inet: restore gso for vxlan
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp_input.c
blobb935397c703c569bf01e6ebfd85e6bfd1b474227
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_thin_dupack __read_mostly;
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
133 icsk->icsk_ack.last_seg_size = 0;
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
145 * "len" is invariant segment length, including TCP header.
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 static void tcp_incr_quickack(struct sock *sk)
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 static void tcp_enter_quickack_mode(struct sock *sk)
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
198 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
265 /* Buffer size and advertised window tuning.
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
270 static void tcp_sndbuf_expand(struct sock *sk)
272 const struct tcp_sock *tp = tcp_sk(sk);
273 int sndmem, per_mss;
274 u32 nr_segs;
276 /* Worst case is non GSO/TSO : each frame consumes one skb
277 * and skb->head is kmalloced using power of two area of memory
279 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
280 MAX_TCP_HEADER +
281 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
283 per_mss = roundup_pow_of_two(per_mss) +
284 SKB_DATA_ALIGN(sizeof(struct sk_buff));
286 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
287 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
289 /* Fast Recovery (RFC 5681 3.2) :
290 * Cubic needs 1.7 factor, rounded to 2 to include
291 * extra cushion (application might react slowly to POLLOUT)
293 sndmem = 2 * nr_segs * per_mss;
295 if (sk->sk_sndbuf < sndmem)
296 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
299 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
301 * All tcp_full_space() is split to two parts: "network" buffer, allocated
302 * forward and advertised in receiver window (tp->rcv_wnd) and
303 * "application buffer", required to isolate scheduling/application
304 * latencies from network.
305 * window_clamp is maximal advertised window. It can be less than
306 * tcp_full_space(), in this case tcp_full_space() - window_clamp
307 * is reserved for "application" buffer. The less window_clamp is
308 * the smoother our behaviour from viewpoint of network, but the lower
309 * throughput and the higher sensitivity of the connection to losses. 8)
311 * rcv_ssthresh is more strict window_clamp used at "slow start"
312 * phase to predict further behaviour of this connection.
313 * It is used for two goals:
314 * - to enforce header prediction at sender, even when application
315 * requires some significant "application buffer". It is check #1.
316 * - to prevent pruning of receive queue because of misprediction
317 * of receiver window. Check #2.
319 * The scheme does not work when sender sends good segments opening
320 * window and then starts to feed us spaghetti. But it should work
321 * in common situations. Otherwise, we have to rely on queue collapsing.
324 /* Slow part of check#2. */
325 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
327 struct tcp_sock *tp = tcp_sk(sk);
328 /* Optimize this! */
329 int truesize = tcp_win_from_space(skb->truesize) >> 1;
330 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
332 while (tp->rcv_ssthresh <= window) {
333 if (truesize <= skb->len)
334 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
336 truesize >>= 1;
337 window >>= 1;
339 return 0;
342 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
344 struct tcp_sock *tp = tcp_sk(sk);
346 /* Check #1 */
347 if (tp->rcv_ssthresh < tp->window_clamp &&
348 (int)tp->rcv_ssthresh < tcp_space(sk) &&
349 !sk_under_memory_pressure(sk)) {
350 int incr;
352 /* Check #2. Increase window, if skb with such overhead
353 * will fit to rcvbuf in future.
355 if (tcp_win_from_space(skb->truesize) <= skb->len)
356 incr = 2 * tp->advmss;
357 else
358 incr = __tcp_grow_window(sk, skb);
360 if (incr) {
361 incr = max_t(int, incr, 2 * skb->len);
362 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
363 tp->window_clamp);
364 inet_csk(sk)->icsk_ack.quick |= 1;
369 /* 3. Tuning rcvbuf, when connection enters established state. */
370 static void tcp_fixup_rcvbuf(struct sock *sk)
372 u32 mss = tcp_sk(sk)->advmss;
373 int rcvmem;
375 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
376 tcp_default_init_rwnd(mss);
378 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
379 * Allow enough cushion so that sender is not limited by our window
381 if (sysctl_tcp_moderate_rcvbuf)
382 rcvmem <<= 2;
384 if (sk->sk_rcvbuf < rcvmem)
385 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
388 /* 4. Try to fixup all. It is made immediately after connection enters
389 * established state.
391 void tcp_init_buffer_space(struct sock *sk)
393 struct tcp_sock *tp = tcp_sk(sk);
394 int maxwin;
396 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
397 tcp_fixup_rcvbuf(sk);
398 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
399 tcp_sndbuf_expand(sk);
401 tp->rcvq_space.space = tp->rcv_wnd;
402 tp->rcvq_space.time = tcp_time_stamp;
403 tp->rcvq_space.seq = tp->copied_seq;
405 maxwin = tcp_full_space(sk);
407 if (tp->window_clamp >= maxwin) {
408 tp->window_clamp = maxwin;
410 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
411 tp->window_clamp = max(maxwin -
412 (maxwin >> sysctl_tcp_app_win),
413 4 * tp->advmss);
416 /* Force reservation of one segment. */
417 if (sysctl_tcp_app_win &&
418 tp->window_clamp > 2 * tp->advmss &&
419 tp->window_clamp + tp->advmss > maxwin)
420 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
422 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
423 tp->snd_cwnd_stamp = tcp_time_stamp;
426 /* 5. Recalculate window clamp after socket hit its memory bounds. */
427 static void tcp_clamp_window(struct sock *sk)
429 struct tcp_sock *tp = tcp_sk(sk);
430 struct inet_connection_sock *icsk = inet_csk(sk);
432 icsk->icsk_ack.quick = 0;
434 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
435 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
436 !sk_under_memory_pressure(sk) &&
437 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
438 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
439 sysctl_tcp_rmem[2]);
441 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
442 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
445 /* Initialize RCV_MSS value.
446 * RCV_MSS is an our guess about MSS used by the peer.
447 * We haven't any direct information about the MSS.
448 * It's better to underestimate the RCV_MSS rather than overestimate.
449 * Overestimations make us ACKing less frequently than needed.
450 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
452 void tcp_initialize_rcv_mss(struct sock *sk)
454 const struct tcp_sock *tp = tcp_sk(sk);
455 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
457 hint = min(hint, tp->rcv_wnd / 2);
458 hint = min(hint, TCP_MSS_DEFAULT);
459 hint = max(hint, TCP_MIN_MSS);
461 inet_csk(sk)->icsk_ack.rcv_mss = hint;
463 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
465 /* Receiver "autotuning" code.
467 * The algorithm for RTT estimation w/o timestamps is based on
468 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
469 * <http://public.lanl.gov/radiant/pubs.html#DRS>
471 * More detail on this code can be found at
472 * <http://staff.psc.edu/jheffner/>,
473 * though this reference is out of date. A new paper
474 * is pending.
476 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
478 u32 new_sample = tp->rcv_rtt_est.rtt;
479 long m = sample;
481 if (m == 0)
482 m = 1;
484 if (new_sample != 0) {
485 /* If we sample in larger samples in the non-timestamp
486 * case, we could grossly overestimate the RTT especially
487 * with chatty applications or bulk transfer apps which
488 * are stalled on filesystem I/O.
490 * Also, since we are only going for a minimum in the
491 * non-timestamp case, we do not smooth things out
492 * else with timestamps disabled convergence takes too
493 * long.
495 if (!win_dep) {
496 m -= (new_sample >> 3);
497 new_sample += m;
498 } else {
499 m <<= 3;
500 if (m < new_sample)
501 new_sample = m;
503 } else {
504 /* No previous measure. */
505 new_sample = m << 3;
508 if (tp->rcv_rtt_est.rtt != new_sample)
509 tp->rcv_rtt_est.rtt = new_sample;
512 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
514 if (tp->rcv_rtt_est.time == 0)
515 goto new_measure;
516 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
517 return;
518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
520 new_measure:
521 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
522 tp->rcv_rtt_est.time = tcp_time_stamp;
525 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
526 const struct sk_buff *skb)
528 struct tcp_sock *tp = tcp_sk(sk);
529 if (tp->rx_opt.rcv_tsecr &&
530 (TCP_SKB_CB(skb)->end_seq -
531 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
532 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
536 * This function should be called every time data is copied to user space.
537 * It calculates the appropriate TCP receive buffer space.
539 void tcp_rcv_space_adjust(struct sock *sk)
541 struct tcp_sock *tp = tcp_sk(sk);
542 int time;
543 int copied;
545 time = tcp_time_stamp - tp->rcvq_space.time;
546 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
547 return;
549 /* Number of bytes copied to user in last RTT */
550 copied = tp->copied_seq - tp->rcvq_space.seq;
551 if (copied <= tp->rcvq_space.space)
552 goto new_measure;
554 /* A bit of theory :
555 * copied = bytes received in previous RTT, our base window
556 * To cope with packet losses, we need a 2x factor
557 * To cope with slow start, and sender growing its cwin by 100 %
558 * every RTT, we need a 4x factor, because the ACK we are sending
559 * now is for the next RTT, not the current one :
560 * <prev RTT . ><current RTT .. ><next RTT .... >
563 if (sysctl_tcp_moderate_rcvbuf &&
564 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
565 int rcvwin, rcvmem, rcvbuf;
567 /* minimal window to cope with packet losses, assuming
568 * steady state. Add some cushion because of small variations.
570 rcvwin = (copied << 1) + 16 * tp->advmss;
572 /* If rate increased by 25%,
573 * assume slow start, rcvwin = 3 * copied
574 * If rate increased by 50%,
575 * assume sender can use 2x growth, rcvwin = 4 * copied
577 if (copied >=
578 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
579 if (copied >=
580 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
581 rcvwin <<= 1;
582 else
583 rcvwin += (rcvwin >> 1);
586 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
587 while (tcp_win_from_space(rcvmem) < tp->advmss)
588 rcvmem += 128;
590 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
591 if (rcvbuf > sk->sk_rcvbuf) {
592 sk->sk_rcvbuf = rcvbuf;
594 /* Make the window clamp follow along. */
595 tp->window_clamp = rcvwin;
598 tp->rcvq_space.space = copied;
600 new_measure:
601 tp->rcvq_space.seq = tp->copied_seq;
602 tp->rcvq_space.time = tcp_time_stamp;
605 /* There is something which you must keep in mind when you analyze the
606 * behavior of the tp->ato delayed ack timeout interval. When a
607 * connection starts up, we want to ack as quickly as possible. The
608 * problem is that "good" TCP's do slow start at the beginning of data
609 * transmission. The means that until we send the first few ACK's the
610 * sender will sit on his end and only queue most of his data, because
611 * he can only send snd_cwnd unacked packets at any given time. For
612 * each ACK we send, he increments snd_cwnd and transmits more of his
613 * queue. -DaveM
615 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
617 struct tcp_sock *tp = tcp_sk(sk);
618 struct inet_connection_sock *icsk = inet_csk(sk);
619 u32 now;
621 inet_csk_schedule_ack(sk);
623 tcp_measure_rcv_mss(sk, skb);
625 tcp_rcv_rtt_measure(tp);
627 now = tcp_time_stamp;
629 if (!icsk->icsk_ack.ato) {
630 /* The _first_ data packet received, initialize
631 * delayed ACK engine.
633 tcp_incr_quickack(sk);
634 icsk->icsk_ack.ato = TCP_ATO_MIN;
635 } else {
636 int m = now - icsk->icsk_ack.lrcvtime;
638 if (m <= TCP_ATO_MIN / 2) {
639 /* The fastest case is the first. */
640 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
641 } else if (m < icsk->icsk_ack.ato) {
642 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
643 if (icsk->icsk_ack.ato > icsk->icsk_rto)
644 icsk->icsk_ack.ato = icsk->icsk_rto;
645 } else if (m > icsk->icsk_rto) {
646 /* Too long gap. Apparently sender failed to
647 * restart window, so that we send ACKs quickly.
649 tcp_incr_quickack(sk);
650 sk_mem_reclaim(sk);
653 icsk->icsk_ack.lrcvtime = now;
655 TCP_ECN_check_ce(tp, skb);
657 if (skb->len >= 128)
658 tcp_grow_window(sk, skb);
661 /* Called to compute a smoothed rtt estimate. The data fed to this
662 * routine either comes from timestamps, or from segments that were
663 * known _not_ to have been retransmitted [see Karn/Partridge
664 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
665 * piece by Van Jacobson.
666 * NOTE: the next three routines used to be one big routine.
667 * To save cycles in the RFC 1323 implementation it was better to break
668 * it up into three procedures. -- erics
670 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
672 struct tcp_sock *tp = tcp_sk(sk);
673 long m = mrtt; /* RTT */
675 /* The following amusing code comes from Jacobson's
676 * article in SIGCOMM '88. Note that rtt and mdev
677 * are scaled versions of rtt and mean deviation.
678 * This is designed to be as fast as possible
679 * m stands for "measurement".
681 * On a 1990 paper the rto value is changed to:
682 * RTO = rtt + 4 * mdev
684 * Funny. This algorithm seems to be very broken.
685 * These formulae increase RTO, when it should be decreased, increase
686 * too slowly, when it should be increased quickly, decrease too quickly
687 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
688 * does not matter how to _calculate_ it. Seems, it was trap
689 * that VJ failed to avoid. 8)
691 if (m == 0)
692 m = 1;
693 if (tp->srtt != 0) {
694 m -= (tp->srtt >> 3); /* m is now error in rtt est */
695 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
696 if (m < 0) {
697 m = -m; /* m is now abs(error) */
698 m -= (tp->mdev >> 2); /* similar update on mdev */
699 /* This is similar to one of Eifel findings.
700 * Eifel blocks mdev updates when rtt decreases.
701 * This solution is a bit different: we use finer gain
702 * for mdev in this case (alpha*beta).
703 * Like Eifel it also prevents growth of rto,
704 * but also it limits too fast rto decreases,
705 * happening in pure Eifel.
707 if (m > 0)
708 m >>= 3;
709 } else {
710 m -= (tp->mdev >> 2); /* similar update on mdev */
712 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
713 if (tp->mdev > tp->mdev_max) {
714 tp->mdev_max = tp->mdev;
715 if (tp->mdev_max > tp->rttvar)
716 tp->rttvar = tp->mdev_max;
718 if (after(tp->snd_una, tp->rtt_seq)) {
719 if (tp->mdev_max < tp->rttvar)
720 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
721 tp->rtt_seq = tp->snd_nxt;
722 tp->mdev_max = tcp_rto_min(sk);
724 } else {
725 /* no previous measure. */
726 tp->srtt = m << 3; /* take the measured time to be rtt */
727 tp->mdev = m << 1; /* make sure rto = 3*rtt */
728 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
729 tp->rtt_seq = tp->snd_nxt;
733 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
734 * Note: TCP stack does not yet implement pacing.
735 * FQ packet scheduler can be used to implement cheap but effective
736 * TCP pacing, to smooth the burst on large writes when packets
737 * in flight is significantly lower than cwnd (or rwin)
739 static void tcp_update_pacing_rate(struct sock *sk)
741 const struct tcp_sock *tp = tcp_sk(sk);
742 u64 rate;
744 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
745 rate = (u64)tp->mss_cache * 2 * (HZ << 3);
747 rate *= max(tp->snd_cwnd, tp->packets_out);
749 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
750 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
751 * We probably need usec resolution in the future.
752 * Note: This also takes care of possible srtt=0 case,
753 * when tcp_rtt_estimator() was not yet called.
755 if (tp->srtt > 8 + 2)
756 do_div(rate, tp->srtt);
758 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
759 * without any lock. We want to make sure compiler wont store
760 * intermediate values in this location.
762 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
763 sk->sk_max_pacing_rate);
766 /* Calculate rto without backoff. This is the second half of Van Jacobson's
767 * routine referred to above.
769 void tcp_set_rto(struct sock *sk)
771 const struct tcp_sock *tp = tcp_sk(sk);
772 /* Old crap is replaced with new one. 8)
774 * More seriously:
775 * 1. If rtt variance happened to be less 50msec, it is hallucination.
776 * It cannot be less due to utterly erratic ACK generation made
777 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
778 * to do with delayed acks, because at cwnd>2 true delack timeout
779 * is invisible. Actually, Linux-2.4 also generates erratic
780 * ACKs in some circumstances.
782 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
784 /* 2. Fixups made earlier cannot be right.
785 * If we do not estimate RTO correctly without them,
786 * all the algo is pure shit and should be replaced
787 * with correct one. It is exactly, which we pretend to do.
790 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
791 * guarantees that rto is higher.
793 tcp_bound_rto(sk);
796 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
798 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
800 if (!cwnd)
801 cwnd = TCP_INIT_CWND;
802 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
806 * Packet counting of FACK is based on in-order assumptions, therefore TCP
807 * disables it when reordering is detected
809 void tcp_disable_fack(struct tcp_sock *tp)
811 /* RFC3517 uses different metric in lost marker => reset on change */
812 if (tcp_is_fack(tp))
813 tp->lost_skb_hint = NULL;
814 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
817 /* Take a notice that peer is sending D-SACKs */
818 static void tcp_dsack_seen(struct tcp_sock *tp)
820 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
823 static void tcp_update_reordering(struct sock *sk, const int metric,
824 const int ts)
826 struct tcp_sock *tp = tcp_sk(sk);
827 if (metric > tp->reordering) {
828 int mib_idx;
830 tp->reordering = min(TCP_MAX_REORDERING, metric);
832 /* This exciting event is worth to be remembered. 8) */
833 if (ts)
834 mib_idx = LINUX_MIB_TCPTSREORDER;
835 else if (tcp_is_reno(tp))
836 mib_idx = LINUX_MIB_TCPRENOREORDER;
837 else if (tcp_is_fack(tp))
838 mib_idx = LINUX_MIB_TCPFACKREORDER;
839 else
840 mib_idx = LINUX_MIB_TCPSACKREORDER;
842 NET_INC_STATS_BH(sock_net(sk), mib_idx);
843 #if FASTRETRANS_DEBUG > 1
844 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
845 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
846 tp->reordering,
847 tp->fackets_out,
848 tp->sacked_out,
849 tp->undo_marker ? tp->undo_retrans : 0);
850 #endif
851 tcp_disable_fack(tp);
854 if (metric > 0)
855 tcp_disable_early_retrans(tp);
858 /* This must be called before lost_out is incremented */
859 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
861 if ((tp->retransmit_skb_hint == NULL) ||
862 before(TCP_SKB_CB(skb)->seq,
863 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
864 tp->retransmit_skb_hint = skb;
866 if (!tp->lost_out ||
867 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
868 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
871 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
873 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
874 tcp_verify_retransmit_hint(tp, skb);
876 tp->lost_out += tcp_skb_pcount(skb);
877 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
881 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
882 struct sk_buff *skb)
884 tcp_verify_retransmit_hint(tp, skb);
886 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
887 tp->lost_out += tcp_skb_pcount(skb);
888 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
892 /* This procedure tags the retransmission queue when SACKs arrive.
894 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
895 * Packets in queue with these bits set are counted in variables
896 * sacked_out, retrans_out and lost_out, correspondingly.
898 * Valid combinations are:
899 * Tag InFlight Description
900 * 0 1 - orig segment is in flight.
901 * S 0 - nothing flies, orig reached receiver.
902 * L 0 - nothing flies, orig lost by net.
903 * R 2 - both orig and retransmit are in flight.
904 * L|R 1 - orig is lost, retransmit is in flight.
905 * S|R 1 - orig reached receiver, retrans is still in flight.
906 * (L|S|R is logically valid, it could occur when L|R is sacked,
907 * but it is equivalent to plain S and code short-curcuits it to S.
908 * L|S is logically invalid, it would mean -1 packet in flight 8))
910 * These 6 states form finite state machine, controlled by the following events:
911 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
912 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
913 * 3. Loss detection event of two flavors:
914 * A. Scoreboard estimator decided the packet is lost.
915 * A'. Reno "three dupacks" marks head of queue lost.
916 * A''. Its FACK modification, head until snd.fack is lost.
917 * B. SACK arrives sacking SND.NXT at the moment, when the
918 * segment was retransmitted.
919 * 4. D-SACK added new rule: D-SACK changes any tag to S.
921 * It is pleasant to note, that state diagram turns out to be commutative,
922 * so that we are allowed not to be bothered by order of our actions,
923 * when multiple events arrive simultaneously. (see the function below).
925 * Reordering detection.
926 * --------------------
927 * Reordering metric is maximal distance, which a packet can be displaced
928 * in packet stream. With SACKs we can estimate it:
930 * 1. SACK fills old hole and the corresponding segment was not
931 * ever retransmitted -> reordering. Alas, we cannot use it
932 * when segment was retransmitted.
933 * 2. The last flaw is solved with D-SACK. D-SACK arrives
934 * for retransmitted and already SACKed segment -> reordering..
935 * Both of these heuristics are not used in Loss state, when we cannot
936 * account for retransmits accurately.
938 * SACK block validation.
939 * ----------------------
941 * SACK block range validation checks that the received SACK block fits to
942 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
943 * Note that SND.UNA is not included to the range though being valid because
944 * it means that the receiver is rather inconsistent with itself reporting
945 * SACK reneging when it should advance SND.UNA. Such SACK block this is
946 * perfectly valid, however, in light of RFC2018 which explicitly states
947 * that "SACK block MUST reflect the newest segment. Even if the newest
948 * segment is going to be discarded ...", not that it looks very clever
949 * in case of head skb. Due to potentional receiver driven attacks, we
950 * choose to avoid immediate execution of a walk in write queue due to
951 * reneging and defer head skb's loss recovery to standard loss recovery
952 * procedure that will eventually trigger (nothing forbids us doing this).
954 * Implements also blockage to start_seq wrap-around. Problem lies in the
955 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
956 * there's no guarantee that it will be before snd_nxt (n). The problem
957 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
958 * wrap (s_w):
960 * <- outs wnd -> <- wrapzone ->
961 * u e n u_w e_w s n_w
962 * | | | | | | |
963 * |<------------+------+----- TCP seqno space --------------+---------->|
964 * ...-- <2^31 ->| |<--------...
965 * ...---- >2^31 ------>| |<--------...
967 * Current code wouldn't be vulnerable but it's better still to discard such
968 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
969 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
970 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
971 * equal to the ideal case (infinite seqno space without wrap caused issues).
973 * With D-SACK the lower bound is extended to cover sequence space below
974 * SND.UNA down to undo_marker, which is the last point of interest. Yet
975 * again, D-SACK block must not to go across snd_una (for the same reason as
976 * for the normal SACK blocks, explained above). But there all simplicity
977 * ends, TCP might receive valid D-SACKs below that. As long as they reside
978 * fully below undo_marker they do not affect behavior in anyway and can
979 * therefore be safely ignored. In rare cases (which are more or less
980 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
981 * fragmentation and packet reordering past skb's retransmission. To consider
982 * them correctly, the acceptable range must be extended even more though
983 * the exact amount is rather hard to quantify. However, tp->max_window can
984 * be used as an exaggerated estimate.
986 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
987 u32 start_seq, u32 end_seq)
989 /* Too far in future, or reversed (interpretation is ambiguous) */
990 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
991 return false;
993 /* Nasty start_seq wrap-around check (see comments above) */
994 if (!before(start_seq, tp->snd_nxt))
995 return false;
997 /* In outstanding window? ...This is valid exit for D-SACKs too.
998 * start_seq == snd_una is non-sensical (see comments above)
1000 if (after(start_seq, tp->snd_una))
1001 return true;
1003 if (!is_dsack || !tp->undo_marker)
1004 return false;
1006 /* ...Then it's D-SACK, and must reside below snd_una completely */
1007 if (after(end_seq, tp->snd_una))
1008 return false;
1010 if (!before(start_seq, tp->undo_marker))
1011 return true;
1013 /* Too old */
1014 if (!after(end_seq, tp->undo_marker))
1015 return false;
1017 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1018 * start_seq < undo_marker and end_seq >= undo_marker.
1020 return !before(start_seq, end_seq - tp->max_window);
1023 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1024 * Event "B". Later note: FACK people cheated me again 8), we have to account
1025 * for reordering! Ugly, but should help.
1027 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1028 * less than what is now known to be received by the other end (derived from
1029 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1030 * retransmitted skbs to avoid some costly processing per ACKs.
1032 static void tcp_mark_lost_retrans(struct sock *sk)
1034 const struct inet_connection_sock *icsk = inet_csk(sk);
1035 struct tcp_sock *tp = tcp_sk(sk);
1036 struct sk_buff *skb;
1037 int cnt = 0;
1038 u32 new_low_seq = tp->snd_nxt;
1039 u32 received_upto = tcp_highest_sack_seq(tp);
1041 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1042 !after(received_upto, tp->lost_retrans_low) ||
1043 icsk->icsk_ca_state != TCP_CA_Recovery)
1044 return;
1046 tcp_for_write_queue(skb, sk) {
1047 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1049 if (skb == tcp_send_head(sk))
1050 break;
1051 if (cnt == tp->retrans_out)
1052 break;
1053 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1054 continue;
1056 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1057 continue;
1059 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1060 * constraint here (see above) but figuring out that at
1061 * least tp->reordering SACK blocks reside between ack_seq
1062 * and received_upto is not easy task to do cheaply with
1063 * the available datastructures.
1065 * Whether FACK should check here for tp->reordering segs
1066 * in-between one could argue for either way (it would be
1067 * rather simple to implement as we could count fack_count
1068 * during the walk and do tp->fackets_out - fack_count).
1070 if (after(received_upto, ack_seq)) {
1071 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1072 tp->retrans_out -= tcp_skb_pcount(skb);
1074 tcp_skb_mark_lost_uncond_verify(tp, skb);
1075 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1076 } else {
1077 if (before(ack_seq, new_low_seq))
1078 new_low_seq = ack_seq;
1079 cnt += tcp_skb_pcount(skb);
1083 if (tp->retrans_out)
1084 tp->lost_retrans_low = new_low_seq;
1087 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1088 struct tcp_sack_block_wire *sp, int num_sacks,
1089 u32 prior_snd_una)
1091 struct tcp_sock *tp = tcp_sk(sk);
1092 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1093 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1094 bool dup_sack = false;
1096 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1097 dup_sack = true;
1098 tcp_dsack_seen(tp);
1099 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1100 } else if (num_sacks > 1) {
1101 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1102 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1104 if (!after(end_seq_0, end_seq_1) &&
1105 !before(start_seq_0, start_seq_1)) {
1106 dup_sack = true;
1107 tcp_dsack_seen(tp);
1108 NET_INC_STATS_BH(sock_net(sk),
1109 LINUX_MIB_TCPDSACKOFORECV);
1113 /* D-SACK for already forgotten data... Do dumb counting. */
1114 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1115 !after(end_seq_0, prior_snd_una) &&
1116 after(end_seq_0, tp->undo_marker))
1117 tp->undo_retrans--;
1119 return dup_sack;
1122 struct tcp_sacktag_state {
1123 int reord;
1124 int fack_count;
1125 int flag;
1126 s32 rtt; /* RTT measured by SACKing never-retransmitted data */
1129 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1130 * the incoming SACK may not exactly match but we can find smaller MSS
1131 * aligned portion of it that matches. Therefore we might need to fragment
1132 * which may fail and creates some hassle (caller must handle error case
1133 * returns).
1135 * FIXME: this could be merged to shift decision code
1137 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1138 u32 start_seq, u32 end_seq)
1140 int err;
1141 bool in_sack;
1142 unsigned int pkt_len;
1143 unsigned int mss;
1145 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1146 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1148 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1149 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1150 mss = tcp_skb_mss(skb);
1151 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1153 if (!in_sack) {
1154 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1155 if (pkt_len < mss)
1156 pkt_len = mss;
1157 } else {
1158 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1159 if (pkt_len < mss)
1160 return -EINVAL;
1163 /* Round if necessary so that SACKs cover only full MSSes
1164 * and/or the remaining small portion (if present)
1166 if (pkt_len > mss) {
1167 unsigned int new_len = (pkt_len / mss) * mss;
1168 if (!in_sack && new_len < pkt_len) {
1169 new_len += mss;
1170 if (new_len > skb->len)
1171 return 0;
1173 pkt_len = new_len;
1175 err = tcp_fragment(sk, skb, pkt_len, mss);
1176 if (err < 0)
1177 return err;
1180 return in_sack;
1183 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1184 static u8 tcp_sacktag_one(struct sock *sk,
1185 struct tcp_sacktag_state *state, u8 sacked,
1186 u32 start_seq, u32 end_seq,
1187 int dup_sack, int pcount, u32 xmit_time)
1189 struct tcp_sock *tp = tcp_sk(sk);
1190 int fack_count = state->fack_count;
1192 /* Account D-SACK for retransmitted packet. */
1193 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1194 if (tp->undo_marker && tp->undo_retrans &&
1195 after(end_seq, tp->undo_marker))
1196 tp->undo_retrans--;
1197 if (sacked & TCPCB_SACKED_ACKED)
1198 state->reord = min(fack_count, state->reord);
1201 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1202 if (!after(end_seq, tp->snd_una))
1203 return sacked;
1205 if (!(sacked & TCPCB_SACKED_ACKED)) {
1206 if (sacked & TCPCB_SACKED_RETRANS) {
1207 /* If the segment is not tagged as lost,
1208 * we do not clear RETRANS, believing
1209 * that retransmission is still in flight.
1211 if (sacked & TCPCB_LOST) {
1212 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1213 tp->lost_out -= pcount;
1214 tp->retrans_out -= pcount;
1216 } else {
1217 if (!(sacked & TCPCB_RETRANS)) {
1218 /* New sack for not retransmitted frame,
1219 * which was in hole. It is reordering.
1221 if (before(start_seq,
1222 tcp_highest_sack_seq(tp)))
1223 state->reord = min(fack_count,
1224 state->reord);
1225 if (!after(end_seq, tp->high_seq))
1226 state->flag |= FLAG_ORIG_SACK_ACKED;
1227 /* Pick the earliest sequence sacked for RTT */
1228 if (state->rtt < 0)
1229 state->rtt = tcp_time_stamp - xmit_time;
1232 if (sacked & TCPCB_LOST) {
1233 sacked &= ~TCPCB_LOST;
1234 tp->lost_out -= pcount;
1238 sacked |= TCPCB_SACKED_ACKED;
1239 state->flag |= FLAG_DATA_SACKED;
1240 tp->sacked_out += pcount;
1242 fack_count += pcount;
1244 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1245 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1246 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1247 tp->lost_cnt_hint += pcount;
1249 if (fack_count > tp->fackets_out)
1250 tp->fackets_out = fack_count;
1253 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1254 * frames and clear it. undo_retrans is decreased above, L|R frames
1255 * are accounted above as well.
1257 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1258 sacked &= ~TCPCB_SACKED_RETRANS;
1259 tp->retrans_out -= pcount;
1262 return sacked;
1265 /* Shift newly-SACKed bytes from this skb to the immediately previous
1266 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1268 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1269 struct tcp_sacktag_state *state,
1270 unsigned int pcount, int shifted, int mss,
1271 bool dup_sack)
1273 struct tcp_sock *tp = tcp_sk(sk);
1274 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1275 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1276 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1278 BUG_ON(!pcount);
1280 /* Adjust counters and hints for the newly sacked sequence
1281 * range but discard the return value since prev is already
1282 * marked. We must tag the range first because the seq
1283 * advancement below implicitly advances
1284 * tcp_highest_sack_seq() when skb is highest_sack.
1286 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1287 start_seq, end_seq, dup_sack, pcount,
1288 TCP_SKB_CB(skb)->when);
1290 if (skb == tp->lost_skb_hint)
1291 tp->lost_cnt_hint += pcount;
1293 TCP_SKB_CB(prev)->end_seq += shifted;
1294 TCP_SKB_CB(skb)->seq += shifted;
1296 skb_shinfo(prev)->gso_segs += pcount;
1297 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1298 skb_shinfo(skb)->gso_segs -= pcount;
1300 /* When we're adding to gso_segs == 1, gso_size will be zero,
1301 * in theory this shouldn't be necessary but as long as DSACK
1302 * code can come after this skb later on it's better to keep
1303 * setting gso_size to something.
1305 if (!skb_shinfo(prev)->gso_size) {
1306 skb_shinfo(prev)->gso_size = mss;
1307 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1310 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1311 if (skb_shinfo(skb)->gso_segs <= 1) {
1312 skb_shinfo(skb)->gso_size = 0;
1313 skb_shinfo(skb)->gso_type = 0;
1316 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1317 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1319 if (skb->len > 0) {
1320 BUG_ON(!tcp_skb_pcount(skb));
1321 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1322 return false;
1325 /* Whole SKB was eaten :-) */
1327 if (skb == tp->retransmit_skb_hint)
1328 tp->retransmit_skb_hint = prev;
1329 if (skb == tp->lost_skb_hint) {
1330 tp->lost_skb_hint = prev;
1331 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1334 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1335 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1336 TCP_SKB_CB(prev)->end_seq++;
1338 if (skb == tcp_highest_sack(sk))
1339 tcp_advance_highest_sack(sk, skb);
1341 tcp_unlink_write_queue(skb, sk);
1342 sk_wmem_free_skb(sk, skb);
1344 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1346 return true;
1349 /* I wish gso_size would have a bit more sane initialization than
1350 * something-or-zero which complicates things
1352 static int tcp_skb_seglen(const struct sk_buff *skb)
1354 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1357 /* Shifting pages past head area doesn't work */
1358 static int skb_can_shift(const struct sk_buff *skb)
1360 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1364 * skb.
1366 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1367 struct tcp_sacktag_state *state,
1368 u32 start_seq, u32 end_seq,
1369 bool dup_sack)
1371 struct tcp_sock *tp = tcp_sk(sk);
1372 struct sk_buff *prev;
1373 int mss;
1374 int pcount = 0;
1375 int len;
1376 int in_sack;
1378 if (!sk_can_gso(sk))
1379 goto fallback;
1381 /* Normally R but no L won't result in plain S */
1382 if (!dup_sack &&
1383 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1384 goto fallback;
1385 if (!skb_can_shift(skb))
1386 goto fallback;
1387 /* This frame is about to be dropped (was ACKed). */
1388 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1389 goto fallback;
1391 /* Can only happen with delayed DSACK + discard craziness */
1392 if (unlikely(skb == tcp_write_queue_head(sk)))
1393 goto fallback;
1394 prev = tcp_write_queue_prev(sk, skb);
1396 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1397 goto fallback;
1399 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1400 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1402 if (in_sack) {
1403 len = skb->len;
1404 pcount = tcp_skb_pcount(skb);
1405 mss = tcp_skb_seglen(skb);
1407 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1408 * drop this restriction as unnecessary
1410 if (mss != tcp_skb_seglen(prev))
1411 goto fallback;
1412 } else {
1413 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1414 goto noop;
1415 /* CHECKME: This is non-MSS split case only?, this will
1416 * cause skipped skbs due to advancing loop btw, original
1417 * has that feature too
1419 if (tcp_skb_pcount(skb) <= 1)
1420 goto noop;
1422 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1423 if (!in_sack) {
1424 /* TODO: head merge to next could be attempted here
1425 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1426 * though it might not be worth of the additional hassle
1428 * ...we can probably just fallback to what was done
1429 * previously. We could try merging non-SACKed ones
1430 * as well but it probably isn't going to buy off
1431 * because later SACKs might again split them, and
1432 * it would make skb timestamp tracking considerably
1433 * harder problem.
1435 goto fallback;
1438 len = end_seq - TCP_SKB_CB(skb)->seq;
1439 BUG_ON(len < 0);
1440 BUG_ON(len > skb->len);
1442 /* MSS boundaries should be honoured or else pcount will
1443 * severely break even though it makes things bit trickier.
1444 * Optimize common case to avoid most of the divides
1446 mss = tcp_skb_mss(skb);
1448 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1449 * drop this restriction as unnecessary
1451 if (mss != tcp_skb_seglen(prev))
1452 goto fallback;
1454 if (len == mss) {
1455 pcount = 1;
1456 } else if (len < mss) {
1457 goto noop;
1458 } else {
1459 pcount = len / mss;
1460 len = pcount * mss;
1464 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1465 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1466 goto fallback;
1468 if (!skb_shift(prev, skb, len))
1469 goto fallback;
1470 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1471 goto out;
1473 /* Hole filled allows collapsing with the next as well, this is very
1474 * useful when hole on every nth skb pattern happens
1476 if (prev == tcp_write_queue_tail(sk))
1477 goto out;
1478 skb = tcp_write_queue_next(sk, prev);
1480 if (!skb_can_shift(skb) ||
1481 (skb == tcp_send_head(sk)) ||
1482 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1483 (mss != tcp_skb_seglen(skb)))
1484 goto out;
1486 len = skb->len;
1487 if (skb_shift(prev, skb, len)) {
1488 pcount += tcp_skb_pcount(skb);
1489 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1492 out:
1493 state->fack_count += pcount;
1494 return prev;
1496 noop:
1497 return skb;
1499 fallback:
1500 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1501 return NULL;
1504 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1505 struct tcp_sack_block *next_dup,
1506 struct tcp_sacktag_state *state,
1507 u32 start_seq, u32 end_seq,
1508 bool dup_sack_in)
1510 struct tcp_sock *tp = tcp_sk(sk);
1511 struct sk_buff *tmp;
1513 tcp_for_write_queue_from(skb, sk) {
1514 int in_sack = 0;
1515 bool dup_sack = dup_sack_in;
1517 if (skb == tcp_send_head(sk))
1518 break;
1520 /* queue is in-order => we can short-circuit the walk early */
1521 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1522 break;
1524 if ((next_dup != NULL) &&
1525 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1526 in_sack = tcp_match_skb_to_sack(sk, skb,
1527 next_dup->start_seq,
1528 next_dup->end_seq);
1529 if (in_sack > 0)
1530 dup_sack = true;
1533 /* skb reference here is a bit tricky to get right, since
1534 * shifting can eat and free both this skb and the next,
1535 * so not even _safe variant of the loop is enough.
1537 if (in_sack <= 0) {
1538 tmp = tcp_shift_skb_data(sk, skb, state,
1539 start_seq, end_seq, dup_sack);
1540 if (tmp != NULL) {
1541 if (tmp != skb) {
1542 skb = tmp;
1543 continue;
1546 in_sack = 0;
1547 } else {
1548 in_sack = tcp_match_skb_to_sack(sk, skb,
1549 start_seq,
1550 end_seq);
1554 if (unlikely(in_sack < 0))
1555 break;
1557 if (in_sack) {
1558 TCP_SKB_CB(skb)->sacked =
1559 tcp_sacktag_one(sk,
1560 state,
1561 TCP_SKB_CB(skb)->sacked,
1562 TCP_SKB_CB(skb)->seq,
1563 TCP_SKB_CB(skb)->end_seq,
1564 dup_sack,
1565 tcp_skb_pcount(skb),
1566 TCP_SKB_CB(skb)->when);
1568 if (!before(TCP_SKB_CB(skb)->seq,
1569 tcp_highest_sack_seq(tp)))
1570 tcp_advance_highest_sack(sk, skb);
1573 state->fack_count += tcp_skb_pcount(skb);
1575 return skb;
1578 /* Avoid all extra work that is being done by sacktag while walking in
1579 * a normal way
1581 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1582 struct tcp_sacktag_state *state,
1583 u32 skip_to_seq)
1585 tcp_for_write_queue_from(skb, sk) {
1586 if (skb == tcp_send_head(sk))
1587 break;
1589 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1590 break;
1592 state->fack_count += tcp_skb_pcount(skb);
1594 return skb;
1597 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1598 struct sock *sk,
1599 struct tcp_sack_block *next_dup,
1600 struct tcp_sacktag_state *state,
1601 u32 skip_to_seq)
1603 if (next_dup == NULL)
1604 return skb;
1606 if (before(next_dup->start_seq, skip_to_seq)) {
1607 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1608 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1609 next_dup->start_seq, next_dup->end_seq,
1613 return skb;
1616 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1618 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621 static int
1622 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1623 u32 prior_snd_una, s32 *sack_rtt)
1625 struct tcp_sock *tp = tcp_sk(sk);
1626 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1627 TCP_SKB_CB(ack_skb)->sacked);
1628 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1629 struct tcp_sack_block sp[TCP_NUM_SACKS];
1630 struct tcp_sack_block *cache;
1631 struct tcp_sacktag_state state;
1632 struct sk_buff *skb;
1633 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1634 int used_sacks;
1635 bool found_dup_sack = false;
1636 int i, j;
1637 int first_sack_index;
1639 state.flag = 0;
1640 state.reord = tp->packets_out;
1641 state.rtt = -1;
1643 if (!tp->sacked_out) {
1644 if (WARN_ON(tp->fackets_out))
1645 tp->fackets_out = 0;
1646 tcp_highest_sack_reset(sk);
1649 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1650 num_sacks, prior_snd_una);
1651 if (found_dup_sack)
1652 state.flag |= FLAG_DSACKING_ACK;
1654 /* Eliminate too old ACKs, but take into
1655 * account more or less fresh ones, they can
1656 * contain valid SACK info.
1658 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1659 return 0;
1661 if (!tp->packets_out)
1662 goto out;
1664 used_sacks = 0;
1665 first_sack_index = 0;
1666 for (i = 0; i < num_sacks; i++) {
1667 bool dup_sack = !i && found_dup_sack;
1669 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1670 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1672 if (!tcp_is_sackblock_valid(tp, dup_sack,
1673 sp[used_sacks].start_seq,
1674 sp[used_sacks].end_seq)) {
1675 int mib_idx;
1677 if (dup_sack) {
1678 if (!tp->undo_marker)
1679 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1680 else
1681 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1682 } else {
1683 /* Don't count olds caused by ACK reordering */
1684 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1685 !after(sp[used_sacks].end_seq, tp->snd_una))
1686 continue;
1687 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1690 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1691 if (i == 0)
1692 first_sack_index = -1;
1693 continue;
1696 /* Ignore very old stuff early */
1697 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1698 continue;
1700 used_sacks++;
1703 /* order SACK blocks to allow in order walk of the retrans queue */
1704 for (i = used_sacks - 1; i > 0; i--) {
1705 for (j = 0; j < i; j++) {
1706 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1707 swap(sp[j], sp[j + 1]);
1709 /* Track where the first SACK block goes to */
1710 if (j == first_sack_index)
1711 first_sack_index = j + 1;
1716 skb = tcp_write_queue_head(sk);
1717 state.fack_count = 0;
1718 i = 0;
1720 if (!tp->sacked_out) {
1721 /* It's already past, so skip checking against it */
1722 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1723 } else {
1724 cache = tp->recv_sack_cache;
1725 /* Skip empty blocks in at head of the cache */
1726 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1727 !cache->end_seq)
1728 cache++;
1731 while (i < used_sacks) {
1732 u32 start_seq = sp[i].start_seq;
1733 u32 end_seq = sp[i].end_seq;
1734 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1735 struct tcp_sack_block *next_dup = NULL;
1737 if (found_dup_sack && ((i + 1) == first_sack_index))
1738 next_dup = &sp[i + 1];
1740 /* Skip too early cached blocks */
1741 while (tcp_sack_cache_ok(tp, cache) &&
1742 !before(start_seq, cache->end_seq))
1743 cache++;
1745 /* Can skip some work by looking recv_sack_cache? */
1746 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1747 after(end_seq, cache->start_seq)) {
1749 /* Head todo? */
1750 if (before(start_seq, cache->start_seq)) {
1751 skb = tcp_sacktag_skip(skb, sk, &state,
1752 start_seq);
1753 skb = tcp_sacktag_walk(skb, sk, next_dup,
1754 &state,
1755 start_seq,
1756 cache->start_seq,
1757 dup_sack);
1760 /* Rest of the block already fully processed? */
1761 if (!after(end_seq, cache->end_seq))
1762 goto advance_sp;
1764 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1765 &state,
1766 cache->end_seq);
1768 /* ...tail remains todo... */
1769 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1770 /* ...but better entrypoint exists! */
1771 skb = tcp_highest_sack(sk);
1772 if (skb == NULL)
1773 break;
1774 state.fack_count = tp->fackets_out;
1775 cache++;
1776 goto walk;
1779 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1780 /* Check overlap against next cached too (past this one already) */
1781 cache++;
1782 continue;
1785 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1786 skb = tcp_highest_sack(sk);
1787 if (skb == NULL)
1788 break;
1789 state.fack_count = tp->fackets_out;
1791 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1793 walk:
1794 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1795 start_seq, end_seq, dup_sack);
1797 advance_sp:
1798 i++;
1801 /* Clear the head of the cache sack blocks so we can skip it next time */
1802 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1803 tp->recv_sack_cache[i].start_seq = 0;
1804 tp->recv_sack_cache[i].end_seq = 0;
1806 for (j = 0; j < used_sacks; j++)
1807 tp->recv_sack_cache[i++] = sp[j];
1809 tcp_mark_lost_retrans(sk);
1811 tcp_verify_left_out(tp);
1813 if ((state.reord < tp->fackets_out) &&
1814 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1815 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1817 out:
1819 #if FASTRETRANS_DEBUG > 0
1820 WARN_ON((int)tp->sacked_out < 0);
1821 WARN_ON((int)tp->lost_out < 0);
1822 WARN_ON((int)tp->retrans_out < 0);
1823 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1824 #endif
1825 *sack_rtt = state.rtt;
1826 return state.flag;
1829 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1830 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1832 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1834 u32 holes;
1836 holes = max(tp->lost_out, 1U);
1837 holes = min(holes, tp->packets_out);
1839 if ((tp->sacked_out + holes) > tp->packets_out) {
1840 tp->sacked_out = tp->packets_out - holes;
1841 return true;
1843 return false;
1846 /* If we receive more dupacks than we expected counting segments
1847 * in assumption of absent reordering, interpret this as reordering.
1848 * The only another reason could be bug in receiver TCP.
1850 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1852 struct tcp_sock *tp = tcp_sk(sk);
1853 if (tcp_limit_reno_sacked(tp))
1854 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1857 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1859 static void tcp_add_reno_sack(struct sock *sk)
1861 struct tcp_sock *tp = tcp_sk(sk);
1862 tp->sacked_out++;
1863 tcp_check_reno_reordering(sk, 0);
1864 tcp_verify_left_out(tp);
1867 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1869 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1871 struct tcp_sock *tp = tcp_sk(sk);
1873 if (acked > 0) {
1874 /* One ACK acked hole. The rest eat duplicate ACKs. */
1875 if (acked - 1 >= tp->sacked_out)
1876 tp->sacked_out = 0;
1877 else
1878 tp->sacked_out -= acked - 1;
1880 tcp_check_reno_reordering(sk, acked);
1881 tcp_verify_left_out(tp);
1884 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1886 tp->sacked_out = 0;
1889 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1891 tp->retrans_out = 0;
1892 tp->lost_out = 0;
1894 tp->undo_marker = 0;
1895 tp->undo_retrans = 0;
1898 void tcp_clear_retrans(struct tcp_sock *tp)
1900 tcp_clear_retrans_partial(tp);
1902 tp->fackets_out = 0;
1903 tp->sacked_out = 0;
1906 /* Enter Loss state. If "how" is not zero, forget all SACK information
1907 * and reset tags completely, otherwise preserve SACKs. If receiver
1908 * dropped its ofo queue, we will know this due to reneging detection.
1910 void tcp_enter_loss(struct sock *sk, int how)
1912 const struct inet_connection_sock *icsk = inet_csk(sk);
1913 struct tcp_sock *tp = tcp_sk(sk);
1914 struct sk_buff *skb;
1915 bool new_recovery = false;
1917 /* Reduce ssthresh if it has not yet been made inside this window. */
1918 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1919 !after(tp->high_seq, tp->snd_una) ||
1920 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1921 new_recovery = true;
1922 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1923 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1924 tcp_ca_event(sk, CA_EVENT_LOSS);
1926 tp->snd_cwnd = 1;
1927 tp->snd_cwnd_cnt = 0;
1928 tp->snd_cwnd_stamp = tcp_time_stamp;
1930 tcp_clear_retrans_partial(tp);
1932 if (tcp_is_reno(tp))
1933 tcp_reset_reno_sack(tp);
1935 tp->undo_marker = tp->snd_una;
1936 if (how) {
1937 tp->sacked_out = 0;
1938 tp->fackets_out = 0;
1940 tcp_clear_all_retrans_hints(tp);
1942 tcp_for_write_queue(skb, sk) {
1943 if (skb == tcp_send_head(sk))
1944 break;
1946 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1947 tp->undo_marker = 0;
1948 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1949 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1950 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1951 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1952 tp->lost_out += tcp_skb_pcount(skb);
1953 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1956 tcp_verify_left_out(tp);
1958 /* Timeout in disordered state after receiving substantial DUPACKs
1959 * suggests that the degree of reordering is over-estimated.
1961 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1962 tp->sacked_out >= sysctl_tcp_reordering)
1963 tp->reordering = min_t(unsigned int, tp->reordering,
1964 sysctl_tcp_reordering);
1965 tcp_set_ca_state(sk, TCP_CA_Loss);
1966 tp->high_seq = tp->snd_nxt;
1967 TCP_ECN_queue_cwr(tp);
1969 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1970 * loss recovery is underway except recurring timeout(s) on
1971 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1973 tp->frto = sysctl_tcp_frto &&
1974 (new_recovery || icsk->icsk_retransmits) &&
1975 !inet_csk(sk)->icsk_mtup.probe_size;
1978 /* If ACK arrived pointing to a remembered SACK, it means that our
1979 * remembered SACKs do not reflect real state of receiver i.e.
1980 * receiver _host_ is heavily congested (or buggy).
1982 * Do processing similar to RTO timeout.
1984 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1986 if (flag & FLAG_SACK_RENEGING) {
1987 struct inet_connection_sock *icsk = inet_csk(sk);
1988 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1990 tcp_enter_loss(sk, 1);
1991 icsk->icsk_retransmits++;
1992 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1993 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1994 icsk->icsk_rto, TCP_RTO_MAX);
1995 return true;
1997 return false;
2000 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2002 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2005 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2006 * counter when SACK is enabled (without SACK, sacked_out is used for
2007 * that purpose).
2009 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2010 * segments up to the highest received SACK block so far and holes in
2011 * between them.
2013 * With reordering, holes may still be in flight, so RFC3517 recovery
2014 * uses pure sacked_out (total number of SACKed segments) even though
2015 * it violates the RFC that uses duplicate ACKs, often these are equal
2016 * but when e.g. out-of-window ACKs or packet duplication occurs,
2017 * they differ. Since neither occurs due to loss, TCP should really
2018 * ignore them.
2020 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2022 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2025 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2027 struct tcp_sock *tp = tcp_sk(sk);
2028 unsigned long delay;
2030 /* Delay early retransmit and entering fast recovery for
2031 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2032 * available, or RTO is scheduled to fire first.
2034 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2035 (flag & FLAG_ECE) || !tp->srtt)
2036 return false;
2038 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2039 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2040 return false;
2042 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2043 TCP_RTO_MAX);
2044 return true;
2047 /* Linux NewReno/SACK/FACK/ECN state machine.
2048 * --------------------------------------
2050 * "Open" Normal state, no dubious events, fast path.
2051 * "Disorder" In all the respects it is "Open",
2052 * but requires a bit more attention. It is entered when
2053 * we see some SACKs or dupacks. It is split of "Open"
2054 * mainly to move some processing from fast path to slow one.
2055 * "CWR" CWND was reduced due to some Congestion Notification event.
2056 * It can be ECN, ICMP source quench, local device congestion.
2057 * "Recovery" CWND was reduced, we are fast-retransmitting.
2058 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2060 * tcp_fastretrans_alert() is entered:
2061 * - each incoming ACK, if state is not "Open"
2062 * - when arrived ACK is unusual, namely:
2063 * * SACK
2064 * * Duplicate ACK.
2065 * * ECN ECE.
2067 * Counting packets in flight is pretty simple.
2069 * in_flight = packets_out - left_out + retrans_out
2071 * packets_out is SND.NXT-SND.UNA counted in packets.
2073 * retrans_out is number of retransmitted segments.
2075 * left_out is number of segments left network, but not ACKed yet.
2077 * left_out = sacked_out + lost_out
2079 * sacked_out: Packets, which arrived to receiver out of order
2080 * and hence not ACKed. With SACKs this number is simply
2081 * amount of SACKed data. Even without SACKs
2082 * it is easy to give pretty reliable estimate of this number,
2083 * counting duplicate ACKs.
2085 * lost_out: Packets lost by network. TCP has no explicit
2086 * "loss notification" feedback from network (for now).
2087 * It means that this number can be only _guessed_.
2088 * Actually, it is the heuristics to predict lossage that
2089 * distinguishes different algorithms.
2091 * F.e. after RTO, when all the queue is considered as lost,
2092 * lost_out = packets_out and in_flight = retrans_out.
2094 * Essentially, we have now two algorithms counting
2095 * lost packets.
2097 * FACK: It is the simplest heuristics. As soon as we decided
2098 * that something is lost, we decide that _all_ not SACKed
2099 * packets until the most forward SACK are lost. I.e.
2100 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2101 * It is absolutely correct estimate, if network does not reorder
2102 * packets. And it loses any connection to reality when reordering
2103 * takes place. We use FACK by default until reordering
2104 * is suspected on the path to this destination.
2106 * NewReno: when Recovery is entered, we assume that one segment
2107 * is lost (classic Reno). While we are in Recovery and
2108 * a partial ACK arrives, we assume that one more packet
2109 * is lost (NewReno). This heuristics are the same in NewReno
2110 * and SACK.
2112 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2113 * deflation etc. CWND is real congestion window, never inflated, changes
2114 * only according to classic VJ rules.
2116 * Really tricky (and requiring careful tuning) part of algorithm
2117 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2118 * The first determines the moment _when_ we should reduce CWND and,
2119 * hence, slow down forward transmission. In fact, it determines the moment
2120 * when we decide that hole is caused by loss, rather than by a reorder.
2122 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2123 * holes, caused by lost packets.
2125 * And the most logically complicated part of algorithm is undo
2126 * heuristics. We detect false retransmits due to both too early
2127 * fast retransmit (reordering) and underestimated RTO, analyzing
2128 * timestamps and D-SACKs. When we detect that some segments were
2129 * retransmitted by mistake and CWND reduction was wrong, we undo
2130 * window reduction and abort recovery phase. This logic is hidden
2131 * inside several functions named tcp_try_undo_<something>.
2134 /* This function decides, when we should leave Disordered state
2135 * and enter Recovery phase, reducing congestion window.
2137 * Main question: may we further continue forward transmission
2138 * with the same cwnd?
2140 static bool tcp_time_to_recover(struct sock *sk, int flag)
2142 struct tcp_sock *tp = tcp_sk(sk);
2143 __u32 packets_out;
2145 /* Trick#1: The loss is proven. */
2146 if (tp->lost_out)
2147 return true;
2149 /* Not-A-Trick#2 : Classic rule... */
2150 if (tcp_dupack_heuristics(tp) > tp->reordering)
2151 return true;
2153 /* Trick#4: It is still not OK... But will it be useful to delay
2154 * recovery more?
2156 packets_out = tp->packets_out;
2157 if (packets_out <= tp->reordering &&
2158 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2159 !tcp_may_send_now(sk)) {
2160 /* We have nothing to send. This connection is limited
2161 * either by receiver window or by application.
2163 return true;
2166 /* If a thin stream is detected, retransmit after first
2167 * received dupack. Employ only if SACK is supported in order
2168 * to avoid possible corner-case series of spurious retransmissions
2169 * Use only if there are no unsent data.
2171 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2172 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2173 tcp_is_sack(tp) && !tcp_send_head(sk))
2174 return true;
2176 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2177 * retransmissions due to small network reorderings, we implement
2178 * Mitigation A.3 in the RFC and delay the retransmission for a short
2179 * interval if appropriate.
2181 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2182 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2183 !tcp_may_send_now(sk))
2184 return !tcp_pause_early_retransmit(sk, flag);
2186 return false;
2189 /* Detect loss in event "A" above by marking head of queue up as lost.
2190 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2191 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2192 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2193 * the maximum SACKed segments to pass before reaching this limit.
2195 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2197 struct tcp_sock *tp = tcp_sk(sk);
2198 struct sk_buff *skb;
2199 int cnt, oldcnt;
2200 int err;
2201 unsigned int mss;
2202 /* Use SACK to deduce losses of new sequences sent during recovery */
2203 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2205 WARN_ON(packets > tp->packets_out);
2206 if (tp->lost_skb_hint) {
2207 skb = tp->lost_skb_hint;
2208 cnt = tp->lost_cnt_hint;
2209 /* Head already handled? */
2210 if (mark_head && skb != tcp_write_queue_head(sk))
2211 return;
2212 } else {
2213 skb = tcp_write_queue_head(sk);
2214 cnt = 0;
2217 tcp_for_write_queue_from(skb, sk) {
2218 if (skb == tcp_send_head(sk))
2219 break;
2220 /* TODO: do this better */
2221 /* this is not the most efficient way to do this... */
2222 tp->lost_skb_hint = skb;
2223 tp->lost_cnt_hint = cnt;
2225 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2226 break;
2228 oldcnt = cnt;
2229 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2230 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2231 cnt += tcp_skb_pcount(skb);
2233 if (cnt > packets) {
2234 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2235 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2236 (oldcnt >= packets))
2237 break;
2239 mss = skb_shinfo(skb)->gso_size;
2240 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2241 if (err < 0)
2242 break;
2243 cnt = packets;
2246 tcp_skb_mark_lost(tp, skb);
2248 if (mark_head)
2249 break;
2251 tcp_verify_left_out(tp);
2254 /* Account newly detected lost packet(s) */
2256 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2258 struct tcp_sock *tp = tcp_sk(sk);
2260 if (tcp_is_reno(tp)) {
2261 tcp_mark_head_lost(sk, 1, 1);
2262 } else if (tcp_is_fack(tp)) {
2263 int lost = tp->fackets_out - tp->reordering;
2264 if (lost <= 0)
2265 lost = 1;
2266 tcp_mark_head_lost(sk, lost, 0);
2267 } else {
2268 int sacked_upto = tp->sacked_out - tp->reordering;
2269 if (sacked_upto >= 0)
2270 tcp_mark_head_lost(sk, sacked_upto, 0);
2271 else if (fast_rexmit)
2272 tcp_mark_head_lost(sk, 1, 1);
2276 /* CWND moderation, preventing bursts due to too big ACKs
2277 * in dubious situations.
2279 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2281 tp->snd_cwnd = min(tp->snd_cwnd,
2282 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2283 tp->snd_cwnd_stamp = tcp_time_stamp;
2286 /* Nothing was retransmitted or returned timestamp is less
2287 * than timestamp of the first retransmission.
2289 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2291 return !tp->retrans_stamp ||
2292 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2293 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2296 /* Undo procedures. */
2298 #if FASTRETRANS_DEBUG > 1
2299 static void DBGUNDO(struct sock *sk, const char *msg)
2301 struct tcp_sock *tp = tcp_sk(sk);
2302 struct inet_sock *inet = inet_sk(sk);
2304 if (sk->sk_family == AF_INET) {
2305 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2306 msg,
2307 &inet->inet_daddr, ntohs(inet->inet_dport),
2308 tp->snd_cwnd, tcp_left_out(tp),
2309 tp->snd_ssthresh, tp->prior_ssthresh,
2310 tp->packets_out);
2312 #if IS_ENABLED(CONFIG_IPV6)
2313 else if (sk->sk_family == AF_INET6) {
2314 struct ipv6_pinfo *np = inet6_sk(sk);
2315 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2316 msg,
2317 &np->daddr, ntohs(inet->inet_dport),
2318 tp->snd_cwnd, tcp_left_out(tp),
2319 tp->snd_ssthresh, tp->prior_ssthresh,
2320 tp->packets_out);
2322 #endif
2324 #else
2325 #define DBGUNDO(x...) do { } while (0)
2326 #endif
2328 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2330 struct tcp_sock *tp = tcp_sk(sk);
2332 if (unmark_loss) {
2333 struct sk_buff *skb;
2335 tcp_for_write_queue(skb, sk) {
2336 if (skb == tcp_send_head(sk))
2337 break;
2338 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2340 tp->lost_out = 0;
2341 tcp_clear_all_retrans_hints(tp);
2344 if (tp->prior_ssthresh) {
2345 const struct inet_connection_sock *icsk = inet_csk(sk);
2347 if (icsk->icsk_ca_ops->undo_cwnd)
2348 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2349 else
2350 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2352 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2353 tp->snd_ssthresh = tp->prior_ssthresh;
2354 TCP_ECN_withdraw_cwr(tp);
2356 } else {
2357 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2359 tp->snd_cwnd_stamp = tcp_time_stamp;
2360 tp->undo_marker = 0;
2363 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2365 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2368 /* People celebrate: "We love our President!" */
2369 static bool tcp_try_undo_recovery(struct sock *sk)
2371 struct tcp_sock *tp = tcp_sk(sk);
2373 if (tcp_may_undo(tp)) {
2374 int mib_idx;
2376 /* Happy end! We did not retransmit anything
2377 * or our original transmission succeeded.
2379 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2380 tcp_undo_cwnd_reduction(sk, false);
2381 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2382 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2383 else
2384 mib_idx = LINUX_MIB_TCPFULLUNDO;
2386 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2388 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2389 /* Hold old state until something *above* high_seq
2390 * is ACKed. For Reno it is MUST to prevent false
2391 * fast retransmits (RFC2582). SACK TCP is safe. */
2392 tcp_moderate_cwnd(tp);
2393 return true;
2395 tcp_set_ca_state(sk, TCP_CA_Open);
2396 return false;
2399 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2400 static bool tcp_try_undo_dsack(struct sock *sk)
2402 struct tcp_sock *tp = tcp_sk(sk);
2404 if (tp->undo_marker && !tp->undo_retrans) {
2405 DBGUNDO(sk, "D-SACK");
2406 tcp_undo_cwnd_reduction(sk, false);
2407 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2408 return true;
2410 return false;
2413 /* We can clear retrans_stamp when there are no retransmissions in the
2414 * window. It would seem that it is trivially available for us in
2415 * tp->retrans_out, however, that kind of assumptions doesn't consider
2416 * what will happen if errors occur when sending retransmission for the
2417 * second time. ...It could the that such segment has only
2418 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2419 * the head skb is enough except for some reneging corner cases that
2420 * are not worth the effort.
2422 * Main reason for all this complexity is the fact that connection dying
2423 * time now depends on the validity of the retrans_stamp, in particular,
2424 * that successive retransmissions of a segment must not advance
2425 * retrans_stamp under any conditions.
2427 static bool tcp_any_retrans_done(const struct sock *sk)
2429 const struct tcp_sock *tp = tcp_sk(sk);
2430 struct sk_buff *skb;
2432 if (tp->retrans_out)
2433 return true;
2435 skb = tcp_write_queue_head(sk);
2436 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2437 return true;
2439 return false;
2442 /* Undo during loss recovery after partial ACK or using F-RTO. */
2443 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2445 struct tcp_sock *tp = tcp_sk(sk);
2447 if (frto_undo || tcp_may_undo(tp)) {
2448 tcp_undo_cwnd_reduction(sk, true);
2450 DBGUNDO(sk, "partial loss");
2451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2452 if (frto_undo)
2453 NET_INC_STATS_BH(sock_net(sk),
2454 LINUX_MIB_TCPSPURIOUSRTOS);
2455 inet_csk(sk)->icsk_retransmits = 0;
2456 if (frto_undo || tcp_is_sack(tp))
2457 tcp_set_ca_state(sk, TCP_CA_Open);
2458 return true;
2460 return false;
2463 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2464 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2465 * It computes the number of packets to send (sndcnt) based on packets newly
2466 * delivered:
2467 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2468 * cwnd reductions across a full RTT.
2469 * 2) If packets in flight is lower than ssthresh (such as due to excess
2470 * losses and/or application stalls), do not perform any further cwnd
2471 * reductions, but instead slow start up to ssthresh.
2473 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2475 struct tcp_sock *tp = tcp_sk(sk);
2477 tp->high_seq = tp->snd_nxt;
2478 tp->tlp_high_seq = 0;
2479 tp->snd_cwnd_cnt = 0;
2480 tp->prior_cwnd = tp->snd_cwnd;
2481 tp->prr_delivered = 0;
2482 tp->prr_out = 0;
2483 if (set_ssthresh)
2484 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2485 TCP_ECN_queue_cwr(tp);
2488 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2489 int fast_rexmit)
2491 struct tcp_sock *tp = tcp_sk(sk);
2492 int sndcnt = 0;
2493 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2494 int newly_acked_sacked = prior_unsacked -
2495 (tp->packets_out - tp->sacked_out);
2497 tp->prr_delivered += newly_acked_sacked;
2498 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2499 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2500 tp->prior_cwnd - 1;
2501 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2502 } else {
2503 sndcnt = min_t(int, delta,
2504 max_t(int, tp->prr_delivered - tp->prr_out,
2505 newly_acked_sacked) + 1);
2508 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2509 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2512 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2514 struct tcp_sock *tp = tcp_sk(sk);
2516 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2517 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2518 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2519 tp->snd_cwnd = tp->snd_ssthresh;
2520 tp->snd_cwnd_stamp = tcp_time_stamp;
2522 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2525 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2526 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2528 struct tcp_sock *tp = tcp_sk(sk);
2530 tp->prior_ssthresh = 0;
2531 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2532 tp->undo_marker = 0;
2533 tcp_init_cwnd_reduction(sk, set_ssthresh);
2534 tcp_set_ca_state(sk, TCP_CA_CWR);
2538 static void tcp_try_keep_open(struct sock *sk)
2540 struct tcp_sock *tp = tcp_sk(sk);
2541 int state = TCP_CA_Open;
2543 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2544 state = TCP_CA_Disorder;
2546 if (inet_csk(sk)->icsk_ca_state != state) {
2547 tcp_set_ca_state(sk, state);
2548 tp->high_seq = tp->snd_nxt;
2552 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2554 struct tcp_sock *tp = tcp_sk(sk);
2556 tcp_verify_left_out(tp);
2558 if (!tcp_any_retrans_done(sk))
2559 tp->retrans_stamp = 0;
2561 if (flag & FLAG_ECE)
2562 tcp_enter_cwr(sk, 1);
2564 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2565 tcp_try_keep_open(sk);
2566 } else {
2567 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2571 static void tcp_mtup_probe_failed(struct sock *sk)
2573 struct inet_connection_sock *icsk = inet_csk(sk);
2575 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2576 icsk->icsk_mtup.probe_size = 0;
2579 static void tcp_mtup_probe_success(struct sock *sk)
2581 struct tcp_sock *tp = tcp_sk(sk);
2582 struct inet_connection_sock *icsk = inet_csk(sk);
2584 /* FIXME: breaks with very large cwnd */
2585 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2586 tp->snd_cwnd = tp->snd_cwnd *
2587 tcp_mss_to_mtu(sk, tp->mss_cache) /
2588 icsk->icsk_mtup.probe_size;
2589 tp->snd_cwnd_cnt = 0;
2590 tp->snd_cwnd_stamp = tcp_time_stamp;
2591 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2593 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2594 icsk->icsk_mtup.probe_size = 0;
2595 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2598 /* Do a simple retransmit without using the backoff mechanisms in
2599 * tcp_timer. This is used for path mtu discovery.
2600 * The socket is already locked here.
2602 void tcp_simple_retransmit(struct sock *sk)
2604 const struct inet_connection_sock *icsk = inet_csk(sk);
2605 struct tcp_sock *tp = tcp_sk(sk);
2606 struct sk_buff *skb;
2607 unsigned int mss = tcp_current_mss(sk);
2608 u32 prior_lost = tp->lost_out;
2610 tcp_for_write_queue(skb, sk) {
2611 if (skb == tcp_send_head(sk))
2612 break;
2613 if (tcp_skb_seglen(skb) > mss &&
2614 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2615 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2616 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2617 tp->retrans_out -= tcp_skb_pcount(skb);
2619 tcp_skb_mark_lost_uncond_verify(tp, skb);
2623 tcp_clear_retrans_hints_partial(tp);
2625 if (prior_lost == tp->lost_out)
2626 return;
2628 if (tcp_is_reno(tp))
2629 tcp_limit_reno_sacked(tp);
2631 tcp_verify_left_out(tp);
2633 /* Don't muck with the congestion window here.
2634 * Reason is that we do not increase amount of _data_
2635 * in network, but units changed and effective
2636 * cwnd/ssthresh really reduced now.
2638 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2639 tp->high_seq = tp->snd_nxt;
2640 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2641 tp->prior_ssthresh = 0;
2642 tp->undo_marker = 0;
2643 tcp_set_ca_state(sk, TCP_CA_Loss);
2645 tcp_xmit_retransmit_queue(sk);
2647 EXPORT_SYMBOL(tcp_simple_retransmit);
2649 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2651 struct tcp_sock *tp = tcp_sk(sk);
2652 int mib_idx;
2654 if (tcp_is_reno(tp))
2655 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2656 else
2657 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2659 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2661 tp->prior_ssthresh = 0;
2662 tp->undo_marker = tp->snd_una;
2663 tp->undo_retrans = tp->retrans_out;
2665 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2666 if (!ece_ack)
2667 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2668 tcp_init_cwnd_reduction(sk, true);
2670 tcp_set_ca_state(sk, TCP_CA_Recovery);
2673 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2674 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2676 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2678 struct inet_connection_sock *icsk = inet_csk(sk);
2679 struct tcp_sock *tp = tcp_sk(sk);
2680 bool recovered = !before(tp->snd_una, tp->high_seq);
2682 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2683 if (flag & FLAG_ORIG_SACK_ACKED) {
2684 /* Step 3.b. A timeout is spurious if not all data are
2685 * lost, i.e., never-retransmitted data are (s)acked.
2687 tcp_try_undo_loss(sk, true);
2688 return;
2690 if (after(tp->snd_nxt, tp->high_seq) &&
2691 (flag & FLAG_DATA_SACKED || is_dupack)) {
2692 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2693 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2694 tp->high_seq = tp->snd_nxt;
2695 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2696 TCP_NAGLE_OFF);
2697 if (after(tp->snd_nxt, tp->high_seq))
2698 return; /* Step 2.b */
2699 tp->frto = 0;
2703 if (recovered) {
2704 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2705 icsk->icsk_retransmits = 0;
2706 tcp_try_undo_recovery(sk);
2707 return;
2709 if (flag & FLAG_DATA_ACKED)
2710 icsk->icsk_retransmits = 0;
2711 if (tcp_is_reno(tp)) {
2712 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2713 * delivered. Lower inflight to clock out (re)tranmissions.
2715 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2716 tcp_add_reno_sack(sk);
2717 else if (flag & FLAG_SND_UNA_ADVANCED)
2718 tcp_reset_reno_sack(tp);
2720 if (tcp_try_undo_loss(sk, false))
2721 return;
2722 tcp_xmit_retransmit_queue(sk);
2725 /* Undo during fast recovery after partial ACK. */
2726 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2727 const int prior_unsacked)
2729 struct tcp_sock *tp = tcp_sk(sk);
2731 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2732 /* Plain luck! Hole if filled with delayed
2733 * packet, rather than with a retransmit.
2735 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2737 /* We are getting evidence that the reordering degree is higher
2738 * than we realized. If there are no retransmits out then we
2739 * can undo. Otherwise we clock out new packets but do not
2740 * mark more packets lost or retransmit more.
2742 if (tp->retrans_out) {
2743 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2744 return true;
2747 if (!tcp_any_retrans_done(sk))
2748 tp->retrans_stamp = 0;
2750 DBGUNDO(sk, "partial recovery");
2751 tcp_undo_cwnd_reduction(sk, true);
2752 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2753 tcp_try_keep_open(sk);
2754 return true;
2756 return false;
2759 /* Process an event, which can update packets-in-flight not trivially.
2760 * Main goal of this function is to calculate new estimate for left_out,
2761 * taking into account both packets sitting in receiver's buffer and
2762 * packets lost by network.
2764 * Besides that it does CWND reduction, when packet loss is detected
2765 * and changes state of machine.
2767 * It does _not_ decide what to send, it is made in function
2768 * tcp_xmit_retransmit_queue().
2770 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2771 const int prior_unsacked,
2772 bool is_dupack, int flag)
2774 struct inet_connection_sock *icsk = inet_csk(sk);
2775 struct tcp_sock *tp = tcp_sk(sk);
2776 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2777 (tcp_fackets_out(tp) > tp->reordering));
2778 int fast_rexmit = 0;
2780 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2781 tp->sacked_out = 0;
2782 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2783 tp->fackets_out = 0;
2785 /* Now state machine starts.
2786 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2787 if (flag & FLAG_ECE)
2788 tp->prior_ssthresh = 0;
2790 /* B. In all the states check for reneging SACKs. */
2791 if (tcp_check_sack_reneging(sk, flag))
2792 return;
2794 /* C. Check consistency of the current state. */
2795 tcp_verify_left_out(tp);
2797 /* D. Check state exit conditions. State can be terminated
2798 * when high_seq is ACKed. */
2799 if (icsk->icsk_ca_state == TCP_CA_Open) {
2800 WARN_ON(tp->retrans_out != 0);
2801 tp->retrans_stamp = 0;
2802 } else if (!before(tp->snd_una, tp->high_seq)) {
2803 switch (icsk->icsk_ca_state) {
2804 case TCP_CA_CWR:
2805 /* CWR is to be held something *above* high_seq
2806 * is ACKed for CWR bit to reach receiver. */
2807 if (tp->snd_una != tp->high_seq) {
2808 tcp_end_cwnd_reduction(sk);
2809 tcp_set_ca_state(sk, TCP_CA_Open);
2811 break;
2813 case TCP_CA_Recovery:
2814 if (tcp_is_reno(tp))
2815 tcp_reset_reno_sack(tp);
2816 if (tcp_try_undo_recovery(sk))
2817 return;
2818 tcp_end_cwnd_reduction(sk);
2819 break;
2823 /* E. Process state. */
2824 switch (icsk->icsk_ca_state) {
2825 case TCP_CA_Recovery:
2826 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2827 if (tcp_is_reno(tp) && is_dupack)
2828 tcp_add_reno_sack(sk);
2829 } else {
2830 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2831 return;
2832 /* Partial ACK arrived. Force fast retransmit. */
2833 do_lost = tcp_is_reno(tp) ||
2834 tcp_fackets_out(tp) > tp->reordering;
2836 if (tcp_try_undo_dsack(sk)) {
2837 tcp_try_keep_open(sk);
2838 return;
2840 break;
2841 case TCP_CA_Loss:
2842 tcp_process_loss(sk, flag, is_dupack);
2843 if (icsk->icsk_ca_state != TCP_CA_Open)
2844 return;
2845 /* Fall through to processing in Open state. */
2846 default:
2847 if (tcp_is_reno(tp)) {
2848 if (flag & FLAG_SND_UNA_ADVANCED)
2849 tcp_reset_reno_sack(tp);
2850 if (is_dupack)
2851 tcp_add_reno_sack(sk);
2854 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2855 tcp_try_undo_dsack(sk);
2857 if (!tcp_time_to_recover(sk, flag)) {
2858 tcp_try_to_open(sk, flag, prior_unsacked);
2859 return;
2862 /* MTU probe failure: don't reduce cwnd */
2863 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2864 icsk->icsk_mtup.probe_size &&
2865 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2866 tcp_mtup_probe_failed(sk);
2867 /* Restores the reduction we did in tcp_mtup_probe() */
2868 tp->snd_cwnd++;
2869 tcp_simple_retransmit(sk);
2870 return;
2873 /* Otherwise enter Recovery state */
2874 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2875 fast_rexmit = 1;
2878 if (do_lost)
2879 tcp_update_scoreboard(sk, fast_rexmit);
2880 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2881 tcp_xmit_retransmit_queue(sk);
2884 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2885 s32 seq_rtt, s32 sack_rtt)
2887 const struct tcp_sock *tp = tcp_sk(sk);
2889 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2890 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2891 * Karn's algorithm forbids taking RTT if some retransmitted data
2892 * is acked (RFC6298).
2894 if (flag & FLAG_RETRANS_DATA_ACKED)
2895 seq_rtt = -1;
2897 if (seq_rtt < 0)
2898 seq_rtt = sack_rtt;
2900 /* RTTM Rule: A TSecr value received in a segment is used to
2901 * update the averaged RTT measurement only if the segment
2902 * acknowledges some new data, i.e., only if it advances the
2903 * left edge of the send window.
2904 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2906 if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2907 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2909 if (seq_rtt < 0)
2910 return false;
2912 tcp_rtt_estimator(sk, seq_rtt);
2913 tcp_set_rto(sk);
2915 /* RFC6298: only reset backoff on valid RTT measurement. */
2916 inet_csk(sk)->icsk_backoff = 0;
2917 return true;
2920 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2921 static void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2923 struct tcp_sock *tp = tcp_sk(sk);
2924 s32 seq_rtt = -1;
2926 if (tp->lsndtime && !tp->total_retrans)
2927 seq_rtt = tcp_time_stamp - tp->lsndtime;
2928 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1);
2931 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2933 const struct inet_connection_sock *icsk = inet_csk(sk);
2934 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2935 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2938 /* Restart timer after forward progress on connection.
2939 * RFC2988 recommends to restart timer to now+rto.
2941 void tcp_rearm_rto(struct sock *sk)
2943 const struct inet_connection_sock *icsk = inet_csk(sk);
2944 struct tcp_sock *tp = tcp_sk(sk);
2946 /* If the retrans timer is currently being used by Fast Open
2947 * for SYN-ACK retrans purpose, stay put.
2949 if (tp->fastopen_rsk)
2950 return;
2952 if (!tp->packets_out) {
2953 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2954 } else {
2955 u32 rto = inet_csk(sk)->icsk_rto;
2956 /* Offset the time elapsed after installing regular RTO */
2957 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2958 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2959 struct sk_buff *skb = tcp_write_queue_head(sk);
2960 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2961 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2962 /* delta may not be positive if the socket is locked
2963 * when the retrans timer fires and is rescheduled.
2965 if (delta > 0)
2966 rto = delta;
2968 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2969 TCP_RTO_MAX);
2973 /* This function is called when the delayed ER timer fires. TCP enters
2974 * fast recovery and performs fast-retransmit.
2976 void tcp_resume_early_retransmit(struct sock *sk)
2978 struct tcp_sock *tp = tcp_sk(sk);
2980 tcp_rearm_rto(sk);
2982 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2983 if (!tp->do_early_retrans)
2984 return;
2986 tcp_enter_recovery(sk, false);
2987 tcp_update_scoreboard(sk, 1);
2988 tcp_xmit_retransmit_queue(sk);
2991 /* If we get here, the whole TSO packet has not been acked. */
2992 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2994 struct tcp_sock *tp = tcp_sk(sk);
2995 u32 packets_acked;
2997 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2999 packets_acked = tcp_skb_pcount(skb);
3000 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3001 return 0;
3002 packets_acked -= tcp_skb_pcount(skb);
3004 if (packets_acked) {
3005 BUG_ON(tcp_skb_pcount(skb) == 0);
3006 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3009 return packets_acked;
3012 /* Remove acknowledged frames from the retransmission queue. If our packet
3013 * is before the ack sequence we can discard it as it's confirmed to have
3014 * arrived at the other end.
3016 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3017 u32 prior_snd_una, s32 sack_rtt)
3019 struct tcp_sock *tp = tcp_sk(sk);
3020 const struct inet_connection_sock *icsk = inet_csk(sk);
3021 struct sk_buff *skb;
3022 u32 now = tcp_time_stamp;
3023 bool fully_acked = true;
3024 int flag = 0;
3025 u32 pkts_acked = 0;
3026 u32 reord = tp->packets_out;
3027 u32 prior_sacked = tp->sacked_out;
3028 s32 seq_rtt = -1;
3029 s32 ca_seq_rtt = -1;
3030 ktime_t last_ackt = net_invalid_timestamp();
3032 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3033 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3034 u32 acked_pcount;
3035 u8 sacked = scb->sacked;
3037 /* Determine how many packets and what bytes were acked, tso and else */
3038 if (after(scb->end_seq, tp->snd_una)) {
3039 if (tcp_skb_pcount(skb) == 1 ||
3040 !after(tp->snd_una, scb->seq))
3041 break;
3043 acked_pcount = tcp_tso_acked(sk, skb);
3044 if (!acked_pcount)
3045 break;
3047 fully_acked = false;
3048 } else {
3049 acked_pcount = tcp_skb_pcount(skb);
3052 if (sacked & TCPCB_RETRANS) {
3053 if (sacked & TCPCB_SACKED_RETRANS)
3054 tp->retrans_out -= acked_pcount;
3055 flag |= FLAG_RETRANS_DATA_ACKED;
3056 } else {
3057 ca_seq_rtt = now - scb->when;
3058 last_ackt = skb->tstamp;
3059 if (seq_rtt < 0) {
3060 seq_rtt = ca_seq_rtt;
3062 if (!(sacked & TCPCB_SACKED_ACKED))
3063 reord = min(pkts_acked, reord);
3064 if (!after(scb->end_seq, tp->high_seq))
3065 flag |= FLAG_ORIG_SACK_ACKED;
3068 if (sacked & TCPCB_SACKED_ACKED)
3069 tp->sacked_out -= acked_pcount;
3070 if (sacked & TCPCB_LOST)
3071 tp->lost_out -= acked_pcount;
3073 tp->packets_out -= acked_pcount;
3074 pkts_acked += acked_pcount;
3076 /* Initial outgoing SYN's get put onto the write_queue
3077 * just like anything else we transmit. It is not
3078 * true data, and if we misinform our callers that
3079 * this ACK acks real data, we will erroneously exit
3080 * connection startup slow start one packet too
3081 * quickly. This is severely frowned upon behavior.
3083 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3084 flag |= FLAG_DATA_ACKED;
3085 } else {
3086 flag |= FLAG_SYN_ACKED;
3087 tp->retrans_stamp = 0;
3090 if (!fully_acked)
3091 break;
3093 tcp_unlink_write_queue(skb, sk);
3094 sk_wmem_free_skb(sk, skb);
3095 if (skb == tp->retransmit_skb_hint)
3096 tp->retransmit_skb_hint = NULL;
3097 if (skb == tp->lost_skb_hint)
3098 tp->lost_skb_hint = NULL;
3101 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3102 tp->snd_up = tp->snd_una;
3104 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3105 flag |= FLAG_SACK_RENEGING;
3107 if (tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt) ||
3108 (flag & FLAG_ACKED))
3109 tcp_rearm_rto(sk);
3111 if (flag & FLAG_ACKED) {
3112 const struct tcp_congestion_ops *ca_ops
3113 = inet_csk(sk)->icsk_ca_ops;
3115 if (unlikely(icsk->icsk_mtup.probe_size &&
3116 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3117 tcp_mtup_probe_success(sk);
3120 if (tcp_is_reno(tp)) {
3121 tcp_remove_reno_sacks(sk, pkts_acked);
3122 } else {
3123 int delta;
3125 /* Non-retransmitted hole got filled? That's reordering */
3126 if (reord < prior_fackets)
3127 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3129 delta = tcp_is_fack(tp) ? pkts_acked :
3130 prior_sacked - tp->sacked_out;
3131 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3134 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3136 if (ca_ops->pkts_acked) {
3137 s32 rtt_us = -1;
3139 /* Is the ACK triggering packet unambiguous? */
3140 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3141 /* High resolution needed and available? */
3142 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3143 !ktime_equal(last_ackt,
3144 net_invalid_timestamp()))
3145 rtt_us = ktime_us_delta(ktime_get_real(),
3146 last_ackt);
3147 else if (ca_seq_rtt >= 0)
3148 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3151 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3155 #if FASTRETRANS_DEBUG > 0
3156 WARN_ON((int)tp->sacked_out < 0);
3157 WARN_ON((int)tp->lost_out < 0);
3158 WARN_ON((int)tp->retrans_out < 0);
3159 if (!tp->packets_out && tcp_is_sack(tp)) {
3160 icsk = inet_csk(sk);
3161 if (tp->lost_out) {
3162 pr_debug("Leak l=%u %d\n",
3163 tp->lost_out, icsk->icsk_ca_state);
3164 tp->lost_out = 0;
3166 if (tp->sacked_out) {
3167 pr_debug("Leak s=%u %d\n",
3168 tp->sacked_out, icsk->icsk_ca_state);
3169 tp->sacked_out = 0;
3171 if (tp->retrans_out) {
3172 pr_debug("Leak r=%u %d\n",
3173 tp->retrans_out, icsk->icsk_ca_state);
3174 tp->retrans_out = 0;
3177 #endif
3178 return flag;
3181 static void tcp_ack_probe(struct sock *sk)
3183 const struct tcp_sock *tp = tcp_sk(sk);
3184 struct inet_connection_sock *icsk = inet_csk(sk);
3186 /* Was it a usable window open? */
3188 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3189 icsk->icsk_backoff = 0;
3190 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3191 /* Socket must be waked up by subsequent tcp_data_snd_check().
3192 * This function is not for random using!
3194 } else {
3195 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3196 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3197 TCP_RTO_MAX);
3201 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3203 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3204 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3207 /* Decide wheather to run the increase function of congestion control. */
3208 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3210 if (tcp_in_cwnd_reduction(sk))
3211 return false;
3213 /* If reordering is high then always grow cwnd whenever data is
3214 * delivered regardless of its ordering. Otherwise stay conservative
3215 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3216 * new SACK or ECE mark may first advance cwnd here and later reduce
3217 * cwnd in tcp_fastretrans_alert() based on more states.
3219 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3220 return flag & FLAG_FORWARD_PROGRESS;
3222 return flag & FLAG_DATA_ACKED;
3225 /* Check that window update is acceptable.
3226 * The function assumes that snd_una<=ack<=snd_next.
3228 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3229 const u32 ack, const u32 ack_seq,
3230 const u32 nwin)
3232 return after(ack, tp->snd_una) ||
3233 after(ack_seq, tp->snd_wl1) ||
3234 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3237 /* Update our send window.
3239 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3240 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3242 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3243 u32 ack_seq)
3245 struct tcp_sock *tp = tcp_sk(sk);
3246 int flag = 0;
3247 u32 nwin = ntohs(tcp_hdr(skb)->window);
3249 if (likely(!tcp_hdr(skb)->syn))
3250 nwin <<= tp->rx_opt.snd_wscale;
3252 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3253 flag |= FLAG_WIN_UPDATE;
3254 tcp_update_wl(tp, ack_seq);
3256 if (tp->snd_wnd != nwin) {
3257 tp->snd_wnd = nwin;
3259 /* Note, it is the only place, where
3260 * fast path is recovered for sending TCP.
3262 tp->pred_flags = 0;
3263 tcp_fast_path_check(sk);
3265 if (nwin > tp->max_window) {
3266 tp->max_window = nwin;
3267 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3272 tp->snd_una = ack;
3274 return flag;
3277 /* RFC 5961 7 [ACK Throttling] */
3278 static void tcp_send_challenge_ack(struct sock *sk)
3280 /* unprotected vars, we dont care of overwrites */
3281 static u32 challenge_timestamp;
3282 static unsigned int challenge_count;
3283 u32 now = jiffies / HZ;
3285 if (now != challenge_timestamp) {
3286 challenge_timestamp = now;
3287 challenge_count = 0;
3289 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3290 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3291 tcp_send_ack(sk);
3295 static void tcp_store_ts_recent(struct tcp_sock *tp)
3297 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3298 tp->rx_opt.ts_recent_stamp = get_seconds();
3301 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3303 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3304 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3305 * extra check below makes sure this can only happen
3306 * for pure ACK frames. -DaveM
3308 * Not only, also it occurs for expired timestamps.
3311 if (tcp_paws_check(&tp->rx_opt, 0))
3312 tcp_store_ts_recent(tp);
3316 /* This routine deals with acks during a TLP episode.
3317 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3319 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3321 struct tcp_sock *tp = tcp_sk(sk);
3322 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3323 !(flag & (FLAG_SND_UNA_ADVANCED |
3324 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3326 /* Mark the end of TLP episode on receiving TLP dupack or when
3327 * ack is after tlp_high_seq.
3329 if (is_tlp_dupack) {
3330 tp->tlp_high_seq = 0;
3331 return;
3334 if (after(ack, tp->tlp_high_seq)) {
3335 tp->tlp_high_seq = 0;
3336 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3337 if (!(flag & FLAG_DSACKING_ACK)) {
3338 tcp_init_cwnd_reduction(sk, true);
3339 tcp_set_ca_state(sk, TCP_CA_CWR);
3340 tcp_end_cwnd_reduction(sk);
3341 tcp_try_keep_open(sk);
3342 NET_INC_STATS_BH(sock_net(sk),
3343 LINUX_MIB_TCPLOSSPROBERECOVERY);
3348 /* This routine deals with incoming acks, but not outgoing ones. */
3349 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3351 struct inet_connection_sock *icsk = inet_csk(sk);
3352 struct tcp_sock *tp = tcp_sk(sk);
3353 u32 prior_snd_una = tp->snd_una;
3354 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3355 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3356 bool is_dupack = false;
3357 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3358 u32 prior_fackets;
3359 int prior_packets = tp->packets_out;
3360 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3361 int acked = 0; /* Number of packets newly acked */
3362 s32 sack_rtt = -1;
3364 /* If the ack is older than previous acks
3365 * then we can probably ignore it.
3367 if (before(ack, prior_snd_una)) {
3368 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3369 if (before(ack, prior_snd_una - tp->max_window)) {
3370 tcp_send_challenge_ack(sk);
3371 return -1;
3373 goto old_ack;
3376 /* If the ack includes data we haven't sent yet, discard
3377 * this segment (RFC793 Section 3.9).
3379 if (after(ack, tp->snd_nxt))
3380 goto invalid_ack;
3382 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3383 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3384 tcp_rearm_rto(sk);
3386 if (after(ack, prior_snd_una))
3387 flag |= FLAG_SND_UNA_ADVANCED;
3389 prior_fackets = tp->fackets_out;
3390 prior_in_flight = tcp_packets_in_flight(tp);
3392 /* ts_recent update must be made after we are sure that the packet
3393 * is in window.
3395 if (flag & FLAG_UPDATE_TS_RECENT)
3396 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3398 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3399 /* Window is constant, pure forward advance.
3400 * No more checks are required.
3401 * Note, we use the fact that SND.UNA>=SND.WL2.
3403 tcp_update_wl(tp, ack_seq);
3404 tp->snd_una = ack;
3405 flag |= FLAG_WIN_UPDATE;
3407 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3409 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3410 } else {
3411 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3412 flag |= FLAG_DATA;
3413 else
3414 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3416 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3418 if (TCP_SKB_CB(skb)->sacked)
3419 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3420 &sack_rtt);
3422 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3423 flag |= FLAG_ECE;
3425 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3428 /* We passed data and got it acked, remove any soft error
3429 * log. Something worked...
3431 sk->sk_err_soft = 0;
3432 icsk->icsk_probes_out = 0;
3433 tp->rcv_tstamp = tcp_time_stamp;
3434 if (!prior_packets)
3435 goto no_queue;
3437 /* See if we can take anything off of the retransmit queue. */
3438 acked = tp->packets_out;
3439 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt);
3440 acked -= tp->packets_out;
3442 /* Advance cwnd if state allows */
3443 if (tcp_may_raise_cwnd(sk, flag))
3444 tcp_cong_avoid(sk, ack, prior_in_flight);
3446 if (tcp_ack_is_dubious(sk, flag)) {
3447 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3448 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3449 is_dupack, flag);
3451 if (tp->tlp_high_seq)
3452 tcp_process_tlp_ack(sk, ack, flag);
3454 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3455 struct dst_entry *dst = __sk_dst_get(sk);
3456 if (dst)
3457 dst_confirm(dst);
3460 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3461 tcp_schedule_loss_probe(sk);
3462 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3463 tcp_update_pacing_rate(sk);
3464 return 1;
3466 no_queue:
3467 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3468 if (flag & FLAG_DSACKING_ACK)
3469 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3470 is_dupack, flag);
3471 /* If this ack opens up a zero window, clear backoff. It was
3472 * being used to time the probes, and is probably far higher than
3473 * it needs to be for normal retransmission.
3475 if (tcp_send_head(sk))
3476 tcp_ack_probe(sk);
3478 if (tp->tlp_high_seq)
3479 tcp_process_tlp_ack(sk, ack, flag);
3480 return 1;
3482 invalid_ack:
3483 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3484 return -1;
3486 old_ack:
3487 /* If data was SACKed, tag it and see if we should send more data.
3488 * If data was DSACKed, see if we can undo a cwnd reduction.
3490 if (TCP_SKB_CB(skb)->sacked) {
3491 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3492 &sack_rtt);
3493 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3494 is_dupack, flag);
3497 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3498 return 0;
3501 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3502 * But, this can also be called on packets in the established flow when
3503 * the fast version below fails.
3505 void tcp_parse_options(const struct sk_buff *skb,
3506 struct tcp_options_received *opt_rx, int estab,
3507 struct tcp_fastopen_cookie *foc)
3509 const unsigned char *ptr;
3510 const struct tcphdr *th = tcp_hdr(skb);
3511 int length = (th->doff * 4) - sizeof(struct tcphdr);
3513 ptr = (const unsigned char *)(th + 1);
3514 opt_rx->saw_tstamp = 0;
3516 while (length > 0) {
3517 int opcode = *ptr++;
3518 int opsize;
3520 switch (opcode) {
3521 case TCPOPT_EOL:
3522 return;
3523 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3524 length--;
3525 continue;
3526 default:
3527 opsize = *ptr++;
3528 if (opsize < 2) /* "silly options" */
3529 return;
3530 if (opsize > length)
3531 return; /* don't parse partial options */
3532 switch (opcode) {
3533 case TCPOPT_MSS:
3534 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3535 u16 in_mss = get_unaligned_be16(ptr);
3536 if (in_mss) {
3537 if (opt_rx->user_mss &&
3538 opt_rx->user_mss < in_mss)
3539 in_mss = opt_rx->user_mss;
3540 opt_rx->mss_clamp = in_mss;
3543 break;
3544 case TCPOPT_WINDOW:
3545 if (opsize == TCPOLEN_WINDOW && th->syn &&
3546 !estab && sysctl_tcp_window_scaling) {
3547 __u8 snd_wscale = *(__u8 *)ptr;
3548 opt_rx->wscale_ok = 1;
3549 if (snd_wscale > 14) {
3550 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3551 __func__,
3552 snd_wscale);
3553 snd_wscale = 14;
3555 opt_rx->snd_wscale = snd_wscale;
3557 break;
3558 case TCPOPT_TIMESTAMP:
3559 if ((opsize == TCPOLEN_TIMESTAMP) &&
3560 ((estab && opt_rx->tstamp_ok) ||
3561 (!estab && sysctl_tcp_timestamps))) {
3562 opt_rx->saw_tstamp = 1;
3563 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3564 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3566 break;
3567 case TCPOPT_SACK_PERM:
3568 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3569 !estab && sysctl_tcp_sack) {
3570 opt_rx->sack_ok = TCP_SACK_SEEN;
3571 tcp_sack_reset(opt_rx);
3573 break;
3575 case TCPOPT_SACK:
3576 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3577 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3578 opt_rx->sack_ok) {
3579 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3581 break;
3582 #ifdef CONFIG_TCP_MD5SIG
3583 case TCPOPT_MD5SIG:
3585 * The MD5 Hash has already been
3586 * checked (see tcp_v{4,6}_do_rcv()).
3588 break;
3589 #endif
3590 case TCPOPT_EXP:
3591 /* Fast Open option shares code 254 using a
3592 * 16 bits magic number. It's valid only in
3593 * SYN or SYN-ACK with an even size.
3595 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3596 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3597 foc == NULL || !th->syn || (opsize & 1))
3598 break;
3599 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3600 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3601 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3602 memcpy(foc->val, ptr + 2, foc->len);
3603 else if (foc->len != 0)
3604 foc->len = -1;
3605 break;
3608 ptr += opsize-2;
3609 length -= opsize;
3613 EXPORT_SYMBOL(tcp_parse_options);
3615 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3617 const __be32 *ptr = (const __be32 *)(th + 1);
3619 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3620 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3621 tp->rx_opt.saw_tstamp = 1;
3622 ++ptr;
3623 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3624 ++ptr;
3625 if (*ptr)
3626 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3627 else
3628 tp->rx_opt.rcv_tsecr = 0;
3629 return true;
3631 return false;
3634 /* Fast parse options. This hopes to only see timestamps.
3635 * If it is wrong it falls back on tcp_parse_options().
3637 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3638 const struct tcphdr *th, struct tcp_sock *tp)
3640 /* In the spirit of fast parsing, compare doff directly to constant
3641 * values. Because equality is used, short doff can be ignored here.
3643 if (th->doff == (sizeof(*th) / 4)) {
3644 tp->rx_opt.saw_tstamp = 0;
3645 return false;
3646 } else if (tp->rx_opt.tstamp_ok &&
3647 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3648 if (tcp_parse_aligned_timestamp(tp, th))
3649 return true;
3652 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3653 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3654 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3656 return true;
3659 #ifdef CONFIG_TCP_MD5SIG
3661 * Parse MD5 Signature option
3663 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3665 int length = (th->doff << 2) - sizeof(*th);
3666 const u8 *ptr = (const u8 *)(th + 1);
3668 /* If the TCP option is too short, we can short cut */
3669 if (length < TCPOLEN_MD5SIG)
3670 return NULL;
3672 while (length > 0) {
3673 int opcode = *ptr++;
3674 int opsize;
3676 switch(opcode) {
3677 case TCPOPT_EOL:
3678 return NULL;
3679 case TCPOPT_NOP:
3680 length--;
3681 continue;
3682 default:
3683 opsize = *ptr++;
3684 if (opsize < 2 || opsize > length)
3685 return NULL;
3686 if (opcode == TCPOPT_MD5SIG)
3687 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3689 ptr += opsize - 2;
3690 length -= opsize;
3692 return NULL;
3694 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3695 #endif
3697 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3699 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3700 * it can pass through stack. So, the following predicate verifies that
3701 * this segment is not used for anything but congestion avoidance or
3702 * fast retransmit. Moreover, we even are able to eliminate most of such
3703 * second order effects, if we apply some small "replay" window (~RTO)
3704 * to timestamp space.
3706 * All these measures still do not guarantee that we reject wrapped ACKs
3707 * on networks with high bandwidth, when sequence space is recycled fastly,
3708 * but it guarantees that such events will be very rare and do not affect
3709 * connection seriously. This doesn't look nice, but alas, PAWS is really
3710 * buggy extension.
3712 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3713 * states that events when retransmit arrives after original data are rare.
3714 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3715 * the biggest problem on large power networks even with minor reordering.
3716 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3717 * up to bandwidth of 18Gigabit/sec. 8) ]
3720 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3722 const struct tcp_sock *tp = tcp_sk(sk);
3723 const struct tcphdr *th = tcp_hdr(skb);
3724 u32 seq = TCP_SKB_CB(skb)->seq;
3725 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3727 return (/* 1. Pure ACK with correct sequence number. */
3728 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3730 /* 2. ... and duplicate ACK. */
3731 ack == tp->snd_una &&
3733 /* 3. ... and does not update window. */
3734 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3736 /* 4. ... and sits in replay window. */
3737 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3740 static inline bool tcp_paws_discard(const struct sock *sk,
3741 const struct sk_buff *skb)
3743 const struct tcp_sock *tp = tcp_sk(sk);
3745 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3746 !tcp_disordered_ack(sk, skb);
3749 /* Check segment sequence number for validity.
3751 * Segment controls are considered valid, if the segment
3752 * fits to the window after truncation to the window. Acceptability
3753 * of data (and SYN, FIN, of course) is checked separately.
3754 * See tcp_data_queue(), for example.
3756 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3757 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3758 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3759 * (borrowed from freebsd)
3762 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3764 return !before(end_seq, tp->rcv_wup) &&
3765 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3768 /* When we get a reset we do this. */
3769 void tcp_reset(struct sock *sk)
3771 /* We want the right error as BSD sees it (and indeed as we do). */
3772 switch (sk->sk_state) {
3773 case TCP_SYN_SENT:
3774 sk->sk_err = ECONNREFUSED;
3775 break;
3776 case TCP_CLOSE_WAIT:
3777 sk->sk_err = EPIPE;
3778 break;
3779 case TCP_CLOSE:
3780 return;
3781 default:
3782 sk->sk_err = ECONNRESET;
3784 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3785 smp_wmb();
3787 if (!sock_flag(sk, SOCK_DEAD))
3788 sk->sk_error_report(sk);
3790 tcp_done(sk);
3794 * Process the FIN bit. This now behaves as it is supposed to work
3795 * and the FIN takes effect when it is validly part of sequence
3796 * space. Not before when we get holes.
3798 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3799 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3800 * TIME-WAIT)
3802 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3803 * close and we go into CLOSING (and later onto TIME-WAIT)
3805 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3807 static void tcp_fin(struct sock *sk)
3809 struct tcp_sock *tp = tcp_sk(sk);
3810 const struct dst_entry *dst;
3812 inet_csk_schedule_ack(sk);
3814 sk->sk_shutdown |= RCV_SHUTDOWN;
3815 sock_set_flag(sk, SOCK_DONE);
3817 switch (sk->sk_state) {
3818 case TCP_SYN_RECV:
3819 case TCP_ESTABLISHED:
3820 /* Move to CLOSE_WAIT */
3821 tcp_set_state(sk, TCP_CLOSE_WAIT);
3822 dst = __sk_dst_get(sk);
3823 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3824 inet_csk(sk)->icsk_ack.pingpong = 1;
3825 break;
3827 case TCP_CLOSE_WAIT:
3828 case TCP_CLOSING:
3829 /* Received a retransmission of the FIN, do
3830 * nothing.
3832 break;
3833 case TCP_LAST_ACK:
3834 /* RFC793: Remain in the LAST-ACK state. */
3835 break;
3837 case TCP_FIN_WAIT1:
3838 /* This case occurs when a simultaneous close
3839 * happens, we must ack the received FIN and
3840 * enter the CLOSING state.
3842 tcp_send_ack(sk);
3843 tcp_set_state(sk, TCP_CLOSING);
3844 break;
3845 case TCP_FIN_WAIT2:
3846 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3847 tcp_send_ack(sk);
3848 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3849 break;
3850 default:
3851 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3852 * cases we should never reach this piece of code.
3854 pr_err("%s: Impossible, sk->sk_state=%d\n",
3855 __func__, sk->sk_state);
3856 break;
3859 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3860 * Probably, we should reset in this case. For now drop them.
3862 __skb_queue_purge(&tp->out_of_order_queue);
3863 if (tcp_is_sack(tp))
3864 tcp_sack_reset(&tp->rx_opt);
3865 sk_mem_reclaim(sk);
3867 if (!sock_flag(sk, SOCK_DEAD)) {
3868 sk->sk_state_change(sk);
3870 /* Do not send POLL_HUP for half duplex close. */
3871 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3872 sk->sk_state == TCP_CLOSE)
3873 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3874 else
3875 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3879 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3880 u32 end_seq)
3882 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3883 if (before(seq, sp->start_seq))
3884 sp->start_seq = seq;
3885 if (after(end_seq, sp->end_seq))
3886 sp->end_seq = end_seq;
3887 return true;
3889 return false;
3892 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3894 struct tcp_sock *tp = tcp_sk(sk);
3896 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3897 int mib_idx;
3899 if (before(seq, tp->rcv_nxt))
3900 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3901 else
3902 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3904 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3906 tp->rx_opt.dsack = 1;
3907 tp->duplicate_sack[0].start_seq = seq;
3908 tp->duplicate_sack[0].end_seq = end_seq;
3912 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3914 struct tcp_sock *tp = tcp_sk(sk);
3916 if (!tp->rx_opt.dsack)
3917 tcp_dsack_set(sk, seq, end_seq);
3918 else
3919 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3922 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3924 struct tcp_sock *tp = tcp_sk(sk);
3926 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3927 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3928 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3929 tcp_enter_quickack_mode(sk);
3931 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3932 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3934 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3935 end_seq = tp->rcv_nxt;
3936 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3940 tcp_send_ack(sk);
3943 /* These routines update the SACK block as out-of-order packets arrive or
3944 * in-order packets close up the sequence space.
3946 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3948 int this_sack;
3949 struct tcp_sack_block *sp = &tp->selective_acks[0];
3950 struct tcp_sack_block *swalk = sp + 1;
3952 /* See if the recent change to the first SACK eats into
3953 * or hits the sequence space of other SACK blocks, if so coalesce.
3955 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3956 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3957 int i;
3959 /* Zap SWALK, by moving every further SACK up by one slot.
3960 * Decrease num_sacks.
3962 tp->rx_opt.num_sacks--;
3963 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3964 sp[i] = sp[i + 1];
3965 continue;
3967 this_sack++, swalk++;
3971 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3973 struct tcp_sock *tp = tcp_sk(sk);
3974 struct tcp_sack_block *sp = &tp->selective_acks[0];
3975 int cur_sacks = tp->rx_opt.num_sacks;
3976 int this_sack;
3978 if (!cur_sacks)
3979 goto new_sack;
3981 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3982 if (tcp_sack_extend(sp, seq, end_seq)) {
3983 /* Rotate this_sack to the first one. */
3984 for (; this_sack > 0; this_sack--, sp--)
3985 swap(*sp, *(sp - 1));
3986 if (cur_sacks > 1)
3987 tcp_sack_maybe_coalesce(tp);
3988 return;
3992 /* Could not find an adjacent existing SACK, build a new one,
3993 * put it at the front, and shift everyone else down. We
3994 * always know there is at least one SACK present already here.
3996 * If the sack array is full, forget about the last one.
3998 if (this_sack >= TCP_NUM_SACKS) {
3999 this_sack--;
4000 tp->rx_opt.num_sacks--;
4001 sp--;
4003 for (; this_sack > 0; this_sack--, sp--)
4004 *sp = *(sp - 1);
4006 new_sack:
4007 /* Build the new head SACK, and we're done. */
4008 sp->start_seq = seq;
4009 sp->end_seq = end_seq;
4010 tp->rx_opt.num_sacks++;
4013 /* RCV.NXT advances, some SACKs should be eaten. */
4015 static void tcp_sack_remove(struct tcp_sock *tp)
4017 struct tcp_sack_block *sp = &tp->selective_acks[0];
4018 int num_sacks = tp->rx_opt.num_sacks;
4019 int this_sack;
4021 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4022 if (skb_queue_empty(&tp->out_of_order_queue)) {
4023 tp->rx_opt.num_sacks = 0;
4024 return;
4027 for (this_sack = 0; this_sack < num_sacks;) {
4028 /* Check if the start of the sack is covered by RCV.NXT. */
4029 if (!before(tp->rcv_nxt, sp->start_seq)) {
4030 int i;
4032 /* RCV.NXT must cover all the block! */
4033 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4035 /* Zap this SACK, by moving forward any other SACKS. */
4036 for (i=this_sack+1; i < num_sacks; i++)
4037 tp->selective_acks[i-1] = tp->selective_acks[i];
4038 num_sacks--;
4039 continue;
4041 this_sack++;
4042 sp++;
4044 tp->rx_opt.num_sacks = num_sacks;
4047 /* This one checks to see if we can put data from the
4048 * out_of_order queue into the receive_queue.
4050 static void tcp_ofo_queue(struct sock *sk)
4052 struct tcp_sock *tp = tcp_sk(sk);
4053 __u32 dsack_high = tp->rcv_nxt;
4054 struct sk_buff *skb;
4056 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4057 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4058 break;
4060 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4061 __u32 dsack = dsack_high;
4062 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4063 dsack_high = TCP_SKB_CB(skb)->end_seq;
4064 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4067 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4068 SOCK_DEBUG(sk, "ofo packet was already received\n");
4069 __skb_unlink(skb, &tp->out_of_order_queue);
4070 __kfree_skb(skb);
4071 continue;
4073 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4074 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4075 TCP_SKB_CB(skb)->end_seq);
4077 __skb_unlink(skb, &tp->out_of_order_queue);
4078 __skb_queue_tail(&sk->sk_receive_queue, skb);
4079 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4080 if (tcp_hdr(skb)->fin)
4081 tcp_fin(sk);
4085 static bool tcp_prune_ofo_queue(struct sock *sk);
4086 static int tcp_prune_queue(struct sock *sk);
4088 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4089 unsigned int size)
4091 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4092 !sk_rmem_schedule(sk, skb, size)) {
4094 if (tcp_prune_queue(sk) < 0)
4095 return -1;
4097 if (!sk_rmem_schedule(sk, skb, size)) {
4098 if (!tcp_prune_ofo_queue(sk))
4099 return -1;
4101 if (!sk_rmem_schedule(sk, skb, size))
4102 return -1;
4105 return 0;
4109 * tcp_try_coalesce - try to merge skb to prior one
4110 * @sk: socket
4111 * @to: prior buffer
4112 * @from: buffer to add in queue
4113 * @fragstolen: pointer to boolean
4115 * Before queueing skb @from after @to, try to merge them
4116 * to reduce overall memory use and queue lengths, if cost is small.
4117 * Packets in ofo or receive queues can stay a long time.
4118 * Better try to coalesce them right now to avoid future collapses.
4119 * Returns true if caller should free @from instead of queueing it
4121 static bool tcp_try_coalesce(struct sock *sk,
4122 struct sk_buff *to,
4123 struct sk_buff *from,
4124 bool *fragstolen)
4126 int delta;
4128 *fragstolen = false;
4130 if (tcp_hdr(from)->fin)
4131 return false;
4133 /* Its possible this segment overlaps with prior segment in queue */
4134 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4135 return false;
4137 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4138 return false;
4140 atomic_add(delta, &sk->sk_rmem_alloc);
4141 sk_mem_charge(sk, delta);
4142 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4143 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4144 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4145 return true;
4148 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4150 struct tcp_sock *tp = tcp_sk(sk);
4151 struct sk_buff *skb1;
4152 u32 seq, end_seq;
4154 TCP_ECN_check_ce(tp, skb);
4156 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4157 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4158 __kfree_skb(skb);
4159 return;
4162 /* Disable header prediction. */
4163 tp->pred_flags = 0;
4164 inet_csk_schedule_ack(sk);
4166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4167 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4168 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4170 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4171 if (!skb1) {
4172 /* Initial out of order segment, build 1 SACK. */
4173 if (tcp_is_sack(tp)) {
4174 tp->rx_opt.num_sacks = 1;
4175 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4176 tp->selective_acks[0].end_seq =
4177 TCP_SKB_CB(skb)->end_seq;
4179 __skb_queue_head(&tp->out_of_order_queue, skb);
4180 goto end;
4183 seq = TCP_SKB_CB(skb)->seq;
4184 end_seq = TCP_SKB_CB(skb)->end_seq;
4186 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4187 bool fragstolen;
4189 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4190 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4191 } else {
4192 tcp_grow_window(sk, skb);
4193 kfree_skb_partial(skb, fragstolen);
4194 skb = NULL;
4197 if (!tp->rx_opt.num_sacks ||
4198 tp->selective_acks[0].end_seq != seq)
4199 goto add_sack;
4201 /* Common case: data arrive in order after hole. */
4202 tp->selective_acks[0].end_seq = end_seq;
4203 goto end;
4206 /* Find place to insert this segment. */
4207 while (1) {
4208 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4209 break;
4210 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4211 skb1 = NULL;
4212 break;
4214 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4217 /* Do skb overlap to previous one? */
4218 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4219 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4220 /* All the bits are present. Drop. */
4221 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4222 __kfree_skb(skb);
4223 skb = NULL;
4224 tcp_dsack_set(sk, seq, end_seq);
4225 goto add_sack;
4227 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4228 /* Partial overlap. */
4229 tcp_dsack_set(sk, seq,
4230 TCP_SKB_CB(skb1)->end_seq);
4231 } else {
4232 if (skb_queue_is_first(&tp->out_of_order_queue,
4233 skb1))
4234 skb1 = NULL;
4235 else
4236 skb1 = skb_queue_prev(
4237 &tp->out_of_order_queue,
4238 skb1);
4241 if (!skb1)
4242 __skb_queue_head(&tp->out_of_order_queue, skb);
4243 else
4244 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4246 /* And clean segments covered by new one as whole. */
4247 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4248 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4250 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4251 break;
4252 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4253 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4254 end_seq);
4255 break;
4257 __skb_unlink(skb1, &tp->out_of_order_queue);
4258 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4259 TCP_SKB_CB(skb1)->end_seq);
4260 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4261 __kfree_skb(skb1);
4264 add_sack:
4265 if (tcp_is_sack(tp))
4266 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4267 end:
4268 if (skb) {
4269 tcp_grow_window(sk, skb);
4270 skb_set_owner_r(skb, sk);
4274 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4275 bool *fragstolen)
4277 int eaten;
4278 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4280 __skb_pull(skb, hdrlen);
4281 eaten = (tail &&
4282 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4283 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4284 if (!eaten) {
4285 __skb_queue_tail(&sk->sk_receive_queue, skb);
4286 skb_set_owner_r(skb, sk);
4288 return eaten;
4291 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4293 struct sk_buff *skb = NULL;
4294 struct tcphdr *th;
4295 bool fragstolen;
4297 if (size == 0)
4298 return 0;
4300 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4301 if (!skb)
4302 goto err;
4304 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4305 goto err_free;
4307 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4308 skb_reset_transport_header(skb);
4309 memset(th, 0, sizeof(*th));
4311 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4312 goto err_free;
4314 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4315 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4316 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4318 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4319 WARN_ON_ONCE(fragstolen); /* should not happen */
4320 __kfree_skb(skb);
4322 return size;
4324 err_free:
4325 kfree_skb(skb);
4326 err:
4327 return -ENOMEM;
4330 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4332 const struct tcphdr *th = tcp_hdr(skb);
4333 struct tcp_sock *tp = tcp_sk(sk);
4334 int eaten = -1;
4335 bool fragstolen = false;
4337 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4338 goto drop;
4340 skb_dst_drop(skb);
4341 __skb_pull(skb, th->doff * 4);
4343 TCP_ECN_accept_cwr(tp, skb);
4345 tp->rx_opt.dsack = 0;
4347 /* Queue data for delivery to the user.
4348 * Packets in sequence go to the receive queue.
4349 * Out of sequence packets to the out_of_order_queue.
4351 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4352 if (tcp_receive_window(tp) == 0)
4353 goto out_of_window;
4355 /* Ok. In sequence. In window. */
4356 if (tp->ucopy.task == current &&
4357 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4358 sock_owned_by_user(sk) && !tp->urg_data) {
4359 int chunk = min_t(unsigned int, skb->len,
4360 tp->ucopy.len);
4362 __set_current_state(TASK_RUNNING);
4364 local_bh_enable();
4365 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4366 tp->ucopy.len -= chunk;
4367 tp->copied_seq += chunk;
4368 eaten = (chunk == skb->len);
4369 tcp_rcv_space_adjust(sk);
4371 local_bh_disable();
4374 if (eaten <= 0) {
4375 queue_and_out:
4376 if (eaten < 0 &&
4377 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4378 goto drop;
4380 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4382 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4383 if (skb->len)
4384 tcp_event_data_recv(sk, skb);
4385 if (th->fin)
4386 tcp_fin(sk);
4388 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4389 tcp_ofo_queue(sk);
4391 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4392 * gap in queue is filled.
4394 if (skb_queue_empty(&tp->out_of_order_queue))
4395 inet_csk(sk)->icsk_ack.pingpong = 0;
4398 if (tp->rx_opt.num_sacks)
4399 tcp_sack_remove(tp);
4401 tcp_fast_path_check(sk);
4403 if (eaten > 0)
4404 kfree_skb_partial(skb, fragstolen);
4405 if (!sock_flag(sk, SOCK_DEAD))
4406 sk->sk_data_ready(sk, 0);
4407 return;
4410 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4411 /* A retransmit, 2nd most common case. Force an immediate ack. */
4412 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4413 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4415 out_of_window:
4416 tcp_enter_quickack_mode(sk);
4417 inet_csk_schedule_ack(sk);
4418 drop:
4419 __kfree_skb(skb);
4420 return;
4423 /* Out of window. F.e. zero window probe. */
4424 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4425 goto out_of_window;
4427 tcp_enter_quickack_mode(sk);
4429 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4430 /* Partial packet, seq < rcv_next < end_seq */
4431 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4432 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4433 TCP_SKB_CB(skb)->end_seq);
4435 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4437 /* If window is closed, drop tail of packet. But after
4438 * remembering D-SACK for its head made in previous line.
4440 if (!tcp_receive_window(tp))
4441 goto out_of_window;
4442 goto queue_and_out;
4445 tcp_data_queue_ofo(sk, skb);
4448 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4449 struct sk_buff_head *list)
4451 struct sk_buff *next = NULL;
4453 if (!skb_queue_is_last(list, skb))
4454 next = skb_queue_next(list, skb);
4456 __skb_unlink(skb, list);
4457 __kfree_skb(skb);
4458 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4460 return next;
4463 /* Collapse contiguous sequence of skbs head..tail with
4464 * sequence numbers start..end.
4466 * If tail is NULL, this means until the end of the list.
4468 * Segments with FIN/SYN are not collapsed (only because this
4469 * simplifies code)
4471 static void
4472 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4473 struct sk_buff *head, struct sk_buff *tail,
4474 u32 start, u32 end)
4476 struct sk_buff *skb, *n;
4477 bool end_of_skbs;
4479 /* First, check that queue is collapsible and find
4480 * the point where collapsing can be useful. */
4481 skb = head;
4482 restart:
4483 end_of_skbs = true;
4484 skb_queue_walk_from_safe(list, skb, n) {
4485 if (skb == tail)
4486 break;
4487 /* No new bits? It is possible on ofo queue. */
4488 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4489 skb = tcp_collapse_one(sk, skb, list);
4490 if (!skb)
4491 break;
4492 goto restart;
4495 /* The first skb to collapse is:
4496 * - not SYN/FIN and
4497 * - bloated or contains data before "start" or
4498 * overlaps to the next one.
4500 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4501 (tcp_win_from_space(skb->truesize) > skb->len ||
4502 before(TCP_SKB_CB(skb)->seq, start))) {
4503 end_of_skbs = false;
4504 break;
4507 if (!skb_queue_is_last(list, skb)) {
4508 struct sk_buff *next = skb_queue_next(list, skb);
4509 if (next != tail &&
4510 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4511 end_of_skbs = false;
4512 break;
4516 /* Decided to skip this, advance start seq. */
4517 start = TCP_SKB_CB(skb)->end_seq;
4519 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4520 return;
4522 while (before(start, end)) {
4523 struct sk_buff *nskb;
4524 unsigned int header = skb_headroom(skb);
4525 int copy = SKB_MAX_ORDER(header, 0);
4527 /* Too big header? This can happen with IPv6. */
4528 if (copy < 0)
4529 return;
4530 if (end - start < copy)
4531 copy = end - start;
4532 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4533 if (!nskb)
4534 return;
4536 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4537 skb_set_network_header(nskb, (skb_network_header(skb) -
4538 skb->head));
4539 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4540 skb->head));
4541 skb_reserve(nskb, header);
4542 memcpy(nskb->head, skb->head, header);
4543 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4544 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4545 __skb_queue_before(list, skb, nskb);
4546 skb_set_owner_r(nskb, sk);
4548 /* Copy data, releasing collapsed skbs. */
4549 while (copy > 0) {
4550 int offset = start - TCP_SKB_CB(skb)->seq;
4551 int size = TCP_SKB_CB(skb)->end_seq - start;
4553 BUG_ON(offset < 0);
4554 if (size > 0) {
4555 size = min(copy, size);
4556 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4557 BUG();
4558 TCP_SKB_CB(nskb)->end_seq += size;
4559 copy -= size;
4560 start += size;
4562 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4563 skb = tcp_collapse_one(sk, skb, list);
4564 if (!skb ||
4565 skb == tail ||
4566 tcp_hdr(skb)->syn ||
4567 tcp_hdr(skb)->fin)
4568 return;
4574 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4575 * and tcp_collapse() them until all the queue is collapsed.
4577 static void tcp_collapse_ofo_queue(struct sock *sk)
4579 struct tcp_sock *tp = tcp_sk(sk);
4580 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4581 struct sk_buff *head;
4582 u32 start, end;
4584 if (skb == NULL)
4585 return;
4587 start = TCP_SKB_CB(skb)->seq;
4588 end = TCP_SKB_CB(skb)->end_seq;
4589 head = skb;
4591 for (;;) {
4592 struct sk_buff *next = NULL;
4594 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4595 next = skb_queue_next(&tp->out_of_order_queue, skb);
4596 skb = next;
4598 /* Segment is terminated when we see gap or when
4599 * we are at the end of all the queue. */
4600 if (!skb ||
4601 after(TCP_SKB_CB(skb)->seq, end) ||
4602 before(TCP_SKB_CB(skb)->end_seq, start)) {
4603 tcp_collapse(sk, &tp->out_of_order_queue,
4604 head, skb, start, end);
4605 head = skb;
4606 if (!skb)
4607 break;
4608 /* Start new segment */
4609 start = TCP_SKB_CB(skb)->seq;
4610 end = TCP_SKB_CB(skb)->end_seq;
4611 } else {
4612 if (before(TCP_SKB_CB(skb)->seq, start))
4613 start = TCP_SKB_CB(skb)->seq;
4614 if (after(TCP_SKB_CB(skb)->end_seq, end))
4615 end = TCP_SKB_CB(skb)->end_seq;
4621 * Purge the out-of-order queue.
4622 * Return true if queue was pruned.
4624 static bool tcp_prune_ofo_queue(struct sock *sk)
4626 struct tcp_sock *tp = tcp_sk(sk);
4627 bool res = false;
4629 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4630 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4631 __skb_queue_purge(&tp->out_of_order_queue);
4633 /* Reset SACK state. A conforming SACK implementation will
4634 * do the same at a timeout based retransmit. When a connection
4635 * is in a sad state like this, we care only about integrity
4636 * of the connection not performance.
4638 if (tp->rx_opt.sack_ok)
4639 tcp_sack_reset(&tp->rx_opt);
4640 sk_mem_reclaim(sk);
4641 res = true;
4643 return res;
4646 /* Reduce allocated memory if we can, trying to get
4647 * the socket within its memory limits again.
4649 * Return less than zero if we should start dropping frames
4650 * until the socket owning process reads some of the data
4651 * to stabilize the situation.
4653 static int tcp_prune_queue(struct sock *sk)
4655 struct tcp_sock *tp = tcp_sk(sk);
4657 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4659 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4661 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4662 tcp_clamp_window(sk);
4663 else if (sk_under_memory_pressure(sk))
4664 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4666 tcp_collapse_ofo_queue(sk);
4667 if (!skb_queue_empty(&sk->sk_receive_queue))
4668 tcp_collapse(sk, &sk->sk_receive_queue,
4669 skb_peek(&sk->sk_receive_queue),
4670 NULL,
4671 tp->copied_seq, tp->rcv_nxt);
4672 sk_mem_reclaim(sk);
4674 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4675 return 0;
4677 /* Collapsing did not help, destructive actions follow.
4678 * This must not ever occur. */
4680 tcp_prune_ofo_queue(sk);
4682 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4683 return 0;
4685 /* If we are really being abused, tell the caller to silently
4686 * drop receive data on the floor. It will get retransmitted
4687 * and hopefully then we'll have sufficient space.
4689 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4691 /* Massive buffer overcommit. */
4692 tp->pred_flags = 0;
4693 return -1;
4696 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4697 * As additional protections, we do not touch cwnd in retransmission phases,
4698 * and if application hit its sndbuf limit recently.
4700 void tcp_cwnd_application_limited(struct sock *sk)
4702 struct tcp_sock *tp = tcp_sk(sk);
4704 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4705 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4706 /* Limited by application or receiver window. */
4707 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4708 u32 win_used = max(tp->snd_cwnd_used, init_win);
4709 if (win_used < tp->snd_cwnd) {
4710 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4711 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4713 tp->snd_cwnd_used = 0;
4715 tp->snd_cwnd_stamp = tcp_time_stamp;
4718 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4720 const struct tcp_sock *tp = tcp_sk(sk);
4722 /* If the user specified a specific send buffer setting, do
4723 * not modify it.
4725 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4726 return false;
4728 /* If we are under global TCP memory pressure, do not expand. */
4729 if (sk_under_memory_pressure(sk))
4730 return false;
4732 /* If we are under soft global TCP memory pressure, do not expand. */
4733 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4734 return false;
4736 /* If we filled the congestion window, do not expand. */
4737 if (tp->packets_out >= tp->snd_cwnd)
4738 return false;
4740 return true;
4743 /* When incoming ACK allowed to free some skb from write_queue,
4744 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4745 * on the exit from tcp input handler.
4747 * PROBLEM: sndbuf expansion does not work well with largesend.
4749 static void tcp_new_space(struct sock *sk)
4751 struct tcp_sock *tp = tcp_sk(sk);
4753 if (tcp_should_expand_sndbuf(sk)) {
4754 tcp_sndbuf_expand(sk);
4755 tp->snd_cwnd_stamp = tcp_time_stamp;
4758 sk->sk_write_space(sk);
4761 static void tcp_check_space(struct sock *sk)
4763 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4764 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4765 if (sk->sk_socket &&
4766 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4767 tcp_new_space(sk);
4771 static inline void tcp_data_snd_check(struct sock *sk)
4773 tcp_push_pending_frames(sk);
4774 tcp_check_space(sk);
4778 * Check if sending an ack is needed.
4780 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4782 struct tcp_sock *tp = tcp_sk(sk);
4784 /* More than one full frame received... */
4785 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4786 /* ... and right edge of window advances far enough.
4787 * (tcp_recvmsg() will send ACK otherwise). Or...
4789 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4790 /* We ACK each frame or... */
4791 tcp_in_quickack_mode(sk) ||
4792 /* We have out of order data. */
4793 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4794 /* Then ack it now */
4795 tcp_send_ack(sk);
4796 } else {
4797 /* Else, send delayed ack. */
4798 tcp_send_delayed_ack(sk);
4802 static inline void tcp_ack_snd_check(struct sock *sk)
4804 if (!inet_csk_ack_scheduled(sk)) {
4805 /* We sent a data segment already. */
4806 return;
4808 __tcp_ack_snd_check(sk, 1);
4812 * This routine is only called when we have urgent data
4813 * signaled. Its the 'slow' part of tcp_urg. It could be
4814 * moved inline now as tcp_urg is only called from one
4815 * place. We handle URGent data wrong. We have to - as
4816 * BSD still doesn't use the correction from RFC961.
4817 * For 1003.1g we should support a new option TCP_STDURG to permit
4818 * either form (or just set the sysctl tcp_stdurg).
4821 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4823 struct tcp_sock *tp = tcp_sk(sk);
4824 u32 ptr = ntohs(th->urg_ptr);
4826 if (ptr && !sysctl_tcp_stdurg)
4827 ptr--;
4828 ptr += ntohl(th->seq);
4830 /* Ignore urgent data that we've already seen and read. */
4831 if (after(tp->copied_seq, ptr))
4832 return;
4834 /* Do not replay urg ptr.
4836 * NOTE: interesting situation not covered by specs.
4837 * Misbehaving sender may send urg ptr, pointing to segment,
4838 * which we already have in ofo queue. We are not able to fetch
4839 * such data and will stay in TCP_URG_NOTYET until will be eaten
4840 * by recvmsg(). Seems, we are not obliged to handle such wicked
4841 * situations. But it is worth to think about possibility of some
4842 * DoSes using some hypothetical application level deadlock.
4844 if (before(ptr, tp->rcv_nxt))
4845 return;
4847 /* Do we already have a newer (or duplicate) urgent pointer? */
4848 if (tp->urg_data && !after(ptr, tp->urg_seq))
4849 return;
4851 /* Tell the world about our new urgent pointer. */
4852 sk_send_sigurg(sk);
4854 /* We may be adding urgent data when the last byte read was
4855 * urgent. To do this requires some care. We cannot just ignore
4856 * tp->copied_seq since we would read the last urgent byte again
4857 * as data, nor can we alter copied_seq until this data arrives
4858 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4860 * NOTE. Double Dutch. Rendering to plain English: author of comment
4861 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4862 * and expect that both A and B disappear from stream. This is _wrong_.
4863 * Though this happens in BSD with high probability, this is occasional.
4864 * Any application relying on this is buggy. Note also, that fix "works"
4865 * only in this artificial test. Insert some normal data between A and B and we will
4866 * decline of BSD again. Verdict: it is better to remove to trap
4867 * buggy users.
4869 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4870 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4871 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4872 tp->copied_seq++;
4873 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4874 __skb_unlink(skb, &sk->sk_receive_queue);
4875 __kfree_skb(skb);
4879 tp->urg_data = TCP_URG_NOTYET;
4880 tp->urg_seq = ptr;
4882 /* Disable header prediction. */
4883 tp->pred_flags = 0;
4886 /* This is the 'fast' part of urgent handling. */
4887 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4889 struct tcp_sock *tp = tcp_sk(sk);
4891 /* Check if we get a new urgent pointer - normally not. */
4892 if (th->urg)
4893 tcp_check_urg(sk, th);
4895 /* Do we wait for any urgent data? - normally not... */
4896 if (tp->urg_data == TCP_URG_NOTYET) {
4897 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4898 th->syn;
4900 /* Is the urgent pointer pointing into this packet? */
4901 if (ptr < skb->len) {
4902 u8 tmp;
4903 if (skb_copy_bits(skb, ptr, &tmp, 1))
4904 BUG();
4905 tp->urg_data = TCP_URG_VALID | tmp;
4906 if (!sock_flag(sk, SOCK_DEAD))
4907 sk->sk_data_ready(sk, 0);
4912 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4914 struct tcp_sock *tp = tcp_sk(sk);
4915 int chunk = skb->len - hlen;
4916 int err;
4918 local_bh_enable();
4919 if (skb_csum_unnecessary(skb))
4920 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4921 else
4922 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4923 tp->ucopy.iov);
4925 if (!err) {
4926 tp->ucopy.len -= chunk;
4927 tp->copied_seq += chunk;
4928 tcp_rcv_space_adjust(sk);
4931 local_bh_disable();
4932 return err;
4935 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4936 struct sk_buff *skb)
4938 __sum16 result;
4940 if (sock_owned_by_user(sk)) {
4941 local_bh_enable();
4942 result = __tcp_checksum_complete(skb);
4943 local_bh_disable();
4944 } else {
4945 result = __tcp_checksum_complete(skb);
4947 return result;
4950 static inline bool tcp_checksum_complete_user(struct sock *sk,
4951 struct sk_buff *skb)
4953 return !skb_csum_unnecessary(skb) &&
4954 __tcp_checksum_complete_user(sk, skb);
4957 #ifdef CONFIG_NET_DMA
4958 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4959 int hlen)
4961 struct tcp_sock *tp = tcp_sk(sk);
4962 int chunk = skb->len - hlen;
4963 int dma_cookie;
4964 bool copied_early = false;
4966 if (tp->ucopy.wakeup)
4967 return false;
4969 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4970 tp->ucopy.dma_chan = net_dma_find_channel();
4972 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4974 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4975 skb, hlen,
4976 tp->ucopy.iov, chunk,
4977 tp->ucopy.pinned_list);
4979 if (dma_cookie < 0)
4980 goto out;
4982 tp->ucopy.dma_cookie = dma_cookie;
4983 copied_early = true;
4985 tp->ucopy.len -= chunk;
4986 tp->copied_seq += chunk;
4987 tcp_rcv_space_adjust(sk);
4989 if ((tp->ucopy.len == 0) ||
4990 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4991 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4992 tp->ucopy.wakeup = 1;
4993 sk->sk_data_ready(sk, 0);
4995 } else if (chunk > 0) {
4996 tp->ucopy.wakeup = 1;
4997 sk->sk_data_ready(sk, 0);
4999 out:
5000 return copied_early;
5002 #endif /* CONFIG_NET_DMA */
5004 /* Does PAWS and seqno based validation of an incoming segment, flags will
5005 * play significant role here.
5007 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5008 const struct tcphdr *th, int syn_inerr)
5010 struct tcp_sock *tp = tcp_sk(sk);
5012 /* RFC1323: H1. Apply PAWS check first. */
5013 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5014 tcp_paws_discard(sk, skb)) {
5015 if (!th->rst) {
5016 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5017 tcp_send_dupack(sk, skb);
5018 goto discard;
5020 /* Reset is accepted even if it did not pass PAWS. */
5023 /* Step 1: check sequence number */
5024 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5025 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5026 * (RST) segments are validated by checking their SEQ-fields."
5027 * And page 69: "If an incoming segment is not acceptable,
5028 * an acknowledgment should be sent in reply (unless the RST
5029 * bit is set, if so drop the segment and return)".
5031 if (!th->rst) {
5032 if (th->syn)
5033 goto syn_challenge;
5034 tcp_send_dupack(sk, skb);
5036 goto discard;
5039 /* Step 2: check RST bit */
5040 if (th->rst) {
5041 /* RFC 5961 3.2 :
5042 * If sequence number exactly matches RCV.NXT, then
5043 * RESET the connection
5044 * else
5045 * Send a challenge ACK
5047 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5048 tcp_reset(sk);
5049 else
5050 tcp_send_challenge_ack(sk);
5051 goto discard;
5054 /* step 3: check security and precedence [ignored] */
5056 /* step 4: Check for a SYN
5057 * RFC 5691 4.2 : Send a challenge ack
5059 if (th->syn) {
5060 syn_challenge:
5061 if (syn_inerr)
5062 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5063 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5064 tcp_send_challenge_ack(sk);
5065 goto discard;
5068 return true;
5070 discard:
5071 __kfree_skb(skb);
5072 return false;
5076 * TCP receive function for the ESTABLISHED state.
5078 * It is split into a fast path and a slow path. The fast path is
5079 * disabled when:
5080 * - A zero window was announced from us - zero window probing
5081 * is only handled properly in the slow path.
5082 * - Out of order segments arrived.
5083 * - Urgent data is expected.
5084 * - There is no buffer space left
5085 * - Unexpected TCP flags/window values/header lengths are received
5086 * (detected by checking the TCP header against pred_flags)
5087 * - Data is sent in both directions. Fast path only supports pure senders
5088 * or pure receivers (this means either the sequence number or the ack
5089 * value must stay constant)
5090 * - Unexpected TCP option.
5092 * When these conditions are not satisfied it drops into a standard
5093 * receive procedure patterned after RFC793 to handle all cases.
5094 * The first three cases are guaranteed by proper pred_flags setting,
5095 * the rest is checked inline. Fast processing is turned on in
5096 * tcp_data_queue when everything is OK.
5098 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5099 const struct tcphdr *th, unsigned int len)
5101 struct tcp_sock *tp = tcp_sk(sk);
5103 if (unlikely(sk->sk_rx_dst == NULL))
5104 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5106 * Header prediction.
5107 * The code loosely follows the one in the famous
5108 * "30 instruction TCP receive" Van Jacobson mail.
5110 * Van's trick is to deposit buffers into socket queue
5111 * on a device interrupt, to call tcp_recv function
5112 * on the receive process context and checksum and copy
5113 * the buffer to user space. smart...
5115 * Our current scheme is not silly either but we take the
5116 * extra cost of the net_bh soft interrupt processing...
5117 * We do checksum and copy also but from device to kernel.
5120 tp->rx_opt.saw_tstamp = 0;
5122 /* pred_flags is 0xS?10 << 16 + snd_wnd
5123 * if header_prediction is to be made
5124 * 'S' will always be tp->tcp_header_len >> 2
5125 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5126 * turn it off (when there are holes in the receive
5127 * space for instance)
5128 * PSH flag is ignored.
5131 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5132 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5133 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5134 int tcp_header_len = tp->tcp_header_len;
5136 /* Timestamp header prediction: tcp_header_len
5137 * is automatically equal to th->doff*4 due to pred_flags
5138 * match.
5141 /* Check timestamp */
5142 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5143 /* No? Slow path! */
5144 if (!tcp_parse_aligned_timestamp(tp, th))
5145 goto slow_path;
5147 /* If PAWS failed, check it more carefully in slow path */
5148 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5149 goto slow_path;
5151 /* DO NOT update ts_recent here, if checksum fails
5152 * and timestamp was corrupted part, it will result
5153 * in a hung connection since we will drop all
5154 * future packets due to the PAWS test.
5158 if (len <= tcp_header_len) {
5159 /* Bulk data transfer: sender */
5160 if (len == tcp_header_len) {
5161 /* Predicted packet is in window by definition.
5162 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5163 * Hence, check seq<=rcv_wup reduces to:
5165 if (tcp_header_len ==
5166 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5167 tp->rcv_nxt == tp->rcv_wup)
5168 tcp_store_ts_recent(tp);
5170 /* We know that such packets are checksummed
5171 * on entry.
5173 tcp_ack(sk, skb, 0);
5174 __kfree_skb(skb);
5175 tcp_data_snd_check(sk);
5176 return;
5177 } else { /* Header too small */
5178 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5179 goto discard;
5181 } else {
5182 int eaten = 0;
5183 int copied_early = 0;
5184 bool fragstolen = false;
5186 if (tp->copied_seq == tp->rcv_nxt &&
5187 len - tcp_header_len <= tp->ucopy.len) {
5188 #ifdef CONFIG_NET_DMA
5189 if (tp->ucopy.task == current &&
5190 sock_owned_by_user(sk) &&
5191 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5192 copied_early = 1;
5193 eaten = 1;
5195 #endif
5196 if (tp->ucopy.task == current &&
5197 sock_owned_by_user(sk) && !copied_early) {
5198 __set_current_state(TASK_RUNNING);
5200 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5201 eaten = 1;
5203 if (eaten) {
5204 /* Predicted packet is in window by definition.
5205 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5206 * Hence, check seq<=rcv_wup reduces to:
5208 if (tcp_header_len ==
5209 (sizeof(struct tcphdr) +
5210 TCPOLEN_TSTAMP_ALIGNED) &&
5211 tp->rcv_nxt == tp->rcv_wup)
5212 tcp_store_ts_recent(tp);
5214 tcp_rcv_rtt_measure_ts(sk, skb);
5216 __skb_pull(skb, tcp_header_len);
5217 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5218 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5220 if (copied_early)
5221 tcp_cleanup_rbuf(sk, skb->len);
5223 if (!eaten) {
5224 if (tcp_checksum_complete_user(sk, skb))
5225 goto csum_error;
5227 if ((int)skb->truesize > sk->sk_forward_alloc)
5228 goto step5;
5230 /* Predicted packet is in window by definition.
5231 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5232 * Hence, check seq<=rcv_wup reduces to:
5234 if (tcp_header_len ==
5235 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5236 tp->rcv_nxt == tp->rcv_wup)
5237 tcp_store_ts_recent(tp);
5239 tcp_rcv_rtt_measure_ts(sk, skb);
5241 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5243 /* Bulk data transfer: receiver */
5244 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5245 &fragstolen);
5248 tcp_event_data_recv(sk, skb);
5250 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5251 /* Well, only one small jumplet in fast path... */
5252 tcp_ack(sk, skb, FLAG_DATA);
5253 tcp_data_snd_check(sk);
5254 if (!inet_csk_ack_scheduled(sk))
5255 goto no_ack;
5258 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5259 __tcp_ack_snd_check(sk, 0);
5260 no_ack:
5261 #ifdef CONFIG_NET_DMA
5262 if (copied_early)
5263 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5264 else
5265 #endif
5266 if (eaten)
5267 kfree_skb_partial(skb, fragstolen);
5268 sk->sk_data_ready(sk, 0);
5269 return;
5273 slow_path:
5274 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5275 goto csum_error;
5277 if (!th->ack && !th->rst)
5278 goto discard;
5281 * Standard slow path.
5284 if (!tcp_validate_incoming(sk, skb, th, 1))
5285 return;
5287 step5:
5288 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5289 goto discard;
5291 tcp_rcv_rtt_measure_ts(sk, skb);
5293 /* Process urgent data. */
5294 tcp_urg(sk, skb, th);
5296 /* step 7: process the segment text */
5297 tcp_data_queue(sk, skb);
5299 tcp_data_snd_check(sk);
5300 tcp_ack_snd_check(sk);
5301 return;
5303 csum_error:
5304 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5305 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5307 discard:
5308 __kfree_skb(skb);
5310 EXPORT_SYMBOL(tcp_rcv_established);
5312 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5314 struct tcp_sock *tp = tcp_sk(sk);
5315 struct inet_connection_sock *icsk = inet_csk(sk);
5317 tcp_set_state(sk, TCP_ESTABLISHED);
5319 if (skb != NULL) {
5320 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5321 security_inet_conn_established(sk, skb);
5324 /* Make sure socket is routed, for correct metrics. */
5325 icsk->icsk_af_ops->rebuild_header(sk);
5327 tcp_init_metrics(sk);
5329 tcp_init_congestion_control(sk);
5331 /* Prevent spurious tcp_cwnd_restart() on first data
5332 * packet.
5334 tp->lsndtime = tcp_time_stamp;
5336 tcp_init_buffer_space(sk);
5338 if (sock_flag(sk, SOCK_KEEPOPEN))
5339 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5341 if (!tp->rx_opt.snd_wscale)
5342 __tcp_fast_path_on(tp, tp->snd_wnd);
5343 else
5344 tp->pred_flags = 0;
5346 if (!sock_flag(sk, SOCK_DEAD)) {
5347 sk->sk_state_change(sk);
5348 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5352 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5353 struct tcp_fastopen_cookie *cookie)
5355 struct tcp_sock *tp = tcp_sk(sk);
5356 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5357 u16 mss = tp->rx_opt.mss_clamp;
5358 bool syn_drop;
5360 if (mss == tp->rx_opt.user_mss) {
5361 struct tcp_options_received opt;
5363 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5364 tcp_clear_options(&opt);
5365 opt.user_mss = opt.mss_clamp = 0;
5366 tcp_parse_options(synack, &opt, 0, NULL);
5367 mss = opt.mss_clamp;
5370 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5371 cookie->len = -1;
5373 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5374 * the remote receives only the retransmitted (regular) SYNs: either
5375 * the original SYN-data or the corresponding SYN-ACK is lost.
5377 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5379 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5381 if (data) { /* Retransmit unacked data in SYN */
5382 tcp_for_write_queue_from(data, sk) {
5383 if (data == tcp_send_head(sk) ||
5384 __tcp_retransmit_skb(sk, data))
5385 break;
5387 tcp_rearm_rto(sk);
5388 return true;
5390 tp->syn_data_acked = tp->syn_data;
5391 return false;
5394 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5395 const struct tcphdr *th, unsigned int len)
5397 struct inet_connection_sock *icsk = inet_csk(sk);
5398 struct tcp_sock *tp = tcp_sk(sk);
5399 struct tcp_fastopen_cookie foc = { .len = -1 };
5400 int saved_clamp = tp->rx_opt.mss_clamp;
5402 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5403 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5404 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5406 if (th->ack) {
5407 /* rfc793:
5408 * "If the state is SYN-SENT then
5409 * first check the ACK bit
5410 * If the ACK bit is set
5411 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5412 * a reset (unless the RST bit is set, if so drop
5413 * the segment and return)"
5415 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5416 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5417 goto reset_and_undo;
5419 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5420 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5421 tcp_time_stamp)) {
5422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5423 goto reset_and_undo;
5426 /* Now ACK is acceptable.
5428 * "If the RST bit is set
5429 * If the ACK was acceptable then signal the user "error:
5430 * connection reset", drop the segment, enter CLOSED state,
5431 * delete TCB, and return."
5434 if (th->rst) {
5435 tcp_reset(sk);
5436 goto discard;
5439 /* rfc793:
5440 * "fifth, if neither of the SYN or RST bits is set then
5441 * drop the segment and return."
5443 * See note below!
5444 * --ANK(990513)
5446 if (!th->syn)
5447 goto discard_and_undo;
5449 /* rfc793:
5450 * "If the SYN bit is on ...
5451 * are acceptable then ...
5452 * (our SYN has been ACKed), change the connection
5453 * state to ESTABLISHED..."
5456 TCP_ECN_rcv_synack(tp, th);
5458 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5459 tcp_ack(sk, skb, FLAG_SLOWPATH);
5461 /* Ok.. it's good. Set up sequence numbers and
5462 * move to established.
5464 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5465 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5467 /* RFC1323: The window in SYN & SYN/ACK segments is
5468 * never scaled.
5470 tp->snd_wnd = ntohs(th->window);
5472 if (!tp->rx_opt.wscale_ok) {
5473 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5474 tp->window_clamp = min(tp->window_clamp, 65535U);
5477 if (tp->rx_opt.saw_tstamp) {
5478 tp->rx_opt.tstamp_ok = 1;
5479 tp->tcp_header_len =
5480 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5481 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5482 tcp_store_ts_recent(tp);
5483 } else {
5484 tp->tcp_header_len = sizeof(struct tcphdr);
5487 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5488 tcp_enable_fack(tp);
5490 tcp_mtup_init(sk);
5491 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5492 tcp_initialize_rcv_mss(sk);
5494 /* Remember, tcp_poll() does not lock socket!
5495 * Change state from SYN-SENT only after copied_seq
5496 * is initialized. */
5497 tp->copied_seq = tp->rcv_nxt;
5499 smp_mb();
5501 tcp_finish_connect(sk, skb);
5503 if ((tp->syn_fastopen || tp->syn_data) &&
5504 tcp_rcv_fastopen_synack(sk, skb, &foc))
5505 return -1;
5507 if (sk->sk_write_pending ||
5508 icsk->icsk_accept_queue.rskq_defer_accept ||
5509 icsk->icsk_ack.pingpong) {
5510 /* Save one ACK. Data will be ready after
5511 * several ticks, if write_pending is set.
5513 * It may be deleted, but with this feature tcpdumps
5514 * look so _wonderfully_ clever, that I was not able
5515 * to stand against the temptation 8) --ANK
5517 inet_csk_schedule_ack(sk);
5518 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5519 tcp_enter_quickack_mode(sk);
5520 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5521 TCP_DELACK_MAX, TCP_RTO_MAX);
5523 discard:
5524 __kfree_skb(skb);
5525 return 0;
5526 } else {
5527 tcp_send_ack(sk);
5529 return -1;
5532 /* No ACK in the segment */
5534 if (th->rst) {
5535 /* rfc793:
5536 * "If the RST bit is set
5538 * Otherwise (no ACK) drop the segment and return."
5541 goto discard_and_undo;
5544 /* PAWS check. */
5545 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5546 tcp_paws_reject(&tp->rx_opt, 0))
5547 goto discard_and_undo;
5549 if (th->syn) {
5550 /* We see SYN without ACK. It is attempt of
5551 * simultaneous connect with crossed SYNs.
5552 * Particularly, it can be connect to self.
5554 tcp_set_state(sk, TCP_SYN_RECV);
5556 if (tp->rx_opt.saw_tstamp) {
5557 tp->rx_opt.tstamp_ok = 1;
5558 tcp_store_ts_recent(tp);
5559 tp->tcp_header_len =
5560 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5561 } else {
5562 tp->tcp_header_len = sizeof(struct tcphdr);
5565 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5566 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5568 /* RFC1323: The window in SYN & SYN/ACK segments is
5569 * never scaled.
5571 tp->snd_wnd = ntohs(th->window);
5572 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5573 tp->max_window = tp->snd_wnd;
5575 TCP_ECN_rcv_syn(tp, th);
5577 tcp_mtup_init(sk);
5578 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5579 tcp_initialize_rcv_mss(sk);
5581 tcp_send_synack(sk);
5582 #if 0
5583 /* Note, we could accept data and URG from this segment.
5584 * There are no obstacles to make this (except that we must
5585 * either change tcp_recvmsg() to prevent it from returning data
5586 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5588 * However, if we ignore data in ACKless segments sometimes,
5589 * we have no reasons to accept it sometimes.
5590 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5591 * is not flawless. So, discard packet for sanity.
5592 * Uncomment this return to process the data.
5594 return -1;
5595 #else
5596 goto discard;
5597 #endif
5599 /* "fifth, if neither of the SYN or RST bits is set then
5600 * drop the segment and return."
5603 discard_and_undo:
5604 tcp_clear_options(&tp->rx_opt);
5605 tp->rx_opt.mss_clamp = saved_clamp;
5606 goto discard;
5608 reset_and_undo:
5609 tcp_clear_options(&tp->rx_opt);
5610 tp->rx_opt.mss_clamp = saved_clamp;
5611 return 1;
5615 * This function implements the receiving procedure of RFC 793 for
5616 * all states except ESTABLISHED and TIME_WAIT.
5617 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5618 * address independent.
5621 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5622 const struct tcphdr *th, unsigned int len)
5624 struct tcp_sock *tp = tcp_sk(sk);
5625 struct inet_connection_sock *icsk = inet_csk(sk);
5626 struct request_sock *req;
5627 int queued = 0;
5628 bool acceptable;
5630 tp->rx_opt.saw_tstamp = 0;
5632 switch (sk->sk_state) {
5633 case TCP_CLOSE:
5634 goto discard;
5636 case TCP_LISTEN:
5637 if (th->ack)
5638 return 1;
5640 if (th->rst)
5641 goto discard;
5643 if (th->syn) {
5644 if (th->fin)
5645 goto discard;
5646 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5647 return 1;
5649 /* Now we have several options: In theory there is
5650 * nothing else in the frame. KA9Q has an option to
5651 * send data with the syn, BSD accepts data with the
5652 * syn up to the [to be] advertised window and
5653 * Solaris 2.1 gives you a protocol error. For now
5654 * we just ignore it, that fits the spec precisely
5655 * and avoids incompatibilities. It would be nice in
5656 * future to drop through and process the data.
5658 * Now that TTCP is starting to be used we ought to
5659 * queue this data.
5660 * But, this leaves one open to an easy denial of
5661 * service attack, and SYN cookies can't defend
5662 * against this problem. So, we drop the data
5663 * in the interest of security over speed unless
5664 * it's still in use.
5666 kfree_skb(skb);
5667 return 0;
5669 goto discard;
5671 case TCP_SYN_SENT:
5672 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5673 if (queued >= 0)
5674 return queued;
5676 /* Do step6 onward by hand. */
5677 tcp_urg(sk, skb, th);
5678 __kfree_skb(skb);
5679 tcp_data_snd_check(sk);
5680 return 0;
5683 req = tp->fastopen_rsk;
5684 if (req != NULL) {
5685 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5686 sk->sk_state != TCP_FIN_WAIT1);
5688 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5689 goto discard;
5692 if (!th->ack && !th->rst)
5693 goto discard;
5695 if (!tcp_validate_incoming(sk, skb, th, 0))
5696 return 0;
5698 /* step 5: check the ACK field */
5699 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5700 FLAG_UPDATE_TS_RECENT) > 0;
5702 switch (sk->sk_state) {
5703 case TCP_SYN_RECV:
5704 if (!acceptable)
5705 return 1;
5707 /* Once we leave TCP_SYN_RECV, we no longer need req
5708 * so release it.
5710 if (req) {
5711 tp->total_retrans = req->num_retrans;
5712 reqsk_fastopen_remove(sk, req, false);
5713 } else {
5714 /* Make sure socket is routed, for correct metrics. */
5715 icsk->icsk_af_ops->rebuild_header(sk);
5716 tcp_init_congestion_control(sk);
5718 tcp_mtup_init(sk);
5719 tp->copied_seq = tp->rcv_nxt;
5720 tcp_init_buffer_space(sk);
5722 smp_mb();
5723 tcp_set_state(sk, TCP_ESTABLISHED);
5724 sk->sk_state_change(sk);
5726 /* Note, that this wakeup is only for marginal crossed SYN case.
5727 * Passively open sockets are not waked up, because
5728 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5730 if (sk->sk_socket)
5731 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5733 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5734 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5735 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5736 tcp_synack_rtt_meas(sk, req);
5738 if (tp->rx_opt.tstamp_ok)
5739 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5741 if (req) {
5742 /* Re-arm the timer because data may have been sent out.
5743 * This is similar to the regular data transmission case
5744 * when new data has just been ack'ed.
5746 * (TFO) - we could try to be more aggressive and
5747 * retransmitting any data sooner based on when they
5748 * are sent out.
5750 tcp_rearm_rto(sk);
5751 } else
5752 tcp_init_metrics(sk);
5754 tcp_update_pacing_rate(sk);
5756 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5757 tp->lsndtime = tcp_time_stamp;
5759 tcp_initialize_rcv_mss(sk);
5760 tcp_fast_path_on(tp);
5761 break;
5763 case TCP_FIN_WAIT1: {
5764 struct dst_entry *dst;
5765 int tmo;
5767 /* If we enter the TCP_FIN_WAIT1 state and we are a
5768 * Fast Open socket and this is the first acceptable
5769 * ACK we have received, this would have acknowledged
5770 * our SYNACK so stop the SYNACK timer.
5772 if (req != NULL) {
5773 /* Return RST if ack_seq is invalid.
5774 * Note that RFC793 only says to generate a
5775 * DUPACK for it but for TCP Fast Open it seems
5776 * better to treat this case like TCP_SYN_RECV
5777 * above.
5779 if (!acceptable)
5780 return 1;
5781 /* We no longer need the request sock. */
5782 reqsk_fastopen_remove(sk, req, false);
5783 tcp_rearm_rto(sk);
5785 if (tp->snd_una != tp->write_seq)
5786 break;
5788 tcp_set_state(sk, TCP_FIN_WAIT2);
5789 sk->sk_shutdown |= SEND_SHUTDOWN;
5791 dst = __sk_dst_get(sk);
5792 if (dst)
5793 dst_confirm(dst);
5795 if (!sock_flag(sk, SOCK_DEAD)) {
5796 /* Wake up lingering close() */
5797 sk->sk_state_change(sk);
5798 break;
5801 if (tp->linger2 < 0 ||
5802 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5803 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5804 tcp_done(sk);
5805 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5806 return 1;
5809 tmo = tcp_fin_time(sk);
5810 if (tmo > TCP_TIMEWAIT_LEN) {
5811 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5812 } else if (th->fin || sock_owned_by_user(sk)) {
5813 /* Bad case. We could lose such FIN otherwise.
5814 * It is not a big problem, but it looks confusing
5815 * and not so rare event. We still can lose it now,
5816 * if it spins in bh_lock_sock(), but it is really
5817 * marginal case.
5819 inet_csk_reset_keepalive_timer(sk, tmo);
5820 } else {
5821 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5822 goto discard;
5824 break;
5827 case TCP_CLOSING:
5828 if (tp->snd_una == tp->write_seq) {
5829 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5830 goto discard;
5832 break;
5834 case TCP_LAST_ACK:
5835 if (tp->snd_una == tp->write_seq) {
5836 tcp_update_metrics(sk);
5837 tcp_done(sk);
5838 goto discard;
5840 break;
5843 /* step 6: check the URG bit */
5844 tcp_urg(sk, skb, th);
5846 /* step 7: process the segment text */
5847 switch (sk->sk_state) {
5848 case TCP_CLOSE_WAIT:
5849 case TCP_CLOSING:
5850 case TCP_LAST_ACK:
5851 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5852 break;
5853 case TCP_FIN_WAIT1:
5854 case TCP_FIN_WAIT2:
5855 /* RFC 793 says to queue data in these states,
5856 * RFC 1122 says we MUST send a reset.
5857 * BSD 4.4 also does reset.
5859 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5860 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5861 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5862 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5863 tcp_reset(sk);
5864 return 1;
5867 /* Fall through */
5868 case TCP_ESTABLISHED:
5869 tcp_data_queue(sk, skb);
5870 queued = 1;
5871 break;
5874 /* tcp_data could move socket to TIME-WAIT */
5875 if (sk->sk_state != TCP_CLOSE) {
5876 tcp_data_snd_check(sk);
5877 tcp_ack_snd_check(sk);
5880 if (!queued) {
5881 discard:
5882 __kfree_skb(skb);
5884 return 0;
5886 EXPORT_SYMBOL(tcp_rcv_state_process);