4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
67 * dentry->d_inode->i_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
76 * dentry->d_parent->d_lock
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
84 int sysctl_vfs_cache_pressure __read_mostly
= 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
87 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
89 EXPORT_SYMBOL(rename_lock
);
91 static struct kmem_cache
*dentry_cache __read_mostly
;
93 const struct qstr empty_name
= QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name
);
95 const struct qstr slash_name
= QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name
);
99 * This is the single most critical data structure when it comes
100 * to the dcache: the hashtable for lookups. Somebody should try
101 * to make this good - I've just made it work.
103 * This hash-function tries to avoid losing too many bits of hash
104 * information, yet avoid using a prime hash-size or similar.
107 static unsigned int d_hash_mask __read_mostly
;
108 static unsigned int d_hash_shift __read_mostly
;
110 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
112 static inline struct hlist_bl_head
*d_hash(unsigned int hash
)
114 return dentry_hashtable
+ (hash
>> (32 - d_hash_shift
));
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
120 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
123 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
124 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat
= {
133 static DEFINE_PER_CPU(long, nr_dentry
);
134 static DEFINE_PER_CPU(long, nr_dentry_unused
);
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
139 * Here we resort to our own counters instead of using generic per-cpu counters
140 * for consistency with what the vfs inode code does. We are expected to harvest
141 * better code and performance by having our own specialized counters.
143 * Please note that the loop is done over all possible CPUs, not over all online
144 * CPUs. The reason for this is that we don't want to play games with CPUs going
145 * on and off. If one of them goes off, we will just keep their counters.
147 * glommer: See cffbc8a for details, and if you ever intend to change this,
148 * please update all vfs counters to match.
150 static long get_nr_dentry(void)
154 for_each_possible_cpu(i
)
155 sum
+= per_cpu(nr_dentry
, i
);
156 return sum
< 0 ? 0 : sum
;
159 static long get_nr_dentry_unused(void)
163 for_each_possible_cpu(i
)
164 sum
+= per_cpu(nr_dentry_unused
, i
);
165 return sum
< 0 ? 0 : sum
;
168 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
169 size_t *lenp
, loff_t
*ppos
)
171 dentry_stat
.nr_dentry
= get_nr_dentry();
172 dentry_stat
.nr_unused
= get_nr_dentry_unused();
173 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 #include <asm/word-at-a-time.h>
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
193 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
195 unsigned long a
,b
,mask
;
198 a
= *(unsigned long *)cs
;
199 b
= load_unaligned_zeropad(ct
);
200 if (tcount
< sizeof(unsigned long))
202 if (unlikely(a
!= b
))
204 cs
+= sizeof(unsigned long);
205 ct
+= sizeof(unsigned long);
206 tcount
-= sizeof(unsigned long);
210 mask
= bytemask_from_count(tcount
);
211 return unlikely(!!((a
^ b
) & mask
));
216 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
230 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
233 * Be careful about RCU walk racing with rename:
234 * use 'lockless_dereference' to fetch the name pointer.
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
248 const unsigned char *cs
= lockless_dereference(dentry
->d_name
.name
);
250 return dentry_string_cmp(cs
, ct
, tcount
);
253 struct external_name
{
256 struct rcu_head head
;
258 unsigned char name
[];
261 static inline struct external_name
*external_name(struct dentry
*dentry
)
263 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
266 static void __d_free(struct rcu_head
*head
)
268 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
270 kmem_cache_free(dentry_cache
, dentry
);
273 static void __d_free_external(struct rcu_head
*head
)
275 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
276 kfree(external_name(dentry
));
277 kmem_cache_free(dentry_cache
, dentry
);
280 static inline int dname_external(const struct dentry
*dentry
)
282 return dentry
->d_name
.name
!= dentry
->d_iname
;
285 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
287 spin_lock(&dentry
->d_lock
);
288 if (unlikely(dname_external(dentry
))) {
289 struct external_name
*p
= external_name(dentry
);
290 atomic_inc(&p
->u
.count
);
291 spin_unlock(&dentry
->d_lock
);
292 name
->name
= p
->name
;
294 memcpy(name
->inline_name
, dentry
->d_iname
, DNAME_INLINE_LEN
);
295 spin_unlock(&dentry
->d_lock
);
296 name
->name
= name
->inline_name
;
299 EXPORT_SYMBOL(take_dentry_name_snapshot
);
301 void release_dentry_name_snapshot(struct name_snapshot
*name
)
303 if (unlikely(name
->name
!= name
->inline_name
)) {
304 struct external_name
*p
;
305 p
= container_of(name
->name
, struct external_name
, name
[0]);
306 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
307 kfree_rcu(p
, u
.head
);
310 EXPORT_SYMBOL(release_dentry_name_snapshot
);
312 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
318 dentry
->d_inode
= inode
;
319 flags
= READ_ONCE(dentry
->d_flags
);
320 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
322 WRITE_ONCE(dentry
->d_flags
, flags
);
325 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
327 unsigned flags
= READ_ONCE(dentry
->d_flags
);
329 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
330 WRITE_ONCE(dentry
->d_flags
, flags
);
331 dentry
->d_inode
= NULL
;
334 static void dentry_free(struct dentry
*dentry
)
336 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
337 if (unlikely(dname_external(dentry
))) {
338 struct external_name
*p
= external_name(dentry
);
339 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
340 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
344 /* if dentry was never visible to RCU, immediate free is OK */
345 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
346 __d_free(&dentry
->d_u
.d_rcu
);
348 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
352 * Release the dentry's inode, using the filesystem
353 * d_iput() operation if defined.
355 static void dentry_unlink_inode(struct dentry
* dentry
)
356 __releases(dentry
->d_lock
)
357 __releases(dentry
->d_inode
->i_lock
)
359 struct inode
*inode
= dentry
->d_inode
;
360 bool hashed
= !d_unhashed(dentry
);
363 raw_write_seqcount_begin(&dentry
->d_seq
);
364 __d_clear_type_and_inode(dentry
);
365 hlist_del_init(&dentry
->d_u
.d_alias
);
367 raw_write_seqcount_end(&dentry
->d_seq
);
368 spin_unlock(&dentry
->d_lock
);
369 spin_unlock(&inode
->i_lock
);
371 fsnotify_inoderemove(inode
);
372 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
373 dentry
->d_op
->d_iput(dentry
, inode
);
379 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
380 * is in use - which includes both the "real" per-superblock
381 * LRU list _and_ the DCACHE_SHRINK_LIST use.
383 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
384 * on the shrink list (ie not on the superblock LRU list).
386 * The per-cpu "nr_dentry_unused" counters are updated with
387 * the DCACHE_LRU_LIST bit.
389 * These helper functions make sure we always follow the
390 * rules. d_lock must be held by the caller.
392 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
393 static void d_lru_add(struct dentry
*dentry
)
395 D_FLAG_VERIFY(dentry
, 0);
396 dentry
->d_flags
|= DCACHE_LRU_LIST
;
397 this_cpu_inc(nr_dentry_unused
);
398 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
401 static void d_lru_del(struct dentry
*dentry
)
403 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
404 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
405 this_cpu_dec(nr_dentry_unused
);
406 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
409 static void d_shrink_del(struct dentry
*dentry
)
411 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
412 list_del_init(&dentry
->d_lru
);
413 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
414 this_cpu_dec(nr_dentry_unused
);
417 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
419 D_FLAG_VERIFY(dentry
, 0);
420 list_add(&dentry
->d_lru
, list
);
421 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
422 this_cpu_inc(nr_dentry_unused
);
426 * These can only be called under the global LRU lock, ie during the
427 * callback for freeing the LRU list. "isolate" removes it from the
428 * LRU lists entirely, while shrink_move moves it to the indicated
431 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
433 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
434 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
435 this_cpu_dec(nr_dentry_unused
);
436 list_lru_isolate(lru
, &dentry
->d_lru
);
439 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
440 struct list_head
*list
)
442 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
443 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
444 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
448 * dentry_lru_(add|del)_list) must be called with d_lock held.
450 static void dentry_lru_add(struct dentry
*dentry
)
452 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
454 else if (unlikely(!(dentry
->d_flags
& DCACHE_REFERENCED
)))
455 dentry
->d_flags
|= DCACHE_REFERENCED
;
459 * d_drop - drop a dentry
460 * @dentry: dentry to drop
462 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
463 * be found through a VFS lookup any more. Note that this is different from
464 * deleting the dentry - d_delete will try to mark the dentry negative if
465 * possible, giving a successful _negative_ lookup, while d_drop will
466 * just make the cache lookup fail.
468 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
469 * reason (NFS timeouts or autofs deletes).
471 * __d_drop requires dentry->d_lock.
473 void __d_drop(struct dentry
*dentry
)
475 if (!d_unhashed(dentry
)) {
476 struct hlist_bl_head
*b
;
478 * Hashed dentries are normally on the dentry hashtable,
479 * with the exception of those newly allocated by
480 * d_obtain_alias, which are always IS_ROOT:
482 if (unlikely(IS_ROOT(dentry
)))
483 b
= &dentry
->d_sb
->s_anon
;
485 b
= d_hash(dentry
->d_name
.hash
);
488 __hlist_bl_del(&dentry
->d_hash
);
489 dentry
->d_hash
.pprev
= NULL
;
491 /* After this call, in-progress rcu-walk path lookup will fail. */
492 write_seqcount_invalidate(&dentry
->d_seq
);
495 EXPORT_SYMBOL(__d_drop
);
497 void d_drop(struct dentry
*dentry
)
499 spin_lock(&dentry
->d_lock
);
501 spin_unlock(&dentry
->d_lock
);
503 EXPORT_SYMBOL(d_drop
);
505 static inline void dentry_unlist(struct dentry
*dentry
, struct dentry
*parent
)
509 * Inform d_walk() and shrink_dentry_list() that we are no longer
510 * attached to the dentry tree
512 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
513 if (unlikely(list_empty(&dentry
->d_child
)))
515 __list_del_entry(&dentry
->d_child
);
517 * Cursors can move around the list of children. While we'd been
518 * a normal list member, it didn't matter - ->d_child.next would've
519 * been updated. However, from now on it won't be and for the
520 * things like d_walk() it might end up with a nasty surprise.
521 * Normally d_walk() doesn't care about cursors moving around -
522 * ->d_lock on parent prevents that and since a cursor has no children
523 * of its own, we get through it without ever unlocking the parent.
524 * There is one exception, though - if we ascend from a child that
525 * gets killed as soon as we unlock it, the next sibling is found
526 * using the value left in its ->d_child.next. And if _that_
527 * pointed to a cursor, and cursor got moved (e.g. by lseek())
528 * before d_walk() regains parent->d_lock, we'll end up skipping
529 * everything the cursor had been moved past.
531 * Solution: make sure that the pointer left behind in ->d_child.next
532 * points to something that won't be moving around. I.e. skip the
535 while (dentry
->d_child
.next
!= &parent
->d_subdirs
) {
536 next
= list_entry(dentry
->d_child
.next
, struct dentry
, d_child
);
537 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
539 dentry
->d_child
.next
= next
->d_child
.next
;
543 static void __dentry_kill(struct dentry
*dentry
)
545 struct dentry
*parent
= NULL
;
546 bool can_free
= true;
547 if (!IS_ROOT(dentry
))
548 parent
= dentry
->d_parent
;
551 * The dentry is now unrecoverably dead to the world.
553 lockref_mark_dead(&dentry
->d_lockref
);
556 * inform the fs via d_prune that this dentry is about to be
557 * unhashed and destroyed.
559 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
560 dentry
->d_op
->d_prune(dentry
);
562 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
563 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
566 /* if it was on the hash then remove it */
568 dentry_unlist(dentry
, parent
);
570 spin_unlock(&parent
->d_lock
);
572 dentry_unlink_inode(dentry
);
574 spin_unlock(&dentry
->d_lock
);
575 this_cpu_dec(nr_dentry
);
576 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
577 dentry
->d_op
->d_release(dentry
);
579 spin_lock(&dentry
->d_lock
);
580 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
581 dentry
->d_flags
|= DCACHE_MAY_FREE
;
584 spin_unlock(&dentry
->d_lock
);
585 if (likely(can_free
))
590 * Finish off a dentry we've decided to kill.
591 * dentry->d_lock must be held, returns with it unlocked.
592 * If ref is non-zero, then decrement the refcount too.
593 * Returns dentry requiring refcount drop, or NULL if we're done.
595 static struct dentry
*dentry_kill(struct dentry
*dentry
)
596 __releases(dentry
->d_lock
)
598 struct inode
*inode
= dentry
->d_inode
;
599 struct dentry
*parent
= NULL
;
601 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
604 if (!IS_ROOT(dentry
)) {
605 parent
= dentry
->d_parent
;
606 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
608 spin_unlock(&inode
->i_lock
);
613 __dentry_kill(dentry
);
617 spin_unlock(&dentry
->d_lock
);
618 return dentry
; /* try again with same dentry */
621 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
623 struct dentry
*parent
= dentry
->d_parent
;
626 if (unlikely(dentry
->d_lockref
.count
< 0))
628 if (likely(spin_trylock(&parent
->d_lock
)))
631 spin_unlock(&dentry
->d_lock
);
633 parent
= ACCESS_ONCE(dentry
->d_parent
);
634 spin_lock(&parent
->d_lock
);
636 * We can't blindly lock dentry until we are sure
637 * that we won't violate the locking order.
638 * Any changes of dentry->d_parent must have
639 * been done with parent->d_lock held, so
640 * spin_lock() above is enough of a barrier
641 * for checking if it's still our child.
643 if (unlikely(parent
!= dentry
->d_parent
)) {
644 spin_unlock(&parent
->d_lock
);
648 if (parent
!= dentry
)
649 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
656 * Try to do a lockless dput(), and return whether that was successful.
658 * If unsuccessful, we return false, having already taken the dentry lock.
660 * The caller needs to hold the RCU read lock, so that the dentry is
661 * guaranteed to stay around even if the refcount goes down to zero!
663 static inline bool fast_dput(struct dentry
*dentry
)
666 unsigned int d_flags
;
669 * If we have a d_op->d_delete() operation, we sould not
670 * let the dentry count go to zero, so use "put_or_lock".
672 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
673 return lockref_put_or_lock(&dentry
->d_lockref
);
676 * .. otherwise, we can try to just decrement the
677 * lockref optimistically.
679 ret
= lockref_put_return(&dentry
->d_lockref
);
682 * If the lockref_put_return() failed due to the lock being held
683 * by somebody else, the fast path has failed. We will need to
684 * get the lock, and then check the count again.
686 if (unlikely(ret
< 0)) {
687 spin_lock(&dentry
->d_lock
);
688 if (dentry
->d_lockref
.count
> 1) {
689 dentry
->d_lockref
.count
--;
690 spin_unlock(&dentry
->d_lock
);
697 * If we weren't the last ref, we're done.
703 * Careful, careful. The reference count went down
704 * to zero, but we don't hold the dentry lock, so
705 * somebody else could get it again, and do another
706 * dput(), and we need to not race with that.
708 * However, there is a very special and common case
709 * where we don't care, because there is nothing to
710 * do: the dentry is still hashed, it does not have
711 * a 'delete' op, and it's referenced and already on
714 * NOTE! Since we aren't locked, these values are
715 * not "stable". However, it is sufficient that at
716 * some point after we dropped the reference the
717 * dentry was hashed and the flags had the proper
718 * value. Other dentry users may have re-gotten
719 * a reference to the dentry and change that, but
720 * our work is done - we can leave the dentry
721 * around with a zero refcount.
724 d_flags
= ACCESS_ONCE(dentry
->d_flags
);
725 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
| DCACHE_DISCONNECTED
;
727 /* Nothing to do? Dropping the reference was all we needed? */
728 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
732 * Not the fast normal case? Get the lock. We've already decremented
733 * the refcount, but we'll need to re-check the situation after
736 spin_lock(&dentry
->d_lock
);
739 * Did somebody else grab a reference to it in the meantime, and
740 * we're no longer the last user after all? Alternatively, somebody
741 * else could have killed it and marked it dead. Either way, we
742 * don't need to do anything else.
744 if (dentry
->d_lockref
.count
) {
745 spin_unlock(&dentry
->d_lock
);
750 * Re-get the reference we optimistically dropped. We hold the
751 * lock, and we just tested that it was zero, so we can just
754 dentry
->d_lockref
.count
= 1;
762 * This is complicated by the fact that we do not want to put
763 * dentries that are no longer on any hash chain on the unused
764 * list: we'd much rather just get rid of them immediately.
766 * However, that implies that we have to traverse the dentry
767 * tree upwards to the parents which might _also_ now be
768 * scheduled for deletion (it may have been only waiting for
769 * its last child to go away).
771 * This tail recursion is done by hand as we don't want to depend
772 * on the compiler to always get this right (gcc generally doesn't).
773 * Real recursion would eat up our stack space.
777 * dput - release a dentry
778 * @dentry: dentry to release
780 * Release a dentry. This will drop the usage count and if appropriate
781 * call the dentry unlink method as well as removing it from the queues and
782 * releasing its resources. If the parent dentries were scheduled for release
783 * they too may now get deleted.
785 void dput(struct dentry
*dentry
)
787 if (unlikely(!dentry
))
794 if (likely(fast_dput(dentry
))) {
799 /* Slow case: now with the dentry lock held */
802 WARN_ON(d_in_lookup(dentry
));
804 /* Unreachable? Get rid of it */
805 if (unlikely(d_unhashed(dentry
)))
808 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
811 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
812 if (dentry
->d_op
->d_delete(dentry
))
816 dentry_lru_add(dentry
);
818 dentry
->d_lockref
.count
--;
819 spin_unlock(&dentry
->d_lock
);
823 dentry
= dentry_kill(dentry
);
832 /* This must be called with d_lock held */
833 static inline void __dget_dlock(struct dentry
*dentry
)
835 dentry
->d_lockref
.count
++;
838 static inline void __dget(struct dentry
*dentry
)
840 lockref_get(&dentry
->d_lockref
);
843 struct dentry
*dget_parent(struct dentry
*dentry
)
849 * Do optimistic parent lookup without any
853 ret
= ACCESS_ONCE(dentry
->d_parent
);
854 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
856 if (likely(gotref
)) {
857 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
864 * Don't need rcu_dereference because we re-check it was correct under
868 ret
= dentry
->d_parent
;
869 spin_lock(&ret
->d_lock
);
870 if (unlikely(ret
!= dentry
->d_parent
)) {
871 spin_unlock(&ret
->d_lock
);
876 BUG_ON(!ret
->d_lockref
.count
);
877 ret
->d_lockref
.count
++;
878 spin_unlock(&ret
->d_lock
);
881 EXPORT_SYMBOL(dget_parent
);
884 * d_find_alias - grab a hashed alias of inode
885 * @inode: inode in question
887 * If inode has a hashed alias, or is a directory and has any alias,
888 * acquire the reference to alias and return it. Otherwise return NULL.
889 * Notice that if inode is a directory there can be only one alias and
890 * it can be unhashed only if it has no children, or if it is the root
891 * of a filesystem, or if the directory was renamed and d_revalidate
892 * was the first vfs operation to notice.
894 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
895 * any other hashed alias over that one.
897 static struct dentry
*__d_find_alias(struct inode
*inode
)
899 struct dentry
*alias
, *discon_alias
;
903 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
904 spin_lock(&alias
->d_lock
);
905 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
906 if (IS_ROOT(alias
) &&
907 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
908 discon_alias
= alias
;
911 spin_unlock(&alias
->d_lock
);
915 spin_unlock(&alias
->d_lock
);
918 alias
= discon_alias
;
919 spin_lock(&alias
->d_lock
);
920 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
922 spin_unlock(&alias
->d_lock
);
925 spin_unlock(&alias
->d_lock
);
931 struct dentry
*d_find_alias(struct inode
*inode
)
933 struct dentry
*de
= NULL
;
935 if (!hlist_empty(&inode
->i_dentry
)) {
936 spin_lock(&inode
->i_lock
);
937 de
= __d_find_alias(inode
);
938 spin_unlock(&inode
->i_lock
);
942 EXPORT_SYMBOL(d_find_alias
);
945 * Try to kill dentries associated with this inode.
946 * WARNING: you must own a reference to inode.
948 void d_prune_aliases(struct inode
*inode
)
950 struct dentry
*dentry
;
952 spin_lock(&inode
->i_lock
);
953 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
954 spin_lock(&dentry
->d_lock
);
955 if (!dentry
->d_lockref
.count
) {
956 struct dentry
*parent
= lock_parent(dentry
);
957 if (likely(!dentry
->d_lockref
.count
)) {
958 __dentry_kill(dentry
);
963 spin_unlock(&parent
->d_lock
);
965 spin_unlock(&dentry
->d_lock
);
967 spin_unlock(&inode
->i_lock
);
969 EXPORT_SYMBOL(d_prune_aliases
);
971 static void shrink_dentry_list(struct list_head
*list
)
973 struct dentry
*dentry
, *parent
;
975 while (!list_empty(list
)) {
977 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
978 spin_lock(&dentry
->d_lock
);
979 parent
= lock_parent(dentry
);
982 * The dispose list is isolated and dentries are not accounted
983 * to the LRU here, so we can simply remove it from the list
984 * here regardless of whether it is referenced or not.
986 d_shrink_del(dentry
);
989 * We found an inuse dentry which was not removed from
990 * the LRU because of laziness during lookup. Do not free it.
992 if (dentry
->d_lockref
.count
> 0) {
993 spin_unlock(&dentry
->d_lock
);
995 spin_unlock(&parent
->d_lock
);
1000 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
1001 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
1002 spin_unlock(&dentry
->d_lock
);
1004 spin_unlock(&parent
->d_lock
);
1006 dentry_free(dentry
);
1010 inode
= dentry
->d_inode
;
1011 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
1012 d_shrink_add(dentry
, list
);
1013 spin_unlock(&dentry
->d_lock
);
1015 spin_unlock(&parent
->d_lock
);
1019 __dentry_kill(dentry
);
1022 * We need to prune ancestors too. This is necessary to prevent
1023 * quadratic behavior of shrink_dcache_parent(), but is also
1024 * expected to be beneficial in reducing dentry cache
1028 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
1029 parent
= lock_parent(dentry
);
1030 if (dentry
->d_lockref
.count
!= 1) {
1031 dentry
->d_lockref
.count
--;
1032 spin_unlock(&dentry
->d_lock
);
1034 spin_unlock(&parent
->d_lock
);
1037 inode
= dentry
->d_inode
; /* can't be NULL */
1038 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
1039 spin_unlock(&dentry
->d_lock
);
1041 spin_unlock(&parent
->d_lock
);
1045 __dentry_kill(dentry
);
1051 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1052 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1054 struct list_head
*freeable
= arg
;
1055 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1059 * we are inverting the lru lock/dentry->d_lock here,
1060 * so use a trylock. If we fail to get the lock, just skip
1063 if (!spin_trylock(&dentry
->d_lock
))
1067 * Referenced dentries are still in use. If they have active
1068 * counts, just remove them from the LRU. Otherwise give them
1069 * another pass through the LRU.
1071 if (dentry
->d_lockref
.count
) {
1072 d_lru_isolate(lru
, dentry
);
1073 spin_unlock(&dentry
->d_lock
);
1077 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1078 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1079 spin_unlock(&dentry
->d_lock
);
1082 * The list move itself will be made by the common LRU code. At
1083 * this point, we've dropped the dentry->d_lock but keep the
1084 * lru lock. This is safe to do, since every list movement is
1085 * protected by the lru lock even if both locks are held.
1087 * This is guaranteed by the fact that all LRU management
1088 * functions are intermediated by the LRU API calls like
1089 * list_lru_add and list_lru_del. List movement in this file
1090 * only ever occur through this functions or through callbacks
1091 * like this one, that are called from the LRU API.
1093 * The only exceptions to this are functions like
1094 * shrink_dentry_list, and code that first checks for the
1095 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1096 * operating only with stack provided lists after they are
1097 * properly isolated from the main list. It is thus, always a
1103 d_lru_shrink_move(lru
, dentry
, freeable
);
1104 spin_unlock(&dentry
->d_lock
);
1110 * prune_dcache_sb - shrink the dcache
1112 * @sc: shrink control, passed to list_lru_shrink_walk()
1114 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1115 * is done when we need more memory and called from the superblock shrinker
1118 * This function may fail to free any resources if all the dentries are in
1121 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1126 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1127 dentry_lru_isolate
, &dispose
);
1128 shrink_dentry_list(&dispose
);
1132 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1133 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1135 struct list_head
*freeable
= arg
;
1136 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1139 * we are inverting the lru lock/dentry->d_lock here,
1140 * so use a trylock. If we fail to get the lock, just skip
1143 if (!spin_trylock(&dentry
->d_lock
))
1146 d_lru_shrink_move(lru
, dentry
, freeable
);
1147 spin_unlock(&dentry
->d_lock
);
1154 * shrink_dcache_sb - shrink dcache for a superblock
1157 * Shrink the dcache for the specified super block. This is used to free
1158 * the dcache before unmounting a file system.
1160 void shrink_dcache_sb(struct super_block
*sb
)
1167 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1168 dentry_lru_isolate_shrink
, &dispose
, 1024);
1170 this_cpu_sub(nr_dentry_unused
, freed
);
1171 shrink_dentry_list(&dispose
);
1173 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1175 EXPORT_SYMBOL(shrink_dcache_sb
);
1178 * enum d_walk_ret - action to talke during tree walk
1179 * @D_WALK_CONTINUE: contrinue walk
1180 * @D_WALK_QUIT: quit walk
1181 * @D_WALK_NORETRY: quit when retry is needed
1182 * @D_WALK_SKIP: skip this dentry and its children
1192 * d_walk - walk the dentry tree
1193 * @parent: start of walk
1194 * @data: data passed to @enter() and @finish()
1195 * @enter: callback when first entering the dentry
1196 * @finish: callback when successfully finished the walk
1198 * The @enter() and @finish() callbacks are called with d_lock held.
1200 static void d_walk(struct dentry
*parent
, void *data
,
1201 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1202 void (*finish
)(void *))
1204 struct dentry
*this_parent
;
1205 struct list_head
*next
;
1207 enum d_walk_ret ret
;
1211 read_seqbegin_or_lock(&rename_lock
, &seq
);
1212 this_parent
= parent
;
1213 spin_lock(&this_parent
->d_lock
);
1215 ret
= enter(data
, this_parent
);
1217 case D_WALK_CONTINUE
:
1222 case D_WALK_NORETRY
:
1227 next
= this_parent
->d_subdirs
.next
;
1229 while (next
!= &this_parent
->d_subdirs
) {
1230 struct list_head
*tmp
= next
;
1231 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1234 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1237 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1239 ret
= enter(data
, dentry
);
1241 case D_WALK_CONTINUE
:
1244 spin_unlock(&dentry
->d_lock
);
1246 case D_WALK_NORETRY
:
1250 spin_unlock(&dentry
->d_lock
);
1254 if (!list_empty(&dentry
->d_subdirs
)) {
1255 spin_unlock(&this_parent
->d_lock
);
1256 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1257 this_parent
= dentry
;
1258 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1261 spin_unlock(&dentry
->d_lock
);
1264 * All done at this level ... ascend and resume the search.
1268 if (this_parent
!= parent
) {
1269 struct dentry
*child
= this_parent
;
1270 this_parent
= child
->d_parent
;
1272 spin_unlock(&child
->d_lock
);
1273 spin_lock(&this_parent
->d_lock
);
1275 /* might go back up the wrong parent if we have had a rename. */
1276 if (need_seqretry(&rename_lock
, seq
))
1278 /* go into the first sibling still alive */
1280 next
= child
->d_child
.next
;
1281 if (next
== &this_parent
->d_subdirs
)
1283 child
= list_entry(next
, struct dentry
, d_child
);
1284 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1288 if (need_seqretry(&rename_lock
, seq
))
1295 spin_unlock(&this_parent
->d_lock
);
1296 done_seqretry(&rename_lock
, seq
);
1300 spin_unlock(&this_parent
->d_lock
);
1309 struct check_mount
{
1310 struct vfsmount
*mnt
;
1311 unsigned int mounted
;
1314 static enum d_walk_ret
path_check_mount(void *data
, struct dentry
*dentry
)
1316 struct check_mount
*info
= data
;
1317 struct path path
= { .mnt
= info
->mnt
, .dentry
= dentry
};
1319 if (likely(!d_mountpoint(dentry
)))
1320 return D_WALK_CONTINUE
;
1321 if (__path_is_mountpoint(&path
)) {
1325 return D_WALK_CONTINUE
;
1329 * path_has_submounts - check for mounts over a dentry in the
1330 * current namespace.
1331 * @parent: path to check.
1333 * Return true if the parent or its subdirectories contain
1334 * a mount point in the current namespace.
1336 int path_has_submounts(const struct path
*parent
)
1338 struct check_mount data
= { .mnt
= parent
->mnt
, .mounted
= 0 };
1340 read_seqlock_excl(&mount_lock
);
1341 d_walk(parent
->dentry
, &data
, path_check_mount
, NULL
);
1342 read_sequnlock_excl(&mount_lock
);
1344 return data
.mounted
;
1346 EXPORT_SYMBOL(path_has_submounts
);
1349 * Called by mount code to set a mountpoint and check if the mountpoint is
1350 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1351 * subtree can become unreachable).
1353 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1354 * this reason take rename_lock and d_lock on dentry and ancestors.
1356 int d_set_mounted(struct dentry
*dentry
)
1360 write_seqlock(&rename_lock
);
1361 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1362 /* Need exclusion wrt. d_invalidate() */
1363 spin_lock(&p
->d_lock
);
1364 if (unlikely(d_unhashed(p
))) {
1365 spin_unlock(&p
->d_lock
);
1368 spin_unlock(&p
->d_lock
);
1370 spin_lock(&dentry
->d_lock
);
1371 if (!d_unlinked(dentry
)) {
1373 if (!d_mountpoint(dentry
)) {
1374 dentry
->d_flags
|= DCACHE_MOUNTED
;
1378 spin_unlock(&dentry
->d_lock
);
1380 write_sequnlock(&rename_lock
);
1385 * Search the dentry child list of the specified parent,
1386 * and move any unused dentries to the end of the unused
1387 * list for prune_dcache(). We descend to the next level
1388 * whenever the d_subdirs list is non-empty and continue
1391 * It returns zero iff there are no unused children,
1392 * otherwise it returns the number of children moved to
1393 * the end of the unused list. This may not be the total
1394 * number of unused children, because select_parent can
1395 * drop the lock and return early due to latency
1399 struct select_data
{
1400 struct dentry
*start
;
1401 struct list_head dispose
;
1405 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1407 struct select_data
*data
= _data
;
1408 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1410 if (data
->start
== dentry
)
1413 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1416 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1418 if (!dentry
->d_lockref
.count
) {
1419 d_shrink_add(dentry
, &data
->dispose
);
1424 * We can return to the caller if we have found some (this
1425 * ensures forward progress). We'll be coming back to find
1428 if (!list_empty(&data
->dispose
))
1429 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1435 * shrink_dcache_parent - prune dcache
1436 * @parent: parent of entries to prune
1438 * Prune the dcache to remove unused children of the parent dentry.
1440 void shrink_dcache_parent(struct dentry
*parent
)
1443 struct select_data data
;
1445 INIT_LIST_HEAD(&data
.dispose
);
1446 data
.start
= parent
;
1449 d_walk(parent
, &data
, select_collect
, NULL
);
1453 shrink_dentry_list(&data
.dispose
);
1457 EXPORT_SYMBOL(shrink_dcache_parent
);
1459 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1461 /* it has busy descendents; complain about those instead */
1462 if (!list_empty(&dentry
->d_subdirs
))
1463 return D_WALK_CONTINUE
;
1465 /* root with refcount 1 is fine */
1466 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1467 return D_WALK_CONTINUE
;
1469 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1470 " still in use (%d) [unmount of %s %s]\n",
1473 dentry
->d_inode
->i_ino
: 0UL,
1475 dentry
->d_lockref
.count
,
1476 dentry
->d_sb
->s_type
->name
,
1477 dentry
->d_sb
->s_id
);
1479 return D_WALK_CONTINUE
;
1482 static void do_one_tree(struct dentry
*dentry
)
1484 shrink_dcache_parent(dentry
);
1485 d_walk(dentry
, dentry
, umount_check
, NULL
);
1491 * destroy the dentries attached to a superblock on unmounting
1493 void shrink_dcache_for_umount(struct super_block
*sb
)
1495 struct dentry
*dentry
;
1497 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1499 dentry
= sb
->s_root
;
1501 do_one_tree(dentry
);
1503 while (!hlist_bl_empty(&sb
->s_anon
)) {
1504 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1505 do_one_tree(dentry
);
1509 struct detach_data
{
1510 struct select_data select
;
1511 struct dentry
*mountpoint
;
1513 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1515 struct detach_data
*data
= _data
;
1517 if (d_mountpoint(dentry
)) {
1518 __dget_dlock(dentry
);
1519 data
->mountpoint
= dentry
;
1523 return select_collect(&data
->select
, dentry
);
1526 static void check_and_drop(void *_data
)
1528 struct detach_data
*data
= _data
;
1530 if (!data
->mountpoint
&& list_empty(&data
->select
.dispose
))
1531 __d_drop(data
->select
.start
);
1535 * d_invalidate - detach submounts, prune dcache, and drop
1536 * @dentry: dentry to invalidate (aka detach, prune and drop)
1540 * The final d_drop is done as an atomic operation relative to
1541 * rename_lock ensuring there are no races with d_set_mounted. This
1542 * ensures there are no unhashed dentries on the path to a mountpoint.
1544 void d_invalidate(struct dentry
*dentry
)
1547 * If it's already been dropped, return OK.
1549 spin_lock(&dentry
->d_lock
);
1550 if (d_unhashed(dentry
)) {
1551 spin_unlock(&dentry
->d_lock
);
1554 spin_unlock(&dentry
->d_lock
);
1556 /* Negative dentries can be dropped without further checks */
1557 if (!dentry
->d_inode
) {
1563 struct detach_data data
;
1565 data
.mountpoint
= NULL
;
1566 INIT_LIST_HEAD(&data
.select
.dispose
);
1567 data
.select
.start
= dentry
;
1568 data
.select
.found
= 0;
1570 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1572 if (!list_empty(&data
.select
.dispose
))
1573 shrink_dentry_list(&data
.select
.dispose
);
1574 else if (!data
.mountpoint
)
1577 if (data
.mountpoint
) {
1578 detach_mounts(data
.mountpoint
);
1579 dput(data
.mountpoint
);
1584 EXPORT_SYMBOL(d_invalidate
);
1587 * __d_alloc - allocate a dcache entry
1588 * @sb: filesystem it will belong to
1589 * @name: qstr of the name
1591 * Allocates a dentry. It returns %NULL if there is insufficient memory
1592 * available. On a success the dentry is returned. The name passed in is
1593 * copied and the copy passed in may be reused after this call.
1596 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1598 struct dentry
*dentry
;
1602 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1607 * We guarantee that the inline name is always NUL-terminated.
1608 * This way the memcpy() done by the name switching in rename
1609 * will still always have a NUL at the end, even if we might
1610 * be overwriting an internal NUL character
1612 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1613 if (unlikely(!name
)) {
1615 dname
= dentry
->d_iname
;
1616 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1617 size_t size
= offsetof(struct external_name
, name
[1]);
1618 struct external_name
*p
= kmalloc(size
+ name
->len
,
1619 GFP_KERNEL_ACCOUNT
);
1621 kmem_cache_free(dentry_cache
, dentry
);
1624 atomic_set(&p
->u
.count
, 1);
1626 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS
))
1627 kasan_unpoison_shadow(dname
,
1628 round_up(name
->len
+ 1, sizeof(unsigned long)));
1630 dname
= dentry
->d_iname
;
1633 dentry
->d_name
.len
= name
->len
;
1634 dentry
->d_name
.hash
= name
->hash
;
1635 memcpy(dname
, name
->name
, name
->len
);
1636 dname
[name
->len
] = 0;
1638 /* Make sure we always see the terminating NUL character */
1640 dentry
->d_name
.name
= dname
;
1642 dentry
->d_lockref
.count
= 1;
1643 dentry
->d_flags
= 0;
1644 spin_lock_init(&dentry
->d_lock
);
1645 seqcount_init(&dentry
->d_seq
);
1646 dentry
->d_inode
= NULL
;
1647 dentry
->d_parent
= dentry
;
1649 dentry
->d_op
= NULL
;
1650 dentry
->d_fsdata
= NULL
;
1651 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1652 INIT_LIST_HEAD(&dentry
->d_lru
);
1653 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1654 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1655 INIT_LIST_HEAD(&dentry
->d_child
);
1656 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1658 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1659 err
= dentry
->d_op
->d_init(dentry
);
1661 if (dname_external(dentry
))
1662 kfree(external_name(dentry
));
1663 kmem_cache_free(dentry_cache
, dentry
);
1668 this_cpu_inc(nr_dentry
);
1674 * d_alloc - allocate a dcache entry
1675 * @parent: parent of entry to allocate
1676 * @name: qstr of the name
1678 * Allocates a dentry. It returns %NULL if there is insufficient memory
1679 * available. On a success the dentry is returned. The name passed in is
1680 * copied and the copy passed in may be reused after this call.
1682 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1684 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1687 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1688 spin_lock(&parent
->d_lock
);
1690 * don't need child lock because it is not subject
1691 * to concurrency here
1693 __dget_dlock(parent
);
1694 dentry
->d_parent
= parent
;
1695 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1696 spin_unlock(&parent
->d_lock
);
1700 EXPORT_SYMBOL(d_alloc
);
1702 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1704 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, NULL
);
1706 dentry
->d_flags
|= DCACHE_RCUACCESS
| DCACHE_DENTRY_CURSOR
;
1707 dentry
->d_parent
= dget(parent
);
1713 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1714 * @sb: the superblock
1715 * @name: qstr of the name
1717 * For a filesystem that just pins its dentries in memory and never
1718 * performs lookups at all, return an unhashed IS_ROOT dentry.
1720 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1722 return __d_alloc(sb
, name
);
1724 EXPORT_SYMBOL(d_alloc_pseudo
);
1726 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1731 q
.hash_len
= hashlen_string(parent
, name
);
1732 return d_alloc(parent
, &q
);
1734 EXPORT_SYMBOL(d_alloc_name
);
1736 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1738 WARN_ON_ONCE(dentry
->d_op
);
1739 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1741 DCACHE_OP_REVALIDATE
|
1742 DCACHE_OP_WEAK_REVALIDATE
|
1749 dentry
->d_flags
|= DCACHE_OP_HASH
;
1751 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1752 if (op
->d_revalidate
)
1753 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1754 if (op
->d_weak_revalidate
)
1755 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1757 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1759 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1761 dentry
->d_flags
|= DCACHE_OP_REAL
;
1764 EXPORT_SYMBOL(d_set_d_op
);
1768 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1769 * @dentry - The dentry to mark
1771 * Mark a dentry as falling through to the lower layer (as set with
1772 * d_pin_lower()). This flag may be recorded on the medium.
1774 void d_set_fallthru(struct dentry
*dentry
)
1776 spin_lock(&dentry
->d_lock
);
1777 dentry
->d_flags
|= DCACHE_FALLTHRU
;
1778 spin_unlock(&dentry
->d_lock
);
1780 EXPORT_SYMBOL(d_set_fallthru
);
1782 static unsigned d_flags_for_inode(struct inode
*inode
)
1784 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1787 return DCACHE_MISS_TYPE
;
1789 if (S_ISDIR(inode
->i_mode
)) {
1790 add_flags
= DCACHE_DIRECTORY_TYPE
;
1791 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1792 if (unlikely(!inode
->i_op
->lookup
))
1793 add_flags
= DCACHE_AUTODIR_TYPE
;
1795 inode
->i_opflags
|= IOP_LOOKUP
;
1797 goto type_determined
;
1800 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1801 if (unlikely(inode
->i_op
->get_link
)) {
1802 add_flags
= DCACHE_SYMLINK_TYPE
;
1803 goto type_determined
;
1805 inode
->i_opflags
|= IOP_NOFOLLOW
;
1808 if (unlikely(!S_ISREG(inode
->i_mode
)))
1809 add_flags
= DCACHE_SPECIAL_TYPE
;
1812 if (unlikely(IS_AUTOMOUNT(inode
)))
1813 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1817 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1819 unsigned add_flags
= d_flags_for_inode(inode
);
1820 WARN_ON(d_in_lookup(dentry
));
1822 spin_lock(&dentry
->d_lock
);
1823 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1824 raw_write_seqcount_begin(&dentry
->d_seq
);
1825 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1826 raw_write_seqcount_end(&dentry
->d_seq
);
1827 fsnotify_update_flags(dentry
);
1828 spin_unlock(&dentry
->d_lock
);
1832 * d_instantiate - fill in inode information for a dentry
1833 * @entry: dentry to complete
1834 * @inode: inode to attach to this dentry
1836 * Fill in inode information in the entry.
1838 * This turns negative dentries into productive full members
1841 * NOTE! This assumes that the inode count has been incremented
1842 * (or otherwise set) by the caller to indicate that it is now
1843 * in use by the dcache.
1846 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1848 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1850 security_d_instantiate(entry
, inode
);
1851 spin_lock(&inode
->i_lock
);
1852 __d_instantiate(entry
, inode
);
1853 spin_unlock(&inode
->i_lock
);
1856 EXPORT_SYMBOL(d_instantiate
);
1859 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1860 * @entry: dentry to complete
1861 * @inode: inode to attach to this dentry
1863 * Fill in inode information in the entry. If a directory alias is found, then
1864 * return an error (and drop inode). Together with d_materialise_unique() this
1865 * guarantees that a directory inode may never have more than one alias.
1867 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1869 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1871 security_d_instantiate(entry
, inode
);
1872 spin_lock(&inode
->i_lock
);
1873 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1874 spin_unlock(&inode
->i_lock
);
1878 __d_instantiate(entry
, inode
);
1879 spin_unlock(&inode
->i_lock
);
1883 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1885 struct dentry
*d_make_root(struct inode
*root_inode
)
1887 struct dentry
*res
= NULL
;
1890 res
= __d_alloc(root_inode
->i_sb
, NULL
);
1892 d_instantiate(res
, root_inode
);
1898 EXPORT_SYMBOL(d_make_root
);
1900 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1902 struct dentry
*alias
;
1904 if (hlist_empty(&inode
->i_dentry
))
1906 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1912 * d_find_any_alias - find any alias for a given inode
1913 * @inode: inode to find an alias for
1915 * If any aliases exist for the given inode, take and return a
1916 * reference for one of them. If no aliases exist, return %NULL.
1918 struct dentry
*d_find_any_alias(struct inode
*inode
)
1922 spin_lock(&inode
->i_lock
);
1923 de
= __d_find_any_alias(inode
);
1924 spin_unlock(&inode
->i_lock
);
1927 EXPORT_SYMBOL(d_find_any_alias
);
1929 static struct dentry
*__d_obtain_alias(struct inode
*inode
, int disconnected
)
1936 return ERR_PTR(-ESTALE
);
1938 return ERR_CAST(inode
);
1940 res
= d_find_any_alias(inode
);
1944 tmp
= __d_alloc(inode
->i_sb
, NULL
);
1946 res
= ERR_PTR(-ENOMEM
);
1950 security_d_instantiate(tmp
, inode
);
1951 spin_lock(&inode
->i_lock
);
1952 res
= __d_find_any_alias(inode
);
1954 spin_unlock(&inode
->i_lock
);
1959 /* attach a disconnected dentry */
1960 add_flags
= d_flags_for_inode(inode
);
1963 add_flags
|= DCACHE_DISCONNECTED
;
1965 spin_lock(&tmp
->d_lock
);
1966 __d_set_inode_and_type(tmp
, inode
, add_flags
);
1967 hlist_add_head(&tmp
->d_u
.d_alias
, &inode
->i_dentry
);
1968 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1969 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1970 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1971 spin_unlock(&tmp
->d_lock
);
1972 spin_unlock(&inode
->i_lock
);
1982 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1983 * @inode: inode to allocate the dentry for
1985 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1986 * similar open by handle operations. The returned dentry may be anonymous,
1987 * or may have a full name (if the inode was already in the cache).
1989 * When called on a directory inode, we must ensure that the inode only ever
1990 * has one dentry. If a dentry is found, that is returned instead of
1991 * allocating a new one.
1993 * On successful return, the reference to the inode has been transferred
1994 * to the dentry. In case of an error the reference on the inode is released.
1995 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1996 * be passed in and the error will be propagated to the return value,
1997 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1999 struct dentry
*d_obtain_alias(struct inode
*inode
)
2001 return __d_obtain_alias(inode
, 1);
2003 EXPORT_SYMBOL(d_obtain_alias
);
2006 * d_obtain_root - find or allocate a dentry for a given inode
2007 * @inode: inode to allocate the dentry for
2009 * Obtain an IS_ROOT dentry for the root of a filesystem.
2011 * We must ensure that directory inodes only ever have one dentry. If a
2012 * dentry is found, that is returned instead of allocating a new one.
2014 * On successful return, the reference to the inode has been transferred
2015 * to the dentry. In case of an error the reference on the inode is
2016 * released. A %NULL or IS_ERR inode may be passed in and will be the
2017 * error will be propagate to the return value, with a %NULL @inode
2018 * replaced by ERR_PTR(-ESTALE).
2020 struct dentry
*d_obtain_root(struct inode
*inode
)
2022 return __d_obtain_alias(inode
, 0);
2024 EXPORT_SYMBOL(d_obtain_root
);
2027 * d_add_ci - lookup or allocate new dentry with case-exact name
2028 * @inode: the inode case-insensitive lookup has found
2029 * @dentry: the negative dentry that was passed to the parent's lookup func
2030 * @name: the case-exact name to be associated with the returned dentry
2032 * This is to avoid filling the dcache with case-insensitive names to the
2033 * same inode, only the actual correct case is stored in the dcache for
2034 * case-insensitive filesystems.
2036 * For a case-insensitive lookup match and if the the case-exact dentry
2037 * already exists in in the dcache, use it and return it.
2039 * If no entry exists with the exact case name, allocate new dentry with
2040 * the exact case, and return the spliced entry.
2042 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2045 struct dentry
*found
, *res
;
2048 * First check if a dentry matching the name already exists,
2049 * if not go ahead and create it now.
2051 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2056 if (d_in_lookup(dentry
)) {
2057 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2059 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2064 found
= d_alloc(dentry
->d_parent
, name
);
2067 return ERR_PTR(-ENOMEM
);
2070 res
= d_splice_alias(inode
, found
);
2077 EXPORT_SYMBOL(d_add_ci
);
2080 static inline bool d_same_name(const struct dentry
*dentry
,
2081 const struct dentry
*parent
,
2082 const struct qstr
*name
)
2084 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2085 if (dentry
->d_name
.len
!= name
->len
)
2087 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2089 return parent
->d_op
->d_compare(dentry
,
2090 dentry
->d_name
.len
, dentry
->d_name
.name
,
2095 * __d_lookup_rcu - search for a dentry (racy, store-free)
2096 * @parent: parent dentry
2097 * @name: qstr of name we wish to find
2098 * @seqp: returns d_seq value at the point where the dentry was found
2099 * Returns: dentry, or NULL
2101 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2102 * resolution (store-free path walking) design described in
2103 * Documentation/filesystems/path-lookup.txt.
2105 * This is not to be used outside core vfs.
2107 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2108 * held, and rcu_read_lock held. The returned dentry must not be stored into
2109 * without taking d_lock and checking d_seq sequence count against @seq
2112 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2115 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2116 * the returned dentry, so long as its parent's seqlock is checked after the
2117 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2118 * is formed, giving integrity down the path walk.
2120 * NOTE! The caller *has* to check the resulting dentry against the sequence
2121 * number we've returned before using any of the resulting dentry state!
2123 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2124 const struct qstr
*name
,
2127 u64 hashlen
= name
->hash_len
;
2128 const unsigned char *str
= name
->name
;
2129 struct hlist_bl_head
*b
= d_hash(hashlen_hash(hashlen
));
2130 struct hlist_bl_node
*node
;
2131 struct dentry
*dentry
;
2134 * Note: There is significant duplication with __d_lookup_rcu which is
2135 * required to prevent single threaded performance regressions
2136 * especially on architectures where smp_rmb (in seqcounts) are costly.
2137 * Keep the two functions in sync.
2141 * The hash list is protected using RCU.
2143 * Carefully use d_seq when comparing a candidate dentry, to avoid
2144 * races with d_move().
2146 * It is possible that concurrent renames can mess up our list
2147 * walk here and result in missing our dentry, resulting in the
2148 * false-negative result. d_lookup() protects against concurrent
2149 * renames using rename_lock seqlock.
2151 * See Documentation/filesystems/path-lookup.txt for more details.
2153 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2158 * The dentry sequence count protects us from concurrent
2159 * renames, and thus protects parent and name fields.
2161 * The caller must perform a seqcount check in order
2162 * to do anything useful with the returned dentry.
2164 * NOTE! We do a "raw" seqcount_begin here. That means that
2165 * we don't wait for the sequence count to stabilize if it
2166 * is in the middle of a sequence change. If we do the slow
2167 * dentry compare, we will do seqretries until it is stable,
2168 * and if we end up with a successful lookup, we actually
2169 * want to exit RCU lookup anyway.
2171 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2172 * we are still guaranteed NUL-termination of ->d_name.name.
2174 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2175 if (dentry
->d_parent
!= parent
)
2177 if (d_unhashed(dentry
))
2180 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2183 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2185 tlen
= dentry
->d_name
.len
;
2186 tname
= dentry
->d_name
.name
;
2187 /* we want a consistent (name,len) pair */
2188 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2192 if (parent
->d_op
->d_compare(dentry
,
2193 tlen
, tname
, name
) != 0)
2196 if (dentry
->d_name
.hash_len
!= hashlen
)
2198 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2208 * d_lookup - search for a dentry
2209 * @parent: parent dentry
2210 * @name: qstr of name we wish to find
2211 * Returns: dentry, or NULL
2213 * d_lookup searches the children of the parent dentry for the name in
2214 * question. If the dentry is found its reference count is incremented and the
2215 * dentry is returned. The caller must use dput to free the entry when it has
2216 * finished using it. %NULL is returned if the dentry does not exist.
2218 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2220 struct dentry
*dentry
;
2224 seq
= read_seqbegin(&rename_lock
);
2225 dentry
= __d_lookup(parent
, name
);
2228 } while (read_seqretry(&rename_lock
, seq
));
2231 EXPORT_SYMBOL(d_lookup
);
2234 * __d_lookup - search for a dentry (racy)
2235 * @parent: parent dentry
2236 * @name: qstr of name we wish to find
2237 * Returns: dentry, or NULL
2239 * __d_lookup is like d_lookup, however it may (rarely) return a
2240 * false-negative result due to unrelated rename activity.
2242 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2243 * however it must be used carefully, eg. with a following d_lookup in
2244 * the case of failure.
2246 * __d_lookup callers must be commented.
2248 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2250 unsigned int hash
= name
->hash
;
2251 struct hlist_bl_head
*b
= d_hash(hash
);
2252 struct hlist_bl_node
*node
;
2253 struct dentry
*found
= NULL
;
2254 struct dentry
*dentry
;
2257 * Note: There is significant duplication with __d_lookup_rcu which is
2258 * required to prevent single threaded performance regressions
2259 * especially on architectures where smp_rmb (in seqcounts) are costly.
2260 * Keep the two functions in sync.
2264 * The hash list is protected using RCU.
2266 * Take d_lock when comparing a candidate dentry, to avoid races
2269 * It is possible that concurrent renames can mess up our list
2270 * walk here and result in missing our dentry, resulting in the
2271 * false-negative result. d_lookup() protects against concurrent
2272 * renames using rename_lock seqlock.
2274 * See Documentation/filesystems/path-lookup.txt for more details.
2278 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2280 if (dentry
->d_name
.hash
!= hash
)
2283 spin_lock(&dentry
->d_lock
);
2284 if (dentry
->d_parent
!= parent
)
2286 if (d_unhashed(dentry
))
2289 if (!d_same_name(dentry
, parent
, name
))
2292 dentry
->d_lockref
.count
++;
2294 spin_unlock(&dentry
->d_lock
);
2297 spin_unlock(&dentry
->d_lock
);
2305 * d_hash_and_lookup - hash the qstr then search for a dentry
2306 * @dir: Directory to search in
2307 * @name: qstr of name we wish to find
2309 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2311 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2314 * Check for a fs-specific hash function. Note that we must
2315 * calculate the standard hash first, as the d_op->d_hash()
2316 * routine may choose to leave the hash value unchanged.
2318 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2319 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2320 int err
= dir
->d_op
->d_hash(dir
, name
);
2321 if (unlikely(err
< 0))
2322 return ERR_PTR(err
);
2324 return d_lookup(dir
, name
);
2326 EXPORT_SYMBOL(d_hash_and_lookup
);
2329 * When a file is deleted, we have two options:
2330 * - turn this dentry into a negative dentry
2331 * - unhash this dentry and free it.
2333 * Usually, we want to just turn this into
2334 * a negative dentry, but if anybody else is
2335 * currently using the dentry or the inode
2336 * we can't do that and we fall back on removing
2337 * it from the hash queues and waiting for
2338 * it to be deleted later when it has no users
2342 * d_delete - delete a dentry
2343 * @dentry: The dentry to delete
2345 * Turn the dentry into a negative dentry if possible, otherwise
2346 * remove it from the hash queues so it can be deleted later
2349 void d_delete(struct dentry
* dentry
)
2351 struct inode
*inode
;
2354 * Are we the only user?
2357 spin_lock(&dentry
->d_lock
);
2358 inode
= dentry
->d_inode
;
2359 isdir
= S_ISDIR(inode
->i_mode
);
2360 if (dentry
->d_lockref
.count
== 1) {
2361 if (!spin_trylock(&inode
->i_lock
)) {
2362 spin_unlock(&dentry
->d_lock
);
2366 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2367 dentry_unlink_inode(dentry
);
2368 fsnotify_nameremove(dentry
, isdir
);
2372 if (!d_unhashed(dentry
))
2375 spin_unlock(&dentry
->d_lock
);
2377 fsnotify_nameremove(dentry
, isdir
);
2379 EXPORT_SYMBOL(d_delete
);
2381 static void __d_rehash(struct dentry
*entry
)
2383 struct hlist_bl_head
*b
= d_hash(entry
->d_name
.hash
);
2384 BUG_ON(!d_unhashed(entry
));
2386 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2391 * d_rehash - add an entry back to the hash
2392 * @entry: dentry to add to the hash
2394 * Adds a dentry to the hash according to its name.
2397 void d_rehash(struct dentry
* entry
)
2399 spin_lock(&entry
->d_lock
);
2401 spin_unlock(&entry
->d_lock
);
2403 EXPORT_SYMBOL(d_rehash
);
2405 static inline unsigned start_dir_add(struct inode
*dir
)
2409 unsigned n
= dir
->i_dir_seq
;
2410 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2416 static inline void end_dir_add(struct inode
*dir
, unsigned n
)
2418 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2421 static void d_wait_lookup(struct dentry
*dentry
)
2423 if (d_in_lookup(dentry
)) {
2424 DECLARE_WAITQUEUE(wait
, current
);
2425 add_wait_queue(dentry
->d_wait
, &wait
);
2427 set_current_state(TASK_UNINTERRUPTIBLE
);
2428 spin_unlock(&dentry
->d_lock
);
2430 spin_lock(&dentry
->d_lock
);
2431 } while (d_in_lookup(dentry
));
2435 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2436 const struct qstr
*name
,
2437 wait_queue_head_t
*wq
)
2439 unsigned int hash
= name
->hash
;
2440 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2441 struct hlist_bl_node
*node
;
2442 struct dentry
*new = d_alloc(parent
, name
);
2443 struct dentry
*dentry
;
2444 unsigned seq
, r_seq
, d_seq
;
2447 return ERR_PTR(-ENOMEM
);
2451 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
) & ~1;
2452 r_seq
= read_seqbegin(&rename_lock
);
2453 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2454 if (unlikely(dentry
)) {
2455 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2459 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2468 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2473 if (unlikely(parent
->d_inode
->i_dir_seq
!= seq
)) {
2479 * No changes for the parent since the beginning of d_lookup().
2480 * Since all removals from the chain happen with hlist_bl_lock(),
2481 * any potential in-lookup matches are going to stay here until
2482 * we unlock the chain. All fields are stable in everything
2485 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2486 if (dentry
->d_name
.hash
!= hash
)
2488 if (dentry
->d_parent
!= parent
)
2490 if (!d_same_name(dentry
, parent
, name
))
2493 /* now we can try to grab a reference */
2494 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2501 * somebody is likely to be still doing lookup for it;
2502 * wait for them to finish
2504 spin_lock(&dentry
->d_lock
);
2505 d_wait_lookup(dentry
);
2507 * it's not in-lookup anymore; in principle we should repeat
2508 * everything from dcache lookup, but it's likely to be what
2509 * d_lookup() would've found anyway. If it is, just return it;
2510 * otherwise we really have to repeat the whole thing.
2512 if (unlikely(dentry
->d_name
.hash
!= hash
))
2514 if (unlikely(dentry
->d_parent
!= parent
))
2516 if (unlikely(d_unhashed(dentry
)))
2518 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2520 /* OK, it *is* a hashed match; return it */
2521 spin_unlock(&dentry
->d_lock
);
2526 /* we can't take ->d_lock here; it's OK, though. */
2527 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2529 hlist_bl_add_head_rcu(&new->d_u
.d_in_lookup_hash
, b
);
2533 spin_unlock(&dentry
->d_lock
);
2537 EXPORT_SYMBOL(d_alloc_parallel
);
2539 void __d_lookup_done(struct dentry
*dentry
)
2541 struct hlist_bl_head
*b
= in_lookup_hash(dentry
->d_parent
,
2542 dentry
->d_name
.hash
);
2544 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2545 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2546 wake_up_all(dentry
->d_wait
);
2547 dentry
->d_wait
= NULL
;
2549 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2550 INIT_LIST_HEAD(&dentry
->d_lru
);
2552 EXPORT_SYMBOL(__d_lookup_done
);
2554 /* inode->i_lock held if inode is non-NULL */
2556 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2558 struct inode
*dir
= NULL
;
2560 spin_lock(&dentry
->d_lock
);
2561 if (unlikely(d_in_lookup(dentry
))) {
2562 dir
= dentry
->d_parent
->d_inode
;
2563 n
= start_dir_add(dir
);
2564 __d_lookup_done(dentry
);
2567 unsigned add_flags
= d_flags_for_inode(inode
);
2568 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2569 raw_write_seqcount_begin(&dentry
->d_seq
);
2570 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2571 raw_write_seqcount_end(&dentry
->d_seq
);
2572 fsnotify_update_flags(dentry
);
2576 end_dir_add(dir
, n
);
2577 spin_unlock(&dentry
->d_lock
);
2579 spin_unlock(&inode
->i_lock
);
2583 * d_add - add dentry to hash queues
2584 * @entry: dentry to add
2585 * @inode: The inode to attach to this dentry
2587 * This adds the entry to the hash queues and initializes @inode.
2588 * The entry was actually filled in earlier during d_alloc().
2591 void d_add(struct dentry
*entry
, struct inode
*inode
)
2594 security_d_instantiate(entry
, inode
);
2595 spin_lock(&inode
->i_lock
);
2597 __d_add(entry
, inode
);
2599 EXPORT_SYMBOL(d_add
);
2602 * d_exact_alias - find and hash an exact unhashed alias
2603 * @entry: dentry to add
2604 * @inode: The inode to go with this dentry
2606 * If an unhashed dentry with the same name/parent and desired
2607 * inode already exists, hash and return it. Otherwise, return
2610 * Parent directory should be locked.
2612 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2614 struct dentry
*alias
;
2615 unsigned int hash
= entry
->d_name
.hash
;
2617 spin_lock(&inode
->i_lock
);
2618 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2620 * Don't need alias->d_lock here, because aliases with
2621 * d_parent == entry->d_parent are not subject to name or
2622 * parent changes, because the parent inode i_mutex is held.
2624 if (alias
->d_name
.hash
!= hash
)
2626 if (alias
->d_parent
!= entry
->d_parent
)
2628 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2630 spin_lock(&alias
->d_lock
);
2631 if (!d_unhashed(alias
)) {
2632 spin_unlock(&alias
->d_lock
);
2635 __dget_dlock(alias
);
2637 spin_unlock(&alias
->d_lock
);
2639 spin_unlock(&inode
->i_lock
);
2642 spin_unlock(&inode
->i_lock
);
2645 EXPORT_SYMBOL(d_exact_alias
);
2648 * dentry_update_name_case - update case insensitive dentry with a new name
2649 * @dentry: dentry to be updated
2652 * Update a case insensitive dentry with new case of name.
2654 * dentry must have been returned by d_lookup with name @name. Old and new
2655 * name lengths must match (ie. no d_compare which allows mismatched name
2658 * Parent inode i_mutex must be held over d_lookup and into this call (to
2659 * keep renames and concurrent inserts, and readdir(2) away).
2661 void dentry_update_name_case(struct dentry
*dentry
, const struct qstr
*name
)
2663 BUG_ON(!inode_is_locked(dentry
->d_parent
->d_inode
));
2664 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2666 spin_lock(&dentry
->d_lock
);
2667 write_seqcount_begin(&dentry
->d_seq
);
2668 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2669 write_seqcount_end(&dentry
->d_seq
);
2670 spin_unlock(&dentry
->d_lock
);
2672 EXPORT_SYMBOL(dentry_update_name_case
);
2674 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2676 if (unlikely(dname_external(target
))) {
2677 if (unlikely(dname_external(dentry
))) {
2679 * Both external: swap the pointers
2681 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2684 * dentry:internal, target:external. Steal target's
2685 * storage and make target internal.
2687 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2688 dentry
->d_name
.len
+ 1);
2689 dentry
->d_name
.name
= target
->d_name
.name
;
2690 target
->d_name
.name
= target
->d_iname
;
2693 if (unlikely(dname_external(dentry
))) {
2695 * dentry:external, target:internal. Give dentry's
2696 * storage to target and make dentry internal
2698 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2699 target
->d_name
.len
+ 1);
2700 target
->d_name
.name
= dentry
->d_name
.name
;
2701 dentry
->d_name
.name
= dentry
->d_iname
;
2704 * Both are internal.
2707 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2708 kmemcheck_mark_initialized(dentry
->d_iname
, DNAME_INLINE_LEN
);
2709 kmemcheck_mark_initialized(target
->d_iname
, DNAME_INLINE_LEN
);
2710 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2711 swap(((long *) &dentry
->d_iname
)[i
],
2712 ((long *) &target
->d_iname
)[i
]);
2716 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2719 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2721 struct external_name
*old_name
= NULL
;
2722 if (unlikely(dname_external(dentry
)))
2723 old_name
= external_name(dentry
);
2724 if (unlikely(dname_external(target
))) {
2725 atomic_inc(&external_name(target
)->u
.count
);
2726 dentry
->d_name
= target
->d_name
;
2728 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2729 target
->d_name
.len
+ 1);
2730 dentry
->d_name
.name
= dentry
->d_iname
;
2731 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2733 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2734 kfree_rcu(old_name
, u
.head
);
2737 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2740 * XXXX: do we really need to take target->d_lock?
2742 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2743 spin_lock(&target
->d_parent
->d_lock
);
2745 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2746 spin_lock(&dentry
->d_parent
->d_lock
);
2747 spin_lock_nested(&target
->d_parent
->d_lock
,
2748 DENTRY_D_LOCK_NESTED
);
2750 spin_lock(&target
->d_parent
->d_lock
);
2751 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2752 DENTRY_D_LOCK_NESTED
);
2755 if (target
< dentry
) {
2756 spin_lock_nested(&target
->d_lock
, 2);
2757 spin_lock_nested(&dentry
->d_lock
, 3);
2759 spin_lock_nested(&dentry
->d_lock
, 2);
2760 spin_lock_nested(&target
->d_lock
, 3);
2764 static void dentry_unlock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2766 if (target
->d_parent
!= dentry
->d_parent
)
2767 spin_unlock(&dentry
->d_parent
->d_lock
);
2768 if (target
->d_parent
!= target
)
2769 spin_unlock(&target
->d_parent
->d_lock
);
2770 spin_unlock(&target
->d_lock
);
2771 spin_unlock(&dentry
->d_lock
);
2775 * When switching names, the actual string doesn't strictly have to
2776 * be preserved in the target - because we're dropping the target
2777 * anyway. As such, we can just do a simple memcpy() to copy over
2778 * the new name before we switch, unless we are going to rehash
2779 * it. Note that if we *do* unhash the target, we are not allowed
2780 * to rehash it without giving it a new name/hash key - whether
2781 * we swap or overwrite the names here, resulting name won't match
2782 * the reality in filesystem; it's only there for d_path() purposes.
2783 * Note that all of this is happening under rename_lock, so the
2784 * any hash lookup seeing it in the middle of manipulations will
2785 * be discarded anyway. So we do not care what happens to the hash
2789 * __d_move - move a dentry
2790 * @dentry: entry to move
2791 * @target: new dentry
2792 * @exchange: exchange the two dentries
2794 * Update the dcache to reflect the move of a file name. Negative
2795 * dcache entries should not be moved in this way. Caller must hold
2796 * rename_lock, the i_mutex of the source and target directories,
2797 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2799 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2802 struct inode
*dir
= NULL
;
2804 if (!dentry
->d_inode
)
2805 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2807 BUG_ON(d_ancestor(dentry
, target
));
2808 BUG_ON(d_ancestor(target
, dentry
));
2810 dentry_lock_for_move(dentry
, target
);
2811 if (unlikely(d_in_lookup(target
))) {
2812 dir
= target
->d_parent
->d_inode
;
2813 n
= start_dir_add(dir
);
2814 __d_lookup_done(target
);
2817 write_seqcount_begin(&dentry
->d_seq
);
2818 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2821 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2825 /* Switch the names.. */
2827 swap_names(dentry
, target
);
2829 copy_name(dentry
, target
);
2831 /* rehash in new place(s) */
2836 /* ... and switch them in the tree */
2837 if (IS_ROOT(dentry
)) {
2838 /* splicing a tree */
2839 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2840 dentry
->d_parent
= target
->d_parent
;
2841 target
->d_parent
= target
;
2842 list_del_init(&target
->d_child
);
2843 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2845 /* swapping two dentries */
2846 swap(dentry
->d_parent
, target
->d_parent
);
2847 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2848 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2850 fsnotify_update_flags(target
);
2851 fsnotify_update_flags(dentry
);
2854 write_seqcount_end(&target
->d_seq
);
2855 write_seqcount_end(&dentry
->d_seq
);
2858 end_dir_add(dir
, n
);
2859 dentry_unlock_for_move(dentry
, target
);
2863 * d_move - move a dentry
2864 * @dentry: entry to move
2865 * @target: new dentry
2867 * Update the dcache to reflect the move of a file name. Negative
2868 * dcache entries should not be moved in this way. See the locking
2869 * requirements for __d_move.
2871 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2873 write_seqlock(&rename_lock
);
2874 __d_move(dentry
, target
, false);
2875 write_sequnlock(&rename_lock
);
2877 EXPORT_SYMBOL(d_move
);
2880 * d_exchange - exchange two dentries
2881 * @dentry1: first dentry
2882 * @dentry2: second dentry
2884 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2886 write_seqlock(&rename_lock
);
2888 WARN_ON(!dentry1
->d_inode
);
2889 WARN_ON(!dentry2
->d_inode
);
2890 WARN_ON(IS_ROOT(dentry1
));
2891 WARN_ON(IS_ROOT(dentry2
));
2893 __d_move(dentry1
, dentry2
, true);
2895 write_sequnlock(&rename_lock
);
2899 * d_ancestor - search for an ancestor
2900 * @p1: ancestor dentry
2903 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2904 * an ancestor of p2, else NULL.
2906 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2910 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2911 if (p
->d_parent
== p1
)
2918 * This helper attempts to cope with remotely renamed directories
2920 * It assumes that the caller is already holding
2921 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2923 * Note: If ever the locking in lock_rename() changes, then please
2924 * remember to update this too...
2926 static int __d_unalias(struct inode
*inode
,
2927 struct dentry
*dentry
, struct dentry
*alias
)
2929 struct mutex
*m1
= NULL
;
2930 struct rw_semaphore
*m2
= NULL
;
2933 /* If alias and dentry share a parent, then no extra locks required */
2934 if (alias
->d_parent
== dentry
->d_parent
)
2937 /* See lock_rename() */
2938 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2940 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2941 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2943 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
2945 __d_move(alias
, dentry
, false);
2956 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2957 * @inode: the inode which may have a disconnected dentry
2958 * @dentry: a negative dentry which we want to point to the inode.
2960 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2961 * place of the given dentry and return it, else simply d_add the inode
2962 * to the dentry and return NULL.
2964 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2965 * we should error out: directories can't have multiple aliases.
2967 * This is needed in the lookup routine of any filesystem that is exportable
2968 * (via knfsd) so that we can build dcache paths to directories effectively.
2970 * If a dentry was found and moved, then it is returned. Otherwise NULL
2971 * is returned. This matches the expected return value of ->lookup.
2973 * Cluster filesystems may call this function with a negative, hashed dentry.
2974 * In that case, we know that the inode will be a regular file, and also this
2975 * will only occur during atomic_open. So we need to check for the dentry
2976 * being already hashed only in the final case.
2978 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2981 return ERR_CAST(inode
);
2983 BUG_ON(!d_unhashed(dentry
));
2988 security_d_instantiate(dentry
, inode
);
2989 spin_lock(&inode
->i_lock
);
2990 if (S_ISDIR(inode
->i_mode
)) {
2991 struct dentry
*new = __d_find_any_alias(inode
);
2992 if (unlikely(new)) {
2993 /* The reference to new ensures it remains an alias */
2994 spin_unlock(&inode
->i_lock
);
2995 write_seqlock(&rename_lock
);
2996 if (unlikely(d_ancestor(new, dentry
))) {
2997 write_sequnlock(&rename_lock
);
2999 new = ERR_PTR(-ELOOP
);
3000 pr_warn_ratelimited(
3001 "VFS: Lookup of '%s' in %s %s"
3002 " would have caused loop\n",
3003 dentry
->d_name
.name
,
3004 inode
->i_sb
->s_type
->name
,
3006 } else if (!IS_ROOT(new)) {
3007 int err
= __d_unalias(inode
, dentry
, new);
3008 write_sequnlock(&rename_lock
);
3014 __d_move(new, dentry
, false);
3015 write_sequnlock(&rename_lock
);
3022 __d_add(dentry
, inode
);
3025 EXPORT_SYMBOL(d_splice_alias
);
3027 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
3031 return -ENAMETOOLONG
;
3033 memcpy(*buffer
, str
, namelen
);
3038 * prepend_name - prepend a pathname in front of current buffer pointer
3039 * @buffer: buffer pointer
3040 * @buflen: allocated length of the buffer
3041 * @name: name string and length qstr structure
3043 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3044 * make sure that either the old or the new name pointer and length are
3045 * fetched. However, there may be mismatch between length and pointer.
3046 * The length cannot be trusted, we need to copy it byte-by-byte until
3047 * the length is reached or a null byte is found. It also prepends "/" at
3048 * the beginning of the name. The sequence number check at the caller will
3049 * retry it again when a d_move() does happen. So any garbage in the buffer
3050 * due to mismatched pointer and length will be discarded.
3052 * Data dependency barrier is needed to make sure that we see that terminating
3053 * NUL. Alpha strikes again, film at 11...
3055 static int prepend_name(char **buffer
, int *buflen
, const struct qstr
*name
)
3057 const char *dname
= ACCESS_ONCE(name
->name
);
3058 u32 dlen
= ACCESS_ONCE(name
->len
);
3061 smp_read_barrier_depends();
3063 *buflen
-= dlen
+ 1;
3065 return -ENAMETOOLONG
;
3066 p
= *buffer
-= dlen
+ 1;
3078 * prepend_path - Prepend path string to a buffer
3079 * @path: the dentry/vfsmount to report
3080 * @root: root vfsmnt/dentry
3081 * @buffer: pointer to the end of the buffer
3082 * @buflen: pointer to buffer length
3084 * The function will first try to write out the pathname without taking any
3085 * lock other than the RCU read lock to make sure that dentries won't go away.
3086 * It only checks the sequence number of the global rename_lock as any change
3087 * in the dentry's d_seq will be preceded by changes in the rename_lock
3088 * sequence number. If the sequence number had been changed, it will restart
3089 * the whole pathname back-tracing sequence again by taking the rename_lock.
3090 * In this case, there is no need to take the RCU read lock as the recursive
3091 * parent pointer references will keep the dentry chain alive as long as no
3092 * rename operation is performed.
3094 static int prepend_path(const struct path
*path
,
3095 const struct path
*root
,
3096 char **buffer
, int *buflen
)
3098 struct dentry
*dentry
;
3099 struct vfsmount
*vfsmnt
;
3102 unsigned seq
, m_seq
= 0;
3108 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
3115 dentry
= path
->dentry
;
3117 mnt
= real_mount(vfsmnt
);
3118 read_seqbegin_or_lock(&rename_lock
, &seq
);
3119 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
3120 struct dentry
* parent
;
3122 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
3123 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
3125 if (dentry
!= vfsmnt
->mnt_root
) {
3132 if (mnt
!= parent
) {
3133 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
3139 error
= is_mounted(vfsmnt
) ? 1 : 2;
3142 parent
= dentry
->d_parent
;
3144 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
3152 if (need_seqretry(&rename_lock
, seq
)) {
3156 done_seqretry(&rename_lock
, seq
);
3160 if (need_seqretry(&mount_lock
, m_seq
)) {
3164 done_seqretry(&mount_lock
, m_seq
);
3166 if (error
>= 0 && bptr
== *buffer
) {
3168 error
= -ENAMETOOLONG
;
3178 * __d_path - return the path of a dentry
3179 * @path: the dentry/vfsmount to report
3180 * @root: root vfsmnt/dentry
3181 * @buf: buffer to return value in
3182 * @buflen: buffer length
3184 * Convert a dentry into an ASCII path name.
3186 * Returns a pointer into the buffer or an error code if the
3187 * path was too long.
3189 * "buflen" should be positive.
3191 * If the path is not reachable from the supplied root, return %NULL.
3193 char *__d_path(const struct path
*path
,
3194 const struct path
*root
,
3195 char *buf
, int buflen
)
3197 char *res
= buf
+ buflen
;
3200 prepend(&res
, &buflen
, "\0", 1);
3201 error
= prepend_path(path
, root
, &res
, &buflen
);
3204 return ERR_PTR(error
);
3210 char *d_absolute_path(const struct path
*path
,
3211 char *buf
, int buflen
)
3213 struct path root
= {};
3214 char *res
= buf
+ buflen
;
3217 prepend(&res
, &buflen
, "\0", 1);
3218 error
= prepend_path(path
, &root
, &res
, &buflen
);
3223 return ERR_PTR(error
);
3228 * same as __d_path but appends "(deleted)" for unlinked files.
3230 static int path_with_deleted(const struct path
*path
,
3231 const struct path
*root
,
3232 char **buf
, int *buflen
)
3234 prepend(buf
, buflen
, "\0", 1);
3235 if (d_unlinked(path
->dentry
)) {
3236 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3241 return prepend_path(path
, root
, buf
, buflen
);
3244 static int prepend_unreachable(char **buffer
, int *buflen
)
3246 return prepend(buffer
, buflen
, "(unreachable)", 13);
3249 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3254 seq
= read_seqcount_begin(&fs
->seq
);
3256 } while (read_seqcount_retry(&fs
->seq
, seq
));
3260 * d_path - return the path of a dentry
3261 * @path: path to report
3262 * @buf: buffer to return value in
3263 * @buflen: buffer length
3265 * Convert a dentry into an ASCII path name. If the entry has been deleted
3266 * the string " (deleted)" is appended. Note that this is ambiguous.
3268 * Returns a pointer into the buffer or an error code if the path was
3269 * too long. Note: Callers should use the returned pointer, not the passed
3270 * in buffer, to use the name! The implementation often starts at an offset
3271 * into the buffer, and may leave 0 bytes at the start.
3273 * "buflen" should be positive.
3275 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3277 char *res
= buf
+ buflen
;
3282 * We have various synthetic filesystems that never get mounted. On
3283 * these filesystems dentries are never used for lookup purposes, and
3284 * thus don't need to be hashed. They also don't need a name until a
3285 * user wants to identify the object in /proc/pid/fd/. The little hack
3286 * below allows us to generate a name for these objects on demand:
3288 * Some pseudo inodes are mountable. When they are mounted
3289 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3290 * and instead have d_path return the mounted path.
3292 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3293 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3294 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3297 get_fs_root_rcu(current
->fs
, &root
);
3298 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3302 res
= ERR_PTR(error
);
3305 EXPORT_SYMBOL(d_path
);
3308 * Helper function for dentry_operations.d_dname() members
3310 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3311 const char *fmt
, ...)
3317 va_start(args
, fmt
);
3318 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3321 if (sz
> sizeof(temp
) || sz
> buflen
)
3322 return ERR_PTR(-ENAMETOOLONG
);
3324 buffer
+= buflen
- sz
;
3325 return memcpy(buffer
, temp
, sz
);
3328 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3330 char *end
= buffer
+ buflen
;
3331 /* these dentries are never renamed, so d_lock is not needed */
3332 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3333 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3334 prepend(&end
, &buflen
, "/", 1))
3335 end
= ERR_PTR(-ENAMETOOLONG
);
3338 EXPORT_SYMBOL(simple_dname
);
3341 * Write full pathname from the root of the filesystem into the buffer.
3343 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3345 struct dentry
*dentry
;
3358 prepend(&end
, &len
, "\0", 1);
3362 read_seqbegin_or_lock(&rename_lock
, &seq
);
3363 while (!IS_ROOT(dentry
)) {
3364 struct dentry
*parent
= dentry
->d_parent
;
3367 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3376 if (need_seqretry(&rename_lock
, seq
)) {
3380 done_seqretry(&rename_lock
, seq
);
3385 return ERR_PTR(-ENAMETOOLONG
);
3388 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3390 return __dentry_path(dentry
, buf
, buflen
);
3392 EXPORT_SYMBOL(dentry_path_raw
);
3394 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3399 if (d_unlinked(dentry
)) {
3401 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3405 retval
= __dentry_path(dentry
, buf
, buflen
);
3406 if (!IS_ERR(retval
) && p
)
3407 *p
= '/'; /* restore '/' overriden with '\0' */
3410 return ERR_PTR(-ENAMETOOLONG
);
3413 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3419 seq
= read_seqcount_begin(&fs
->seq
);
3422 } while (read_seqcount_retry(&fs
->seq
, seq
));
3426 * NOTE! The user-level library version returns a
3427 * character pointer. The kernel system call just
3428 * returns the length of the buffer filled (which
3429 * includes the ending '\0' character), or a negative
3430 * error value. So libc would do something like
3432 * char *getcwd(char * buf, size_t size)
3436 * retval = sys_getcwd(buf, size);
3443 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3446 struct path pwd
, root
;
3447 char *page
= __getname();
3453 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3456 if (!d_unlinked(pwd
.dentry
)) {
3458 char *cwd
= page
+ PATH_MAX
;
3459 int buflen
= PATH_MAX
;
3461 prepend(&cwd
, &buflen
, "\0", 1);
3462 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3468 /* Unreachable from current root */
3470 error
= prepend_unreachable(&cwd
, &buflen
);
3476 len
= PATH_MAX
+ page
- cwd
;
3479 if (copy_to_user(buf
, cwd
, len
))
3492 * Test whether new_dentry is a subdirectory of old_dentry.
3494 * Trivially implemented using the dcache structure
3498 * is_subdir - is new dentry a subdirectory of old_dentry
3499 * @new_dentry: new dentry
3500 * @old_dentry: old dentry
3502 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3503 * Returns false otherwise.
3504 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3507 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3512 if (new_dentry
== old_dentry
)
3516 /* for restarting inner loop in case of seq retry */
3517 seq
= read_seqbegin(&rename_lock
);
3519 * Need rcu_readlock to protect against the d_parent trashing
3523 if (d_ancestor(old_dentry
, new_dentry
))
3528 } while (read_seqretry(&rename_lock
, seq
));
3533 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3535 struct dentry
*root
= data
;
3536 if (dentry
!= root
) {
3537 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3540 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3541 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3542 dentry
->d_lockref
.count
--;
3545 return D_WALK_CONTINUE
;
3548 void d_genocide(struct dentry
*parent
)
3550 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3553 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3555 inode_dec_link_count(inode
);
3556 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3557 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3558 !d_unlinked(dentry
));
3559 spin_lock(&dentry
->d_parent
->d_lock
);
3560 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3561 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3562 (unsigned long long)inode
->i_ino
);
3563 spin_unlock(&dentry
->d_lock
);
3564 spin_unlock(&dentry
->d_parent
->d_lock
);
3565 d_instantiate(dentry
, inode
);
3567 EXPORT_SYMBOL(d_tmpfile
);
3569 static __initdata
unsigned long dhash_entries
;
3570 static int __init
set_dhash_entries(char *str
)
3574 dhash_entries
= simple_strtoul(str
, &str
, 0);
3577 __setup("dhash_entries=", set_dhash_entries
);
3579 static void __init
dcache_init_early(void)
3581 /* If hashes are distributed across NUMA nodes, defer
3582 * hash allocation until vmalloc space is available.
3588 alloc_large_system_hash("Dentry cache",
3589 sizeof(struct hlist_bl_head
),
3592 HASH_EARLY
| HASH_ZERO
,
3599 static void __init
dcache_init(void)
3602 * A constructor could be added for stable state like the lists,
3603 * but it is probably not worth it because of the cache nature
3606 dentry_cache
= KMEM_CACHE(dentry
,
3607 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
|SLAB_ACCOUNT
);
3609 /* Hash may have been set up in dcache_init_early */
3614 alloc_large_system_hash("Dentry cache",
3615 sizeof(struct hlist_bl_head
),
3625 /* SLAB cache for __getname() consumers */
3626 struct kmem_cache
*names_cachep __read_mostly
;
3627 EXPORT_SYMBOL(names_cachep
);
3629 EXPORT_SYMBOL(d_genocide
);
3631 void __init
vfs_caches_init_early(void)
3635 for (i
= 0; i
< ARRAY_SIZE(in_lookup_hashtable
); i
++)
3636 INIT_HLIST_BL_HEAD(&in_lookup_hashtable
[i
]);
3638 dcache_init_early();
3642 void __init
vfs_caches_init(void)
3644 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3645 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3650 files_maxfiles_init();