2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
38 #include "blk-mq-sched.h"
40 static void blk_mq_poll_stats_start(struct request_queue
*q
);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
43 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
45 int ddir
, bytes
, bucket
;
47 ddir
= rq_data_dir(rq
);
48 bytes
= blk_rq_bytes(rq
);
50 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
54 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
55 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
61 * Check if any of the ctx's have pending work in this hardware queue
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
65 return sbitmap_any_bit_set(&hctx
->ctx_map
) ||
66 !list_empty_careful(&hctx
->dispatch
) ||
67 blk_mq_sched_has_work(hctx
);
71 * Mark this ctx as having pending work in this hardware queue
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
74 struct blk_mq_ctx
*ctx
)
76 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
77 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
81 struct blk_mq_ctx
*ctx
)
83 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
86 void blk_freeze_queue_start(struct request_queue
*q
)
90 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
91 if (freeze_depth
== 1) {
92 percpu_ref_kill(&q
->q_usage_counter
);
93 blk_mq_run_hw_queues(q
, false);
96 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
98 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
100 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
102 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
104 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
105 unsigned long timeout
)
107 return wait_event_timeout(q
->mq_freeze_wq
,
108 percpu_ref_is_zero(&q
->q_usage_counter
),
111 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
114 * Guarantee no request is in use, so we can change any data structure of
115 * the queue afterward.
117 void blk_freeze_queue(struct request_queue
*q
)
120 * In the !blk_mq case we are only calling this to kill the
121 * q_usage_counter, otherwise this increases the freeze depth
122 * and waits for it to return to zero. For this reason there is
123 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
124 * exported to drivers as the only user for unfreeze is blk_mq.
126 blk_freeze_queue_start(q
);
127 blk_mq_freeze_queue_wait(q
);
130 void blk_mq_freeze_queue(struct request_queue
*q
)
133 * ...just an alias to keep freeze and unfreeze actions balanced
134 * in the blk_mq_* namespace
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
140 void blk_mq_unfreeze_queue(struct request_queue
*q
)
144 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
145 WARN_ON_ONCE(freeze_depth
< 0);
147 percpu_ref_reinit(&q
->q_usage_counter
);
148 wake_up_all(&q
->mq_freeze_wq
);
151 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
154 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
155 * mpt3sas driver such that this function can be removed.
157 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
161 spin_lock_irqsave(q
->queue_lock
, flags
);
162 queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
163 spin_unlock_irqrestore(q
->queue_lock
, flags
);
165 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
168 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
171 * Note: this function does not prevent that the struct request end_io()
172 * callback function is invoked. Once this function is returned, we make
173 * sure no dispatch can happen until the queue is unquiesced via
174 * blk_mq_unquiesce_queue().
176 void blk_mq_quiesce_queue(struct request_queue
*q
)
178 struct blk_mq_hw_ctx
*hctx
;
182 blk_mq_quiesce_queue_nowait(q
);
184 queue_for_each_hw_ctx(q
, hctx
, i
) {
185 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
186 synchronize_srcu(hctx
->queue_rq_srcu
);
193 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
196 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
199 * This function recovers queue into the state before quiescing
200 * which is done by blk_mq_quiesce_queue.
202 void blk_mq_unquiesce_queue(struct request_queue
*q
)
206 spin_lock_irqsave(q
->queue_lock
, flags
);
207 queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
208 spin_unlock_irqrestore(q
->queue_lock
, flags
);
210 /* dispatch requests which are inserted during quiescing */
211 blk_mq_run_hw_queues(q
, true);
213 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
215 void blk_mq_wake_waiters(struct request_queue
*q
)
217 struct blk_mq_hw_ctx
*hctx
;
220 queue_for_each_hw_ctx(q
, hctx
, i
)
221 if (blk_mq_hw_queue_mapped(hctx
))
222 blk_mq_tag_wakeup_all(hctx
->tags
, true);
225 * If we are called because the queue has now been marked as
226 * dying, we need to ensure that processes currently waiting on
227 * the queue are notified as well.
229 wake_up_all(&q
->mq_freeze_wq
);
232 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
234 return blk_mq_has_free_tags(hctx
->tags
);
236 EXPORT_SYMBOL(blk_mq_can_queue
);
238 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
239 unsigned int tag
, unsigned int op
)
241 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
242 struct request
*rq
= tags
->static_rqs
[tag
];
246 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
248 rq
->internal_tag
= tag
;
250 if (blk_mq_tag_busy(data
->hctx
)) {
251 rq
->rq_flags
= RQF_MQ_INFLIGHT
;
252 atomic_inc(&data
->hctx
->nr_active
);
255 rq
->internal_tag
= -1;
256 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
259 INIT_LIST_HEAD(&rq
->queuelist
);
260 /* csd/requeue_work/fifo_time is initialized before use */
262 rq
->mq_ctx
= data
->ctx
;
264 if (blk_queue_io_stat(data
->q
))
265 rq
->rq_flags
|= RQF_IO_STAT
;
266 /* do not touch atomic flags, it needs atomic ops against the timer */
268 INIT_HLIST_NODE(&rq
->hash
);
269 RB_CLEAR_NODE(&rq
->rb_node
);
272 rq
->start_time
= jiffies
;
273 #ifdef CONFIG_BLK_CGROUP
275 set_start_time_ns(rq
);
276 rq
->io_start_time_ns
= 0;
278 rq
->nr_phys_segments
= 0;
279 #if defined(CONFIG_BLK_DEV_INTEGRITY)
280 rq
->nr_integrity_segments
= 0;
283 /* tag was already set */
286 INIT_LIST_HEAD(&rq
->timeout_list
);
290 rq
->end_io_data
= NULL
;
293 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
297 static struct request
*blk_mq_get_request(struct request_queue
*q
,
298 struct bio
*bio
, unsigned int op
,
299 struct blk_mq_alloc_data
*data
)
301 struct elevator_queue
*e
= q
->elevator
;
305 blk_queue_enter_live(q
);
307 if (likely(!data
->ctx
))
308 data
->ctx
= blk_mq_get_ctx(q
);
309 if (likely(!data
->hctx
))
310 data
->hctx
= blk_mq_map_queue(q
, data
->ctx
->cpu
);
312 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
315 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
318 * Flush requests are special and go directly to the
321 if (!op_is_flush(op
) && e
->type
->ops
.mq
.limit_depth
)
322 e
->type
->ops
.mq
.limit_depth(op
, data
);
325 tag
= blk_mq_get_tag(data
);
326 if (tag
== BLK_MQ_TAG_FAIL
) {
331 rq
= blk_mq_rq_ctx_init(data
, tag
, op
);
332 if (!op_is_flush(op
)) {
334 if (e
&& e
->type
->ops
.mq
.prepare_request
) {
335 if (e
->type
->icq_cache
&& rq_ioc(bio
))
336 blk_mq_sched_assign_ioc(rq
, bio
);
338 e
->type
->ops
.mq
.prepare_request(rq
, bio
);
339 rq
->rq_flags
|= RQF_ELVPRIV
;
342 data
->hctx
->queued
++;
346 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
349 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
353 ret
= blk_queue_enter(q
, flags
& BLK_MQ_REQ_NOWAIT
);
357 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
359 blk_mq_put_ctx(alloc_data
.ctx
);
363 return ERR_PTR(-EWOULDBLOCK
);
366 rq
->__sector
= (sector_t
) -1;
367 rq
->bio
= rq
->biotail
= NULL
;
370 EXPORT_SYMBOL(blk_mq_alloc_request
);
372 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
373 unsigned int op
, unsigned int flags
, unsigned int hctx_idx
)
375 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
381 * If the tag allocator sleeps we could get an allocation for a
382 * different hardware context. No need to complicate the low level
383 * allocator for this for the rare use case of a command tied to
386 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
387 return ERR_PTR(-EINVAL
);
389 if (hctx_idx
>= q
->nr_hw_queues
)
390 return ERR_PTR(-EIO
);
392 ret
= blk_queue_enter(q
, true);
397 * Check if the hardware context is actually mapped to anything.
398 * If not tell the caller that it should skip this queue.
400 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
401 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
403 return ERR_PTR(-EXDEV
);
405 cpu
= cpumask_first(alloc_data
.hctx
->cpumask
);
406 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
408 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
413 return ERR_PTR(-EWOULDBLOCK
);
417 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
419 void blk_mq_free_request(struct request
*rq
)
421 struct request_queue
*q
= rq
->q
;
422 struct elevator_queue
*e
= q
->elevator
;
423 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
424 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
425 const int sched_tag
= rq
->internal_tag
;
427 if (rq
->rq_flags
& RQF_ELVPRIV
) {
428 if (e
&& e
->type
->ops
.mq
.finish_request
)
429 e
->type
->ops
.mq
.finish_request(rq
);
431 put_io_context(rq
->elv
.icq
->ioc
);
436 ctx
->rq_completed
[rq_is_sync(rq
)]++;
437 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
438 atomic_dec(&hctx
->nr_active
);
440 wbt_done(q
->rq_wb
, &rq
->issue_stat
);
442 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
443 clear_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
445 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
447 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
448 blk_mq_sched_restart(hctx
);
451 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
453 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
455 blk_account_io_done(rq
);
458 wbt_done(rq
->q
->rq_wb
, &rq
->issue_stat
);
459 rq
->end_io(rq
, error
);
461 if (unlikely(blk_bidi_rq(rq
)))
462 blk_mq_free_request(rq
->next_rq
);
463 blk_mq_free_request(rq
);
466 EXPORT_SYMBOL(__blk_mq_end_request
);
468 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
470 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
472 __blk_mq_end_request(rq
, error
);
474 EXPORT_SYMBOL(blk_mq_end_request
);
476 static void __blk_mq_complete_request_remote(void *data
)
478 struct request
*rq
= data
;
480 rq
->q
->softirq_done_fn(rq
);
483 static void __blk_mq_complete_request(struct request
*rq
)
485 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
489 if (rq
->internal_tag
!= -1)
490 blk_mq_sched_completed_request(rq
);
491 if (rq
->rq_flags
& RQF_STATS
) {
492 blk_mq_poll_stats_start(rq
->q
);
496 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
497 rq
->q
->softirq_done_fn(rq
);
502 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
503 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
505 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
506 rq
->csd
.func
= __blk_mq_complete_request_remote
;
509 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
511 rq
->q
->softirq_done_fn(rq
);
517 * blk_mq_complete_request - end I/O on a request
518 * @rq: the request being processed
521 * Ends all I/O on a request. It does not handle partial completions.
522 * The actual completion happens out-of-order, through a IPI handler.
524 void blk_mq_complete_request(struct request
*rq
)
526 struct request_queue
*q
= rq
->q
;
528 if (unlikely(blk_should_fake_timeout(q
)))
530 if (!blk_mark_rq_complete(rq
))
531 __blk_mq_complete_request(rq
);
533 EXPORT_SYMBOL(blk_mq_complete_request
);
535 int blk_mq_request_started(struct request
*rq
)
537 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
539 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
541 void blk_mq_start_request(struct request
*rq
)
543 struct request_queue
*q
= rq
->q
;
545 blk_mq_sched_started_request(rq
);
547 trace_block_rq_issue(q
, rq
);
549 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
550 blk_stat_set_issue(&rq
->issue_stat
, blk_rq_sectors(rq
));
551 rq
->rq_flags
|= RQF_STATS
;
552 wbt_issue(q
->rq_wb
, &rq
->issue_stat
);
558 * Ensure that ->deadline is visible before set the started
559 * flag and clear the completed flag.
561 smp_mb__before_atomic();
564 * Mark us as started and clear complete. Complete might have been
565 * set if requeue raced with timeout, which then marked it as
566 * complete. So be sure to clear complete again when we start
567 * the request, otherwise we'll ignore the completion event.
569 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
570 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
571 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
572 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
574 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
576 * Make sure space for the drain appears. We know we can do
577 * this because max_hw_segments has been adjusted to be one
578 * fewer than the device can handle.
580 rq
->nr_phys_segments
++;
583 EXPORT_SYMBOL(blk_mq_start_request
);
586 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
587 * flag isn't set yet, so there may be race with timeout handler,
588 * but given rq->deadline is just set in .queue_rq() under
589 * this situation, the race won't be possible in reality because
590 * rq->timeout should be set as big enough to cover the window
591 * between blk_mq_start_request() called from .queue_rq() and
592 * clearing REQ_ATOM_STARTED here.
594 static void __blk_mq_requeue_request(struct request
*rq
)
596 struct request_queue
*q
= rq
->q
;
598 trace_block_rq_requeue(q
, rq
);
599 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
600 blk_mq_sched_requeue_request(rq
);
602 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
603 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
604 rq
->nr_phys_segments
--;
608 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
610 __blk_mq_requeue_request(rq
);
612 BUG_ON(blk_queued_rq(rq
));
613 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
615 EXPORT_SYMBOL(blk_mq_requeue_request
);
617 static void blk_mq_requeue_work(struct work_struct
*work
)
619 struct request_queue
*q
=
620 container_of(work
, struct request_queue
, requeue_work
.work
);
622 struct request
*rq
, *next
;
625 spin_lock_irqsave(&q
->requeue_lock
, flags
);
626 list_splice_init(&q
->requeue_list
, &rq_list
);
627 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
629 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
630 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
633 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
634 list_del_init(&rq
->queuelist
);
635 blk_mq_sched_insert_request(rq
, true, false, false, true);
638 while (!list_empty(&rq_list
)) {
639 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
640 list_del_init(&rq
->queuelist
);
641 blk_mq_sched_insert_request(rq
, false, false, false, true);
644 blk_mq_run_hw_queues(q
, false);
647 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
648 bool kick_requeue_list
)
650 struct request_queue
*q
= rq
->q
;
654 * We abuse this flag that is otherwise used by the I/O scheduler to
655 * request head insertation from the workqueue.
657 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
659 spin_lock_irqsave(&q
->requeue_lock
, flags
);
661 rq
->rq_flags
|= RQF_SOFTBARRIER
;
662 list_add(&rq
->queuelist
, &q
->requeue_list
);
664 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
666 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
668 if (kick_requeue_list
)
669 blk_mq_kick_requeue_list(q
);
671 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
673 void blk_mq_kick_requeue_list(struct request_queue
*q
)
675 kblockd_schedule_delayed_work(&q
->requeue_work
, 0);
677 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
679 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
682 kblockd_schedule_delayed_work(&q
->requeue_work
,
683 msecs_to_jiffies(msecs
));
685 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
687 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
689 if (tag
< tags
->nr_tags
) {
690 prefetch(tags
->rqs
[tag
]);
691 return tags
->rqs
[tag
];
696 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
698 struct blk_mq_timeout_data
{
700 unsigned int next_set
;
703 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
705 const struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
706 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
709 * We know that complete is set at this point. If STARTED isn't set
710 * anymore, then the request isn't active and the "timeout" should
711 * just be ignored. This can happen due to the bitflag ordering.
712 * Timeout first checks if STARTED is set, and if it is, assumes
713 * the request is active. But if we race with completion, then
714 * both flags will get cleared. So check here again, and ignore
715 * a timeout event with a request that isn't active.
717 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
721 ret
= ops
->timeout(req
, reserved
);
725 __blk_mq_complete_request(req
);
727 case BLK_EH_RESET_TIMER
:
729 blk_clear_rq_complete(req
);
731 case BLK_EH_NOT_HANDLED
:
734 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
739 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
740 struct request
*rq
, void *priv
, bool reserved
)
742 struct blk_mq_timeout_data
*data
= priv
;
744 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
748 * The rq being checked may have been freed and reallocated
749 * out already here, we avoid this race by checking rq->deadline
750 * and REQ_ATOM_COMPLETE flag together:
752 * - if rq->deadline is observed as new value because of
753 * reusing, the rq won't be timed out because of timing.
754 * - if rq->deadline is observed as previous value,
755 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
756 * because we put a barrier between setting rq->deadline
757 * and clearing the flag in blk_mq_start_request(), so
758 * this rq won't be timed out too.
760 if (time_after_eq(jiffies
, rq
->deadline
)) {
761 if (!blk_mark_rq_complete(rq
))
762 blk_mq_rq_timed_out(rq
, reserved
);
763 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
764 data
->next
= rq
->deadline
;
769 static void blk_mq_timeout_work(struct work_struct
*work
)
771 struct request_queue
*q
=
772 container_of(work
, struct request_queue
, timeout_work
);
773 struct blk_mq_timeout_data data
= {
779 /* A deadlock might occur if a request is stuck requiring a
780 * timeout at the same time a queue freeze is waiting
781 * completion, since the timeout code would not be able to
782 * acquire the queue reference here.
784 * That's why we don't use blk_queue_enter here; instead, we use
785 * percpu_ref_tryget directly, because we need to be able to
786 * obtain a reference even in the short window between the queue
787 * starting to freeze, by dropping the first reference in
788 * blk_freeze_queue_start, and the moment the last request is
789 * consumed, marked by the instant q_usage_counter reaches
792 if (!percpu_ref_tryget(&q
->q_usage_counter
))
795 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
798 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
799 mod_timer(&q
->timeout
, data
.next
);
801 struct blk_mq_hw_ctx
*hctx
;
803 queue_for_each_hw_ctx(q
, hctx
, i
) {
804 /* the hctx may be unmapped, so check it here */
805 if (blk_mq_hw_queue_mapped(hctx
))
806 blk_mq_tag_idle(hctx
);
812 struct flush_busy_ctx_data
{
813 struct blk_mq_hw_ctx
*hctx
;
814 struct list_head
*list
;
817 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
819 struct flush_busy_ctx_data
*flush_data
= data
;
820 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
821 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
823 sbitmap_clear_bit(sb
, bitnr
);
824 spin_lock(&ctx
->lock
);
825 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
826 spin_unlock(&ctx
->lock
);
831 * Process software queues that have been marked busy, splicing them
832 * to the for-dispatch
834 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
836 struct flush_busy_ctx_data data
= {
841 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
843 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
845 static inline unsigned int queued_to_index(unsigned int queued
)
850 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
853 bool blk_mq_get_driver_tag(struct request
*rq
, struct blk_mq_hw_ctx
**hctx
,
856 struct blk_mq_alloc_data data
= {
858 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
859 .flags
= wait
? 0 : BLK_MQ_REQ_NOWAIT
,
862 might_sleep_if(wait
);
867 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
868 data
.flags
|= BLK_MQ_REQ_RESERVED
;
870 rq
->tag
= blk_mq_get_tag(&data
);
872 if (blk_mq_tag_busy(data
.hctx
)) {
873 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
874 atomic_inc(&data
.hctx
->nr_active
);
876 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
882 return rq
->tag
!= -1;
885 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx
*hctx
,
888 blk_mq_put_tag(hctx
, hctx
->tags
, rq
->mq_ctx
, rq
->tag
);
891 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
) {
892 rq
->rq_flags
&= ~RQF_MQ_INFLIGHT
;
893 atomic_dec(&hctx
->nr_active
);
897 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx
*hctx
,
900 if (rq
->tag
== -1 || rq
->internal_tag
== -1)
903 __blk_mq_put_driver_tag(hctx
, rq
);
906 static void blk_mq_put_driver_tag(struct request
*rq
)
908 struct blk_mq_hw_ctx
*hctx
;
910 if (rq
->tag
== -1 || rq
->internal_tag
== -1)
913 hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
);
914 __blk_mq_put_driver_tag(hctx
, rq
);
918 * If we fail getting a driver tag because all the driver tags are already
919 * assigned and on the dispatch list, BUT the first entry does not have a
920 * tag, then we could deadlock. For that case, move entries with assigned
921 * driver tags to the front, leaving the set of tagged requests in the
922 * same order, and the untagged set in the same order.
924 static bool reorder_tags_to_front(struct list_head
*list
)
926 struct request
*rq
, *tmp
, *first
= NULL
;
928 list_for_each_entry_safe_reverse(rq
, tmp
, list
, queuelist
) {
932 list_move(&rq
->queuelist
, list
);
938 return first
!= NULL
;
941 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
, int flags
,
944 struct blk_mq_hw_ctx
*hctx
;
946 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
948 list_del(&wait
->entry
);
949 clear_bit_unlock(BLK_MQ_S_TAG_WAITING
, &hctx
->state
);
950 blk_mq_run_hw_queue(hctx
, true);
954 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx
*hctx
)
956 struct sbq_wait_state
*ws
;
959 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
960 * The thread which wins the race to grab this bit adds the hardware
961 * queue to the wait queue.
963 if (test_bit(BLK_MQ_S_TAG_WAITING
, &hctx
->state
) ||
964 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING
, &hctx
->state
))
967 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
968 ws
= bt_wait_ptr(&hctx
->tags
->bitmap_tags
, hctx
);
971 * As soon as this returns, it's no longer safe to fiddle with
972 * hctx->dispatch_wait, since a completion can wake up the wait queue
973 * and unlock the bit.
975 add_wait_queue(&ws
->wait
, &hctx
->dispatch_wait
);
979 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
)
981 struct blk_mq_hw_ctx
*hctx
;
985 if (list_empty(list
))
989 * Now process all the entries, sending them to the driver.
993 struct blk_mq_queue_data bd
;
996 rq
= list_first_entry(list
, struct request
, queuelist
);
997 if (!blk_mq_get_driver_tag(rq
, &hctx
, false)) {
998 if (!queued
&& reorder_tags_to_front(list
))
1002 * The initial allocation attempt failed, so we need to
1003 * rerun the hardware queue when a tag is freed.
1005 if (!blk_mq_dispatch_wait_add(hctx
))
1009 * It's possible that a tag was freed in the window
1010 * between the allocation failure and adding the
1011 * hardware queue to the wait queue.
1013 if (!blk_mq_get_driver_tag(rq
, &hctx
, false))
1017 list_del_init(&rq
->queuelist
);
1022 * Flag last if we have no more requests, or if we have more
1023 * but can't assign a driver tag to it.
1025 if (list_empty(list
))
1028 struct request
*nxt
;
1030 nxt
= list_first_entry(list
, struct request
, queuelist
);
1031 bd
.last
= !blk_mq_get_driver_tag(nxt
, NULL
, false);
1034 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1035 if (ret
== BLK_STS_RESOURCE
) {
1036 blk_mq_put_driver_tag_hctx(hctx
, rq
);
1037 list_add(&rq
->queuelist
, list
);
1038 __blk_mq_requeue_request(rq
);
1042 if (unlikely(ret
!= BLK_STS_OK
)) {
1044 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1049 } while (!list_empty(list
));
1051 hctx
->dispatched
[queued_to_index(queued
)]++;
1054 * Any items that need requeuing? Stuff them into hctx->dispatch,
1055 * that is where we will continue on next queue run.
1057 if (!list_empty(list
)) {
1059 * If an I/O scheduler has been configured and we got a driver
1060 * tag for the next request already, free it again.
1062 rq
= list_first_entry(list
, struct request
, queuelist
);
1063 blk_mq_put_driver_tag(rq
);
1065 spin_lock(&hctx
->lock
);
1066 list_splice_init(list
, &hctx
->dispatch
);
1067 spin_unlock(&hctx
->lock
);
1070 * If SCHED_RESTART was set by the caller of this function and
1071 * it is no longer set that means that it was cleared by another
1072 * thread and hence that a queue rerun is needed.
1074 * If TAG_WAITING is set that means that an I/O scheduler has
1075 * been configured and another thread is waiting for a driver
1076 * tag. To guarantee fairness, do not rerun this hardware queue
1077 * but let the other thread grab the driver tag.
1079 * If no I/O scheduler has been configured it is possible that
1080 * the hardware queue got stopped and restarted before requests
1081 * were pushed back onto the dispatch list. Rerun the queue to
1082 * avoid starvation. Notes:
1083 * - blk_mq_run_hw_queue() checks whether or not a queue has
1084 * been stopped before rerunning a queue.
1085 * - Some but not all block drivers stop a queue before
1086 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1089 if (!blk_mq_sched_needs_restart(hctx
) &&
1090 !test_bit(BLK_MQ_S_TAG_WAITING
, &hctx
->state
))
1091 blk_mq_run_hw_queue(hctx
, true);
1094 return (queued
+ errors
) != 0;
1097 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1101 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1102 cpu_online(hctx
->next_cpu
));
1104 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1106 blk_mq_sched_dispatch_requests(hctx
);
1111 srcu_idx
= srcu_read_lock(hctx
->queue_rq_srcu
);
1112 blk_mq_sched_dispatch_requests(hctx
);
1113 srcu_read_unlock(hctx
->queue_rq_srcu
, srcu_idx
);
1118 * It'd be great if the workqueue API had a way to pass
1119 * in a mask and had some smarts for more clever placement.
1120 * For now we just round-robin here, switching for every
1121 * BLK_MQ_CPU_WORK_BATCH queued items.
1123 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1125 if (hctx
->queue
->nr_hw_queues
== 1)
1126 return WORK_CPU_UNBOUND
;
1128 if (--hctx
->next_cpu_batch
<= 0) {
1131 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
1132 if (next_cpu
>= nr_cpu_ids
)
1133 next_cpu
= cpumask_first(hctx
->cpumask
);
1135 hctx
->next_cpu
= next_cpu
;
1136 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1139 return hctx
->next_cpu
;
1142 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1143 unsigned long msecs
)
1145 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx
)))
1148 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1151 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1152 int cpu
= get_cpu();
1153 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1154 __blk_mq_run_hw_queue(hctx
);
1162 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1164 msecs_to_jiffies(msecs
));
1167 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1169 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1171 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1173 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1175 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1177 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1179 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1181 struct blk_mq_hw_ctx
*hctx
;
1184 queue_for_each_hw_ctx(q
, hctx
, i
) {
1185 if (!blk_mq_hctx_has_pending(hctx
) ||
1186 blk_mq_hctx_stopped(hctx
))
1189 blk_mq_run_hw_queue(hctx
, async
);
1192 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1195 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1196 * @q: request queue.
1198 * The caller is responsible for serializing this function against
1199 * blk_mq_{start,stop}_hw_queue().
1201 bool blk_mq_queue_stopped(struct request_queue
*q
)
1203 struct blk_mq_hw_ctx
*hctx
;
1206 queue_for_each_hw_ctx(q
, hctx
, i
)
1207 if (blk_mq_hctx_stopped(hctx
))
1212 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1215 * This function is often used for pausing .queue_rq() by driver when
1216 * there isn't enough resource or some conditions aren't satisfied, and
1217 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1219 * We do not guarantee that dispatch can be drained or blocked
1220 * after blk_mq_stop_hw_queue() returns. Please use
1221 * blk_mq_quiesce_queue() for that requirement.
1223 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1225 cancel_delayed_work(&hctx
->run_work
);
1227 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1229 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1232 * This function is often used for pausing .queue_rq() by driver when
1233 * there isn't enough resource or some conditions aren't satisfied, and
1234 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1236 * We do not guarantee that dispatch can be drained or blocked
1237 * after blk_mq_stop_hw_queues() returns. Please use
1238 * blk_mq_quiesce_queue() for that requirement.
1240 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1242 struct blk_mq_hw_ctx
*hctx
;
1245 queue_for_each_hw_ctx(q
, hctx
, i
)
1246 blk_mq_stop_hw_queue(hctx
);
1248 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1250 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1252 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1254 blk_mq_run_hw_queue(hctx
, false);
1256 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1258 void blk_mq_start_hw_queues(struct request_queue
*q
)
1260 struct blk_mq_hw_ctx
*hctx
;
1263 queue_for_each_hw_ctx(q
, hctx
, i
)
1264 blk_mq_start_hw_queue(hctx
);
1266 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1268 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1270 if (!blk_mq_hctx_stopped(hctx
))
1273 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1274 blk_mq_run_hw_queue(hctx
, async
);
1276 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1278 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1280 struct blk_mq_hw_ctx
*hctx
;
1283 queue_for_each_hw_ctx(q
, hctx
, i
)
1284 blk_mq_start_stopped_hw_queue(hctx
, async
);
1286 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1288 static void blk_mq_run_work_fn(struct work_struct
*work
)
1290 struct blk_mq_hw_ctx
*hctx
;
1292 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1295 * If we are stopped, don't run the queue. The exception is if
1296 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1297 * the STOPPED bit and run it.
1299 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)) {
1300 if (!test_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
))
1303 clear_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1304 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1307 __blk_mq_run_hw_queue(hctx
);
1311 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1313 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx
)))
1317 * Stop the hw queue, then modify currently delayed work.
1318 * This should prevent us from running the queue prematurely.
1319 * Mark the queue as auto-clearing STOPPED when it runs.
1321 blk_mq_stop_hw_queue(hctx
);
1322 set_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1323 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1325 msecs_to_jiffies(msecs
));
1327 EXPORT_SYMBOL(blk_mq_delay_queue
);
1329 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1333 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1335 lockdep_assert_held(&ctx
->lock
);
1337 trace_block_rq_insert(hctx
->queue
, rq
);
1340 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1342 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1345 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1348 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1350 lockdep_assert_held(&ctx
->lock
);
1352 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1353 blk_mq_hctx_mark_pending(hctx
, ctx
);
1356 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1357 struct list_head
*list
)
1361 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1364 spin_lock(&ctx
->lock
);
1365 while (!list_empty(list
)) {
1368 rq
= list_first_entry(list
, struct request
, queuelist
);
1369 BUG_ON(rq
->mq_ctx
!= ctx
);
1370 list_del_init(&rq
->queuelist
);
1371 __blk_mq_insert_req_list(hctx
, rq
, false);
1373 blk_mq_hctx_mark_pending(hctx
, ctx
);
1374 spin_unlock(&ctx
->lock
);
1377 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1379 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1380 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1382 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1383 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1384 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1387 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1389 struct blk_mq_ctx
*this_ctx
;
1390 struct request_queue
*this_q
;
1393 LIST_HEAD(ctx_list
);
1396 list_splice_init(&plug
->mq_list
, &list
);
1398 list_sort(NULL
, &list
, plug_ctx_cmp
);
1404 while (!list_empty(&list
)) {
1405 rq
= list_entry_rq(list
.next
);
1406 list_del_init(&rq
->queuelist
);
1408 if (rq
->mq_ctx
!= this_ctx
) {
1410 trace_block_unplug(this_q
, depth
, from_schedule
);
1411 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1416 this_ctx
= rq
->mq_ctx
;
1422 list_add_tail(&rq
->queuelist
, &ctx_list
);
1426 * If 'this_ctx' is set, we know we have entries to complete
1427 * on 'ctx_list'. Do those.
1430 trace_block_unplug(this_q
, depth
, from_schedule
);
1431 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1436 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1438 blk_init_request_from_bio(rq
, bio
);
1440 blk_account_io_start(rq
, true);
1443 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1445 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1446 !blk_queue_nomerges(hctx
->queue
);
1449 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx
*hctx
,
1450 struct blk_mq_ctx
*ctx
,
1453 spin_lock(&ctx
->lock
);
1454 __blk_mq_insert_request(hctx
, rq
, false);
1455 spin_unlock(&ctx
->lock
);
1458 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1461 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1463 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1466 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1468 blk_qc_t
*cookie
, bool may_sleep
)
1470 struct request_queue
*q
= rq
->q
;
1471 struct blk_mq_queue_data bd
= {
1475 blk_qc_t new_cookie
;
1477 bool run_queue
= true;
1479 /* RCU or SRCU read lock is needed before checking quiesced flag */
1480 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1488 if (!blk_mq_get_driver_tag(rq
, NULL
, false))
1491 new_cookie
= request_to_qc_t(hctx
, rq
);
1494 * For OK queue, we are done. For error, kill it. Any other
1495 * error (busy), just add it to our list as we previously
1498 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1501 *cookie
= new_cookie
;
1503 case BLK_STS_RESOURCE
:
1504 __blk_mq_requeue_request(rq
);
1507 *cookie
= BLK_QC_T_NONE
;
1508 blk_mq_end_request(rq
, ret
);
1513 blk_mq_sched_insert_request(rq
, false, run_queue
, false, may_sleep
);
1516 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1517 struct request
*rq
, blk_qc_t
*cookie
)
1519 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1521 __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false);
1524 unsigned int srcu_idx
;
1528 srcu_idx
= srcu_read_lock(hctx
->queue_rq_srcu
);
1529 __blk_mq_try_issue_directly(hctx
, rq
, cookie
, true);
1530 srcu_read_unlock(hctx
->queue_rq_srcu
, srcu_idx
);
1534 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1536 const int is_sync
= op_is_sync(bio
->bi_opf
);
1537 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1538 struct blk_mq_alloc_data data
= { .flags
= 0 };
1540 unsigned int request_count
= 0;
1541 struct blk_plug
*plug
;
1542 struct request
*same_queue_rq
= NULL
;
1544 unsigned int wb_acct
;
1546 blk_queue_bounce(q
, &bio
);
1548 blk_queue_split(q
, &bio
);
1550 if (!bio_integrity_prep(bio
))
1551 return BLK_QC_T_NONE
;
1553 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1554 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1555 return BLK_QC_T_NONE
;
1557 if (blk_mq_sched_bio_merge(q
, bio
))
1558 return BLK_QC_T_NONE
;
1560 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1562 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1564 rq
= blk_mq_get_request(q
, bio
, bio
->bi_opf
, &data
);
1565 if (unlikely(!rq
)) {
1566 __wbt_done(q
->rq_wb
, wb_acct
);
1567 if (bio
->bi_opf
& REQ_NOWAIT
)
1568 bio_wouldblock_error(bio
);
1569 return BLK_QC_T_NONE
;
1572 wbt_track(&rq
->issue_stat
, wb_acct
);
1574 cookie
= request_to_qc_t(data
.hctx
, rq
);
1576 plug
= current
->plug
;
1577 if (unlikely(is_flush_fua
)) {
1578 blk_mq_put_ctx(data
.ctx
);
1579 blk_mq_bio_to_request(rq
, bio
);
1581 blk_mq_sched_insert_request(rq
, false, true, true,
1584 blk_insert_flush(rq
);
1585 blk_mq_run_hw_queue(data
.hctx
, true);
1587 } else if (plug
&& q
->nr_hw_queues
== 1) {
1588 struct request
*last
= NULL
;
1590 blk_mq_put_ctx(data
.ctx
);
1591 blk_mq_bio_to_request(rq
, bio
);
1594 * @request_count may become stale because of schedule
1595 * out, so check the list again.
1597 if (list_empty(&plug
->mq_list
))
1599 else if (blk_queue_nomerges(q
))
1600 request_count
= blk_plug_queued_count(q
);
1603 trace_block_plug(q
);
1605 last
= list_entry_rq(plug
->mq_list
.prev
);
1607 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1608 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1609 blk_flush_plug_list(plug
, false);
1610 trace_block_plug(q
);
1613 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1614 } else if (plug
&& !blk_queue_nomerges(q
)) {
1615 blk_mq_bio_to_request(rq
, bio
);
1618 * We do limited plugging. If the bio can be merged, do that.
1619 * Otherwise the existing request in the plug list will be
1620 * issued. So the plug list will have one request at most
1621 * The plug list might get flushed before this. If that happens,
1622 * the plug list is empty, and same_queue_rq is invalid.
1624 if (list_empty(&plug
->mq_list
))
1625 same_queue_rq
= NULL
;
1627 list_del_init(&same_queue_rq
->queuelist
);
1628 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1630 blk_mq_put_ctx(data
.ctx
);
1632 if (same_queue_rq
) {
1633 data
.hctx
= blk_mq_map_queue(q
,
1634 same_queue_rq
->mq_ctx
->cpu
);
1635 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
1638 } else if (q
->nr_hw_queues
> 1 && is_sync
) {
1639 blk_mq_put_ctx(data
.ctx
);
1640 blk_mq_bio_to_request(rq
, bio
);
1641 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
1642 } else if (q
->elevator
) {
1643 blk_mq_put_ctx(data
.ctx
);
1644 blk_mq_bio_to_request(rq
, bio
);
1645 blk_mq_sched_insert_request(rq
, false, true, true, true);
1647 blk_mq_put_ctx(data
.ctx
);
1648 blk_mq_bio_to_request(rq
, bio
);
1649 blk_mq_queue_io(data
.hctx
, data
.ctx
, rq
);
1650 blk_mq_run_hw_queue(data
.hctx
, true);
1656 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1657 unsigned int hctx_idx
)
1661 if (tags
->rqs
&& set
->ops
->exit_request
) {
1664 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1665 struct request
*rq
= tags
->static_rqs
[i
];
1669 set
->ops
->exit_request(set
, rq
, hctx_idx
);
1670 tags
->static_rqs
[i
] = NULL
;
1674 while (!list_empty(&tags
->page_list
)) {
1675 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1676 list_del_init(&page
->lru
);
1678 * Remove kmemleak object previously allocated in
1679 * blk_mq_init_rq_map().
1681 kmemleak_free(page_address(page
));
1682 __free_pages(page
, page
->private);
1686 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1690 kfree(tags
->static_rqs
);
1691 tags
->static_rqs
= NULL
;
1693 blk_mq_free_tags(tags
);
1696 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1697 unsigned int hctx_idx
,
1698 unsigned int nr_tags
,
1699 unsigned int reserved_tags
)
1701 struct blk_mq_tags
*tags
;
1704 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1705 if (node
== NUMA_NO_NODE
)
1706 node
= set
->numa_node
;
1708 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
1709 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1713 tags
->rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1714 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1717 blk_mq_free_tags(tags
);
1721 tags
->static_rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1722 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1724 if (!tags
->static_rqs
) {
1726 blk_mq_free_tags(tags
);
1733 static size_t order_to_size(unsigned int order
)
1735 return (size_t)PAGE_SIZE
<< order
;
1738 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1739 unsigned int hctx_idx
, unsigned int depth
)
1741 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1742 size_t rq_size
, left
;
1745 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1746 if (node
== NUMA_NO_NODE
)
1747 node
= set
->numa_node
;
1749 INIT_LIST_HEAD(&tags
->page_list
);
1752 * rq_size is the size of the request plus driver payload, rounded
1753 * to the cacheline size
1755 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1757 left
= rq_size
* depth
;
1759 for (i
= 0; i
< depth
; ) {
1760 int this_order
= max_order
;
1765 while (this_order
&& left
< order_to_size(this_order
- 1))
1769 page
= alloc_pages_node(node
,
1770 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1776 if (order_to_size(this_order
) < rq_size
)
1783 page
->private = this_order
;
1784 list_add_tail(&page
->lru
, &tags
->page_list
);
1786 p
= page_address(page
);
1788 * Allow kmemleak to scan these pages as they contain pointers
1789 * to additional allocations like via ops->init_request().
1791 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
1792 entries_per_page
= order_to_size(this_order
) / rq_size
;
1793 to_do
= min(entries_per_page
, depth
- i
);
1794 left
-= to_do
* rq_size
;
1795 for (j
= 0; j
< to_do
; j
++) {
1796 struct request
*rq
= p
;
1798 tags
->static_rqs
[i
] = rq
;
1799 if (set
->ops
->init_request
) {
1800 if (set
->ops
->init_request(set
, rq
, hctx_idx
,
1802 tags
->static_rqs
[i
] = NULL
;
1814 blk_mq_free_rqs(set
, tags
, hctx_idx
);
1819 * 'cpu' is going away. splice any existing rq_list entries from this
1820 * software queue to the hw queue dispatch list, and ensure that it
1823 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
1825 struct blk_mq_hw_ctx
*hctx
;
1826 struct blk_mq_ctx
*ctx
;
1829 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
1830 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
1832 spin_lock(&ctx
->lock
);
1833 if (!list_empty(&ctx
->rq_list
)) {
1834 list_splice_init(&ctx
->rq_list
, &tmp
);
1835 blk_mq_hctx_clear_pending(hctx
, ctx
);
1837 spin_unlock(&ctx
->lock
);
1839 if (list_empty(&tmp
))
1842 spin_lock(&hctx
->lock
);
1843 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
1844 spin_unlock(&hctx
->lock
);
1846 blk_mq_run_hw_queue(hctx
, true);
1850 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
1852 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
1856 /* hctx->ctxs will be freed in queue's release handler */
1857 static void blk_mq_exit_hctx(struct request_queue
*q
,
1858 struct blk_mq_tag_set
*set
,
1859 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1861 blk_mq_debugfs_unregister_hctx(hctx
);
1863 blk_mq_tag_idle(hctx
);
1865 if (set
->ops
->exit_request
)
1866 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
1868 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
1870 if (set
->ops
->exit_hctx
)
1871 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1873 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
1874 cleanup_srcu_struct(hctx
->queue_rq_srcu
);
1876 blk_mq_remove_cpuhp(hctx
);
1877 blk_free_flush_queue(hctx
->fq
);
1878 sbitmap_free(&hctx
->ctx_map
);
1881 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1882 struct blk_mq_tag_set
*set
, int nr_queue
)
1884 struct blk_mq_hw_ctx
*hctx
;
1887 queue_for_each_hw_ctx(q
, hctx
, i
) {
1890 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1894 static int blk_mq_init_hctx(struct request_queue
*q
,
1895 struct blk_mq_tag_set
*set
,
1896 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1900 node
= hctx
->numa_node
;
1901 if (node
== NUMA_NO_NODE
)
1902 node
= hctx
->numa_node
= set
->numa_node
;
1904 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1905 spin_lock_init(&hctx
->lock
);
1906 INIT_LIST_HEAD(&hctx
->dispatch
);
1908 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
1910 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
1912 hctx
->tags
= set
->tags
[hctx_idx
];
1915 * Allocate space for all possible cpus to avoid allocation at
1918 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1921 goto unregister_cpu_notifier
;
1923 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
1929 if (set
->ops
->init_hctx
&&
1930 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1933 if (blk_mq_sched_init_hctx(q
, hctx
, hctx_idx
))
1936 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1938 goto sched_exit_hctx
;
1940 if (set
->ops
->init_request
&&
1941 set
->ops
->init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
1945 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
1946 init_srcu_struct(hctx
->queue_rq_srcu
);
1948 blk_mq_debugfs_register_hctx(q
, hctx
);
1955 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
1957 if (set
->ops
->exit_hctx
)
1958 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1960 sbitmap_free(&hctx
->ctx_map
);
1963 unregister_cpu_notifier
:
1964 blk_mq_remove_cpuhp(hctx
);
1968 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1969 unsigned int nr_hw_queues
)
1973 for_each_possible_cpu(i
) {
1974 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1975 struct blk_mq_hw_ctx
*hctx
;
1978 spin_lock_init(&__ctx
->lock
);
1979 INIT_LIST_HEAD(&__ctx
->rq_list
);
1982 /* If the cpu isn't present, the cpu is mapped to first hctx */
1983 if (!cpu_present(i
))
1986 hctx
= blk_mq_map_queue(q
, i
);
1989 * Set local node, IFF we have more than one hw queue. If
1990 * not, we remain on the home node of the device
1992 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1993 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
1997 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2001 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2002 set
->queue_depth
, set
->reserved_tags
);
2003 if (!set
->tags
[hctx_idx
])
2006 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2011 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2012 set
->tags
[hctx_idx
] = NULL
;
2016 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2017 unsigned int hctx_idx
)
2019 if (set
->tags
[hctx_idx
]) {
2020 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2021 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2022 set
->tags
[hctx_idx
] = NULL
;
2026 static void blk_mq_map_swqueue(struct request_queue
*q
)
2028 unsigned int i
, hctx_idx
;
2029 struct blk_mq_hw_ctx
*hctx
;
2030 struct blk_mq_ctx
*ctx
;
2031 struct blk_mq_tag_set
*set
= q
->tag_set
;
2034 * Avoid others reading imcomplete hctx->cpumask through sysfs
2036 mutex_lock(&q
->sysfs_lock
);
2038 queue_for_each_hw_ctx(q
, hctx
, i
) {
2039 cpumask_clear(hctx
->cpumask
);
2044 * Map software to hardware queues.
2046 * If the cpu isn't present, the cpu is mapped to first hctx.
2048 for_each_present_cpu(i
) {
2049 hctx_idx
= q
->mq_map
[i
];
2050 /* unmapped hw queue can be remapped after CPU topo changed */
2051 if (!set
->tags
[hctx_idx
] &&
2052 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2054 * If tags initialization fail for some hctx,
2055 * that hctx won't be brought online. In this
2056 * case, remap the current ctx to hctx[0] which
2057 * is guaranteed to always have tags allocated
2062 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2063 hctx
= blk_mq_map_queue(q
, i
);
2065 cpumask_set_cpu(i
, hctx
->cpumask
);
2066 ctx
->index_hw
= hctx
->nr_ctx
;
2067 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2070 mutex_unlock(&q
->sysfs_lock
);
2072 queue_for_each_hw_ctx(q
, hctx
, i
) {
2074 * If no software queues are mapped to this hardware queue,
2075 * disable it and free the request entries.
2077 if (!hctx
->nr_ctx
) {
2078 /* Never unmap queue 0. We need it as a
2079 * fallback in case of a new remap fails
2082 if (i
&& set
->tags
[i
])
2083 blk_mq_free_map_and_requests(set
, i
);
2089 hctx
->tags
= set
->tags
[i
];
2090 WARN_ON(!hctx
->tags
);
2093 * Set the map size to the number of mapped software queues.
2094 * This is more accurate and more efficient than looping
2095 * over all possibly mapped software queues.
2097 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2100 * Initialize batch roundrobin counts
2102 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
2103 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2108 * Caller needs to ensure that we're either frozen/quiesced, or that
2109 * the queue isn't live yet.
2111 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2113 struct blk_mq_hw_ctx
*hctx
;
2116 queue_for_each_hw_ctx(q
, hctx
, i
) {
2118 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2119 atomic_inc(&q
->shared_hctx_restart
);
2120 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2122 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2123 atomic_dec(&q
->shared_hctx_restart
);
2124 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2129 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2132 struct request_queue
*q
;
2134 lockdep_assert_held(&set
->tag_list_lock
);
2136 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2137 blk_mq_freeze_queue(q
);
2138 queue_set_hctx_shared(q
, shared
);
2139 blk_mq_unfreeze_queue(q
);
2143 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2145 struct blk_mq_tag_set
*set
= q
->tag_set
;
2147 mutex_lock(&set
->tag_list_lock
);
2148 list_del_rcu(&q
->tag_set_list
);
2149 INIT_LIST_HEAD(&q
->tag_set_list
);
2150 if (list_is_singular(&set
->tag_list
)) {
2151 /* just transitioned to unshared */
2152 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2153 /* update existing queue */
2154 blk_mq_update_tag_set_depth(set
, false);
2156 mutex_unlock(&set
->tag_list_lock
);
2161 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2162 struct request_queue
*q
)
2166 mutex_lock(&set
->tag_list_lock
);
2168 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2169 if (!list_empty(&set
->tag_list
) && !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2170 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2171 /* update existing queue */
2172 blk_mq_update_tag_set_depth(set
, true);
2174 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2175 queue_set_hctx_shared(q
, true);
2176 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2178 mutex_unlock(&set
->tag_list_lock
);
2182 * It is the actual release handler for mq, but we do it from
2183 * request queue's release handler for avoiding use-after-free
2184 * and headache because q->mq_kobj shouldn't have been introduced,
2185 * but we can't group ctx/kctx kobj without it.
2187 void blk_mq_release(struct request_queue
*q
)
2189 struct blk_mq_hw_ctx
*hctx
;
2192 /* hctx kobj stays in hctx */
2193 queue_for_each_hw_ctx(q
, hctx
, i
) {
2196 kobject_put(&hctx
->kobj
);
2201 kfree(q
->queue_hw_ctx
);
2204 * release .mq_kobj and sw queue's kobject now because
2205 * both share lifetime with request queue.
2207 blk_mq_sysfs_deinit(q
);
2209 free_percpu(q
->queue_ctx
);
2212 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2214 struct request_queue
*uninit_q
, *q
;
2216 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2218 return ERR_PTR(-ENOMEM
);
2220 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2222 blk_cleanup_queue(uninit_q
);
2226 EXPORT_SYMBOL(blk_mq_init_queue
);
2228 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2230 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2232 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, queue_rq_srcu
),
2233 __alignof__(struct blk_mq_hw_ctx
)) !=
2234 sizeof(struct blk_mq_hw_ctx
));
2236 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2237 hw_ctx_size
+= sizeof(struct srcu_struct
);
2242 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2243 struct request_queue
*q
)
2246 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2248 blk_mq_sysfs_unregister(q
);
2249 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2255 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2256 hctxs
[i
] = kzalloc_node(blk_mq_hw_ctx_size(set
),
2261 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2268 atomic_set(&hctxs
[i
]->nr_active
, 0);
2269 hctxs
[i
]->numa_node
= node
;
2270 hctxs
[i
]->queue_num
= i
;
2272 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2273 free_cpumask_var(hctxs
[i
]->cpumask
);
2278 blk_mq_hctx_kobj_init(hctxs
[i
]);
2280 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2281 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2285 blk_mq_free_map_and_requests(set
, j
);
2286 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2287 kobject_put(&hctx
->kobj
);
2292 q
->nr_hw_queues
= i
;
2293 blk_mq_sysfs_register(q
);
2296 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2297 struct request_queue
*q
)
2299 /* mark the queue as mq asap */
2300 q
->mq_ops
= set
->ops
;
2302 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2303 blk_mq_poll_stats_bkt
,
2304 BLK_MQ_POLL_STATS_BKTS
, q
);
2308 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2312 /* init q->mq_kobj and sw queues' kobjects */
2313 blk_mq_sysfs_init(q
);
2315 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
2316 GFP_KERNEL
, set
->numa_node
);
2317 if (!q
->queue_hw_ctx
)
2320 q
->mq_map
= set
->mq_map
;
2322 blk_mq_realloc_hw_ctxs(set
, q
);
2323 if (!q
->nr_hw_queues
)
2326 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2327 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2329 q
->nr_queues
= nr_cpu_ids
;
2331 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2333 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2334 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2336 q
->sg_reserved_size
= INT_MAX
;
2338 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2339 INIT_LIST_HEAD(&q
->requeue_list
);
2340 spin_lock_init(&q
->requeue_lock
);
2342 blk_queue_make_request(q
, blk_mq_make_request
);
2345 * Do this after blk_queue_make_request() overrides it...
2347 q
->nr_requests
= set
->queue_depth
;
2350 * Default to classic polling
2354 if (set
->ops
->complete
)
2355 blk_queue_softirq_done(q
, set
->ops
->complete
);
2357 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2358 blk_mq_add_queue_tag_set(set
, q
);
2359 blk_mq_map_swqueue(q
);
2361 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2364 ret
= blk_mq_sched_init(q
);
2366 return ERR_PTR(ret
);
2372 kfree(q
->queue_hw_ctx
);
2374 free_percpu(q
->queue_ctx
);
2377 return ERR_PTR(-ENOMEM
);
2379 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2381 void blk_mq_free_queue(struct request_queue
*q
)
2383 struct blk_mq_tag_set
*set
= q
->tag_set
;
2385 blk_mq_del_queue_tag_set(q
);
2386 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2389 /* Basically redo blk_mq_init_queue with queue frozen */
2390 static void blk_mq_queue_reinit(struct request_queue
*q
)
2392 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2394 blk_mq_debugfs_unregister_hctxs(q
);
2395 blk_mq_sysfs_unregister(q
);
2398 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2399 * we should change hctx numa_node according to new topology (this
2400 * involves free and re-allocate memory, worthy doing?)
2403 blk_mq_map_swqueue(q
);
2405 blk_mq_sysfs_register(q
);
2406 blk_mq_debugfs_register_hctxs(q
);
2409 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2413 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2414 if (!__blk_mq_alloc_rq_map(set
, i
))
2421 blk_mq_free_rq_map(set
->tags
[i
]);
2427 * Allocate the request maps associated with this tag_set. Note that this
2428 * may reduce the depth asked for, if memory is tight. set->queue_depth
2429 * will be updated to reflect the allocated depth.
2431 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2436 depth
= set
->queue_depth
;
2438 err
= __blk_mq_alloc_rq_maps(set
);
2442 set
->queue_depth
>>= 1;
2443 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2447 } while (set
->queue_depth
);
2449 if (!set
->queue_depth
|| err
) {
2450 pr_err("blk-mq: failed to allocate request map\n");
2454 if (depth
!= set
->queue_depth
)
2455 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2456 depth
, set
->queue_depth
);
2461 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2463 if (set
->ops
->map_queues
)
2464 return set
->ops
->map_queues(set
);
2466 return blk_mq_map_queues(set
);
2470 * Alloc a tag set to be associated with one or more request queues.
2471 * May fail with EINVAL for various error conditions. May adjust the
2472 * requested depth down, if if it too large. In that case, the set
2473 * value will be stored in set->queue_depth.
2475 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2479 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2481 if (!set
->nr_hw_queues
)
2483 if (!set
->queue_depth
)
2485 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2488 if (!set
->ops
->queue_rq
)
2491 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2492 pr_info("blk-mq: reduced tag depth to %u\n",
2494 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2498 * If a crashdump is active, then we are potentially in a very
2499 * memory constrained environment. Limit us to 1 queue and
2500 * 64 tags to prevent using too much memory.
2502 if (is_kdump_kernel()) {
2503 set
->nr_hw_queues
= 1;
2504 set
->queue_depth
= min(64U, set
->queue_depth
);
2507 * There is no use for more h/w queues than cpus.
2509 if (set
->nr_hw_queues
> nr_cpu_ids
)
2510 set
->nr_hw_queues
= nr_cpu_ids
;
2512 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2513 GFP_KERNEL
, set
->numa_node
);
2518 set
->mq_map
= kzalloc_node(sizeof(*set
->mq_map
) * nr_cpu_ids
,
2519 GFP_KERNEL
, set
->numa_node
);
2523 ret
= blk_mq_update_queue_map(set
);
2525 goto out_free_mq_map
;
2527 ret
= blk_mq_alloc_rq_maps(set
);
2529 goto out_free_mq_map
;
2531 mutex_init(&set
->tag_list_lock
);
2532 INIT_LIST_HEAD(&set
->tag_list
);
2544 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2546 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2550 for (i
= 0; i
< nr_cpu_ids
; i
++)
2551 blk_mq_free_map_and_requests(set
, i
);
2559 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2561 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2563 struct blk_mq_tag_set
*set
= q
->tag_set
;
2564 struct blk_mq_hw_ctx
*hctx
;
2570 blk_mq_freeze_queue(q
);
2573 queue_for_each_hw_ctx(q
, hctx
, i
) {
2577 * If we're using an MQ scheduler, just update the scheduler
2578 * queue depth. This is similar to what the old code would do.
2580 if (!hctx
->sched_tags
) {
2581 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
,
2582 min(nr
, set
->queue_depth
),
2585 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2593 q
->nr_requests
= nr
;
2595 blk_mq_unfreeze_queue(q
);
2600 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
2603 struct request_queue
*q
;
2605 lockdep_assert_held(&set
->tag_list_lock
);
2607 if (nr_hw_queues
> nr_cpu_ids
)
2608 nr_hw_queues
= nr_cpu_ids
;
2609 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2612 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2613 blk_mq_freeze_queue(q
);
2615 set
->nr_hw_queues
= nr_hw_queues
;
2616 blk_mq_update_queue_map(set
);
2617 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2618 blk_mq_realloc_hw_ctxs(set
, q
);
2619 blk_mq_queue_reinit(q
);
2622 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2623 blk_mq_unfreeze_queue(q
);
2626 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2628 mutex_lock(&set
->tag_list_lock
);
2629 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
2630 mutex_unlock(&set
->tag_list_lock
);
2632 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2634 /* Enable polling stats and return whether they were already enabled. */
2635 static bool blk_poll_stats_enable(struct request_queue
*q
)
2637 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2638 test_and_set_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
))
2640 blk_stat_add_callback(q
, q
->poll_cb
);
2644 static void blk_mq_poll_stats_start(struct request_queue
*q
)
2647 * We don't arm the callback if polling stats are not enabled or the
2648 * callback is already active.
2650 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2651 blk_stat_is_active(q
->poll_cb
))
2654 blk_stat_activate_msecs(q
->poll_cb
, 100);
2657 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
2659 struct request_queue
*q
= cb
->data
;
2662 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
2663 if (cb
->stat
[bucket
].nr_samples
)
2664 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
2668 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
2669 struct blk_mq_hw_ctx
*hctx
,
2672 unsigned long ret
= 0;
2676 * If stats collection isn't on, don't sleep but turn it on for
2679 if (!blk_poll_stats_enable(q
))
2683 * As an optimistic guess, use half of the mean service time
2684 * for this type of request. We can (and should) make this smarter.
2685 * For instance, if the completion latencies are tight, we can
2686 * get closer than just half the mean. This is especially
2687 * important on devices where the completion latencies are longer
2688 * than ~10 usec. We do use the stats for the relevant IO size
2689 * if available which does lead to better estimates.
2691 bucket
= blk_mq_poll_stats_bkt(rq
);
2695 if (q
->poll_stat
[bucket
].nr_samples
)
2696 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
2701 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
2702 struct blk_mq_hw_ctx
*hctx
,
2705 struct hrtimer_sleeper hs
;
2706 enum hrtimer_mode mode
;
2710 if (test_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
))
2716 * -1: don't ever hybrid sleep
2717 * 0: use half of prev avg
2718 * >0: use this specific value
2720 if (q
->poll_nsec
== -1)
2722 else if (q
->poll_nsec
> 0)
2723 nsecs
= q
->poll_nsec
;
2725 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
2730 set_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
2733 * This will be replaced with the stats tracking code, using
2734 * 'avg_completion_time / 2' as the pre-sleep target.
2738 mode
= HRTIMER_MODE_REL
;
2739 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
2740 hrtimer_set_expires(&hs
.timer
, kt
);
2742 hrtimer_init_sleeper(&hs
, current
);
2744 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
2746 set_current_state(TASK_UNINTERRUPTIBLE
);
2747 hrtimer_start_expires(&hs
.timer
, mode
);
2750 hrtimer_cancel(&hs
.timer
);
2751 mode
= HRTIMER_MODE_ABS
;
2752 } while (hs
.task
&& !signal_pending(current
));
2754 __set_current_state(TASK_RUNNING
);
2755 destroy_hrtimer_on_stack(&hs
.timer
);
2759 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
2761 struct request_queue
*q
= hctx
->queue
;
2765 * If we sleep, have the caller restart the poll loop to reset
2766 * the state. Like for the other success return cases, the
2767 * caller is responsible for checking if the IO completed. If
2768 * the IO isn't complete, we'll get called again and will go
2769 * straight to the busy poll loop.
2771 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
2774 hctx
->poll_considered
++;
2776 state
= current
->state
;
2777 while (!need_resched()) {
2780 hctx
->poll_invoked
++;
2782 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
2784 hctx
->poll_success
++;
2785 set_current_state(TASK_RUNNING
);
2789 if (signal_pending_state(state
, current
))
2790 set_current_state(TASK_RUNNING
);
2792 if (current
->state
== TASK_RUNNING
)
2802 bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
2804 struct blk_mq_hw_ctx
*hctx
;
2805 struct blk_plug
*plug
;
2808 if (!q
->mq_ops
|| !q
->mq_ops
->poll
|| !blk_qc_t_valid(cookie
) ||
2809 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
2812 plug
= current
->plug
;
2814 blk_flush_plug_list(plug
, false);
2816 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
2817 if (!blk_qc_t_is_internal(cookie
))
2818 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
2820 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
2822 * With scheduling, if the request has completed, we'll
2823 * get a NULL return here, as we clear the sched tag when
2824 * that happens. The request still remains valid, like always,
2825 * so we should be safe with just the NULL check.
2831 return __blk_mq_poll(hctx
, rq
);
2833 EXPORT_SYMBOL_GPL(blk_mq_poll
);
2835 static int __init
blk_mq_init(void)
2837 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
2838 blk_mq_hctx_notify_dead
);
2841 subsys_initcall(blk_mq_init
);