return -ENODEV;
3908 ret = i915_mutex_lock_interruptible(dev);
3909 if (ret)
3910 return ret;
3912 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3913 if (&obj->base == NULL) {
3914 ret = -ENOENT;
3915 goto unlock;
3918 if (obj->madv != I915_MADV_WILLNEED) {
3919 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3920 ret = -EFAULT;
3921 goto out;
3924 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3925 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3926 args->handle);
3927 ret = -EINVAL;
3928 goto out;
3931 if (obj->user_pin_count == ULONG_MAX) {
3932 ret = -EBUSY;
3933 goto out;
3936 if (obj->user_pin_count == 0) {
3937 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3938 if (ret)
3939 goto out;
3942 obj->user_pin_count++;
3943 obj->pin_filp = file;
3945 args->offset = i915_gem_obj_ggtt_offset(obj);
3946 out:
3947 drm_gem_object_unreference(&obj->base);
3948 unlock:
3949 mutex_unlock(&dev->struct_mutex);
3950 return ret;
3954 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3955 struct drm_file *file)
3957 struct drm_i915_gem_pin *args = data;
3958 struct drm_i915_gem_object *obj;
3959 int ret;
3961 ret = i915_mutex_lock_interruptible(dev);
3962 if (ret)
3963 return ret;
3965 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3966 if (&obj->base == NULL) {
3967 ret = -ENOENT;
3968 goto unlock;
3971 if (obj->pin_filp != file) {
3972 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3973 args->handle);
3974 ret = -EINVAL;
3975 goto out;
3977 obj->user_pin_count--;
3978 if (obj->user_pin_count == 0) {
3979 obj->pin_filp = NULL;
3980 i915_gem_object_ggtt_unpin(obj);
3983 out:
3984 drm_gem_object_unreference(&obj->base);
3985 unlock:
3986 mutex_unlock(&dev->struct_mutex);
3987 return ret;
3991 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3992 struct drm_file *file)
3994 struct drm_i915_gem_busy *args = data;
3995 struct drm_i915_gem_object *obj;
3996 int ret;
3998 ret = i915_mutex_lock_interruptible(dev);
3999 if (ret)
4000 return ret;
4002 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4003 if (&obj->base == NULL) {
4004 ret = -ENOENT;
4005 goto unlock;
4008 /* Count all active objects as busy, even if they are currently not used
4009 * by the gpu. Users of this interface expect objects to eventually
4010 * become non-busy without any further actions, therefore emit any
4011 * necessary flushes here.
4013 ret = i915_gem_object_flush_active(obj);
4015 args->busy = obj->active;
4016 if (obj->ring) {
4017 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4018 args->busy |= intel_ring_flag(obj->ring) << 16;
4021 drm_gem_object_unreference(&obj->base);
4022 unlock:
4023 mutex_unlock(&dev->struct_mutex);
4024 return ret;
4028 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4029 struct drm_file *file_priv)
4031 return i915_gem_ring_throttle(dev, file_priv);
4035 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4036 struct drm_file *file_priv)
4038 struct drm_i915_gem_madvise *args = data;
4039 struct drm_i915_gem_object *obj;
4040 int ret;
4042 switch (args->madv) {
4043 case I915_MADV_DONTNEED:
4044 case I915_MADV_WILLNEED:
4045 break;
4046 default:
4047 return -EINVAL;
4050 ret = i915_mutex_lock_interruptible(dev);
4051 if (ret)
4052 return ret;
4054 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4055 if (&obj->base == NULL) {
4056 ret = -ENOENT;
4057 goto unlock;
4060 if (i915_gem_obj_is_pinned(obj)) {
4061 ret = -EINVAL;
4062 goto out;
4065 if (obj->madv != __I915_MADV_PURGED)
4066 obj->madv = args->madv;
4068 /* if the object is no longer attached, discard its backing storage */
4069 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4070 i915_gem_object_truncate(obj);
4072 args->retained = obj->madv != __I915_MADV_PURGED;
4074 out:
4075 drm_gem_object_unreference(&obj->base);
4076 unlock:
4077 mutex_unlock(&dev->struct_mutex);
4078 return ret;
4081 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4082 const struct drm_i915_gem_object_ops *ops)
4084 INIT_LIST_HEAD(&obj->global_list);
4085 INIT_LIST_HEAD(&obj->ring_list);
4086 INIT_LIST_HEAD(&obj->obj_exec_link);
4087 INIT_LIST_HEAD(&obj->vma_list);
4089 obj->ops = ops;
4091 obj->fence_reg = I915_FENCE_REG_NONE;
4092 obj->madv = I915_MADV_WILLNEED;
4093 /* Avoid an unnecessary call to unbind on the first bind. */
4094 obj->map_and_fenceable = true;
4096 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4099 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4100 .get_pages = i915_gem_object_get_pages_gtt,
4101 .put_pages = i915_gem_object_put_pages_gtt,
4104 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4105 size_t size)
4107 struct drm_i915_gem_object *obj;
4108 struct address_space *mapping;
4109 gfp_t mask;
4111 obj = i915_gem_object_alloc(dev);
4112 if (obj == NULL)
4113 return NULL;
4115 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4116 i915_gem_object_free(obj);
4117 return NULL;
4120 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4121 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4122 /* 965gm cannot relocate objects above 4GiB. */
4123 mask &= ~__GFP_HIGHMEM;
4124 mask |= __GFP_DMA32;
4127 mapping = file_inode(obj->base.filp)->i_mapping;
4128 mapping_set_gfp_mask(mapping, mask);
4130 i915_gem_object_init(obj, &i915_gem_object_ops);
4132 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4133 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4135 if (HAS_LLC(dev)) {
4136 /* On some devices, we can have the GPU use the LLC (the CPU
4137 * cache) for about a 10% performance improvement
4138 * compared to uncached. Graphics requests other than
4139 * display scanout are coherent with the CPU in
4140 * accessing this cache. This means in this mode we
4141 * don't need to clflush on the CPU side, and on the
4142 * GPU side we only need to flush internal caches to
4143 * get data visible to the CPU.
4145 * However, we maintain the display planes as UC, and so
4146 * need to rebind when first used as such.
4148 obj->cache_level = I915_CACHE_LLC;
4149 } else
4150 obj->cache_level = I915_CACHE_NONE;
4152 trace_i915_gem_object_create(obj);
4154 return obj;
4157 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4159 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4160 struct drm_device *dev = obj->base.dev;
4161 drm_i915_private_t *dev_priv = dev->dev_private;
4162 struct i915_vma *vma, *next;
4164 intel_runtime_pm_get(dev_priv);
4166 trace_i915_gem_object_destroy(obj);
4168 if (obj->phys_obj)
4169 i915_gem_detach_phys_object(dev, obj);
4171 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4172 int ret;
4174 vma->pin_count = 0;
4175 ret = i915_vma_unbind(vma);
4176 if (WARN_ON(ret == -ERESTARTSYS)) {
4177 bool was_interruptible;
4179 was_interruptible = dev_priv->mm.interruptible;
4180 dev_priv->mm.interruptible = false;
4182 WARN_ON(i915_vma_unbind(vma));
4184 dev_priv->mm.interruptible = was_interruptible;
4188 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4189 * before progressing. */
4190 if (obj->stolen)
4191 i915_gem_object_unpin_pages(obj);
4193 if (WARN_ON(obj->pages_pin_count))
4194 obj->pages_pin_count = 0;
4195 i915_gem_object_put_pages(obj);
4196 i915_gem_object_free_mmap_offset(obj);
4197 i915_gem_object_release_stolen(obj);
4199 BUG_ON(obj->pages);
4201 if (obj->base.import_attach)
4202 drm_prime_gem_destroy(&obj->base, NULL);
4204 drm_gem_object_release(&obj->base);
4205 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4207 kfree(obj->bit_17);
4208 i915_gem_object_free(obj);
4210 intel_runtime_pm_put(dev_priv);
4213 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4214 struct i915_address_space *vm)
4216 struct i915_vma *vma;
4217 list_for_each_entry(vma, &obj->vma_list, vma_link)
4218 if (vma->vm == vm)
4219 return vma;
4221 return NULL;
4224 void i915_gem_vma_destroy(struct i915_vma *vma)
4226 WARN_ON(vma->node.allocated);
4228 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4229 if (!list_empty(&vma->exec_list))
4230 return;
4232 list_del(&vma->vma_link);
4234 kfree(vma);
4238 i915_gem_suspend(struct drm_device *dev)
4240 drm_i915_private_t *dev_priv = dev->dev_private;
4241 int ret = 0;
4243 mutex_lock(&dev->struct_mutex);
4244 if (dev_priv->ums.mm_suspended)
4245 goto err;
4247 ret = i915_gpu_idle(dev);
4248 if (ret)
4249 goto err;
4251 i915_gem_retire_requests(dev);
4253 /* Under UMS, be paranoid and evict. */
4254 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4255 i915_gem_evict_everything(dev);
4257 i915_kernel_lost_context(dev);
4258 i915_gem_cleanup_ringbuffer(dev);
4260 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4261 * We need to replace this with a semaphore, or something.
4262 * And not confound ums.mm_suspended!
4264 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4265 DRIVER_MODESET);
4266 mutex_unlock(&dev->struct_mutex);
4268 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4269 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4270 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4272 return 0;
4274 err:
4275 mutex_unlock(&dev->struct_mutex);
4276 return ret;
4279 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4281 struct drm_device *dev = ring->dev;
4282 drm_i915_private_t *dev_priv = dev->dev_private;
4283 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4284 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4285 int i, ret;
4287 if (!HAS_L3_DPF(dev) || !remap_info)
4288 return 0;
4290 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4291 if (ret)
4292 return ret;
4295 * Note: We do not worry about the concurrent register cacheline hang
4296 * here because no other code should access these registers other than
4297 * at initialization time.
4299 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4300 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4301 intel_ring_emit(ring, reg_base + i);
4302 intel_ring_emit(ring, remap_info[i/4]);
4305 intel_ring_advance(ring);
4307 return ret;
4310 void i915_gem_init_swizzling(struct drm_device *dev)
4312 drm_i915_private_t *dev_priv = dev->dev_private;
4314 if (INTEL_INFO(dev)->gen < 5 ||
4315 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4316 return;
4318 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4319 DISP_TILE_SURFACE_SWIZZLING);
4321 if (IS_GEN5(dev))
4322 return;
4324 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4325 if (IS_GEN6(dev))
4326 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4327 else if (IS_GEN7(dev))
4328 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4329 else if (IS_GEN8(dev))
4330 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4331 else
4332 BUG();
4335 static bool
4336 intel_enable_blt(struct drm_device *dev)
4338 if (!HAS_BLT(dev))
4339 return false;
4341 /* The blitter was dysfunctional on early prototypes */
4342 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4343 DRM_INFO("BLT not supported on this pre-production hardware;"
4344 " graphics performance will be degraded.\n");
4345 return false;
4348 return true;
4351 static int i915_gem_init_rings(struct drm_device *dev)
4353 struct drm_i915_private *dev_priv = dev->dev_private;
4354 int ret;
4356 ret = intel_init_render_ring_buffer(dev);
4357 if (ret)
4358 return ret;
4360 if (HAS_BSD(dev)) {
4361 ret = intel_init_bsd_ring_buffer(dev);
4362 if (ret)
4363 goto cleanup_render_ring;
4366 if (intel_enable_blt(dev)) {
4367 ret = intel_init_blt_ring_buffer(dev);
4368 if (ret)
4369 goto cleanup_bsd_ring;
4372 if (HAS_VEBOX(dev)) {
4373 ret = intel_init_vebox_ring_buffer(dev);
4374 if (ret)
4375 goto cleanup_blt_ring;
4379 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4380 if (ret)
4381 goto cleanup_vebox_ring;
4383 return 0;
4385 cleanup_vebox_ring:
4386 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4387 cleanup_blt_ring:
4388 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4389 cleanup_bsd_ring:
4390 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4391 cleanup_render_ring:
4392 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4394 return ret;
4398 i915_gem_init_hw(struct drm_device *dev)
4400 drm_i915_private_t *dev_priv = dev->dev_private;
4401 int ret, i;
4403 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4404 return -EIO;
4406 if (dev_priv->ellc_size)
4407 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4409 if (IS_HASWELL(dev))
4410 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4411 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4413 if (HAS_PCH_NOP(dev)) {
4414 if (IS_IVYBRIDGE(dev)) {
4415 u32 temp = I915_READ(GEN7_MSG_CTL);
4416 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4417 I915_WRITE(GEN7_MSG_CTL, temp);
4418 } else if (INTEL_INFO(dev)->gen >= 7) {
4419 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4420 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4421 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4425 i915_gem_init_swizzling(dev);
4427 ret = i915_gem_init_rings(dev);
4428 if (ret)
4429 return ret;
4431 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4432 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4435 * XXX: Contexts should only be initialized once. Doing a switch to the
4436 * default context switch however is something we'd like to do after
4437 * reset or thaw (the latter may not actually be necessary for HW, but
4438 * goes with our code better). Context switching requires rings (for
4439 * the do_switch), but before enabling PPGTT. So don't move this.
4441 ret = i915_gem_context_enable(dev_priv);
4442 if (ret) {
4443 DRM_ERROR("Context enable failed %d\n", ret);
4444 goto err_out;
4447 return 0;
4449 err_out:
4450 i915_gem_cleanup_ringbuffer(dev);
4451 return ret;
4454 int i915_gem_init(struct drm_device *dev)
4456 struct drm_i915_private *dev_priv = dev->dev_private;
4457 int ret;
4459 mutex_lock(&dev->struct_mutex);
4461 if (IS_VALLEYVIEW(dev)) {
4462 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4463 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4464 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4465 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4468 i915_gem_init_global_gtt(dev);
4470 ret = i915_gem_context_init(dev);
4471 if (ret) {
4472 mutex_unlock(&dev->struct_mutex);
4473 return ret;
4476 ret = i915_gem_init_hw(dev);
4477 mutex_unlock(&dev->struct_mutex);
4478 if (ret) {
4479 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4480 i915_gem_context_fini(dev);
4481 drm_mm_takedown(&dev_priv->gtt.base.mm);
4482 return ret;
4485 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4486 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4487 dev_priv->dri1.allow_batchbuffer = 1;
4488 return 0;
4491 void
4492 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4494 drm_i915_private_t *dev_priv = dev->dev_private;
4495 struct intel_ring_buffer *ring;
4496 int i;
4498 for_each_ring(ring, dev_priv, i)
4499 intel_cleanup_ring_buffer(ring);
4503 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4504 struct drm_file *file_priv)
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507 int ret;
4509 if (drm_core_check_feature(dev, DRIVER_MODESET))
4510 return 0;
4512 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4513 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4514 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4517 mutex_lock(&dev->struct_mutex);
4518 dev_priv->ums.mm_suspended = 0;
4520 ret = i915_gem_init_hw(dev);
4521 if (ret != 0) {
4522 mutex_unlock(&dev->struct_mutex);
4523 return ret;
4526 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4527 mutex_unlock(&dev->struct_mutex);
4529 ret = drm_irq_install(dev);
4530 if (ret)
4531 goto cleanup_ringbuffer;
4533 return 0;
4535 cleanup_ringbuffer:
4536 mutex_lock(&dev->struct_mutex);
4537 i915_gem_cleanup_ringbuffer(dev);
4538 dev_priv->ums.mm_suspended = 1;
4539 mutex_unlock(&dev->struct_mutex);
4541 return ret;
4545 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4546 struct drm_file *file_priv)
4548 if (drm_core_check_feature(dev, DRIVER_MODESET))
4549 return 0;
4551 drm_irq_uninstall(dev);
4553 return i915_gem_suspend(dev);
4556 void
4557 i915_gem_lastclose(struct drm_device *dev)
4559 int ret;
4561 if (drm_core_check_feature(dev, DRIVER_MODESET))
4562 return;
4564 ret = i915_gem_suspend(dev);
4565 if (ret)
4566 DRM_ERROR("failed to idle hardware: %d\n", ret);
4569 static void
4570 init_ring_lists(struct intel_ring_buffer *ring)
4572 INIT_LIST_HEAD(&ring->active_list);
4573 INIT_LIST_HEAD(&ring->request_list);
4576 void i915_init_vm(struct drm_i915_private *dev_priv,
4577 struct i915_address_space *vm)
4579 if (!i915_is_ggtt(vm))
4580 drm_mm_init(&vm->mm, vm->start, vm->total);
4581 vm->dev = dev_priv->dev;
4582 INIT_LIST_HEAD(&vm->active_list);
4583 INIT_LIST_HEAD(&vm->inactive_list);
4584 INIT_LIST_HEAD(&vm->global_link);
4585 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4588 void
4589 i915_gem_load(struct drm_device *dev)
4591 drm_i915_private_t *dev_priv = dev->dev_private;
4592 int i;
4594 dev_priv->slab =
4595 kmem_cache_create("i915_gem_object",
4596 sizeof(struct drm_i915_gem_object), 0,
4597 SLAB_HWCACHE_ALIGN,
4598 NULL);
4600 INIT_LIST_HEAD(&dev_priv->vm_list);
4601 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4603 INIT_LIST_HEAD(&dev_priv->context_list);
4604 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4605 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4606 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4607 for (i = 0; i < I915_NUM_RINGS; i++)
4608 init_ring_lists(&dev_priv->ring[i]);
4609 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4610 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4611 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4612 i915_gem_retire_work_handler);
4613 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4614 i915_gem_idle_work_handler);
4615 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4617 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4618 if (IS_GEN3(dev)) {
4619 I915_WRITE(MI_ARB_STATE,
4620 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4623 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4625 /* Old X drivers will take 0-2 for front, back, depth buffers */
4626 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4627 dev_priv->fence_reg_start = 3;
4629 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4630 dev_priv->num_fence_regs = 32;
4631 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4632 dev_priv->num_fence_regs = 16;
4633 else
4634 dev_priv->num_fence_regs = 8;
4636 /* Initialize fence registers to zero */
4637 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4638 i915_gem_restore_fences(dev);
4640 i915_gem_detect_bit_6_swizzle(dev);
4641 init_waitqueue_head(&dev_priv->pending_flip_queue);
4643 dev_priv->mm.interruptible = true;
4645 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4646 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4647 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4648 register_shrinker(&dev_priv->mm.inactive_shrinker);
4652 * Create a physically contiguous memory object for this object
4653 * e.g. for cursor + overlay regs
4655 static int i915_gem_init_phys_object(struct drm_device *dev,
4656 int id, int size, int align)
4658 drm_i915_private_t *dev_priv = dev->dev_private;
4659 struct drm_i915_gem_phys_object *phys_obj;
4660 int ret;
4662 if (dev_priv->mm.phys_objs[id - 1] || !size)
4663 return 0;
4665 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4666 if (!phys_obj)
4667 return -ENOMEM;
4669 phys_obj->id = id;
4671 phys_obj->handle = drm_pci_alloc(dev, size, align);
4672 if (!phys_obj->handle) {
4673 ret = -ENOMEM;
4674 goto kfree_obj;
4676 #ifdef CONFIG_X86
4677 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4678 #endif
4680 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4682 return 0;
4683 kfree_obj:
4684 kfree(phys_obj);
4685 return ret;
4688 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4690 drm_i915_private_t *dev_priv = dev->dev_private;
4691 struct drm_i915_gem_phys_object *phys_obj;
4693 if (!dev_priv->mm.phys_objs[id - 1])
4694 return;
4696 phys_obj = dev_priv->mm.phys_objs[id - 1];
4697 if (phys_obj->cur_obj) {
4698 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4701 #ifdef CONFIG_X86
4702 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4703 #endif
4704 drm_pci_free(dev, phys_obj->handle);
4705 kfree(phys_obj);
4706 dev_priv->mm.phys_objs[id - 1] = NULL;
4709 void i915_gem_free_all_phys_object(struct drm_device *dev)
4711 int i;
4713 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4714 i915_gem_free_phys_object(dev, i);
4717 void i915_gem_detach_phys_object(struct drm_device *dev,
4718 struct drm_i915_gem_object *obj)
4720 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4721 char *vaddr;
4722 int i;
4723 int page_count;
4725 if (!obj->phys_obj)
4726 return;
4727 vaddr = obj->phys_obj->handle->vaddr;
4729 page_count = obj->base.size / PAGE_SIZE;
4730 for (i = 0; i < page_count; i++) {
4731 struct page *page = shmem_read_mapping_page(mapping, i);
4732 if (!IS_ERR(page)) {
4733 char *dst = kmap_atomic(page);
4734 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4735 kunmap_atomic(dst);
4737 drm_clflush_pages(&page, 1);
4739 set_page_dirty(page);
4740 mark_page_accessed(page);
4741 page_cache_release(page);
4744 i915_gem_chipset_flush(dev);
4746 obj->phys_obj->cur_obj = NULL;
4747 obj->phys_obj = NULL;
4751 i915_gem_attach_phys_object(struct drm_device *dev,
4752 struct drm_i915_gem_object *obj,
4753 int id,
4754 int align)
4756 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4757 drm_i915_private_t *dev_priv = dev->dev_private;
4758 int ret = 0;
4759 int page_count;
4760 int i;
4762 if (id > I915_MAX_PHYS_OBJECT)
4763 return -EINVAL;
4765 if (obj->phys_obj) {
4766 if (obj->phys_obj->id == id)
4767 return 0;
4768 i915_gem_detach_phys_object(dev, obj);
4771 /* create a new object */
4772 if (!dev_priv->mm.phys_objs[id - 1]) {
4773 ret = i915_gem_init_phys_object(dev, id,
4774 obj->base.size, align);
4775 if (ret) {
4776 DRM_ERROR("failed to init phys object %d size: %zu\n",
4777 id, obj->base.size);
4778 return ret;
4782 /* bind to the object */
4783 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4784 obj->phys_obj->cur_obj = obj;
4786 page_count = obj->base.size / PAGE_SIZE;
4788 for (i = 0; i < page_count; i++) {
4789 struct page *page;
4790 char *dst, *src;
4792 page = shmem_read_mapping_page(mapping, i);
4793 if (IS_ERR(page))
4794 return PTR_ERR(page);
4796 src = kmap_atomic(page);
4797 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4798 memcpy(dst, src, PAGE_SIZE);
4799 kunmap_atomic(src);
4801 mark_page_accessed(page);
4802 page_cache_release(page);
4805 return 0;
4808 static int
4809 i915_gem_phys_pwrite(struct drm_device *dev,
4810 struct drm_i915_gem_object *obj,
4811 struct drm_i915_gem_pwrite *args,
4812 struct drm_file *file_priv)
4814 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4815 char __user *user_data = to_user_ptr(args->data_ptr);
4817 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4818 unsigned long unwritten;
4820 /* The physical object once assigned is fixed for the lifetime
4821 * of the obj, so we can safely drop the lock and continue
4822 * to access vaddr.
4824 mutex_unlock(&dev->struct_mutex);
4825 unwritten = copy_from_user(vaddr, user_data, args->size);
4826 mutex_lock(&dev->struct_mutex);
4827 if (unwritten)
4828 return -EFAULT;
4831 i915_gem_chipset_flush(dev);
4832 return 0;
4835 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4837 struct drm_i915_file_private *file_priv = file->driver_priv;
4839 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4841 /* Clean up our request list when the client is going away, so that
4842 * later retire_requests won't dereference our soon-to-be-gone
4843 * file_priv.
4845 spin_lock(&file_priv->mm.lock);
4846 while (!list_empty(&file_priv->mm.request_list)) {
4847 struct drm_i915_gem_request *request;
4849 request = list_first_entry(&file_priv->mm.request_list,
4850 struct drm_i915_gem_request,
4851 client_list);
4852 list_del(&request->client_list);
4853 request->file_priv = NULL;
4855 spin_unlock(&file_priv->mm.lock);
4858 static void
4859 i915_gem_file_idle_work_handler(struct work_struct *work)
4861 struct drm_i915_file_private *file_priv =
4862 container_of(work, typeof(*file_priv), mm.idle_work.work);
4864 atomic_set(&file_priv->rps_wait_boost, false);
4867 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4869 struct drm_i915_file_private *file_priv;
4870 int ret;
4872 DRM_DEBUG_DRIVER("\n");
4874 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4875 if (!file_priv)
4876 return -ENOMEM;
4878 file->driver_priv = file_priv;
4879 file_priv->dev_priv = dev->dev_private;
4881 spin_lock_init(&file_priv->mm.lock);
4882 INIT_LIST_HEAD(&file_priv->mm.request_list);
4883 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4884 i915_gem_file_idle_work_handler);
4886 ret = i915_gem_context_open(dev, file);
4887 if (ret)
4888 kfree(file_priv);
4890 return ret;
4893 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4895 if (!mutex_is_locked(mutex))
4896 return false;
4898 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4899 return mutex->owner == task;
4900 #else
4901 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4902 return false;
4903 #endif
4906 static unsigned long
4907 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4909 struct drm_i915_private *dev_priv =
4910 container_of(shrinker,
4911 struct drm_i915_private,
4912 mm.inactive_shrinker);
4913 struct drm_device *dev = dev_priv->dev;
4914 struct drm_i915_gem_object *obj;
4915 bool unlock = true;
4916 unsigned long count;
4918 if (!mutex_trylock(&dev->struct_mutex)) {
4919 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4920 return 0;
4922 if (dev_priv->mm.shrinker_no_lock_stealing)
4923 return 0;
4925 unlock = false;
4928 count = 0;
4929 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4930 if (obj->pages_pin_count == 0)
4931 count += obj->base.size >> PAGE_SHIFT;
4933 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4934 if (obj->active)
4935 continue;
4937 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4938 count += obj->base.size >> PAGE_SHIFT;
4941 if (unlock)
4942 mutex_unlock(&dev->struct_mutex);
4944 return count;
4947 /* All the new VM stuff */
4948 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4949 struct i915_address_space *vm)
4951 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4952 struct i915_vma *vma;
4954 if (!dev_priv->mm.aliasing_ppgtt ||
4955 vm == &dev_priv->mm.aliasing_ppgtt->base)
4956 vm = &dev_priv->gtt.base;
4958 BUG_ON(list_empty(&o->vma_list));
4959 list_for_each_entry(vma, &o->vma_list, vma_link) {
4960 if (vma->vm == vm)
4961 return vma->node.start;
4964 return -1;
4967 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4968 struct i915_address_space *vm)
4970 struct i915_vma *vma;
4972 list_for_each_entry(vma, &o->vma_list, vma_link)
4973 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4974 return true;
4976 return false;
4979 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4981 struct i915_vma *vma;
4983 list_for_each_entry(vma, &o->vma_list, vma_link)
4984 if (drm_mm_node_allocated(&vma->node))
4985 return true;
4987 return false;
4990 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4991 struct i915_address_space *vm)
4993 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4994 struct i915_vma *vma;
4996 if (!dev_priv->mm.aliasing_ppgtt ||
4997 vm == &dev_priv->mm.aliasing_ppgtt->base)
4998 vm = &dev_priv->gtt.base;
5000 BUG_ON(list_empty(&o->vma_list));
5002 list_for_each_entry(vma, &o->vma_list, vma_link)
5003 if (vma->vm == vm)
5004 return vma->node.size;
5006 return 0;
5009 static unsigned long
5010 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5012 struct drm_i915_private *dev_priv =
5013 container_of(shrinker,
5014 struct drm_i915_private,
5015 mm.inactive_shrinker);
5016 struct drm_device *dev = dev_priv->dev;
5017 unsigned long freed;
5018 bool unlock = true;
5020 if (!mutex_trylock(&dev->struct_mutex)) {
5021 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5022 return SHRINK_STOP;
5024 if (dev_priv->mm.shrinker_no_lock_stealing)
5025 return SHRINK_STOP;
5027 unlock = false;
5030 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5031 if (freed < sc->nr_to_scan)
5032 freed += __i915_gem_shrink(dev_priv,
5033 sc->nr_to_scan - freed,
5034 false);
5035 if (freed < sc->nr_to_scan)
5036 freed += i915_gem_shrink_all(dev_priv);
5038 if (unlock)
5039 mutex_unlock(&dev->struct_mutex);
5041 return freed;
5044 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5046 struct i915_vma *vma;
5048 if (WARN_ON(list_empty(&obj->vma_list)))
5049 return NULL;
5051 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5052 if (vma->vm != obj_to_ggtt(obj))
5053 return NULL;
5055 return vma;