PM / hibernate: re-enable nonboot cpus on disable_nonboot_cpus() failure
[linux-2.6/btrfs-unstable.git] / fs / kernfs / dir.c
blobf131fc23ffc4c18f03a9764973fa998bf0e5f79e
1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 * This file is released under the GPLv2.
9 */
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
19 #include "kernfs-internal.h"
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node *kn)
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node *kn)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
50 char *p = buf + buflen;
51 int len;
53 *--p = '\0';
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
68 return p;
71 /**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
81 * This function can be called from any context.
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
85 unsigned long flags;
86 int ret;
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
94 /**
95 * kernfs_path - build full path of a given node
96 * @kn: kernfs_node of interest
97 * @buf: buffer to copy @kn's name into
98 * @buflen: size of @buf
100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
101 * path is built from the end of @buf so the returned pointer usually
102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
103 * and %NULL is returned.
105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
107 unsigned long flags;
108 char *p;
110 spin_lock_irqsave(&kernfs_rename_lock, flags);
111 p = kernfs_path_locked(kn, buf, buflen);
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 return p;
115 EXPORT_SYMBOL_GPL(kernfs_path);
118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119 * @kn: kernfs_node of interest
121 * This function can be called from any context.
123 void pr_cont_kernfs_name(struct kernfs_node *kn)
125 unsigned long flags;
127 spin_lock_irqsave(&kernfs_rename_lock, flags);
129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 pr_cont("%s", kernfs_pr_cont_buf);
132 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137 * @kn: kernfs_node of interest
139 * This function can be called from any context.
141 void pr_cont_kernfs_path(struct kernfs_node *kn)
143 unsigned long flags;
144 char *p;
146 spin_lock_irqsave(&kernfs_rename_lock, flags);
148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 sizeof(kernfs_pr_cont_buf));
150 if (p)
151 pr_cont("%s", p);
152 else
153 pr_cont("<name too long>");
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
159 * kernfs_get_parent - determine the parent node and pin it
160 * @kn: kernfs_node of interest
162 * Determines @kn's parent, pins and returns it. This function can be
163 * called from any context.
165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
167 struct kernfs_node *parent;
168 unsigned long flags;
170 spin_lock_irqsave(&kernfs_rename_lock, flags);
171 parent = kn->parent;
172 kernfs_get(parent);
173 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
175 return parent;
179 * kernfs_name_hash
180 * @name: Null terminated string to hash
181 * @ns: Namespace tag to hash
183 * Returns 31 bit hash of ns + name (so it fits in an off_t )
185 static unsigned int kernfs_name_hash(const char *name, const void *ns)
187 unsigned long hash = init_name_hash();
188 unsigned int len = strlen(name);
189 while (len--)
190 hash = partial_name_hash(*name++, hash);
191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 hash &= 0x7fffffffU;
193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194 if (hash < 2)
195 hash += 2;
196 if (hash >= INT_MAX)
197 hash = INT_MAX - 1;
198 return hash;
201 static int kernfs_name_compare(unsigned int hash, const char *name,
202 const void *ns, const struct kernfs_node *kn)
204 if (hash < kn->hash)
205 return -1;
206 if (hash > kn->hash)
207 return 1;
208 if (ns < kn->ns)
209 return -1;
210 if (ns > kn->ns)
211 return 1;
212 return strcmp(name, kn->name);
215 static int kernfs_sd_compare(const struct kernfs_node *left,
216 const struct kernfs_node *right)
218 return kernfs_name_compare(left->hash, left->name, left->ns, right);
222 * kernfs_link_sibling - link kernfs_node into sibling rbtree
223 * @kn: kernfs_node of interest
225 * Link @kn into its sibling rbtree which starts from
226 * @kn->parent->dir.children.
228 * Locking:
229 * mutex_lock(kernfs_mutex)
231 * RETURNS:
232 * 0 on susccess -EEXIST on failure.
234 static int kernfs_link_sibling(struct kernfs_node *kn)
236 struct rb_node **node = &kn->parent->dir.children.rb_node;
237 struct rb_node *parent = NULL;
239 while (*node) {
240 struct kernfs_node *pos;
241 int result;
243 pos = rb_to_kn(*node);
244 parent = *node;
245 result = kernfs_sd_compare(kn, pos);
246 if (result < 0)
247 node = &pos->rb.rb_left;
248 else if (result > 0)
249 node = &pos->rb.rb_right;
250 else
251 return -EEXIST;
254 /* add new node and rebalance the tree */
255 rb_link_node(&kn->rb, parent, node);
256 rb_insert_color(&kn->rb, &kn->parent->dir.children);
258 /* successfully added, account subdir number */
259 if (kernfs_type(kn) == KERNFS_DIR)
260 kn->parent->dir.subdirs++;
262 return 0;
266 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
267 * @kn: kernfs_node of interest
269 * Try to unlink @kn from its sibling rbtree which starts from
270 * kn->parent->dir.children. Returns %true if @kn was actually
271 * removed, %false if @kn wasn't on the rbtree.
273 * Locking:
274 * mutex_lock(kernfs_mutex)
276 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
278 if (RB_EMPTY_NODE(&kn->rb))
279 return false;
281 if (kernfs_type(kn) == KERNFS_DIR)
282 kn->parent->dir.subdirs--;
284 rb_erase(&kn->rb, &kn->parent->dir.children);
285 RB_CLEAR_NODE(&kn->rb);
286 return true;
290 * kernfs_get_active - get an active reference to kernfs_node
291 * @kn: kernfs_node to get an active reference to
293 * Get an active reference of @kn. This function is noop if @kn
294 * is NULL.
296 * RETURNS:
297 * Pointer to @kn on success, NULL on failure.
299 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
301 if (unlikely(!kn))
302 return NULL;
304 if (!atomic_inc_unless_negative(&kn->active))
305 return NULL;
307 if (kernfs_lockdep(kn))
308 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
309 return kn;
313 * kernfs_put_active - put an active reference to kernfs_node
314 * @kn: kernfs_node to put an active reference to
316 * Put an active reference to @kn. This function is noop if @kn
317 * is NULL.
319 void kernfs_put_active(struct kernfs_node *kn)
321 struct kernfs_root *root = kernfs_root(kn);
322 int v;
324 if (unlikely(!kn))
325 return;
327 if (kernfs_lockdep(kn))
328 rwsem_release(&kn->dep_map, 1, _RET_IP_);
329 v = atomic_dec_return(&kn->active);
330 if (likely(v != KN_DEACTIVATED_BIAS))
331 return;
333 wake_up_all(&root->deactivate_waitq);
337 * kernfs_drain - drain kernfs_node
338 * @kn: kernfs_node to drain
340 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
341 * removers may invoke this function concurrently on @kn and all will
342 * return after draining is complete.
344 static void kernfs_drain(struct kernfs_node *kn)
345 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
347 struct kernfs_root *root = kernfs_root(kn);
349 lockdep_assert_held(&kernfs_mutex);
350 WARN_ON_ONCE(kernfs_active(kn));
352 mutex_unlock(&kernfs_mutex);
354 if (kernfs_lockdep(kn)) {
355 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
356 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
357 lock_contended(&kn->dep_map, _RET_IP_);
360 /* but everyone should wait for draining */
361 wait_event(root->deactivate_waitq,
362 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
364 if (kernfs_lockdep(kn)) {
365 lock_acquired(&kn->dep_map, _RET_IP_);
366 rwsem_release(&kn->dep_map, 1, _RET_IP_);
369 kernfs_unmap_bin_file(kn);
371 mutex_lock(&kernfs_mutex);
375 * kernfs_get - get a reference count on a kernfs_node
376 * @kn: the target kernfs_node
378 void kernfs_get(struct kernfs_node *kn)
380 if (kn) {
381 WARN_ON(!atomic_read(&kn->count));
382 atomic_inc(&kn->count);
385 EXPORT_SYMBOL_GPL(kernfs_get);
388 * kernfs_put - put a reference count on a kernfs_node
389 * @kn: the target kernfs_node
391 * Put a reference count of @kn and destroy it if it reached zero.
393 void kernfs_put(struct kernfs_node *kn)
395 struct kernfs_node *parent;
396 struct kernfs_root *root;
398 if (!kn || !atomic_dec_and_test(&kn->count))
399 return;
400 root = kernfs_root(kn);
401 repeat:
403 * Moving/renaming is always done while holding reference.
404 * kn->parent won't change beneath us.
406 parent = kn->parent;
408 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
409 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
410 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
412 if (kernfs_type(kn) == KERNFS_LINK)
413 kernfs_put(kn->symlink.target_kn);
415 kfree_const(kn->name);
417 if (kn->iattr) {
418 if (kn->iattr->ia_secdata)
419 security_release_secctx(kn->iattr->ia_secdata,
420 kn->iattr->ia_secdata_len);
421 simple_xattrs_free(&kn->iattr->xattrs);
423 kfree(kn->iattr);
424 ida_simple_remove(&root->ino_ida, kn->ino);
425 kmem_cache_free(kernfs_node_cache, kn);
427 kn = parent;
428 if (kn) {
429 if (atomic_dec_and_test(&kn->count))
430 goto repeat;
431 } else {
432 /* just released the root kn, free @root too */
433 ida_destroy(&root->ino_ida);
434 kfree(root);
437 EXPORT_SYMBOL_GPL(kernfs_put);
439 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
441 struct kernfs_node *kn;
443 if (flags & LOOKUP_RCU)
444 return -ECHILD;
446 /* Always perform fresh lookup for negatives */
447 if (d_really_is_negative(dentry))
448 goto out_bad_unlocked;
450 kn = dentry->d_fsdata;
451 mutex_lock(&kernfs_mutex);
453 /* The kernfs node has been deactivated */
454 if (!kernfs_active(kn))
455 goto out_bad;
457 /* The kernfs node has been moved? */
458 if (dentry->d_parent->d_fsdata != kn->parent)
459 goto out_bad;
461 /* The kernfs node has been renamed */
462 if (strcmp(dentry->d_name.name, kn->name) != 0)
463 goto out_bad;
465 /* The kernfs node has been moved to a different namespace */
466 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
467 kernfs_info(dentry->d_sb)->ns != kn->ns)
468 goto out_bad;
470 mutex_unlock(&kernfs_mutex);
471 return 1;
472 out_bad:
473 mutex_unlock(&kernfs_mutex);
474 out_bad_unlocked:
475 return 0;
478 static void kernfs_dop_release(struct dentry *dentry)
480 kernfs_put(dentry->d_fsdata);
483 const struct dentry_operations kernfs_dops = {
484 .d_revalidate = kernfs_dop_revalidate,
485 .d_release = kernfs_dop_release,
489 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
490 * @dentry: the dentry in question
492 * Return the kernfs_node associated with @dentry. If @dentry is not a
493 * kernfs one, %NULL is returned.
495 * While the returned kernfs_node will stay accessible as long as @dentry
496 * is accessible, the returned node can be in any state and the caller is
497 * fully responsible for determining what's accessible.
499 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
501 if (dentry->d_sb->s_op == &kernfs_sops)
502 return dentry->d_fsdata;
503 return NULL;
506 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
507 const char *name, umode_t mode,
508 unsigned flags)
510 struct kernfs_node *kn;
511 int ret;
513 name = kstrdup_const(name, GFP_KERNEL);
514 if (!name)
515 return NULL;
517 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
518 if (!kn)
519 goto err_out1;
521 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
522 if (ret < 0)
523 goto err_out2;
524 kn->ino = ret;
526 atomic_set(&kn->count, 1);
527 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
528 RB_CLEAR_NODE(&kn->rb);
530 kn->name = name;
531 kn->mode = mode;
532 kn->flags = flags;
534 return kn;
536 err_out2:
537 kmem_cache_free(kernfs_node_cache, kn);
538 err_out1:
539 kfree_const(name);
540 return NULL;
543 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
544 const char *name, umode_t mode,
545 unsigned flags)
547 struct kernfs_node *kn;
549 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
550 if (kn) {
551 kernfs_get(parent);
552 kn->parent = parent;
554 return kn;
558 * kernfs_add_one - add kernfs_node to parent without warning
559 * @kn: kernfs_node to be added
561 * The caller must already have initialized @kn->parent. This
562 * function increments nlink of the parent's inode if @kn is a
563 * directory and link into the children list of the parent.
565 * RETURNS:
566 * 0 on success, -EEXIST if entry with the given name already
567 * exists.
569 int kernfs_add_one(struct kernfs_node *kn)
571 struct kernfs_node *parent = kn->parent;
572 struct kernfs_iattrs *ps_iattr;
573 bool has_ns;
574 int ret;
576 mutex_lock(&kernfs_mutex);
578 ret = -EINVAL;
579 has_ns = kernfs_ns_enabled(parent);
580 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
581 has_ns ? "required" : "invalid", parent->name, kn->name))
582 goto out_unlock;
584 if (kernfs_type(parent) != KERNFS_DIR)
585 goto out_unlock;
587 ret = -ENOENT;
588 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
589 goto out_unlock;
591 kn->hash = kernfs_name_hash(kn->name, kn->ns);
593 ret = kernfs_link_sibling(kn);
594 if (ret)
595 goto out_unlock;
597 /* Update timestamps on the parent */
598 ps_iattr = parent->iattr;
599 if (ps_iattr) {
600 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
601 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
604 mutex_unlock(&kernfs_mutex);
607 * Activate the new node unless CREATE_DEACTIVATED is requested.
608 * If not activated here, the kernfs user is responsible for
609 * activating the node with kernfs_activate(). A node which hasn't
610 * been activated is not visible to userland and its removal won't
611 * trigger deactivation.
613 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
614 kernfs_activate(kn);
615 return 0;
617 out_unlock:
618 mutex_unlock(&kernfs_mutex);
619 return ret;
623 * kernfs_find_ns - find kernfs_node with the given name
624 * @parent: kernfs_node to search under
625 * @name: name to look for
626 * @ns: the namespace tag to use
628 * Look for kernfs_node with name @name under @parent. Returns pointer to
629 * the found kernfs_node on success, %NULL on failure.
631 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
632 const unsigned char *name,
633 const void *ns)
635 struct rb_node *node = parent->dir.children.rb_node;
636 bool has_ns = kernfs_ns_enabled(parent);
637 unsigned int hash;
639 lockdep_assert_held(&kernfs_mutex);
641 if (has_ns != (bool)ns) {
642 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
643 has_ns ? "required" : "invalid", parent->name, name);
644 return NULL;
647 hash = kernfs_name_hash(name, ns);
648 while (node) {
649 struct kernfs_node *kn;
650 int result;
652 kn = rb_to_kn(node);
653 result = kernfs_name_compare(hash, name, ns, kn);
654 if (result < 0)
655 node = node->rb_left;
656 else if (result > 0)
657 node = node->rb_right;
658 else
659 return kn;
661 return NULL;
665 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
666 * @parent: kernfs_node to search under
667 * @name: name to look for
668 * @ns: the namespace tag to use
670 * Look for kernfs_node with name @name under @parent and get a reference
671 * if found. This function may sleep and returns pointer to the found
672 * kernfs_node on success, %NULL on failure.
674 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
675 const char *name, const void *ns)
677 struct kernfs_node *kn;
679 mutex_lock(&kernfs_mutex);
680 kn = kernfs_find_ns(parent, name, ns);
681 kernfs_get(kn);
682 mutex_unlock(&kernfs_mutex);
684 return kn;
686 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
689 * kernfs_create_root - create a new kernfs hierarchy
690 * @scops: optional syscall operations for the hierarchy
691 * @flags: KERNFS_ROOT_* flags
692 * @priv: opaque data associated with the new directory
694 * Returns the root of the new hierarchy on success, ERR_PTR() value on
695 * failure.
697 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
698 unsigned int flags, void *priv)
700 struct kernfs_root *root;
701 struct kernfs_node *kn;
703 root = kzalloc(sizeof(*root), GFP_KERNEL);
704 if (!root)
705 return ERR_PTR(-ENOMEM);
707 ida_init(&root->ino_ida);
708 INIT_LIST_HEAD(&root->supers);
710 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
711 KERNFS_DIR);
712 if (!kn) {
713 ida_destroy(&root->ino_ida);
714 kfree(root);
715 return ERR_PTR(-ENOMEM);
718 kn->priv = priv;
719 kn->dir.root = root;
721 root->syscall_ops = scops;
722 root->flags = flags;
723 root->kn = kn;
724 init_waitqueue_head(&root->deactivate_waitq);
726 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
727 kernfs_activate(kn);
729 return root;
733 * kernfs_destroy_root - destroy a kernfs hierarchy
734 * @root: root of the hierarchy to destroy
736 * Destroy the hierarchy anchored at @root by removing all existing
737 * directories and destroying @root.
739 void kernfs_destroy_root(struct kernfs_root *root)
741 kernfs_remove(root->kn); /* will also free @root */
745 * kernfs_create_dir_ns - create a directory
746 * @parent: parent in which to create a new directory
747 * @name: name of the new directory
748 * @mode: mode of the new directory
749 * @priv: opaque data associated with the new directory
750 * @ns: optional namespace tag of the directory
752 * Returns the created node on success, ERR_PTR() value on failure.
754 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
755 const char *name, umode_t mode,
756 void *priv, const void *ns)
758 struct kernfs_node *kn;
759 int rc;
761 /* allocate */
762 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
763 if (!kn)
764 return ERR_PTR(-ENOMEM);
766 kn->dir.root = parent->dir.root;
767 kn->ns = ns;
768 kn->priv = priv;
770 /* link in */
771 rc = kernfs_add_one(kn);
772 if (!rc)
773 return kn;
775 kernfs_put(kn);
776 return ERR_PTR(rc);
779 static struct dentry *kernfs_iop_lookup(struct inode *dir,
780 struct dentry *dentry,
781 unsigned int flags)
783 struct dentry *ret;
784 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
785 struct kernfs_node *kn;
786 struct inode *inode;
787 const void *ns = NULL;
789 mutex_lock(&kernfs_mutex);
791 if (kernfs_ns_enabled(parent))
792 ns = kernfs_info(dir->i_sb)->ns;
794 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
796 /* no such entry */
797 if (!kn || !kernfs_active(kn)) {
798 ret = NULL;
799 goto out_unlock;
801 kernfs_get(kn);
802 dentry->d_fsdata = kn;
804 /* attach dentry and inode */
805 inode = kernfs_get_inode(dir->i_sb, kn);
806 if (!inode) {
807 ret = ERR_PTR(-ENOMEM);
808 goto out_unlock;
811 /* instantiate and hash dentry */
812 ret = d_splice_alias(inode, dentry);
813 out_unlock:
814 mutex_unlock(&kernfs_mutex);
815 return ret;
818 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
819 umode_t mode)
821 struct kernfs_node *parent = dir->i_private;
822 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
823 int ret;
825 if (!scops || !scops->mkdir)
826 return -EPERM;
828 if (!kernfs_get_active(parent))
829 return -ENODEV;
831 ret = scops->mkdir(parent, dentry->d_name.name, mode);
833 kernfs_put_active(parent);
834 return ret;
837 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
839 struct kernfs_node *kn = dentry->d_fsdata;
840 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
841 int ret;
843 if (!scops || !scops->rmdir)
844 return -EPERM;
846 if (!kernfs_get_active(kn))
847 return -ENODEV;
849 ret = scops->rmdir(kn);
851 kernfs_put_active(kn);
852 return ret;
855 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
856 struct inode *new_dir, struct dentry *new_dentry)
858 struct kernfs_node *kn = old_dentry->d_fsdata;
859 struct kernfs_node *new_parent = new_dir->i_private;
860 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
861 int ret;
863 if (!scops || !scops->rename)
864 return -EPERM;
866 if (!kernfs_get_active(kn))
867 return -ENODEV;
869 if (!kernfs_get_active(new_parent)) {
870 kernfs_put_active(kn);
871 return -ENODEV;
874 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
876 kernfs_put_active(new_parent);
877 kernfs_put_active(kn);
878 return ret;
881 const struct inode_operations kernfs_dir_iops = {
882 .lookup = kernfs_iop_lookup,
883 .permission = kernfs_iop_permission,
884 .setattr = kernfs_iop_setattr,
885 .getattr = kernfs_iop_getattr,
886 .setxattr = kernfs_iop_setxattr,
887 .removexattr = kernfs_iop_removexattr,
888 .getxattr = kernfs_iop_getxattr,
889 .listxattr = kernfs_iop_listxattr,
891 .mkdir = kernfs_iop_mkdir,
892 .rmdir = kernfs_iop_rmdir,
893 .rename = kernfs_iop_rename,
896 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
898 struct kernfs_node *last;
900 while (true) {
901 struct rb_node *rbn;
903 last = pos;
905 if (kernfs_type(pos) != KERNFS_DIR)
906 break;
908 rbn = rb_first(&pos->dir.children);
909 if (!rbn)
910 break;
912 pos = rb_to_kn(rbn);
915 return last;
919 * kernfs_next_descendant_post - find the next descendant for post-order walk
920 * @pos: the current position (%NULL to initiate traversal)
921 * @root: kernfs_node whose descendants to walk
923 * Find the next descendant to visit for post-order traversal of @root's
924 * descendants. @root is included in the iteration and the last node to be
925 * visited.
927 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
928 struct kernfs_node *root)
930 struct rb_node *rbn;
932 lockdep_assert_held(&kernfs_mutex);
934 /* if first iteration, visit leftmost descendant which may be root */
935 if (!pos)
936 return kernfs_leftmost_descendant(root);
938 /* if we visited @root, we're done */
939 if (pos == root)
940 return NULL;
942 /* if there's an unvisited sibling, visit its leftmost descendant */
943 rbn = rb_next(&pos->rb);
944 if (rbn)
945 return kernfs_leftmost_descendant(rb_to_kn(rbn));
947 /* no sibling left, visit parent */
948 return pos->parent;
952 * kernfs_activate - activate a node which started deactivated
953 * @kn: kernfs_node whose subtree is to be activated
955 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
956 * needs to be explicitly activated. A node which hasn't been activated
957 * isn't visible to userland and deactivation is skipped during its
958 * removal. This is useful to construct atomic init sequences where
959 * creation of multiple nodes should either succeed or fail atomically.
961 * The caller is responsible for ensuring that this function is not called
962 * after kernfs_remove*() is invoked on @kn.
964 void kernfs_activate(struct kernfs_node *kn)
966 struct kernfs_node *pos;
968 mutex_lock(&kernfs_mutex);
970 pos = NULL;
971 while ((pos = kernfs_next_descendant_post(pos, kn))) {
972 if (!pos || (pos->flags & KERNFS_ACTIVATED))
973 continue;
975 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
976 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
978 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
979 pos->flags |= KERNFS_ACTIVATED;
982 mutex_unlock(&kernfs_mutex);
985 static void __kernfs_remove(struct kernfs_node *kn)
987 struct kernfs_node *pos;
989 lockdep_assert_held(&kernfs_mutex);
992 * Short-circuit if non-root @kn has already finished removal.
993 * This is for kernfs_remove_self() which plays with active ref
994 * after removal.
996 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
997 return;
999 pr_debug("kernfs %s: removing\n", kn->name);
1001 /* prevent any new usage under @kn by deactivating all nodes */
1002 pos = NULL;
1003 while ((pos = kernfs_next_descendant_post(pos, kn)))
1004 if (kernfs_active(pos))
1005 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1007 /* deactivate and unlink the subtree node-by-node */
1008 do {
1009 pos = kernfs_leftmost_descendant(kn);
1012 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1013 * base ref could have been put by someone else by the time
1014 * the function returns. Make sure it doesn't go away
1015 * underneath us.
1017 kernfs_get(pos);
1020 * Drain iff @kn was activated. This avoids draining and
1021 * its lockdep annotations for nodes which have never been
1022 * activated and allows embedding kernfs_remove() in create
1023 * error paths without worrying about draining.
1025 if (kn->flags & KERNFS_ACTIVATED)
1026 kernfs_drain(pos);
1027 else
1028 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1031 * kernfs_unlink_sibling() succeeds once per node. Use it
1032 * to decide who's responsible for cleanups.
1034 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1035 struct kernfs_iattrs *ps_iattr =
1036 pos->parent ? pos->parent->iattr : NULL;
1038 /* update timestamps on the parent */
1039 if (ps_iattr) {
1040 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1041 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1044 kernfs_put(pos);
1047 kernfs_put(pos);
1048 } while (pos != kn);
1052 * kernfs_remove - remove a kernfs_node recursively
1053 * @kn: the kernfs_node to remove
1055 * Remove @kn along with all its subdirectories and files.
1057 void kernfs_remove(struct kernfs_node *kn)
1059 mutex_lock(&kernfs_mutex);
1060 __kernfs_remove(kn);
1061 mutex_unlock(&kernfs_mutex);
1065 * kernfs_break_active_protection - break out of active protection
1066 * @kn: the self kernfs_node
1068 * The caller must be running off of a kernfs operation which is invoked
1069 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1070 * this function must also be matched with an invocation of
1071 * kernfs_unbreak_active_protection().
1073 * This function releases the active reference of @kn the caller is
1074 * holding. Once this function is called, @kn may be removed at any point
1075 * and the caller is solely responsible for ensuring that the objects it
1076 * dereferences are accessible.
1078 void kernfs_break_active_protection(struct kernfs_node *kn)
1081 * Take out ourself out of the active ref dependency chain. If
1082 * we're called without an active ref, lockdep will complain.
1084 kernfs_put_active(kn);
1088 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1089 * @kn: the self kernfs_node
1091 * If kernfs_break_active_protection() was called, this function must be
1092 * invoked before finishing the kernfs operation. Note that while this
1093 * function restores the active reference, it doesn't and can't actually
1094 * restore the active protection - @kn may already or be in the process of
1095 * being removed. Once kernfs_break_active_protection() is invoked, that
1096 * protection is irreversibly gone for the kernfs operation instance.
1098 * While this function may be called at any point after
1099 * kernfs_break_active_protection() is invoked, its most useful location
1100 * would be right before the enclosing kernfs operation returns.
1102 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1105 * @kn->active could be in any state; however, the increment we do
1106 * here will be undone as soon as the enclosing kernfs operation
1107 * finishes and this temporary bump can't break anything. If @kn
1108 * is alive, nothing changes. If @kn is being deactivated, the
1109 * soon-to-follow put will either finish deactivation or restore
1110 * deactivated state. If @kn is already removed, the temporary
1111 * bump is guaranteed to be gone before @kn is released.
1113 atomic_inc(&kn->active);
1114 if (kernfs_lockdep(kn))
1115 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1119 * kernfs_remove_self - remove a kernfs_node from its own method
1120 * @kn: the self kernfs_node to remove
1122 * The caller must be running off of a kernfs operation which is invoked
1123 * with an active reference - e.g. one of kernfs_ops. This can be used to
1124 * implement a file operation which deletes itself.
1126 * For example, the "delete" file for a sysfs device directory can be
1127 * implemented by invoking kernfs_remove_self() on the "delete" file
1128 * itself. This function breaks the circular dependency of trying to
1129 * deactivate self while holding an active ref itself. It isn't necessary
1130 * to modify the usual removal path to use kernfs_remove_self(). The
1131 * "delete" implementation can simply invoke kernfs_remove_self() on self
1132 * before proceeding with the usual removal path. kernfs will ignore later
1133 * kernfs_remove() on self.
1135 * kernfs_remove_self() can be called multiple times concurrently on the
1136 * same kernfs_node. Only the first one actually performs removal and
1137 * returns %true. All others will wait until the kernfs operation which
1138 * won self-removal finishes and return %false. Note that the losers wait
1139 * for the completion of not only the winning kernfs_remove_self() but also
1140 * the whole kernfs_ops which won the arbitration. This can be used to
1141 * guarantee, for example, all concurrent writes to a "delete" file to
1142 * finish only after the whole operation is complete.
1144 bool kernfs_remove_self(struct kernfs_node *kn)
1146 bool ret;
1148 mutex_lock(&kernfs_mutex);
1149 kernfs_break_active_protection(kn);
1152 * SUICIDAL is used to arbitrate among competing invocations. Only
1153 * the first one will actually perform removal. When the removal
1154 * is complete, SUICIDED is set and the active ref is restored
1155 * while holding kernfs_mutex. The ones which lost arbitration
1156 * waits for SUICDED && drained which can happen only after the
1157 * enclosing kernfs operation which executed the winning instance
1158 * of kernfs_remove_self() finished.
1160 if (!(kn->flags & KERNFS_SUICIDAL)) {
1161 kn->flags |= KERNFS_SUICIDAL;
1162 __kernfs_remove(kn);
1163 kn->flags |= KERNFS_SUICIDED;
1164 ret = true;
1165 } else {
1166 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1167 DEFINE_WAIT(wait);
1169 while (true) {
1170 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1172 if ((kn->flags & KERNFS_SUICIDED) &&
1173 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1174 break;
1176 mutex_unlock(&kernfs_mutex);
1177 schedule();
1178 mutex_lock(&kernfs_mutex);
1180 finish_wait(waitq, &wait);
1181 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1182 ret = false;
1186 * This must be done while holding kernfs_mutex; otherwise, waiting
1187 * for SUICIDED && deactivated could finish prematurely.
1189 kernfs_unbreak_active_protection(kn);
1191 mutex_unlock(&kernfs_mutex);
1192 return ret;
1196 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1197 * @parent: parent of the target
1198 * @name: name of the kernfs_node to remove
1199 * @ns: namespace tag of the kernfs_node to remove
1201 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1202 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1204 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1205 const void *ns)
1207 struct kernfs_node *kn;
1209 if (!parent) {
1210 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1211 name);
1212 return -ENOENT;
1215 mutex_lock(&kernfs_mutex);
1217 kn = kernfs_find_ns(parent, name, ns);
1218 if (kn)
1219 __kernfs_remove(kn);
1221 mutex_unlock(&kernfs_mutex);
1223 if (kn)
1224 return 0;
1225 else
1226 return -ENOENT;
1230 * kernfs_rename_ns - move and rename a kernfs_node
1231 * @kn: target node
1232 * @new_parent: new parent to put @sd under
1233 * @new_name: new name
1234 * @new_ns: new namespace tag
1236 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1237 const char *new_name, const void *new_ns)
1239 struct kernfs_node *old_parent;
1240 const char *old_name = NULL;
1241 int error;
1243 /* can't move or rename root */
1244 if (!kn->parent)
1245 return -EINVAL;
1247 mutex_lock(&kernfs_mutex);
1249 error = -ENOENT;
1250 if (!kernfs_active(kn) || !kernfs_active(new_parent))
1251 goto out;
1253 error = 0;
1254 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1255 (strcmp(kn->name, new_name) == 0))
1256 goto out; /* nothing to rename */
1258 error = -EEXIST;
1259 if (kernfs_find_ns(new_parent, new_name, new_ns))
1260 goto out;
1262 /* rename kernfs_node */
1263 if (strcmp(kn->name, new_name) != 0) {
1264 error = -ENOMEM;
1265 new_name = kstrdup_const(new_name, GFP_KERNEL);
1266 if (!new_name)
1267 goto out;
1268 } else {
1269 new_name = NULL;
1273 * Move to the appropriate place in the appropriate directories rbtree.
1275 kernfs_unlink_sibling(kn);
1276 kernfs_get(new_parent);
1278 /* rename_lock protects ->parent and ->name accessors */
1279 spin_lock_irq(&kernfs_rename_lock);
1281 old_parent = kn->parent;
1282 kn->parent = new_parent;
1284 kn->ns = new_ns;
1285 if (new_name) {
1286 old_name = kn->name;
1287 kn->name = new_name;
1290 spin_unlock_irq(&kernfs_rename_lock);
1292 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1293 kernfs_link_sibling(kn);
1295 kernfs_put(old_parent);
1296 kfree_const(old_name);
1298 error = 0;
1299 out:
1300 mutex_unlock(&kernfs_mutex);
1301 return error;
1304 /* Relationship between s_mode and the DT_xxx types */
1305 static inline unsigned char dt_type(struct kernfs_node *kn)
1307 return (kn->mode >> 12) & 15;
1310 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1312 kernfs_put(filp->private_data);
1313 return 0;
1316 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1317 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1319 if (pos) {
1320 int valid = kernfs_active(pos) &&
1321 pos->parent == parent && hash == pos->hash;
1322 kernfs_put(pos);
1323 if (!valid)
1324 pos = NULL;
1326 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1327 struct rb_node *node = parent->dir.children.rb_node;
1328 while (node) {
1329 pos = rb_to_kn(node);
1331 if (hash < pos->hash)
1332 node = node->rb_left;
1333 else if (hash > pos->hash)
1334 node = node->rb_right;
1335 else
1336 break;
1339 /* Skip over entries which are dying/dead or in the wrong namespace */
1340 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1341 struct rb_node *node = rb_next(&pos->rb);
1342 if (!node)
1343 pos = NULL;
1344 else
1345 pos = rb_to_kn(node);
1347 return pos;
1350 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1351 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1353 pos = kernfs_dir_pos(ns, parent, ino, pos);
1354 if (pos) {
1355 do {
1356 struct rb_node *node = rb_next(&pos->rb);
1357 if (!node)
1358 pos = NULL;
1359 else
1360 pos = rb_to_kn(node);
1361 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1363 return pos;
1366 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1368 struct dentry *dentry = file->f_path.dentry;
1369 struct kernfs_node *parent = dentry->d_fsdata;
1370 struct kernfs_node *pos = file->private_data;
1371 const void *ns = NULL;
1373 if (!dir_emit_dots(file, ctx))
1374 return 0;
1375 mutex_lock(&kernfs_mutex);
1377 if (kernfs_ns_enabled(parent))
1378 ns = kernfs_info(dentry->d_sb)->ns;
1380 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1381 pos;
1382 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1383 const char *name = pos->name;
1384 unsigned int type = dt_type(pos);
1385 int len = strlen(name);
1386 ino_t ino = pos->ino;
1388 ctx->pos = pos->hash;
1389 file->private_data = pos;
1390 kernfs_get(pos);
1392 mutex_unlock(&kernfs_mutex);
1393 if (!dir_emit(ctx, name, len, ino, type))
1394 return 0;
1395 mutex_lock(&kernfs_mutex);
1397 mutex_unlock(&kernfs_mutex);
1398 file->private_data = NULL;
1399 ctx->pos = INT_MAX;
1400 return 0;
1403 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1404 int whence)
1406 struct inode *inode = file_inode(file);
1407 loff_t ret;
1409 mutex_lock(&inode->i_mutex);
1410 ret = generic_file_llseek(file, offset, whence);
1411 mutex_unlock(&inode->i_mutex);
1413 return ret;
1416 const struct file_operations kernfs_dir_fops = {
1417 .read = generic_read_dir,
1418 .iterate = kernfs_fop_readdir,
1419 .release = kernfs_dir_fop_release,
1420 .llseek = kernfs_dir_fop_llseek,