ASoC: simple-card: keep the property's name the same pattern
[linux-2.6/btrfs-unstable.git] / arch / ia64 / kernel / perfmon.c
blobcb592773c78b1ef1f86faa4a4190c507c4e9fdbf
1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 #include <linux/cpu.h>
47 #include <asm/errno.h>
48 #include <asm/intrinsics.h>
49 #include <asm/page.h>
50 #include <asm/perfmon.h>
51 #include <asm/processor.h>
52 #include <asm/signal.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
56 #ifdef CONFIG_PERFMON
58 * perfmon context state
60 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
61 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
62 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
65 #define PFM_INVALID_ACTIVATION (~0UL)
67 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
71 * depth of message queue
73 #define PFM_MAX_MSGS 32
74 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
77 * type of a PMU register (bitmask).
78 * bitmask structure:
79 * bit0 : register implemented
80 * bit1 : end marker
81 * bit2-3 : reserved
82 * bit4 : pmc has pmc.pm
83 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
84 * bit6-7 : register type
85 * bit8-31: reserved
87 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
88 #define PFM_REG_IMPL 0x1 /* register implemented */
89 #define PFM_REG_END 0x2 /* end marker */
90 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
96 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
99 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
111 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
116 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
119 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h) (h)->ctx_task
123 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
131 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR 0 /* requesting code range restriction */
135 #define PFM_DATA_RR 1 /* requestion data range restriction */
137 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
141 #define RDEP(x) (1UL<<(x))
144 * context protection macros
145 * in SMP:
146 * - we need to protect against CPU concurrency (spin_lock)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
148 * in UP:
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
151 * spin_lock_irqsave()/spin_unlock_irqrestore():
152 * in SMP: local_irq_disable + spin_lock
153 * in UP : local_irq_disable
155 * spin_lock()/spin_lock():
156 * in UP : removed automatically
157 * in SMP: protect against context accesses from other CPU. interrupts
158 * are not masked. This is useful for the PMU interrupt handler
159 * because we know we will not get PMU concurrency in that code.
161 #define PROTECT_CTX(c, f) \
162 do { \
163 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 spin_lock_irqsave(&(c)->ctx_lock, f); \
165 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 } while(0)
168 #define UNPROTECT_CTX(c, f) \
169 do { \
170 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 } while(0)
174 #define PROTECT_CTX_NOPRINT(c, f) \
175 do { \
176 spin_lock_irqsave(&(c)->ctx_lock, f); \
177 } while(0)
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 do { \
182 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
183 } while(0)
186 #define PROTECT_CTX_NOIRQ(c) \
187 do { \
188 spin_lock(&(c)->ctx_lock); \
189 } while(0)
191 #define UNPROTECT_CTX_NOIRQ(c) \
192 do { \
193 spin_unlock(&(c)->ctx_lock); \
194 } while(0)
197 #ifdef CONFIG_SMP
199 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) do {} while(0)
205 #define GET_ACTIVATION(t) do {} while(0)
206 #define INC_ACTIVATION(t) do {} while(0)
207 #endif /* CONFIG_SMP */
209 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
213 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
216 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
219 * cmp0 must be the value of pmc0
221 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
223 #define PFMFS_MAGIC 0xa0b4d889
226 * debugging
228 #define PFM_DEBUGGING 1
229 #ifdef PFM_DEBUGGING
230 #define DPRINT(a) \
231 do { \
232 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233 } while (0)
235 #define DPRINT_ovfl(a) \
236 do { \
237 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
238 } while (0)
239 #endif
242 * 64-bit software counter structure
244 * the next_reset_type is applied to the next call to pfm_reset_regs()
246 typedef struct {
247 unsigned long val; /* virtual 64bit counter value */
248 unsigned long lval; /* last reset value */
249 unsigned long long_reset; /* reset value on sampling overflow */
250 unsigned long short_reset; /* reset value on overflow */
251 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
252 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
253 unsigned long seed; /* seed for random-number generator */
254 unsigned long mask; /* mask for random-number generator */
255 unsigned int flags; /* notify/do not notify */
256 unsigned long eventid; /* overflow event identifier */
257 } pfm_counter_t;
260 * context flags
262 typedef struct {
263 unsigned int block:1; /* when 1, task will blocked on user notifications */
264 unsigned int system:1; /* do system wide monitoring */
265 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
266 unsigned int is_sampling:1; /* true if using a custom format */
267 unsigned int excl_idle:1; /* exclude idle task in system wide session */
268 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
269 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
270 unsigned int no_msg:1; /* no message sent on overflow */
271 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
272 unsigned int reserved:22;
273 } pfm_context_flags_t;
275 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
276 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
281 * perfmon context: encapsulates all the state of a monitoring session
284 typedef struct pfm_context {
285 spinlock_t ctx_lock; /* context protection */
287 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
288 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
290 struct task_struct *ctx_task; /* task to which context is attached */
292 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
294 struct completion ctx_restart_done; /* use for blocking notification mode */
296 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
297 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
298 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
300 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
301 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
302 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
304 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
306 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
307 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
308 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
309 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
311 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
313 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
314 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
316 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
318 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
319 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
320 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
322 int ctx_fd; /* file descriptor used my this context */
323 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
325 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
326 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
327 unsigned long ctx_smpl_size; /* size of sampling buffer */
328 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
330 wait_queue_head_t ctx_msgq_wait;
331 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
332 int ctx_msgq_head;
333 int ctx_msgq_tail;
334 struct fasync_struct *ctx_async_queue;
336 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
337 } pfm_context_t;
340 * magic number used to verify that structure is really
341 * a perfmon context
343 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
345 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
347 #ifdef CONFIG_SMP
348 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
350 #else
351 #define SET_LAST_CPU(ctx, v) do {} while(0)
352 #define GET_LAST_CPU(ctx) do {} while(0)
353 #endif
356 #define ctx_fl_block ctx_flags.block
357 #define ctx_fl_system ctx_flags.system
358 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling ctx_flags.is_sampling
360 #define ctx_fl_excl_idle ctx_flags.excl_idle
361 #define ctx_fl_going_zombie ctx_flags.going_zombie
362 #define ctx_fl_trap_reason ctx_flags.trap_reason
363 #define ctx_fl_no_msg ctx_flags.no_msg
364 #define ctx_fl_can_restart ctx_flags.can_restart
366 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
370 * global information about all sessions
371 * mostly used to synchronize between system wide and per-process
373 typedef struct {
374 spinlock_t pfs_lock; /* lock the structure */
376 unsigned int pfs_task_sessions; /* number of per task sessions */
377 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
378 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
379 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
380 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
381 } pfm_session_t;
384 * information about a PMC or PMD.
385 * dep_pmd[]: a bitmask of dependent PMD registers
386 * dep_pmc[]: a bitmask of dependent PMC registers
388 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
389 typedef struct {
390 unsigned int type;
391 int pm_pos;
392 unsigned long default_value; /* power-on default value */
393 unsigned long reserved_mask; /* bitmask of reserved bits */
394 pfm_reg_check_t read_check;
395 pfm_reg_check_t write_check;
396 unsigned long dep_pmd[4];
397 unsigned long dep_pmc[4];
398 } pfm_reg_desc_t;
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
404 * This structure is initialized at boot time and contains
405 * a description of the PMU main characteristics.
407 * If the probe function is defined, detection is based
408 * on its return value:
409 * - 0 means recognized PMU
410 * - anything else means not supported
411 * When the probe function is not defined, then the pmu_family field
412 * is used and it must match the host CPU family such that:
413 * - cpu->family & config->pmu_family != 0
415 typedef struct {
416 unsigned long ovfl_val; /* overflow value for counters */
418 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
419 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
421 unsigned int num_pmcs; /* number of PMCS: computed at init time */
422 unsigned int num_pmds; /* number of PMDS: computed at init time */
423 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
424 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
426 char *pmu_name; /* PMU family name */
427 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
428 unsigned int flags; /* pmu specific flags */
429 unsigned int num_ibrs; /* number of IBRS: computed at init time */
430 unsigned int num_dbrs; /* number of DBRS: computed at init time */
431 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
432 int (*probe)(void); /* customized probe routine */
433 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
434 } pmu_config_t;
436 * PMU specific flags
438 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
441 * debug register related type definitions
443 typedef struct {
444 unsigned long ibr_mask:56;
445 unsigned long ibr_plm:4;
446 unsigned long ibr_ig:3;
447 unsigned long ibr_x:1;
448 } ibr_mask_reg_t;
450 typedef struct {
451 unsigned long dbr_mask:56;
452 unsigned long dbr_plm:4;
453 unsigned long dbr_ig:2;
454 unsigned long dbr_w:1;
455 unsigned long dbr_r:1;
456 } dbr_mask_reg_t;
458 typedef union {
459 unsigned long val;
460 ibr_mask_reg_t ibr;
461 dbr_mask_reg_t dbr;
462 } dbreg_t;
466 * perfmon command descriptions
468 typedef struct {
469 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
470 char *cmd_name;
471 int cmd_flags;
472 unsigned int cmd_narg;
473 size_t cmd_argsize;
474 int (*cmd_getsize)(void *arg, size_t *sz);
475 } pfm_cmd_desc_t;
477 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
479 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
480 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
483 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
489 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
491 typedef struct {
492 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
493 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
494 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
498 unsigned long pfm_smpl_handler_calls;
499 unsigned long pfm_smpl_handler_cycles;
500 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
501 } pfm_stats_t;
504 * perfmon internal variables
506 static pfm_stats_t pfm_stats[NR_CPUS];
507 static pfm_session_t pfm_sessions; /* global sessions information */
509 static DEFINE_SPINLOCK(pfm_alt_install_check);
510 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
512 static struct proc_dir_entry *perfmon_dir;
513 static pfm_uuid_t pfm_null_uuid = {0,};
515 static spinlock_t pfm_buffer_fmt_lock;
516 static LIST_HEAD(pfm_buffer_fmt_list);
518 static pmu_config_t *pmu_conf;
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl;
522 EXPORT_SYMBOL(pfm_sysctl);
524 static ctl_table pfm_ctl_table[]={
526 .procname = "debug",
527 .data = &pfm_sysctl.debug,
528 .maxlen = sizeof(int),
529 .mode = 0666,
530 .proc_handler = proc_dointvec,
533 .procname = "debug_ovfl",
534 .data = &pfm_sysctl.debug_ovfl,
535 .maxlen = sizeof(int),
536 .mode = 0666,
537 .proc_handler = proc_dointvec,
540 .procname = "fastctxsw",
541 .data = &pfm_sysctl.fastctxsw,
542 .maxlen = sizeof(int),
543 .mode = 0600,
544 .proc_handler = proc_dointvec,
547 .procname = "expert_mode",
548 .data = &pfm_sysctl.expert_mode,
549 .maxlen = sizeof(int),
550 .mode = 0600,
551 .proc_handler = proc_dointvec,
555 static ctl_table pfm_sysctl_dir[] = {
557 .procname = "perfmon",
558 .mode = 0555,
559 .child = pfm_ctl_table,
563 static ctl_table pfm_sysctl_root[] = {
565 .procname = "kernel",
566 .mode = 0555,
567 .child = pfm_sysctl_dir,
571 static struct ctl_table_header *pfm_sysctl_header;
573 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
575 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
578 static inline void
579 pfm_put_task(struct task_struct *task)
581 if (task != current) put_task_struct(task);
584 static inline void
585 pfm_reserve_page(unsigned long a)
587 SetPageReserved(vmalloc_to_page((void *)a));
589 static inline void
590 pfm_unreserve_page(unsigned long a)
592 ClearPageReserved(vmalloc_to_page((void*)a));
595 static inline unsigned long
596 pfm_protect_ctx_ctxsw(pfm_context_t *x)
598 spin_lock(&(x)->ctx_lock);
599 return 0UL;
602 static inline void
603 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
605 spin_unlock(&(x)->ctx_lock);
608 /* forward declaration */
609 static const struct dentry_operations pfmfs_dentry_operations;
611 static struct dentry *
612 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
614 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
615 PFMFS_MAGIC);
618 static struct file_system_type pfm_fs_type = {
619 .name = "pfmfs",
620 .mount = pfmfs_mount,
621 .kill_sb = kill_anon_super,
623 MODULE_ALIAS_FS("pfmfs");
625 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
626 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
627 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
628 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
629 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
632 /* forward declaration */
633 static const struct file_operations pfm_file_ops;
636 * forward declarations
638 #ifndef CONFIG_SMP
639 static void pfm_lazy_save_regs (struct task_struct *ta);
640 #endif
642 void dump_pmu_state(const char *);
643 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
645 #include "perfmon_itanium.h"
646 #include "perfmon_mckinley.h"
647 #include "perfmon_montecito.h"
648 #include "perfmon_generic.h"
650 static pmu_config_t *pmu_confs[]={
651 &pmu_conf_mont,
652 &pmu_conf_mck,
653 &pmu_conf_ita,
654 &pmu_conf_gen, /* must be last */
655 NULL
659 static int pfm_end_notify_user(pfm_context_t *ctx);
661 static inline void
662 pfm_clear_psr_pp(void)
664 ia64_rsm(IA64_PSR_PP);
665 ia64_srlz_i();
668 static inline void
669 pfm_set_psr_pp(void)
671 ia64_ssm(IA64_PSR_PP);
672 ia64_srlz_i();
675 static inline void
676 pfm_clear_psr_up(void)
678 ia64_rsm(IA64_PSR_UP);
679 ia64_srlz_i();
682 static inline void
683 pfm_set_psr_up(void)
685 ia64_ssm(IA64_PSR_UP);
686 ia64_srlz_i();
689 static inline unsigned long
690 pfm_get_psr(void)
692 unsigned long tmp;
693 tmp = ia64_getreg(_IA64_REG_PSR);
694 ia64_srlz_i();
695 return tmp;
698 static inline void
699 pfm_set_psr_l(unsigned long val)
701 ia64_setreg(_IA64_REG_PSR_L, val);
702 ia64_srlz_i();
705 static inline void
706 pfm_freeze_pmu(void)
708 ia64_set_pmc(0,1UL);
709 ia64_srlz_d();
712 static inline void
713 pfm_unfreeze_pmu(void)
715 ia64_set_pmc(0,0UL);
716 ia64_srlz_d();
719 static inline void
720 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
722 int i;
724 for (i=0; i < nibrs; i++) {
725 ia64_set_ibr(i, ibrs[i]);
726 ia64_dv_serialize_instruction();
728 ia64_srlz_i();
731 static inline void
732 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
734 int i;
736 for (i=0; i < ndbrs; i++) {
737 ia64_set_dbr(i, dbrs[i]);
738 ia64_dv_serialize_data();
740 ia64_srlz_d();
744 * PMD[i] must be a counter. no check is made
746 static inline unsigned long
747 pfm_read_soft_counter(pfm_context_t *ctx, int i)
749 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
753 * PMD[i] must be a counter. no check is made
755 static inline void
756 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
758 unsigned long ovfl_val = pmu_conf->ovfl_val;
760 ctx->ctx_pmds[i].val = val & ~ovfl_val;
762 * writing to unimplemented part is ignore, so we do not need to
763 * mask off top part
765 ia64_set_pmd(i, val & ovfl_val);
768 static pfm_msg_t *
769 pfm_get_new_msg(pfm_context_t *ctx)
771 int idx, next;
773 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
775 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
776 if (next == ctx->ctx_msgq_head) return NULL;
778 idx = ctx->ctx_msgq_tail;
779 ctx->ctx_msgq_tail = next;
781 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
783 return ctx->ctx_msgq+idx;
786 static pfm_msg_t *
787 pfm_get_next_msg(pfm_context_t *ctx)
789 pfm_msg_t *msg;
791 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
793 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
796 * get oldest message
798 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
801 * and move forward
803 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
805 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
807 return msg;
810 static void
811 pfm_reset_msgq(pfm_context_t *ctx)
813 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
814 DPRINT(("ctx=%p msgq reset\n", ctx));
817 static void *
818 pfm_rvmalloc(unsigned long size)
820 void *mem;
821 unsigned long addr;
823 size = PAGE_ALIGN(size);
824 mem = vzalloc(size);
825 if (mem) {
826 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
827 addr = (unsigned long)mem;
828 while (size > 0) {
829 pfm_reserve_page(addr);
830 addr+=PAGE_SIZE;
831 size-=PAGE_SIZE;
834 return mem;
837 static void
838 pfm_rvfree(void *mem, unsigned long size)
840 unsigned long addr;
842 if (mem) {
843 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
844 addr = (unsigned long) mem;
845 while ((long) size > 0) {
846 pfm_unreserve_page(addr);
847 addr+=PAGE_SIZE;
848 size-=PAGE_SIZE;
850 vfree(mem);
852 return;
855 static pfm_context_t *
856 pfm_context_alloc(int ctx_flags)
858 pfm_context_t *ctx;
861 * allocate context descriptor
862 * must be able to free with interrupts disabled
864 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
865 if (ctx) {
866 DPRINT(("alloc ctx @%p\n", ctx));
869 * init context protection lock
871 spin_lock_init(&ctx->ctx_lock);
874 * context is unloaded
876 ctx->ctx_state = PFM_CTX_UNLOADED;
879 * initialization of context's flags
881 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
882 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
883 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
885 * will move to set properties
886 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
890 * init restart semaphore to locked
892 init_completion(&ctx->ctx_restart_done);
895 * activation is used in SMP only
897 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
898 SET_LAST_CPU(ctx, -1);
901 * initialize notification message queue
903 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
904 init_waitqueue_head(&ctx->ctx_msgq_wait);
905 init_waitqueue_head(&ctx->ctx_zombieq);
908 return ctx;
911 static void
912 pfm_context_free(pfm_context_t *ctx)
914 if (ctx) {
915 DPRINT(("free ctx @%p\n", ctx));
916 kfree(ctx);
920 static void
921 pfm_mask_monitoring(struct task_struct *task)
923 pfm_context_t *ctx = PFM_GET_CTX(task);
924 unsigned long mask, val, ovfl_mask;
925 int i;
927 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
929 ovfl_mask = pmu_conf->ovfl_val;
931 * monitoring can only be masked as a result of a valid
932 * counter overflow. In UP, it means that the PMU still
933 * has an owner. Note that the owner can be different
934 * from the current task. However the PMU state belongs
935 * to the owner.
936 * In SMP, a valid overflow only happens when task is
937 * current. Therefore if we come here, we know that
938 * the PMU state belongs to the current task, therefore
939 * we can access the live registers.
941 * So in both cases, the live register contains the owner's
942 * state. We can ONLY touch the PMU registers and NOT the PSR.
944 * As a consequence to this call, the ctx->th_pmds[] array
945 * contains stale information which must be ignored
946 * when context is reloaded AND monitoring is active (see
947 * pfm_restart).
949 mask = ctx->ctx_used_pmds[0];
950 for (i = 0; mask; i++, mask>>=1) {
951 /* skip non used pmds */
952 if ((mask & 0x1) == 0) continue;
953 val = ia64_get_pmd(i);
955 if (PMD_IS_COUNTING(i)) {
957 * we rebuild the full 64 bit value of the counter
959 ctx->ctx_pmds[i].val += (val & ovfl_mask);
960 } else {
961 ctx->ctx_pmds[i].val = val;
963 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
965 ctx->ctx_pmds[i].val,
966 val & ovfl_mask));
969 * mask monitoring by setting the privilege level to 0
970 * we cannot use psr.pp/psr.up for this, it is controlled by
971 * the user
973 * if task is current, modify actual registers, otherwise modify
974 * thread save state, i.e., what will be restored in pfm_load_regs()
976 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
977 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
978 if ((mask & 0x1) == 0UL) continue;
979 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
980 ctx->th_pmcs[i] &= ~0xfUL;
981 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
984 * make all of this visible
986 ia64_srlz_d();
990 * must always be done with task == current
992 * context must be in MASKED state when calling
994 static void
995 pfm_restore_monitoring(struct task_struct *task)
997 pfm_context_t *ctx = PFM_GET_CTX(task);
998 unsigned long mask, ovfl_mask;
999 unsigned long psr, val;
1000 int i, is_system;
1002 is_system = ctx->ctx_fl_system;
1003 ovfl_mask = pmu_conf->ovfl_val;
1005 if (task != current) {
1006 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007 return;
1009 if (ctx->ctx_state != PFM_CTX_MASKED) {
1010 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012 return;
1014 psr = pfm_get_psr();
1016 * monitoring is masked via the PMC.
1017 * As we restore their value, we do not want each counter to
1018 * restart right away. We stop monitoring using the PSR,
1019 * restore the PMC (and PMD) and then re-establish the psr
1020 * as it was. Note that there can be no pending overflow at
1021 * this point, because monitoring was MASKED.
1023 * system-wide session are pinned and self-monitoring
1025 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026 /* disable dcr pp */
1027 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028 pfm_clear_psr_pp();
1029 } else {
1030 pfm_clear_psr_up();
1033 * first, we restore the PMD
1035 mask = ctx->ctx_used_pmds[0];
1036 for (i = 0; mask; i++, mask>>=1) {
1037 /* skip non used pmds */
1038 if ((mask & 0x1) == 0) continue;
1040 if (PMD_IS_COUNTING(i)) {
1042 * we split the 64bit value according to
1043 * counter width
1045 val = ctx->ctx_pmds[i].val & ovfl_mask;
1046 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047 } else {
1048 val = ctx->ctx_pmds[i].val;
1050 ia64_set_pmd(i, val);
1052 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1054 ctx->ctx_pmds[i].val,
1055 val));
1058 * restore the PMCs
1060 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062 if ((mask & 0x1) == 0UL) continue;
1063 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064 ia64_set_pmc(i, ctx->th_pmcs[i]);
1065 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066 task_pid_nr(task), i, ctx->th_pmcs[i]));
1068 ia64_srlz_d();
1071 * must restore DBR/IBR because could be modified while masked
1072 * XXX: need to optimize
1074 if (ctx->ctx_fl_using_dbreg) {
1075 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1080 * now restore PSR
1082 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083 /* enable dcr pp */
1084 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085 ia64_srlz_i();
1087 pfm_set_psr_l(psr);
1090 static inline void
1091 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1093 int i;
1095 ia64_srlz_d();
1097 for (i=0; mask; i++, mask>>=1) {
1098 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1103 * reload from thread state (used for ctxw only)
1105 static inline void
1106 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1108 int i;
1109 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1111 for (i=0; mask; i++, mask>>=1) {
1112 if ((mask & 0x1) == 0) continue;
1113 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114 ia64_set_pmd(i, val);
1116 ia64_srlz_d();
1120 * propagate PMD from context to thread-state
1122 static inline void
1123 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1125 unsigned long ovfl_val = pmu_conf->ovfl_val;
1126 unsigned long mask = ctx->ctx_all_pmds[0];
1127 unsigned long val;
1128 int i;
1130 DPRINT(("mask=0x%lx\n", mask));
1132 for (i=0; mask; i++, mask>>=1) {
1134 val = ctx->ctx_pmds[i].val;
1137 * We break up the 64 bit value into 2 pieces
1138 * the lower bits go to the machine state in the
1139 * thread (will be reloaded on ctxsw in).
1140 * The upper part stays in the soft-counter.
1142 if (PMD_IS_COUNTING(i)) {
1143 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144 val &= ovfl_val;
1146 ctx->th_pmds[i] = val;
1148 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1150 ctx->th_pmds[i],
1151 ctx->ctx_pmds[i].val));
1156 * propagate PMC from context to thread-state
1158 static inline void
1159 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1161 unsigned long mask = ctx->ctx_all_pmcs[0];
1162 int i;
1164 DPRINT(("mask=0x%lx\n", mask));
1166 for (i=0; mask; i++, mask>>=1) {
1167 /* masking 0 with ovfl_val yields 0 */
1168 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1175 static inline void
1176 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1178 int i;
1180 for (i=0; mask; i++, mask>>=1) {
1181 if ((mask & 0x1) == 0) continue;
1182 ia64_set_pmc(i, pmcs[i]);
1184 ia64_srlz_d();
1187 static inline int
1188 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1190 return memcmp(a, b, sizeof(pfm_uuid_t));
1193 static inline int
1194 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1196 int ret = 0;
1197 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198 return ret;
1201 static inline int
1202 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1204 int ret = 0;
1205 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206 return ret;
1210 static inline int
1211 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212 int cpu, void *arg)
1214 int ret = 0;
1215 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216 return ret;
1219 static inline int
1220 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221 int cpu, void *arg)
1223 int ret = 0;
1224 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225 return ret;
1228 static inline int
1229 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1231 int ret = 0;
1232 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233 return ret;
1236 static inline int
1237 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1239 int ret = 0;
1240 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241 return ret;
1244 static pfm_buffer_fmt_t *
1245 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1247 struct list_head * pos;
1248 pfm_buffer_fmt_t * entry;
1250 list_for_each(pos, &pfm_buffer_fmt_list) {
1251 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253 return entry;
1255 return NULL;
1259 * find a buffer format based on its uuid
1261 static pfm_buffer_fmt_t *
1262 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1264 pfm_buffer_fmt_t * fmt;
1265 spin_lock(&pfm_buffer_fmt_lock);
1266 fmt = __pfm_find_buffer_fmt(uuid);
1267 spin_unlock(&pfm_buffer_fmt_lock);
1268 return fmt;
1272 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1274 int ret = 0;
1276 /* some sanity checks */
1277 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1279 /* we need at least a handler */
1280 if (fmt->fmt_handler == NULL) return -EINVAL;
1283 * XXX: need check validity of fmt_arg_size
1286 spin_lock(&pfm_buffer_fmt_lock);
1288 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290 ret = -EBUSY;
1291 goto out;
1293 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1296 out:
1297 spin_unlock(&pfm_buffer_fmt_lock);
1298 return ret;
1300 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1303 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1305 pfm_buffer_fmt_t *fmt;
1306 int ret = 0;
1308 spin_lock(&pfm_buffer_fmt_lock);
1310 fmt = __pfm_find_buffer_fmt(uuid);
1311 if (!fmt) {
1312 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313 ret = -EINVAL;
1314 goto out;
1316 list_del_init(&fmt->fmt_list);
1317 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1319 out:
1320 spin_unlock(&pfm_buffer_fmt_lock);
1321 return ret;
1324 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1326 static int
1327 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1329 unsigned long flags;
1331 * validity checks on cpu_mask have been done upstream
1333 LOCK_PFS(flags);
1335 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 pfm_sessions.pfs_sys_sessions,
1337 pfm_sessions.pfs_task_sessions,
1338 pfm_sessions.pfs_sys_use_dbregs,
1339 is_syswide,
1340 cpu));
1342 if (is_syswide) {
1344 * cannot mix system wide and per-task sessions
1346 if (pfm_sessions.pfs_task_sessions > 0UL) {
1347 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 pfm_sessions.pfs_task_sessions));
1349 goto abort;
1352 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1354 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1356 pfm_sessions.pfs_sys_session[cpu] = task;
1358 pfm_sessions.pfs_sys_sessions++ ;
1360 } else {
1361 if (pfm_sessions.pfs_sys_sessions) goto abort;
1362 pfm_sessions.pfs_task_sessions++;
1365 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 pfm_sessions.pfs_sys_sessions,
1367 pfm_sessions.pfs_task_sessions,
1368 pfm_sessions.pfs_sys_use_dbregs,
1369 is_syswide,
1370 cpu));
1373 * Force idle() into poll mode
1375 cpu_idle_poll_ctrl(true);
1377 UNLOCK_PFS(flags);
1379 return 0;
1381 error_conflict:
1382 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384 cpu));
1385 abort:
1386 UNLOCK_PFS(flags);
1388 return -EBUSY;
1392 static int
1393 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1395 unsigned long flags;
1397 * validity checks on cpu_mask have been done upstream
1399 LOCK_PFS(flags);
1401 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 pfm_sessions.pfs_sys_sessions,
1403 pfm_sessions.pfs_task_sessions,
1404 pfm_sessions.pfs_sys_use_dbregs,
1405 is_syswide,
1406 cpu));
1409 if (is_syswide) {
1410 pfm_sessions.pfs_sys_session[cpu] = NULL;
1412 * would not work with perfmon+more than one bit in cpu_mask
1414 if (ctx && ctx->ctx_fl_using_dbreg) {
1415 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417 } else {
1418 pfm_sessions.pfs_sys_use_dbregs--;
1421 pfm_sessions.pfs_sys_sessions--;
1422 } else {
1423 pfm_sessions.pfs_task_sessions--;
1425 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 pfm_sessions.pfs_sys_sessions,
1427 pfm_sessions.pfs_task_sessions,
1428 pfm_sessions.pfs_sys_use_dbregs,
1429 is_syswide,
1430 cpu));
1432 /* Undo forced polling. Last session reenables pal_halt */
1433 cpu_idle_poll_ctrl(false);
1435 UNLOCK_PFS(flags);
1437 return 0;
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1445 static int
1446 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1448 struct task_struct *task = current;
1449 int r;
1451 /* sanity checks */
1452 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454 return -EINVAL;
1457 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1460 * does the actual unmapping
1462 r = vm_munmap((unsigned long)vaddr, size);
1464 if (r !=0) {
1465 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1468 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1470 return 0;
1474 * free actual physical storage used by sampling buffer
1476 #if 0
1477 static int
1478 pfm_free_smpl_buffer(pfm_context_t *ctx)
1480 pfm_buffer_fmt_t *fmt;
1482 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1485 * we won't use the buffer format anymore
1487 fmt = ctx->ctx_buf_fmt;
1489 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490 ctx->ctx_smpl_hdr,
1491 ctx->ctx_smpl_size,
1492 ctx->ctx_smpl_vaddr));
1494 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497 * free the buffer
1499 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1501 ctx->ctx_smpl_hdr = NULL;
1502 ctx->ctx_smpl_size = 0UL;
1504 return 0;
1506 invalid_free:
1507 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508 return -EINVAL;
1510 #endif
1512 static inline void
1513 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1515 if (fmt == NULL) return;
1517 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1527 static struct vfsmount *pfmfs_mnt __read_mostly;
1529 static int __init
1530 init_pfm_fs(void)
1532 int err = register_filesystem(&pfm_fs_type);
1533 if (!err) {
1534 pfmfs_mnt = kern_mount(&pfm_fs_type);
1535 err = PTR_ERR(pfmfs_mnt);
1536 if (IS_ERR(pfmfs_mnt))
1537 unregister_filesystem(&pfm_fs_type);
1538 else
1539 err = 0;
1541 return err;
1544 static ssize_t
1545 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1547 pfm_context_t *ctx;
1548 pfm_msg_t *msg;
1549 ssize_t ret;
1550 unsigned long flags;
1551 DECLARE_WAITQUEUE(wait, current);
1552 if (PFM_IS_FILE(filp) == 0) {
1553 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554 return -EINVAL;
1557 ctx = filp->private_data;
1558 if (ctx == NULL) {
1559 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560 return -EINVAL;
1564 * check even when there is no message
1566 if (size < sizeof(pfm_msg_t)) {
1567 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568 return -EINVAL;
1571 PROTECT_CTX(ctx, flags);
1574 * put ourselves on the wait queue
1576 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579 for(;;) {
1581 * check wait queue
1584 set_current_state(TASK_INTERRUPTIBLE);
1586 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1588 ret = 0;
1589 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1591 UNPROTECT_CTX(ctx, flags);
1594 * check non-blocking read
1596 ret = -EAGAIN;
1597 if(filp->f_flags & O_NONBLOCK) break;
1600 * check pending signals
1602 if(signal_pending(current)) {
1603 ret = -EINTR;
1604 break;
1607 * no message, so wait
1609 schedule();
1611 PROTECT_CTX(ctx, flags);
1613 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614 set_current_state(TASK_RUNNING);
1615 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1617 if (ret < 0) goto abort;
1619 ret = -EINVAL;
1620 msg = pfm_get_next_msg(ctx);
1621 if (msg == NULL) {
1622 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623 goto abort_locked;
1626 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1628 ret = -EFAULT;
1629 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1631 abort_locked:
1632 UNPROTECT_CTX(ctx, flags);
1633 abort:
1634 return ret;
1637 static ssize_t
1638 pfm_write(struct file *file, const char __user *ubuf,
1639 size_t size, loff_t *ppos)
1641 DPRINT(("pfm_write called\n"));
1642 return -EINVAL;
1645 static unsigned int
1646 pfm_poll(struct file *filp, poll_table * wait)
1648 pfm_context_t *ctx;
1649 unsigned long flags;
1650 unsigned int mask = 0;
1652 if (PFM_IS_FILE(filp) == 0) {
1653 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654 return 0;
1657 ctx = filp->private_data;
1658 if (ctx == NULL) {
1659 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660 return 0;
1664 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1666 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1668 PROTECT_CTX(ctx, flags);
1670 if (PFM_CTXQ_EMPTY(ctx) == 0)
1671 mask = POLLIN | POLLRDNORM;
1673 UNPROTECT_CTX(ctx, flags);
1675 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1677 return mask;
1680 static long
1681 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1683 DPRINT(("pfm_ioctl called\n"));
1684 return -EINVAL;
1688 * interrupt cannot be masked when coming here
1690 static inline int
1691 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1693 int ret;
1695 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1697 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 task_pid_nr(current),
1701 ctx->ctx_async_queue, ret));
1703 return ret;
1706 static int
1707 pfm_fasync(int fd, struct file *filp, int on)
1709 pfm_context_t *ctx;
1710 int ret;
1712 if (PFM_IS_FILE(filp) == 0) {
1713 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714 return -EBADF;
1717 ctx = filp->private_data;
1718 if (ctx == NULL) {
1719 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720 return -EBADF;
1723 * we cannot mask interrupts during this call because this may
1724 * may go to sleep if memory is not readily avalaible.
1726 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727 * done in caller. Serialization of this function is ensured by caller.
1729 ret = pfm_do_fasync(fd, filp, ctx, on);
1732 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735 ctx->ctx_async_queue, ret));
1737 return ret;
1740 #ifdef CONFIG_SMP
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1746 static void
1747 pfm_syswide_force_stop(void *info)
1749 pfm_context_t *ctx = (pfm_context_t *)info;
1750 struct pt_regs *regs = task_pt_regs(current);
1751 struct task_struct *owner;
1752 unsigned long flags;
1753 int ret;
1755 if (ctx->ctx_cpu != smp_processor_id()) {
1756 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1757 ctx->ctx_cpu,
1758 smp_processor_id());
1759 return;
1761 owner = GET_PMU_OWNER();
1762 if (owner != ctx->ctx_task) {
1763 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764 smp_processor_id(),
1765 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766 return;
1768 if (GET_PMU_CTX() != ctx) {
1769 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770 smp_processor_id(),
1771 GET_PMU_CTX(), ctx);
1772 return;
1775 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1777 * the context is already protected in pfm_close(), we simply
1778 * need to mask interrupts to avoid a PMU interrupt race on
1779 * this CPU
1781 local_irq_save(flags);
1783 ret = pfm_context_unload(ctx, NULL, 0, regs);
1784 if (ret) {
1785 DPRINT(("context_unload returned %d\n", ret));
1789 * unmask interrupts, PMU interrupts are now spurious here
1791 local_irq_restore(flags);
1794 static void
1795 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1797 int ret;
1799 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1803 #endif /* CONFIG_SMP */
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1809 static int
1810 pfm_flush(struct file *filp, fl_owner_t id)
1812 pfm_context_t *ctx;
1813 struct task_struct *task;
1814 struct pt_regs *regs;
1815 unsigned long flags;
1816 unsigned long smpl_buf_size = 0UL;
1817 void *smpl_buf_vaddr = NULL;
1818 int state, is_system;
1820 if (PFM_IS_FILE(filp) == 0) {
1821 DPRINT(("bad magic for\n"));
1822 return -EBADF;
1825 ctx = filp->private_data;
1826 if (ctx == NULL) {
1827 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828 return -EBADF;
1832 * remove our file from the async queue, if we use this mode.
1833 * This can be done without the context being protected. We come
1834 * here when the context has become unreachable by other tasks.
1836 * We may still have active monitoring at this point and we may
1837 * end up in pfm_overflow_handler(). However, fasync_helper()
1838 * operates with interrupts disabled and it cleans up the
1839 * queue. If the PMU handler is called prior to entering
1840 * fasync_helper() then it will send a signal. If it is
1841 * invoked after, it will find an empty queue and no
1842 * signal will be sent. In both case, we are safe
1844 PROTECT_CTX(ctx, flags);
1846 state = ctx->ctx_state;
1847 is_system = ctx->ctx_fl_system;
1849 task = PFM_CTX_TASK(ctx);
1850 regs = task_pt_regs(task);
1852 DPRINT(("ctx_state=%d is_current=%d\n",
1853 state,
1854 task == current ? 1 : 0));
1857 * if state == UNLOADED, then task is NULL
1861 * we must stop and unload because we are losing access to the context.
1863 if (task == current) {
1864 #ifdef CONFIG_SMP
1866 * the task IS the owner but it migrated to another CPU: that's bad
1867 * but we must handle this cleanly. Unfortunately, the kernel does
1868 * not provide a mechanism to block migration (while the context is loaded).
1870 * We need to release the resource on the ORIGINAL cpu.
1872 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1874 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1876 * keep context protected but unmask interrupt for IPI
1878 local_irq_restore(flags);
1880 pfm_syswide_cleanup_other_cpu(ctx);
1883 * restore interrupt masking
1885 local_irq_save(flags);
1888 * context is unloaded at this point
1890 } else
1891 #endif /* CONFIG_SMP */
1894 DPRINT(("forcing unload\n"));
1896 * stop and unload, returning with state UNLOADED
1897 * and session unreserved.
1899 pfm_context_unload(ctx, NULL, 0, regs);
1901 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1906 * remove virtual mapping, if any, for the calling task.
1907 * cannot reset ctx field until last user is calling close().
1909 * ctx_smpl_vaddr must never be cleared because it is needed
1910 * by every task with access to the context
1912 * When called from do_exit(), the mm context is gone already, therefore
1913 * mm is NULL, i.e., the VMA is already gone and we do not have to
1914 * do anything here
1916 if (ctx->ctx_smpl_vaddr && current->mm) {
1917 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918 smpl_buf_size = ctx->ctx_smpl_size;
1921 UNPROTECT_CTX(ctx, flags);
1924 * if there was a mapping, then we systematically remove it
1925 * at this point. Cannot be done inside critical section
1926 * because some VM function reenables interrupts.
1929 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1931 return 0;
1934 * called either on explicit close() or from exit_files().
1935 * Only the LAST user of the file gets to this point, i.e., it is
1936 * called only ONCE.
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1939 * (fput()),i.e, last task to access the file. Nobody else can access the
1940 * file at this point.
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context.
1948 static int
1949 pfm_close(struct inode *inode, struct file *filp)
1951 pfm_context_t *ctx;
1952 struct task_struct *task;
1953 struct pt_regs *regs;
1954 DECLARE_WAITQUEUE(wait, current);
1955 unsigned long flags;
1956 unsigned long smpl_buf_size = 0UL;
1957 void *smpl_buf_addr = NULL;
1958 int free_possible = 1;
1959 int state, is_system;
1961 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1963 if (PFM_IS_FILE(filp) == 0) {
1964 DPRINT(("bad magic\n"));
1965 return -EBADF;
1968 ctx = filp->private_data;
1969 if (ctx == NULL) {
1970 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971 return -EBADF;
1974 PROTECT_CTX(ctx, flags);
1976 state = ctx->ctx_state;
1977 is_system = ctx->ctx_fl_system;
1979 task = PFM_CTX_TASK(ctx);
1980 regs = task_pt_regs(task);
1982 DPRINT(("ctx_state=%d is_current=%d\n",
1983 state,
1984 task == current ? 1 : 0));
1987 * if task == current, then pfm_flush() unloaded the context
1989 if (state == PFM_CTX_UNLOADED) goto doit;
1992 * context is loaded/masked and task != current, we need to
1993 * either force an unload or go zombie
1997 * The task is currently blocked or will block after an overflow.
1998 * we must force it to wakeup to get out of the
1999 * MASKED state and transition to the unloaded state by itself.
2001 * This situation is only possible for per-task mode
2003 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2006 * set a "partial" zombie state to be checked
2007 * upon return from down() in pfm_handle_work().
2009 * We cannot use the ZOMBIE state, because it is checked
2010 * by pfm_load_regs() which is called upon wakeup from down().
2011 * In such case, it would free the context and then we would
2012 * return to pfm_handle_work() which would access the
2013 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014 * but visible to pfm_handle_work().
2016 * For some window of time, we have a zombie context with
2017 * ctx_state = MASKED and not ZOMBIE
2019 ctx->ctx_fl_going_zombie = 1;
2022 * force task to wake up from MASKED state
2024 complete(&ctx->ctx_restart_done);
2026 DPRINT(("waking up ctx_state=%d\n", state));
2029 * put ourself to sleep waiting for the other
2030 * task to report completion
2032 * the context is protected by mutex, therefore there
2033 * is no risk of being notified of completion before
2034 * begin actually on the waitq.
2036 set_current_state(TASK_INTERRUPTIBLE);
2037 add_wait_queue(&ctx->ctx_zombieq, &wait);
2039 UNPROTECT_CTX(ctx, flags);
2042 * XXX: check for signals :
2043 * - ok for explicit close
2044 * - not ok when coming from exit_files()
2046 schedule();
2049 PROTECT_CTX(ctx, flags);
2052 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053 set_current_state(TASK_RUNNING);
2056 * context is unloaded at this point
2058 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2060 else if (task != current) {
2061 #ifdef CONFIG_SMP
2063 * switch context to zombie state
2065 ctx->ctx_state = PFM_CTX_ZOMBIE;
2067 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2069 * cannot free the context on the spot. deferred until
2070 * the task notices the ZOMBIE state
2072 free_possible = 0;
2073 #else
2074 pfm_context_unload(ctx, NULL, 0, regs);
2075 #endif
2078 doit:
2079 /* reload state, may have changed during opening of critical section */
2080 state = ctx->ctx_state;
2083 * the context is still attached to a task (possibly current)
2084 * we cannot destroy it right now
2088 * we must free the sampling buffer right here because
2089 * we cannot rely on it being cleaned up later by the
2090 * monitored task. It is not possible to free vmalloc'ed
2091 * memory in pfm_load_regs(). Instead, we remove the buffer
2092 * now. should there be subsequent PMU overflow originally
2093 * meant for sampling, the will be converted to spurious
2094 * and that's fine because the monitoring tools is gone anyway.
2096 if (ctx->ctx_smpl_hdr) {
2097 smpl_buf_addr = ctx->ctx_smpl_hdr;
2098 smpl_buf_size = ctx->ctx_smpl_size;
2099 /* no more sampling */
2100 ctx->ctx_smpl_hdr = NULL;
2101 ctx->ctx_fl_is_sampling = 0;
2104 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105 state,
2106 free_possible,
2107 smpl_buf_addr,
2108 smpl_buf_size));
2110 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2113 * UNLOADED that the session has already been unreserved.
2115 if (state == PFM_CTX_ZOMBIE) {
2116 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2120 * disconnect file descriptor from context must be done
2121 * before we unlock.
2123 filp->private_data = NULL;
2126 * if we free on the spot, the context is now completely unreachable
2127 * from the callers side. The monitored task side is also cut, so we
2128 * can freely cut.
2130 * If we have a deferred free, only the caller side is disconnected.
2132 UNPROTECT_CTX(ctx, flags);
2135 * All memory free operations (especially for vmalloc'ed memory)
2136 * MUST be done with interrupts ENABLED.
2138 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2141 * return the memory used by the context
2143 if (free_possible) pfm_context_free(ctx);
2145 return 0;
2148 static int
2149 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2151 DPRINT(("pfm_no_open called\n"));
2152 return -ENXIO;
2157 static const struct file_operations pfm_file_ops = {
2158 .llseek = no_llseek,
2159 .read = pfm_read,
2160 .write = pfm_write,
2161 .poll = pfm_poll,
2162 .unlocked_ioctl = pfm_ioctl,
2163 .open = pfm_no_open, /* special open code to disallow open via /proc */
2164 .fasync = pfm_fasync,
2165 .release = pfm_close,
2166 .flush = pfm_flush
2169 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2171 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2172 dentry->d_inode->i_ino);
2175 static const struct dentry_operations pfmfs_dentry_operations = {
2176 .d_delete = always_delete_dentry,
2177 .d_dname = pfmfs_dname,
2181 static struct file *
2182 pfm_alloc_file(pfm_context_t *ctx)
2184 struct file *file;
2185 struct inode *inode;
2186 struct path path;
2187 struct qstr this = { .name = "" };
2190 * allocate a new inode
2192 inode = new_inode(pfmfs_mnt->mnt_sb);
2193 if (!inode)
2194 return ERR_PTR(-ENOMEM);
2196 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2198 inode->i_mode = S_IFCHR|S_IRUGO;
2199 inode->i_uid = current_fsuid();
2200 inode->i_gid = current_fsgid();
2203 * allocate a new dcache entry
2205 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2206 if (!path.dentry) {
2207 iput(inode);
2208 return ERR_PTR(-ENOMEM);
2210 path.mnt = mntget(pfmfs_mnt);
2212 d_add(path.dentry, inode);
2214 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2215 if (IS_ERR(file)) {
2216 path_put(&path);
2217 return file;
2220 file->f_flags = O_RDONLY;
2221 file->private_data = ctx;
2223 return file;
2226 static int
2227 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2229 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2231 while (size > 0) {
2232 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2235 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2236 return -ENOMEM;
2238 addr += PAGE_SIZE;
2239 buf += PAGE_SIZE;
2240 size -= PAGE_SIZE;
2242 return 0;
2246 * allocate a sampling buffer and remaps it into the user address space of the task
2248 static int
2249 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2251 struct mm_struct *mm = task->mm;
2252 struct vm_area_struct *vma = NULL;
2253 unsigned long size;
2254 void *smpl_buf;
2258 * the fixed header + requested size and align to page boundary
2260 size = PAGE_ALIGN(rsize);
2262 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2265 * check requested size to avoid Denial-of-service attacks
2266 * XXX: may have to refine this test
2267 * Check against address space limit.
2269 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2270 * return -ENOMEM;
2272 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2273 return -ENOMEM;
2276 * We do the easy to undo allocations first.
2278 * pfm_rvmalloc(), clears the buffer, so there is no leak
2280 smpl_buf = pfm_rvmalloc(size);
2281 if (smpl_buf == NULL) {
2282 DPRINT(("Can't allocate sampling buffer\n"));
2283 return -ENOMEM;
2286 DPRINT(("smpl_buf @%p\n", smpl_buf));
2288 /* allocate vma */
2289 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2290 if (!vma) {
2291 DPRINT(("Cannot allocate vma\n"));
2292 goto error_kmem;
2294 INIT_LIST_HEAD(&vma->anon_vma_chain);
2297 * partially initialize the vma for the sampling buffer
2299 vma->vm_mm = mm;
2300 vma->vm_file = get_file(filp);
2301 vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2302 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2305 * Now we have everything we need and we can initialize
2306 * and connect all the data structures
2309 ctx->ctx_smpl_hdr = smpl_buf;
2310 ctx->ctx_smpl_size = size; /* aligned size */
2313 * Let's do the difficult operations next.
2315 * now we atomically find some area in the address space and
2316 * remap the buffer in it.
2318 down_write(&task->mm->mmap_sem);
2320 /* find some free area in address space, must have mmap sem held */
2321 vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2322 if (IS_ERR_VALUE(vma->vm_start)) {
2323 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2324 up_write(&task->mm->mmap_sem);
2325 goto error;
2327 vma->vm_end = vma->vm_start + size;
2328 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2330 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2332 /* can only be applied to current task, need to have the mm semaphore held when called */
2333 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2334 DPRINT(("Can't remap buffer\n"));
2335 up_write(&task->mm->mmap_sem);
2336 goto error;
2340 * now insert the vma in the vm list for the process, must be
2341 * done with mmap lock held
2343 insert_vm_struct(mm, vma);
2345 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2346 vma_pages(vma));
2347 up_write(&task->mm->mmap_sem);
2350 * keep track of user level virtual address
2352 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2353 *(unsigned long *)user_vaddr = vma->vm_start;
2355 return 0;
2357 error:
2358 kmem_cache_free(vm_area_cachep, vma);
2359 error_kmem:
2360 pfm_rvfree(smpl_buf, size);
2362 return -ENOMEM;
2366 * XXX: do something better here
2368 static int
2369 pfm_bad_permissions(struct task_struct *task)
2371 const struct cred *tcred;
2372 kuid_t uid = current_uid();
2373 kgid_t gid = current_gid();
2374 int ret;
2376 rcu_read_lock();
2377 tcred = __task_cred(task);
2379 /* inspired by ptrace_attach() */
2380 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2381 from_kuid(&init_user_ns, uid),
2382 from_kgid(&init_user_ns, gid),
2383 from_kuid(&init_user_ns, tcred->euid),
2384 from_kuid(&init_user_ns, tcred->suid),
2385 from_kuid(&init_user_ns, tcred->uid),
2386 from_kgid(&init_user_ns, tcred->egid),
2387 from_kgid(&init_user_ns, tcred->sgid)));
2389 ret = ((!uid_eq(uid, tcred->euid))
2390 || (!uid_eq(uid, tcred->suid))
2391 || (!uid_eq(uid, tcred->uid))
2392 || (!gid_eq(gid, tcred->egid))
2393 || (!gid_eq(gid, tcred->sgid))
2394 || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2396 rcu_read_unlock();
2397 return ret;
2400 static int
2401 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2403 int ctx_flags;
2405 /* valid signal */
2407 ctx_flags = pfx->ctx_flags;
2409 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2412 * cannot block in this mode
2414 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2415 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2416 return -EINVAL;
2418 } else {
2420 /* probably more to add here */
2422 return 0;
2425 static int
2426 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2427 unsigned int cpu, pfarg_context_t *arg)
2429 pfm_buffer_fmt_t *fmt = NULL;
2430 unsigned long size = 0UL;
2431 void *uaddr = NULL;
2432 void *fmt_arg = NULL;
2433 int ret = 0;
2434 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2436 /* invoke and lock buffer format, if found */
2437 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2438 if (fmt == NULL) {
2439 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2440 return -EINVAL;
2444 * buffer argument MUST be contiguous to pfarg_context_t
2446 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2448 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2450 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2452 if (ret) goto error;
2454 /* link buffer format and context */
2455 ctx->ctx_buf_fmt = fmt;
2456 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2459 * check if buffer format wants to use perfmon buffer allocation/mapping service
2461 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2462 if (ret) goto error;
2464 if (size) {
2466 * buffer is always remapped into the caller's address space
2468 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2469 if (ret) goto error;
2471 /* keep track of user address of buffer */
2472 arg->ctx_smpl_vaddr = uaddr;
2474 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2476 error:
2477 return ret;
2480 static void
2481 pfm_reset_pmu_state(pfm_context_t *ctx)
2483 int i;
2486 * install reset values for PMC.
2488 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2489 if (PMC_IS_IMPL(i) == 0) continue;
2490 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2491 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2494 * PMD registers are set to 0UL when the context in memset()
2498 * On context switched restore, we must restore ALL pmc and ALL pmd even
2499 * when they are not actively used by the task. In UP, the incoming process
2500 * may otherwise pick up left over PMC, PMD state from the previous process.
2501 * As opposed to PMD, stale PMC can cause harm to the incoming
2502 * process because they may change what is being measured.
2503 * Therefore, we must systematically reinstall the entire
2504 * PMC state. In SMP, the same thing is possible on the
2505 * same CPU but also on between 2 CPUs.
2507 * The problem with PMD is information leaking especially
2508 * to user level when psr.sp=0
2510 * There is unfortunately no easy way to avoid this problem
2511 * on either UP or SMP. This definitively slows down the
2512 * pfm_load_regs() function.
2516 * bitmask of all PMCs accessible to this context
2518 * PMC0 is treated differently.
2520 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2523 * bitmask of all PMDs that are accessible to this context
2525 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2527 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2530 * useful in case of re-enable after disable
2532 ctx->ctx_used_ibrs[0] = 0UL;
2533 ctx->ctx_used_dbrs[0] = 0UL;
2536 static int
2537 pfm_ctx_getsize(void *arg, size_t *sz)
2539 pfarg_context_t *req = (pfarg_context_t *)arg;
2540 pfm_buffer_fmt_t *fmt;
2542 *sz = 0;
2544 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2546 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2547 if (fmt == NULL) {
2548 DPRINT(("cannot find buffer format\n"));
2549 return -EINVAL;
2551 /* get just enough to copy in user parameters */
2552 *sz = fmt->fmt_arg_size;
2553 DPRINT(("arg_size=%lu\n", *sz));
2555 return 0;
2561 * cannot attach if :
2562 * - kernel task
2563 * - task not owned by caller
2564 * - task incompatible with context mode
2566 static int
2567 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2570 * no kernel task or task not owner by caller
2572 if (task->mm == NULL) {
2573 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2574 return -EPERM;
2576 if (pfm_bad_permissions(task)) {
2577 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2578 return -EPERM;
2581 * cannot block in self-monitoring mode
2583 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2584 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2585 return -EINVAL;
2588 if (task->exit_state == EXIT_ZOMBIE) {
2589 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2590 return -EBUSY;
2594 * always ok for self
2596 if (task == current) return 0;
2598 if (!task_is_stopped_or_traced(task)) {
2599 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2600 return -EBUSY;
2603 * make sure the task is off any CPU
2605 wait_task_inactive(task, 0);
2607 /* more to come... */
2609 return 0;
2612 static int
2613 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2615 struct task_struct *p = current;
2616 int ret;
2618 /* XXX: need to add more checks here */
2619 if (pid < 2) return -EPERM;
2621 if (pid != task_pid_vnr(current)) {
2623 read_lock(&tasklist_lock);
2625 p = find_task_by_vpid(pid);
2627 /* make sure task cannot go away while we operate on it */
2628 if (p) get_task_struct(p);
2630 read_unlock(&tasklist_lock);
2632 if (p == NULL) return -ESRCH;
2635 ret = pfm_task_incompatible(ctx, p);
2636 if (ret == 0) {
2637 *task = p;
2638 } else if (p != current) {
2639 pfm_put_task(p);
2641 return ret;
2646 static int
2647 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2649 pfarg_context_t *req = (pfarg_context_t *)arg;
2650 struct file *filp;
2651 struct path path;
2652 int ctx_flags;
2653 int fd;
2654 int ret;
2656 /* let's check the arguments first */
2657 ret = pfarg_is_sane(current, req);
2658 if (ret < 0)
2659 return ret;
2661 ctx_flags = req->ctx_flags;
2663 ret = -ENOMEM;
2665 fd = get_unused_fd();
2666 if (fd < 0)
2667 return fd;
2669 ctx = pfm_context_alloc(ctx_flags);
2670 if (!ctx)
2671 goto error;
2673 filp = pfm_alloc_file(ctx);
2674 if (IS_ERR(filp)) {
2675 ret = PTR_ERR(filp);
2676 goto error_file;
2679 req->ctx_fd = ctx->ctx_fd = fd;
2682 * does the user want to sample?
2684 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2685 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2686 if (ret)
2687 goto buffer_error;
2690 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2691 ctx,
2692 ctx_flags,
2693 ctx->ctx_fl_system,
2694 ctx->ctx_fl_block,
2695 ctx->ctx_fl_excl_idle,
2696 ctx->ctx_fl_no_msg,
2697 ctx->ctx_fd));
2700 * initialize soft PMU state
2702 pfm_reset_pmu_state(ctx);
2704 fd_install(fd, filp);
2706 return 0;
2708 buffer_error:
2709 path = filp->f_path;
2710 put_filp(filp);
2711 path_put(&path);
2713 if (ctx->ctx_buf_fmt) {
2714 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2716 error_file:
2717 pfm_context_free(ctx);
2719 error:
2720 put_unused_fd(fd);
2721 return ret;
2724 static inline unsigned long
2725 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2727 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2728 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2729 extern unsigned long carta_random32 (unsigned long seed);
2731 if (reg->flags & PFM_REGFL_RANDOM) {
2732 new_seed = carta_random32(old_seed);
2733 val -= (old_seed & mask); /* counter values are negative numbers! */
2734 if ((mask >> 32) != 0)
2735 /* construct a full 64-bit random value: */
2736 new_seed |= carta_random32(old_seed >> 32) << 32;
2737 reg->seed = new_seed;
2739 reg->lval = val;
2740 return val;
2743 static void
2744 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2746 unsigned long mask = ovfl_regs[0];
2747 unsigned long reset_others = 0UL;
2748 unsigned long val;
2749 int i;
2752 * now restore reset value on sampling overflowed counters
2754 mask >>= PMU_FIRST_COUNTER;
2755 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2757 if ((mask & 0x1UL) == 0UL) continue;
2759 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2760 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2762 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2766 * Now take care of resetting the other registers
2768 for(i = 0; reset_others; i++, reset_others >>= 1) {
2770 if ((reset_others & 0x1) == 0) continue;
2772 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2774 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2775 is_long_reset ? "long" : "short", i, val));
2779 static void
2780 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2782 unsigned long mask = ovfl_regs[0];
2783 unsigned long reset_others = 0UL;
2784 unsigned long val;
2785 int i;
2787 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2789 if (ctx->ctx_state == PFM_CTX_MASKED) {
2790 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2791 return;
2795 * now restore reset value on sampling overflowed counters
2797 mask >>= PMU_FIRST_COUNTER;
2798 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2800 if ((mask & 0x1UL) == 0UL) continue;
2802 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2803 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2805 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2807 pfm_write_soft_counter(ctx, i, val);
2811 * Now take care of resetting the other registers
2813 for(i = 0; reset_others; i++, reset_others >>= 1) {
2815 if ((reset_others & 0x1) == 0) continue;
2817 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2819 if (PMD_IS_COUNTING(i)) {
2820 pfm_write_soft_counter(ctx, i, val);
2821 } else {
2822 ia64_set_pmd(i, val);
2824 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2825 is_long_reset ? "long" : "short", i, val));
2827 ia64_srlz_d();
2830 static int
2831 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2833 struct task_struct *task;
2834 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2835 unsigned long value, pmc_pm;
2836 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2837 unsigned int cnum, reg_flags, flags, pmc_type;
2838 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2839 int is_monitor, is_counting, state;
2840 int ret = -EINVAL;
2841 pfm_reg_check_t wr_func;
2842 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2844 state = ctx->ctx_state;
2845 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2846 is_system = ctx->ctx_fl_system;
2847 task = ctx->ctx_task;
2848 impl_pmds = pmu_conf->impl_pmds[0];
2850 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2852 if (is_loaded) {
2854 * In system wide and when the context is loaded, access can only happen
2855 * when the caller is running on the CPU being monitored by the session.
2856 * It does not have to be the owner (ctx_task) of the context per se.
2858 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2859 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2860 return -EBUSY;
2862 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2864 expert_mode = pfm_sysctl.expert_mode;
2866 for (i = 0; i < count; i++, req++) {
2868 cnum = req->reg_num;
2869 reg_flags = req->reg_flags;
2870 value = req->reg_value;
2871 smpl_pmds = req->reg_smpl_pmds[0];
2872 reset_pmds = req->reg_reset_pmds[0];
2873 flags = 0;
2876 if (cnum >= PMU_MAX_PMCS) {
2877 DPRINT(("pmc%u is invalid\n", cnum));
2878 goto error;
2881 pmc_type = pmu_conf->pmc_desc[cnum].type;
2882 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2883 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2884 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2887 * we reject all non implemented PMC as well
2888 * as attempts to modify PMC[0-3] which are used
2889 * as status registers by the PMU
2891 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2892 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2893 goto error;
2895 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2897 * If the PMC is a monitor, then if the value is not the default:
2898 * - system-wide session: PMCx.pm=1 (privileged monitor)
2899 * - per-task : PMCx.pm=0 (user monitor)
2901 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2902 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2903 cnum,
2904 pmc_pm,
2905 is_system));
2906 goto error;
2909 if (is_counting) {
2911 * enforce generation of overflow interrupt. Necessary on all
2912 * CPUs.
2914 value |= 1 << PMU_PMC_OI;
2916 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2917 flags |= PFM_REGFL_OVFL_NOTIFY;
2920 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2922 /* verify validity of smpl_pmds */
2923 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2924 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2925 goto error;
2928 /* verify validity of reset_pmds */
2929 if ((reset_pmds & impl_pmds) != reset_pmds) {
2930 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2931 goto error;
2933 } else {
2934 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2935 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2936 goto error;
2938 /* eventid on non-counting monitors are ignored */
2942 * execute write checker, if any
2944 if (likely(expert_mode == 0 && wr_func)) {
2945 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2946 if (ret) goto error;
2947 ret = -EINVAL;
2951 * no error on this register
2953 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2956 * Now we commit the changes to the software state
2960 * update overflow information
2962 if (is_counting) {
2964 * full flag update each time a register is programmed
2966 ctx->ctx_pmds[cnum].flags = flags;
2968 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2969 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2970 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2973 * Mark all PMDS to be accessed as used.
2975 * We do not keep track of PMC because we have to
2976 * systematically restore ALL of them.
2978 * We do not update the used_monitors mask, because
2979 * if we have not programmed them, then will be in
2980 * a quiescent state, therefore we will not need to
2981 * mask/restore then when context is MASKED.
2983 CTX_USED_PMD(ctx, reset_pmds);
2984 CTX_USED_PMD(ctx, smpl_pmds);
2986 * make sure we do not try to reset on
2987 * restart because we have established new values
2989 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2992 * Needed in case the user does not initialize the equivalent
2993 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2994 * possible leak here.
2996 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2999 * keep track of the monitor PMC that we are using.
3000 * we save the value of the pmc in ctx_pmcs[] and if
3001 * the monitoring is not stopped for the context we also
3002 * place it in the saved state area so that it will be
3003 * picked up later by the context switch code.
3005 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3007 * The value in th_pmcs[] may be modified on overflow, i.e., when
3008 * monitoring needs to be stopped.
3010 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3013 * update context state
3015 ctx->ctx_pmcs[cnum] = value;
3017 if (is_loaded) {
3019 * write thread state
3021 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3024 * write hardware register if we can
3026 if (can_access_pmu) {
3027 ia64_set_pmc(cnum, value);
3029 #ifdef CONFIG_SMP
3030 else {
3032 * per-task SMP only here
3034 * we are guaranteed that the task is not running on the other CPU,
3035 * we indicate that this PMD will need to be reloaded if the task
3036 * is rescheduled on the CPU it ran last on.
3038 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3040 #endif
3043 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3044 cnum,
3045 value,
3046 is_loaded,
3047 can_access_pmu,
3048 flags,
3049 ctx->ctx_all_pmcs[0],
3050 ctx->ctx_used_pmds[0],
3051 ctx->ctx_pmds[cnum].eventid,
3052 smpl_pmds,
3053 reset_pmds,
3054 ctx->ctx_reload_pmcs[0],
3055 ctx->ctx_used_monitors[0],
3056 ctx->ctx_ovfl_regs[0]));
3060 * make sure the changes are visible
3062 if (can_access_pmu) ia64_srlz_d();
3064 return 0;
3065 error:
3066 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3067 return ret;
3070 static int
3071 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3073 struct task_struct *task;
3074 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3075 unsigned long value, hw_value, ovfl_mask;
3076 unsigned int cnum;
3077 int i, can_access_pmu = 0, state;
3078 int is_counting, is_loaded, is_system, expert_mode;
3079 int ret = -EINVAL;
3080 pfm_reg_check_t wr_func;
3083 state = ctx->ctx_state;
3084 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3085 is_system = ctx->ctx_fl_system;
3086 ovfl_mask = pmu_conf->ovfl_val;
3087 task = ctx->ctx_task;
3089 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3092 * on both UP and SMP, we can only write to the PMC when the task is
3093 * the owner of the local PMU.
3095 if (likely(is_loaded)) {
3097 * In system wide and when the context is loaded, access can only happen
3098 * when the caller is running on the CPU being monitored by the session.
3099 * It does not have to be the owner (ctx_task) of the context per se.
3101 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3102 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3103 return -EBUSY;
3105 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3107 expert_mode = pfm_sysctl.expert_mode;
3109 for (i = 0; i < count; i++, req++) {
3111 cnum = req->reg_num;
3112 value = req->reg_value;
3114 if (!PMD_IS_IMPL(cnum)) {
3115 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3116 goto abort_mission;
3118 is_counting = PMD_IS_COUNTING(cnum);
3119 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3122 * execute write checker, if any
3124 if (unlikely(expert_mode == 0 && wr_func)) {
3125 unsigned long v = value;
3127 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3128 if (ret) goto abort_mission;
3130 value = v;
3131 ret = -EINVAL;
3135 * no error on this register
3137 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3140 * now commit changes to software state
3142 hw_value = value;
3145 * update virtualized (64bits) counter
3147 if (is_counting) {
3149 * write context state
3151 ctx->ctx_pmds[cnum].lval = value;
3154 * when context is load we use the split value
3156 if (is_loaded) {
3157 hw_value = value & ovfl_mask;
3158 value = value & ~ovfl_mask;
3162 * update reset values (not just for counters)
3164 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3165 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3168 * update randomization parameters (not just for counters)
3170 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3171 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3174 * update context value
3176 ctx->ctx_pmds[cnum].val = value;
3179 * Keep track of what we use
3181 * We do not keep track of PMC because we have to
3182 * systematically restore ALL of them.
3184 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3187 * mark this PMD register used as well
3189 CTX_USED_PMD(ctx, RDEP(cnum));
3192 * make sure we do not try to reset on
3193 * restart because we have established new values
3195 if (is_counting && state == PFM_CTX_MASKED) {
3196 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3199 if (is_loaded) {
3201 * write thread state
3203 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3206 * write hardware register if we can
3208 if (can_access_pmu) {
3209 ia64_set_pmd(cnum, hw_value);
3210 } else {
3211 #ifdef CONFIG_SMP
3213 * we are guaranteed that the task is not running on the other CPU,
3214 * we indicate that this PMD will need to be reloaded if the task
3215 * is rescheduled on the CPU it ran last on.
3217 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3218 #endif
3222 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3223 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3224 cnum,
3225 value,
3226 is_loaded,
3227 can_access_pmu,
3228 hw_value,
3229 ctx->ctx_pmds[cnum].val,
3230 ctx->ctx_pmds[cnum].short_reset,
3231 ctx->ctx_pmds[cnum].long_reset,
3232 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3233 ctx->ctx_pmds[cnum].seed,
3234 ctx->ctx_pmds[cnum].mask,
3235 ctx->ctx_used_pmds[0],
3236 ctx->ctx_pmds[cnum].reset_pmds[0],
3237 ctx->ctx_reload_pmds[0],
3238 ctx->ctx_all_pmds[0],
3239 ctx->ctx_ovfl_regs[0]));
3243 * make changes visible
3245 if (can_access_pmu) ia64_srlz_d();
3247 return 0;
3249 abort_mission:
3251 * for now, we have only one possibility for error
3253 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3254 return ret;
3258 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3259 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3260 * interrupt is delivered during the call, it will be kept pending until we leave, making
3261 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3262 * guaranteed to return consistent data to the user, it may simply be old. It is not
3263 * trivial to treat the overflow while inside the call because you may end up in
3264 * some module sampling buffer code causing deadlocks.
3266 static int
3267 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3269 struct task_struct *task;
3270 unsigned long val = 0UL, lval, ovfl_mask, sval;
3271 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3272 unsigned int cnum, reg_flags = 0;
3273 int i, can_access_pmu = 0, state;
3274 int is_loaded, is_system, is_counting, expert_mode;
3275 int ret = -EINVAL;
3276 pfm_reg_check_t rd_func;
3279 * access is possible when loaded only for
3280 * self-monitoring tasks or in UP mode
3283 state = ctx->ctx_state;
3284 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3285 is_system = ctx->ctx_fl_system;
3286 ovfl_mask = pmu_conf->ovfl_val;
3287 task = ctx->ctx_task;
3289 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3291 if (likely(is_loaded)) {
3293 * In system wide and when the context is loaded, access can only happen
3294 * when the caller is running on the CPU being monitored by the session.
3295 * It does not have to be the owner (ctx_task) of the context per se.
3297 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3298 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3299 return -EBUSY;
3302 * this can be true when not self-monitoring only in UP
3304 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3306 if (can_access_pmu) ia64_srlz_d();
3308 expert_mode = pfm_sysctl.expert_mode;
3310 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3311 is_loaded,
3312 can_access_pmu,
3313 state));
3316 * on both UP and SMP, we can only read the PMD from the hardware register when
3317 * the task is the owner of the local PMU.
3320 for (i = 0; i < count; i++, req++) {
3322 cnum = req->reg_num;
3323 reg_flags = req->reg_flags;
3325 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3327 * we can only read the register that we use. That includes
3328 * the one we explicitly initialize AND the one we want included
3329 * in the sampling buffer (smpl_regs).
3331 * Having this restriction allows optimization in the ctxsw routine
3332 * without compromising security (leaks)
3334 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3336 sval = ctx->ctx_pmds[cnum].val;
3337 lval = ctx->ctx_pmds[cnum].lval;
3338 is_counting = PMD_IS_COUNTING(cnum);
3341 * If the task is not the current one, then we check if the
3342 * PMU state is still in the local live register due to lazy ctxsw.
3343 * If true, then we read directly from the registers.
3345 if (can_access_pmu){
3346 val = ia64_get_pmd(cnum);
3347 } else {
3349 * context has been saved
3350 * if context is zombie, then task does not exist anymore.
3351 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3353 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3355 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3357 if (is_counting) {
3359 * XXX: need to check for overflow when loaded
3361 val &= ovfl_mask;
3362 val += sval;
3366 * execute read checker, if any
3368 if (unlikely(expert_mode == 0 && rd_func)) {
3369 unsigned long v = val;
3370 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3371 if (ret) goto error;
3372 val = v;
3373 ret = -EINVAL;
3376 PFM_REG_RETFLAG_SET(reg_flags, 0);
3378 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3381 * update register return value, abort all if problem during copy.
3382 * we only modify the reg_flags field. no check mode is fine because
3383 * access has been verified upfront in sys_perfmonctl().
3385 req->reg_value = val;
3386 req->reg_flags = reg_flags;
3387 req->reg_last_reset_val = lval;
3390 return 0;
3392 error:
3393 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3394 return ret;
3398 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3400 pfm_context_t *ctx;
3402 if (req == NULL) return -EINVAL;
3404 ctx = GET_PMU_CTX();
3406 if (ctx == NULL) return -EINVAL;
3409 * for now limit to current task, which is enough when calling
3410 * from overflow handler
3412 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3414 return pfm_write_pmcs(ctx, req, nreq, regs);
3416 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3419 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3421 pfm_context_t *ctx;
3423 if (req == NULL) return -EINVAL;
3425 ctx = GET_PMU_CTX();
3427 if (ctx == NULL) return -EINVAL;
3430 * for now limit to current task, which is enough when calling
3431 * from overflow handler
3433 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3435 return pfm_read_pmds(ctx, req, nreq, regs);
3437 EXPORT_SYMBOL(pfm_mod_read_pmds);
3440 * Only call this function when a process it trying to
3441 * write the debug registers (reading is always allowed)
3444 pfm_use_debug_registers(struct task_struct *task)
3446 pfm_context_t *ctx = task->thread.pfm_context;
3447 unsigned long flags;
3448 int ret = 0;
3450 if (pmu_conf->use_rr_dbregs == 0) return 0;
3452 DPRINT(("called for [%d]\n", task_pid_nr(task)));
3455 * do it only once
3457 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3460 * Even on SMP, we do not need to use an atomic here because
3461 * the only way in is via ptrace() and this is possible only when the
3462 * process is stopped. Even in the case where the ctxsw out is not totally
3463 * completed by the time we come here, there is no way the 'stopped' process
3464 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3465 * So this is always safe.
3467 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3469 LOCK_PFS(flags);
3472 * We cannot allow setting breakpoints when system wide monitoring
3473 * sessions are using the debug registers.
3475 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3476 ret = -1;
3477 else
3478 pfm_sessions.pfs_ptrace_use_dbregs++;
3480 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3481 pfm_sessions.pfs_ptrace_use_dbregs,
3482 pfm_sessions.pfs_sys_use_dbregs,
3483 task_pid_nr(task), ret));
3485 UNLOCK_PFS(flags);
3487 return ret;
3491 * This function is called for every task that exits with the
3492 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3493 * able to use the debug registers for debugging purposes via
3494 * ptrace(). Therefore we know it was not using them for
3495 * performance monitoring, so we only decrement the number
3496 * of "ptraced" debug register users to keep the count up to date
3499 pfm_release_debug_registers(struct task_struct *task)
3501 unsigned long flags;
3502 int ret;
3504 if (pmu_conf->use_rr_dbregs == 0) return 0;
3506 LOCK_PFS(flags);
3507 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3508 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3509 ret = -1;
3510 } else {
3511 pfm_sessions.pfs_ptrace_use_dbregs--;
3512 ret = 0;
3514 UNLOCK_PFS(flags);
3516 return ret;
3519 static int
3520 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3522 struct task_struct *task;
3523 pfm_buffer_fmt_t *fmt;
3524 pfm_ovfl_ctrl_t rst_ctrl;
3525 int state, is_system;
3526 int ret = 0;
3528 state = ctx->ctx_state;
3529 fmt = ctx->ctx_buf_fmt;
3530 is_system = ctx->ctx_fl_system;
3531 task = PFM_CTX_TASK(ctx);
3533 switch(state) {
3534 case PFM_CTX_MASKED:
3535 break;
3536 case PFM_CTX_LOADED:
3537 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3538 /* fall through */
3539 case PFM_CTX_UNLOADED:
3540 case PFM_CTX_ZOMBIE:
3541 DPRINT(("invalid state=%d\n", state));
3542 return -EBUSY;
3543 default:
3544 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3545 return -EINVAL;
3549 * In system wide and when the context is loaded, access can only happen
3550 * when the caller is running on the CPU being monitored by the session.
3551 * It does not have to be the owner (ctx_task) of the context per se.
3553 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3554 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3555 return -EBUSY;
3558 /* sanity check */
3559 if (unlikely(task == NULL)) {
3560 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3561 return -EINVAL;
3564 if (task == current || is_system) {
3566 fmt = ctx->ctx_buf_fmt;
3568 DPRINT(("restarting self %d ovfl=0x%lx\n",
3569 task_pid_nr(task),
3570 ctx->ctx_ovfl_regs[0]));
3572 if (CTX_HAS_SMPL(ctx)) {
3574 prefetch(ctx->ctx_smpl_hdr);
3576 rst_ctrl.bits.mask_monitoring = 0;
3577 rst_ctrl.bits.reset_ovfl_pmds = 0;
3579 if (state == PFM_CTX_LOADED)
3580 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3581 else
3582 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3583 } else {
3584 rst_ctrl.bits.mask_monitoring = 0;
3585 rst_ctrl.bits.reset_ovfl_pmds = 1;
3588 if (ret == 0) {
3589 if (rst_ctrl.bits.reset_ovfl_pmds)
3590 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3592 if (rst_ctrl.bits.mask_monitoring == 0) {
3593 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3595 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3596 } else {
3597 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3599 // cannot use pfm_stop_monitoring(task, regs);
3603 * clear overflowed PMD mask to remove any stale information
3605 ctx->ctx_ovfl_regs[0] = 0UL;
3608 * back to LOADED state
3610 ctx->ctx_state = PFM_CTX_LOADED;
3613 * XXX: not really useful for self monitoring
3615 ctx->ctx_fl_can_restart = 0;
3617 return 0;
3621 * restart another task
3625 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3626 * one is seen by the task.
3628 if (state == PFM_CTX_MASKED) {
3629 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3631 * will prevent subsequent restart before this one is
3632 * seen by other task
3634 ctx->ctx_fl_can_restart = 0;
3638 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3639 * the task is blocked or on its way to block. That's the normal
3640 * restart path. If the monitoring is not masked, then the task
3641 * can be actively monitoring and we cannot directly intervene.
3642 * Therefore we use the trap mechanism to catch the task and
3643 * force it to reset the buffer/reset PMDs.
3645 * if non-blocking, then we ensure that the task will go into
3646 * pfm_handle_work() before returning to user mode.
3648 * We cannot explicitly reset another task, it MUST always
3649 * be done by the task itself. This works for system wide because
3650 * the tool that is controlling the session is logically doing
3651 * "self-monitoring".
3653 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3654 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3655 complete(&ctx->ctx_restart_done);
3656 } else {
3657 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3659 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3661 PFM_SET_WORK_PENDING(task, 1);
3663 set_notify_resume(task);
3666 * XXX: send reschedule if task runs on another CPU
3669 return 0;
3672 static int
3673 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3675 unsigned int m = *(unsigned int *)arg;
3677 pfm_sysctl.debug = m == 0 ? 0 : 1;
3679 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3681 if (m == 0) {
3682 memset(pfm_stats, 0, sizeof(pfm_stats));
3683 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3685 return 0;
3689 * arg can be NULL and count can be zero for this function
3691 static int
3692 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3694 struct thread_struct *thread = NULL;
3695 struct task_struct *task;
3696 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3697 unsigned long flags;
3698 dbreg_t dbreg;
3699 unsigned int rnum;
3700 int first_time;
3701 int ret = 0, state;
3702 int i, can_access_pmu = 0;
3703 int is_system, is_loaded;
3705 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3707 state = ctx->ctx_state;
3708 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3709 is_system = ctx->ctx_fl_system;
3710 task = ctx->ctx_task;
3712 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3715 * on both UP and SMP, we can only write to the PMC when the task is
3716 * the owner of the local PMU.
3718 if (is_loaded) {
3719 thread = &task->thread;
3721 * In system wide and when the context is loaded, access can only happen
3722 * when the caller is running on the CPU being monitored by the session.
3723 * It does not have to be the owner (ctx_task) of the context per se.
3725 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3726 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3727 return -EBUSY;
3729 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3733 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3734 * ensuring that no real breakpoint can be installed via this call.
3736 * IMPORTANT: regs can be NULL in this function
3739 first_time = ctx->ctx_fl_using_dbreg == 0;
3742 * don't bother if we are loaded and task is being debugged
3744 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3745 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3746 return -EBUSY;
3750 * check for debug registers in system wide mode
3752 * If though a check is done in pfm_context_load(),
3753 * we must repeat it here, in case the registers are
3754 * written after the context is loaded
3756 if (is_loaded) {
3757 LOCK_PFS(flags);
3759 if (first_time && is_system) {
3760 if (pfm_sessions.pfs_ptrace_use_dbregs)
3761 ret = -EBUSY;
3762 else
3763 pfm_sessions.pfs_sys_use_dbregs++;
3765 UNLOCK_PFS(flags);
3768 if (ret != 0) return ret;
3771 * mark ourself as user of the debug registers for
3772 * perfmon purposes.
3774 ctx->ctx_fl_using_dbreg = 1;
3777 * clear hardware registers to make sure we don't
3778 * pick up stale state.
3780 * for a system wide session, we do not use
3781 * thread.dbr, thread.ibr because this process
3782 * never leaves the current CPU and the state
3783 * is shared by all processes running on it
3785 if (first_time && can_access_pmu) {
3786 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3787 for (i=0; i < pmu_conf->num_ibrs; i++) {
3788 ia64_set_ibr(i, 0UL);
3789 ia64_dv_serialize_instruction();
3791 ia64_srlz_i();
3792 for (i=0; i < pmu_conf->num_dbrs; i++) {
3793 ia64_set_dbr(i, 0UL);
3794 ia64_dv_serialize_data();
3796 ia64_srlz_d();
3800 * Now install the values into the registers
3802 for (i = 0; i < count; i++, req++) {
3804 rnum = req->dbreg_num;
3805 dbreg.val = req->dbreg_value;
3807 ret = -EINVAL;
3809 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3810 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3811 rnum, dbreg.val, mode, i, count));
3813 goto abort_mission;
3817 * make sure we do not install enabled breakpoint
3819 if (rnum & 0x1) {
3820 if (mode == PFM_CODE_RR)
3821 dbreg.ibr.ibr_x = 0;
3822 else
3823 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3826 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3829 * Debug registers, just like PMC, can only be modified
3830 * by a kernel call. Moreover, perfmon() access to those
3831 * registers are centralized in this routine. The hardware
3832 * does not modify the value of these registers, therefore,
3833 * if we save them as they are written, we can avoid having
3834 * to save them on context switch out. This is made possible
3835 * by the fact that when perfmon uses debug registers, ptrace()
3836 * won't be able to modify them concurrently.
3838 if (mode == PFM_CODE_RR) {
3839 CTX_USED_IBR(ctx, rnum);
3841 if (can_access_pmu) {
3842 ia64_set_ibr(rnum, dbreg.val);
3843 ia64_dv_serialize_instruction();
3846 ctx->ctx_ibrs[rnum] = dbreg.val;
3848 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3849 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3850 } else {
3851 CTX_USED_DBR(ctx, rnum);
3853 if (can_access_pmu) {
3854 ia64_set_dbr(rnum, dbreg.val);
3855 ia64_dv_serialize_data();
3857 ctx->ctx_dbrs[rnum] = dbreg.val;
3859 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3860 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3864 return 0;
3866 abort_mission:
3868 * in case it was our first attempt, we undo the global modifications
3870 if (first_time) {
3871 LOCK_PFS(flags);
3872 if (ctx->ctx_fl_system) {
3873 pfm_sessions.pfs_sys_use_dbregs--;
3875 UNLOCK_PFS(flags);
3876 ctx->ctx_fl_using_dbreg = 0;
3879 * install error return flag
3881 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3883 return ret;
3886 static int
3887 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3889 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3892 static int
3893 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3895 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3899 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3901 pfm_context_t *ctx;
3903 if (req == NULL) return -EINVAL;
3905 ctx = GET_PMU_CTX();
3907 if (ctx == NULL) return -EINVAL;
3910 * for now limit to current task, which is enough when calling
3911 * from overflow handler
3913 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3915 return pfm_write_ibrs(ctx, req, nreq, regs);
3917 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3920 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3922 pfm_context_t *ctx;
3924 if (req == NULL) return -EINVAL;
3926 ctx = GET_PMU_CTX();
3928 if (ctx == NULL) return -EINVAL;
3931 * for now limit to current task, which is enough when calling
3932 * from overflow handler
3934 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3936 return pfm_write_dbrs(ctx, req, nreq, regs);
3938 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3941 static int
3942 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3944 pfarg_features_t *req = (pfarg_features_t *)arg;
3946 req->ft_version = PFM_VERSION;
3947 return 0;
3950 static int
3951 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3953 struct pt_regs *tregs;
3954 struct task_struct *task = PFM_CTX_TASK(ctx);
3955 int state, is_system;
3957 state = ctx->ctx_state;
3958 is_system = ctx->ctx_fl_system;
3961 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3963 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3966 * In system wide and when the context is loaded, access can only happen
3967 * when the caller is running on the CPU being monitored by the session.
3968 * It does not have to be the owner (ctx_task) of the context per se.
3970 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3971 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3972 return -EBUSY;
3974 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3975 task_pid_nr(PFM_CTX_TASK(ctx)),
3976 state,
3977 is_system));
3979 * in system mode, we need to update the PMU directly
3980 * and the user level state of the caller, which may not
3981 * necessarily be the creator of the context.
3983 if (is_system) {
3985 * Update local PMU first
3987 * disable dcr pp
3989 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3990 ia64_srlz_i();
3993 * update local cpuinfo
3995 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3998 * stop monitoring, does srlz.i
4000 pfm_clear_psr_pp();
4003 * stop monitoring in the caller
4005 ia64_psr(regs)->pp = 0;
4007 return 0;
4010 * per-task mode
4013 if (task == current) {
4014 /* stop monitoring at kernel level */
4015 pfm_clear_psr_up();
4018 * stop monitoring at the user level
4020 ia64_psr(regs)->up = 0;
4021 } else {
4022 tregs = task_pt_regs(task);
4025 * stop monitoring at the user level
4027 ia64_psr(tregs)->up = 0;
4030 * monitoring disabled in kernel at next reschedule
4032 ctx->ctx_saved_psr_up = 0;
4033 DPRINT(("task=[%d]\n", task_pid_nr(task)));
4035 return 0;
4039 static int
4040 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4042 struct pt_regs *tregs;
4043 int state, is_system;
4045 state = ctx->ctx_state;
4046 is_system = ctx->ctx_fl_system;
4048 if (state != PFM_CTX_LOADED) return -EINVAL;
4051 * In system wide and when the context is loaded, access can only happen
4052 * when the caller is running on the CPU being monitored by the session.
4053 * It does not have to be the owner (ctx_task) of the context per se.
4055 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4056 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4057 return -EBUSY;
4061 * in system mode, we need to update the PMU directly
4062 * and the user level state of the caller, which may not
4063 * necessarily be the creator of the context.
4065 if (is_system) {
4068 * set user level psr.pp for the caller
4070 ia64_psr(regs)->pp = 1;
4073 * now update the local PMU and cpuinfo
4075 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4078 * start monitoring at kernel level
4080 pfm_set_psr_pp();
4082 /* enable dcr pp */
4083 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4084 ia64_srlz_i();
4086 return 0;
4090 * per-process mode
4093 if (ctx->ctx_task == current) {
4095 /* start monitoring at kernel level */
4096 pfm_set_psr_up();
4099 * activate monitoring at user level
4101 ia64_psr(regs)->up = 1;
4103 } else {
4104 tregs = task_pt_regs(ctx->ctx_task);
4107 * start monitoring at the kernel level the next
4108 * time the task is scheduled
4110 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4113 * activate monitoring at user level
4115 ia64_psr(tregs)->up = 1;
4117 return 0;
4120 static int
4121 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4123 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4124 unsigned int cnum;
4125 int i;
4126 int ret = -EINVAL;
4128 for (i = 0; i < count; i++, req++) {
4130 cnum = req->reg_num;
4132 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4134 req->reg_value = PMC_DFL_VAL(cnum);
4136 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4138 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4140 return 0;
4142 abort_mission:
4143 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4144 return ret;
4147 static int
4148 pfm_check_task_exist(pfm_context_t *ctx)
4150 struct task_struct *g, *t;
4151 int ret = -ESRCH;
4153 read_lock(&tasklist_lock);
4155 do_each_thread (g, t) {
4156 if (t->thread.pfm_context == ctx) {
4157 ret = 0;
4158 goto out;
4160 } while_each_thread (g, t);
4161 out:
4162 read_unlock(&tasklist_lock);
4164 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4166 return ret;
4169 static int
4170 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4172 struct task_struct *task;
4173 struct thread_struct *thread;
4174 struct pfm_context_t *old;
4175 unsigned long flags;
4176 #ifndef CONFIG_SMP
4177 struct task_struct *owner_task = NULL;
4178 #endif
4179 pfarg_load_t *req = (pfarg_load_t *)arg;
4180 unsigned long *pmcs_source, *pmds_source;
4181 int the_cpu;
4182 int ret = 0;
4183 int state, is_system, set_dbregs = 0;
4185 state = ctx->ctx_state;
4186 is_system = ctx->ctx_fl_system;
4188 * can only load from unloaded or terminated state
4190 if (state != PFM_CTX_UNLOADED) {
4191 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4192 req->load_pid,
4193 ctx->ctx_state));
4194 return -EBUSY;
4197 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4199 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4200 DPRINT(("cannot use blocking mode on self\n"));
4201 return -EINVAL;
4204 ret = pfm_get_task(ctx, req->load_pid, &task);
4205 if (ret) {
4206 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4207 return ret;
4210 ret = -EINVAL;
4213 * system wide is self monitoring only
4215 if (is_system && task != current) {
4216 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4217 req->load_pid));
4218 goto error;
4221 thread = &task->thread;
4223 ret = 0;
4225 * cannot load a context which is using range restrictions,
4226 * into a task that is being debugged.
4228 if (ctx->ctx_fl_using_dbreg) {
4229 if (thread->flags & IA64_THREAD_DBG_VALID) {
4230 ret = -EBUSY;
4231 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4232 goto error;
4234 LOCK_PFS(flags);
4236 if (is_system) {
4237 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4238 DPRINT(("cannot load [%d] dbregs in use\n",
4239 task_pid_nr(task)));
4240 ret = -EBUSY;
4241 } else {
4242 pfm_sessions.pfs_sys_use_dbregs++;
4243 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4244 set_dbregs = 1;
4248 UNLOCK_PFS(flags);
4250 if (ret) goto error;
4254 * SMP system-wide monitoring implies self-monitoring.
4256 * The programming model expects the task to
4257 * be pinned on a CPU throughout the session.
4258 * Here we take note of the current CPU at the
4259 * time the context is loaded. No call from
4260 * another CPU will be allowed.
4262 * The pinning via shed_setaffinity()
4263 * must be done by the calling task prior
4264 * to this call.
4266 * systemwide: keep track of CPU this session is supposed to run on
4268 the_cpu = ctx->ctx_cpu = smp_processor_id();
4270 ret = -EBUSY;
4272 * now reserve the session
4274 ret = pfm_reserve_session(current, is_system, the_cpu);
4275 if (ret) goto error;
4278 * task is necessarily stopped at this point.
4280 * If the previous context was zombie, then it got removed in
4281 * pfm_save_regs(). Therefore we should not see it here.
4282 * If we see a context, then this is an active context
4284 * XXX: needs to be atomic
4286 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4287 thread->pfm_context, ctx));
4289 ret = -EBUSY;
4290 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4291 if (old != NULL) {
4292 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4293 goto error_unres;
4296 pfm_reset_msgq(ctx);
4298 ctx->ctx_state = PFM_CTX_LOADED;
4301 * link context to task
4303 ctx->ctx_task = task;
4305 if (is_system) {
4307 * we load as stopped
4309 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4310 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4312 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4313 } else {
4314 thread->flags |= IA64_THREAD_PM_VALID;
4318 * propagate into thread-state
4320 pfm_copy_pmds(task, ctx);
4321 pfm_copy_pmcs(task, ctx);
4323 pmcs_source = ctx->th_pmcs;
4324 pmds_source = ctx->th_pmds;
4327 * always the case for system-wide
4329 if (task == current) {
4331 if (is_system == 0) {
4333 /* allow user level control */
4334 ia64_psr(regs)->sp = 0;
4335 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4337 SET_LAST_CPU(ctx, smp_processor_id());
4338 INC_ACTIVATION();
4339 SET_ACTIVATION(ctx);
4340 #ifndef CONFIG_SMP
4342 * push the other task out, if any
4344 owner_task = GET_PMU_OWNER();
4345 if (owner_task) pfm_lazy_save_regs(owner_task);
4346 #endif
4349 * load all PMD from ctx to PMU (as opposed to thread state)
4350 * restore all PMC from ctx to PMU
4352 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4353 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4355 ctx->ctx_reload_pmcs[0] = 0UL;
4356 ctx->ctx_reload_pmds[0] = 0UL;
4359 * guaranteed safe by earlier check against DBG_VALID
4361 if (ctx->ctx_fl_using_dbreg) {
4362 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4363 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4366 * set new ownership
4368 SET_PMU_OWNER(task, ctx);
4370 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4371 } else {
4373 * when not current, task MUST be stopped, so this is safe
4375 regs = task_pt_regs(task);
4377 /* force a full reload */
4378 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4379 SET_LAST_CPU(ctx, -1);
4381 /* initial saved psr (stopped) */
4382 ctx->ctx_saved_psr_up = 0UL;
4383 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4386 ret = 0;
4388 error_unres:
4389 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4390 error:
4392 * we must undo the dbregs setting (for system-wide)
4394 if (ret && set_dbregs) {
4395 LOCK_PFS(flags);
4396 pfm_sessions.pfs_sys_use_dbregs--;
4397 UNLOCK_PFS(flags);
4400 * release task, there is now a link with the context
4402 if (is_system == 0 && task != current) {
4403 pfm_put_task(task);
4405 if (ret == 0) {
4406 ret = pfm_check_task_exist(ctx);
4407 if (ret) {
4408 ctx->ctx_state = PFM_CTX_UNLOADED;
4409 ctx->ctx_task = NULL;
4413 return ret;
4417 * in this function, we do not need to increase the use count
4418 * for the task via get_task_struct(), because we hold the
4419 * context lock. If the task were to disappear while having
4420 * a context attached, it would go through pfm_exit_thread()
4421 * which also grabs the context lock and would therefore be blocked
4422 * until we are here.
4424 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4426 static int
4427 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4429 struct task_struct *task = PFM_CTX_TASK(ctx);
4430 struct pt_regs *tregs;
4431 int prev_state, is_system;
4432 int ret;
4434 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4436 prev_state = ctx->ctx_state;
4437 is_system = ctx->ctx_fl_system;
4440 * unload only when necessary
4442 if (prev_state == PFM_CTX_UNLOADED) {
4443 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4444 return 0;
4448 * clear psr and dcr bits
4450 ret = pfm_stop(ctx, NULL, 0, regs);
4451 if (ret) return ret;
4453 ctx->ctx_state = PFM_CTX_UNLOADED;
4456 * in system mode, we need to update the PMU directly
4457 * and the user level state of the caller, which may not
4458 * necessarily be the creator of the context.
4460 if (is_system) {
4463 * Update cpuinfo
4465 * local PMU is taken care of in pfm_stop()
4467 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4468 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4471 * save PMDs in context
4472 * release ownership
4474 pfm_flush_pmds(current, ctx);
4477 * at this point we are done with the PMU
4478 * so we can unreserve the resource.
4480 if (prev_state != PFM_CTX_ZOMBIE)
4481 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4484 * disconnect context from task
4486 task->thread.pfm_context = NULL;
4488 * disconnect task from context
4490 ctx->ctx_task = NULL;
4493 * There is nothing more to cleanup here.
4495 return 0;
4499 * per-task mode
4501 tregs = task == current ? regs : task_pt_regs(task);
4503 if (task == current) {
4505 * cancel user level control
4507 ia64_psr(regs)->sp = 1;
4509 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4512 * save PMDs to context
4513 * release ownership
4515 pfm_flush_pmds(task, ctx);
4518 * at this point we are done with the PMU
4519 * so we can unreserve the resource.
4521 * when state was ZOMBIE, we have already unreserved.
4523 if (prev_state != PFM_CTX_ZOMBIE)
4524 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4527 * reset activation counter and psr
4529 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4530 SET_LAST_CPU(ctx, -1);
4533 * PMU state will not be restored
4535 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4538 * break links between context and task
4540 task->thread.pfm_context = NULL;
4541 ctx->ctx_task = NULL;
4543 PFM_SET_WORK_PENDING(task, 0);
4545 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4546 ctx->ctx_fl_can_restart = 0;
4547 ctx->ctx_fl_going_zombie = 0;
4549 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4551 return 0;
4556 * called only from exit_thread(): task == current
4557 * we come here only if current has a context attached (loaded or masked)
4559 void
4560 pfm_exit_thread(struct task_struct *task)
4562 pfm_context_t *ctx;
4563 unsigned long flags;
4564 struct pt_regs *regs = task_pt_regs(task);
4565 int ret, state;
4566 int free_ok = 0;
4568 ctx = PFM_GET_CTX(task);
4570 PROTECT_CTX(ctx, flags);
4572 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4574 state = ctx->ctx_state;
4575 switch(state) {
4576 case PFM_CTX_UNLOADED:
4578 * only comes to this function if pfm_context is not NULL, i.e., cannot
4579 * be in unloaded state
4581 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4582 break;
4583 case PFM_CTX_LOADED:
4584 case PFM_CTX_MASKED:
4585 ret = pfm_context_unload(ctx, NULL, 0, regs);
4586 if (ret) {
4587 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4589 DPRINT(("ctx unloaded for current state was %d\n", state));
4591 pfm_end_notify_user(ctx);
4592 break;
4593 case PFM_CTX_ZOMBIE:
4594 ret = pfm_context_unload(ctx, NULL, 0, regs);
4595 if (ret) {
4596 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4598 free_ok = 1;
4599 break;
4600 default:
4601 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4602 break;
4604 UNPROTECT_CTX(ctx, flags);
4606 { u64 psr = pfm_get_psr();
4607 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4608 BUG_ON(GET_PMU_OWNER());
4609 BUG_ON(ia64_psr(regs)->up);
4610 BUG_ON(ia64_psr(regs)->pp);
4614 * All memory free operations (especially for vmalloc'ed memory)
4615 * MUST be done with interrupts ENABLED.
4617 if (free_ok) pfm_context_free(ctx);
4621 * functions MUST be listed in the increasing order of their index (see permfon.h)
4623 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4624 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4625 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4626 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4627 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4629 static pfm_cmd_desc_t pfm_cmd_tab[]={
4630 /* 0 */PFM_CMD_NONE,
4631 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4632 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4633 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4634 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4635 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4636 /* 6 */PFM_CMD_NONE,
4637 /* 7 */PFM_CMD_NONE,
4638 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4639 /* 9 */PFM_CMD_NONE,
4640 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4641 /* 11 */PFM_CMD_NONE,
4642 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4643 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4644 /* 14 */PFM_CMD_NONE,
4645 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4646 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4647 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4648 /* 18 */PFM_CMD_NONE,
4649 /* 19 */PFM_CMD_NONE,
4650 /* 20 */PFM_CMD_NONE,
4651 /* 21 */PFM_CMD_NONE,
4652 /* 22 */PFM_CMD_NONE,
4653 /* 23 */PFM_CMD_NONE,
4654 /* 24 */PFM_CMD_NONE,
4655 /* 25 */PFM_CMD_NONE,
4656 /* 26 */PFM_CMD_NONE,
4657 /* 27 */PFM_CMD_NONE,
4658 /* 28 */PFM_CMD_NONE,
4659 /* 29 */PFM_CMD_NONE,
4660 /* 30 */PFM_CMD_NONE,
4661 /* 31 */PFM_CMD_NONE,
4662 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4663 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4665 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4667 static int
4668 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4670 struct task_struct *task;
4671 int state, old_state;
4673 recheck:
4674 state = ctx->ctx_state;
4675 task = ctx->ctx_task;
4677 if (task == NULL) {
4678 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4679 return 0;
4682 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4683 ctx->ctx_fd,
4684 state,
4685 task_pid_nr(task),
4686 task->state, PFM_CMD_STOPPED(cmd)));
4689 * self-monitoring always ok.
4691 * for system-wide the caller can either be the creator of the
4692 * context (to one to which the context is attached to) OR
4693 * a task running on the same CPU as the session.
4695 if (task == current || ctx->ctx_fl_system) return 0;
4698 * we are monitoring another thread
4700 switch(state) {
4701 case PFM_CTX_UNLOADED:
4703 * if context is UNLOADED we are safe to go
4705 return 0;
4706 case PFM_CTX_ZOMBIE:
4708 * no command can operate on a zombie context
4710 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4711 return -EINVAL;
4712 case PFM_CTX_MASKED:
4714 * PMU state has been saved to software even though
4715 * the thread may still be running.
4717 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4721 * context is LOADED or MASKED. Some commands may need to have
4722 * the task stopped.
4724 * We could lift this restriction for UP but it would mean that
4725 * the user has no guarantee the task would not run between
4726 * two successive calls to perfmonctl(). That's probably OK.
4727 * If this user wants to ensure the task does not run, then
4728 * the task must be stopped.
4730 if (PFM_CMD_STOPPED(cmd)) {
4731 if (!task_is_stopped_or_traced(task)) {
4732 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4733 return -EBUSY;
4736 * task is now stopped, wait for ctxsw out
4738 * This is an interesting point in the code.
4739 * We need to unprotect the context because
4740 * the pfm_save_regs() routines needs to grab
4741 * the same lock. There are danger in doing
4742 * this because it leaves a window open for
4743 * another task to get access to the context
4744 * and possibly change its state. The one thing
4745 * that is not possible is for the context to disappear
4746 * because we are protected by the VFS layer, i.e.,
4747 * get_fd()/put_fd().
4749 old_state = state;
4751 UNPROTECT_CTX(ctx, flags);
4753 wait_task_inactive(task, 0);
4755 PROTECT_CTX(ctx, flags);
4758 * we must recheck to verify if state has changed
4760 if (ctx->ctx_state != old_state) {
4761 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4762 goto recheck;
4765 return 0;
4769 * system-call entry point (must return long)
4771 asmlinkage long
4772 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4774 struct fd f = {NULL, 0};
4775 pfm_context_t *ctx = NULL;
4776 unsigned long flags = 0UL;
4777 void *args_k = NULL;
4778 long ret; /* will expand int return types */
4779 size_t base_sz, sz, xtra_sz = 0;
4780 int narg, completed_args = 0, call_made = 0, cmd_flags;
4781 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4782 int (*getsize)(void *arg, size_t *sz);
4783 #define PFM_MAX_ARGSIZE 4096
4786 * reject any call if perfmon was disabled at initialization
4788 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4790 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4791 DPRINT(("invalid cmd=%d\n", cmd));
4792 return -EINVAL;
4795 func = pfm_cmd_tab[cmd].cmd_func;
4796 narg = pfm_cmd_tab[cmd].cmd_narg;
4797 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4798 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4799 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4801 if (unlikely(func == NULL)) {
4802 DPRINT(("invalid cmd=%d\n", cmd));
4803 return -EINVAL;
4806 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4807 PFM_CMD_NAME(cmd),
4808 cmd,
4809 narg,
4810 base_sz,
4811 count));
4814 * check if number of arguments matches what the command expects
4816 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4817 return -EINVAL;
4819 restart_args:
4820 sz = xtra_sz + base_sz*count;
4822 * limit abuse to min page size
4824 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4825 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4826 return -E2BIG;
4830 * allocate default-sized argument buffer
4832 if (likely(count && args_k == NULL)) {
4833 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4834 if (args_k == NULL) return -ENOMEM;
4837 ret = -EFAULT;
4840 * copy arguments
4842 * assume sz = 0 for command without parameters
4844 if (sz && copy_from_user(args_k, arg, sz)) {
4845 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4846 goto error_args;
4850 * check if command supports extra parameters
4852 if (completed_args == 0 && getsize) {
4854 * get extra parameters size (based on main argument)
4856 ret = (*getsize)(args_k, &xtra_sz);
4857 if (ret) goto error_args;
4859 completed_args = 1;
4861 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4863 /* retry if necessary */
4864 if (likely(xtra_sz)) goto restart_args;
4867 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4869 ret = -EBADF;
4871 f = fdget(fd);
4872 if (unlikely(f.file == NULL)) {
4873 DPRINT(("invalid fd %d\n", fd));
4874 goto error_args;
4876 if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4877 DPRINT(("fd %d not related to perfmon\n", fd));
4878 goto error_args;
4881 ctx = f.file->private_data;
4882 if (unlikely(ctx == NULL)) {
4883 DPRINT(("no context for fd %d\n", fd));
4884 goto error_args;
4886 prefetch(&ctx->ctx_state);
4888 PROTECT_CTX(ctx, flags);
4891 * check task is stopped
4893 ret = pfm_check_task_state(ctx, cmd, flags);
4894 if (unlikely(ret)) goto abort_locked;
4896 skip_fd:
4897 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4899 call_made = 1;
4901 abort_locked:
4902 if (likely(ctx)) {
4903 DPRINT(("context unlocked\n"));
4904 UNPROTECT_CTX(ctx, flags);
4907 /* copy argument back to user, if needed */
4908 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4910 error_args:
4911 if (f.file)
4912 fdput(f);
4914 kfree(args_k);
4916 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4918 return ret;
4921 static void
4922 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4924 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4925 pfm_ovfl_ctrl_t rst_ctrl;
4926 int state;
4927 int ret = 0;
4929 state = ctx->ctx_state;
4931 * Unlock sampling buffer and reset index atomically
4932 * XXX: not really needed when blocking
4934 if (CTX_HAS_SMPL(ctx)) {
4936 rst_ctrl.bits.mask_monitoring = 0;
4937 rst_ctrl.bits.reset_ovfl_pmds = 0;
4939 if (state == PFM_CTX_LOADED)
4940 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4941 else
4942 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4943 } else {
4944 rst_ctrl.bits.mask_monitoring = 0;
4945 rst_ctrl.bits.reset_ovfl_pmds = 1;
4948 if (ret == 0) {
4949 if (rst_ctrl.bits.reset_ovfl_pmds) {
4950 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4952 if (rst_ctrl.bits.mask_monitoring == 0) {
4953 DPRINT(("resuming monitoring\n"));
4954 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4955 } else {
4956 DPRINT(("stopping monitoring\n"));
4957 //pfm_stop_monitoring(current, regs);
4959 ctx->ctx_state = PFM_CTX_LOADED;
4964 * context MUST BE LOCKED when calling
4965 * can only be called for current
4967 static void
4968 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4970 int ret;
4972 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4974 ret = pfm_context_unload(ctx, NULL, 0, regs);
4975 if (ret) {
4976 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4980 * and wakeup controlling task, indicating we are now disconnected
4982 wake_up_interruptible(&ctx->ctx_zombieq);
4985 * given that context is still locked, the controlling
4986 * task will only get access when we return from
4987 * pfm_handle_work().
4991 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4994 * pfm_handle_work() can be called with interrupts enabled
4995 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4996 * call may sleep, therefore we must re-enable interrupts
4997 * to avoid deadlocks. It is safe to do so because this function
4998 * is called ONLY when returning to user level (pUStk=1), in which case
4999 * there is no risk of kernel stack overflow due to deep
5000 * interrupt nesting.
5002 void
5003 pfm_handle_work(void)
5005 pfm_context_t *ctx;
5006 struct pt_regs *regs;
5007 unsigned long flags, dummy_flags;
5008 unsigned long ovfl_regs;
5009 unsigned int reason;
5010 int ret;
5012 ctx = PFM_GET_CTX(current);
5013 if (ctx == NULL) {
5014 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5015 task_pid_nr(current));
5016 return;
5019 PROTECT_CTX(ctx, flags);
5021 PFM_SET_WORK_PENDING(current, 0);
5023 regs = task_pt_regs(current);
5026 * extract reason for being here and clear
5028 reason = ctx->ctx_fl_trap_reason;
5029 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5030 ovfl_regs = ctx->ctx_ovfl_regs[0];
5032 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5035 * must be done before we check for simple-reset mode
5037 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5038 goto do_zombie;
5040 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5041 if (reason == PFM_TRAP_REASON_RESET)
5042 goto skip_blocking;
5045 * restore interrupt mask to what it was on entry.
5046 * Could be enabled/diasbled.
5048 UNPROTECT_CTX(ctx, flags);
5051 * force interrupt enable because of down_interruptible()
5053 local_irq_enable();
5055 DPRINT(("before block sleeping\n"));
5058 * may go through without blocking on SMP systems
5059 * if restart has been received already by the time we call down()
5061 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5063 DPRINT(("after block sleeping ret=%d\n", ret));
5066 * lock context and mask interrupts again
5067 * We save flags into a dummy because we may have
5068 * altered interrupts mask compared to entry in this
5069 * function.
5071 PROTECT_CTX(ctx, dummy_flags);
5074 * we need to read the ovfl_regs only after wake-up
5075 * because we may have had pfm_write_pmds() in between
5076 * and that can changed PMD values and therefore
5077 * ovfl_regs is reset for these new PMD values.
5079 ovfl_regs = ctx->ctx_ovfl_regs[0];
5081 if (ctx->ctx_fl_going_zombie) {
5082 do_zombie:
5083 DPRINT(("context is zombie, bailing out\n"));
5084 pfm_context_force_terminate(ctx, regs);
5085 goto nothing_to_do;
5088 * in case of interruption of down() we don't restart anything
5090 if (ret < 0)
5091 goto nothing_to_do;
5093 skip_blocking:
5094 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5095 ctx->ctx_ovfl_regs[0] = 0UL;
5097 nothing_to_do:
5099 * restore flags as they were upon entry
5101 UNPROTECT_CTX(ctx, flags);
5104 static int
5105 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5107 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5108 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5109 return 0;
5112 DPRINT(("waking up somebody\n"));
5114 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5117 * safe, we are not in intr handler, nor in ctxsw when
5118 * we come here
5120 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5122 return 0;
5125 static int
5126 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5128 pfm_msg_t *msg = NULL;
5130 if (ctx->ctx_fl_no_msg == 0) {
5131 msg = pfm_get_new_msg(ctx);
5132 if (msg == NULL) {
5133 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5134 return -1;
5137 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5138 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5139 msg->pfm_ovfl_msg.msg_active_set = 0;
5140 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5141 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5142 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5143 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5144 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5147 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5148 msg,
5149 ctx->ctx_fl_no_msg,
5150 ctx->ctx_fd,
5151 ovfl_pmds));
5153 return pfm_notify_user(ctx, msg);
5156 static int
5157 pfm_end_notify_user(pfm_context_t *ctx)
5159 pfm_msg_t *msg;
5161 msg = pfm_get_new_msg(ctx);
5162 if (msg == NULL) {
5163 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5164 return -1;
5166 /* no leak */
5167 memset(msg, 0, sizeof(*msg));
5169 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5170 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5171 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5173 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5174 msg,
5175 ctx->ctx_fl_no_msg,
5176 ctx->ctx_fd));
5178 return pfm_notify_user(ctx, msg);
5182 * main overflow processing routine.
5183 * it can be called from the interrupt path or explicitly during the context switch code
5185 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5186 unsigned long pmc0, struct pt_regs *regs)
5188 pfm_ovfl_arg_t *ovfl_arg;
5189 unsigned long mask;
5190 unsigned long old_val, ovfl_val, new_val;
5191 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5192 unsigned long tstamp;
5193 pfm_ovfl_ctrl_t ovfl_ctrl;
5194 unsigned int i, has_smpl;
5195 int must_notify = 0;
5197 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5200 * sanity test. Should never happen
5202 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5204 tstamp = ia64_get_itc();
5205 mask = pmc0 >> PMU_FIRST_COUNTER;
5206 ovfl_val = pmu_conf->ovfl_val;
5207 has_smpl = CTX_HAS_SMPL(ctx);
5209 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5210 "used_pmds=0x%lx\n",
5211 pmc0,
5212 task ? task_pid_nr(task): -1,
5213 (regs ? regs->cr_iip : 0),
5214 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5215 ctx->ctx_used_pmds[0]));
5219 * first we update the virtual counters
5220 * assume there was a prior ia64_srlz_d() issued
5222 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5224 /* skip pmd which did not overflow */
5225 if ((mask & 0x1) == 0) continue;
5228 * Note that the pmd is not necessarily 0 at this point as qualified events
5229 * may have happened before the PMU was frozen. The residual count is not
5230 * taken into consideration here but will be with any read of the pmd via
5231 * pfm_read_pmds().
5233 old_val = new_val = ctx->ctx_pmds[i].val;
5234 new_val += 1 + ovfl_val;
5235 ctx->ctx_pmds[i].val = new_val;
5238 * check for overflow condition
5240 if (likely(old_val > new_val)) {
5241 ovfl_pmds |= 1UL << i;
5242 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5245 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5247 new_val,
5248 old_val,
5249 ia64_get_pmd(i) & ovfl_val,
5250 ovfl_pmds,
5251 ovfl_notify));
5255 * there was no 64-bit overflow, nothing else to do
5257 if (ovfl_pmds == 0UL) return;
5260 * reset all control bits
5262 ovfl_ctrl.val = 0;
5263 reset_pmds = 0UL;
5266 * if a sampling format module exists, then we "cache" the overflow by
5267 * calling the module's handler() routine.
5269 if (has_smpl) {
5270 unsigned long start_cycles, end_cycles;
5271 unsigned long pmd_mask;
5272 int j, k, ret = 0;
5273 int this_cpu = smp_processor_id();
5275 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5276 ovfl_arg = &ctx->ctx_ovfl_arg;
5278 prefetch(ctx->ctx_smpl_hdr);
5280 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5282 mask = 1UL << i;
5284 if ((pmd_mask & 0x1) == 0) continue;
5286 ovfl_arg->ovfl_pmd = (unsigned char )i;
5287 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5288 ovfl_arg->active_set = 0;
5289 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5290 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5292 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5293 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5294 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5297 * copy values of pmds of interest. Sampling format may copy them
5298 * into sampling buffer.
5300 if (smpl_pmds) {
5301 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5302 if ((smpl_pmds & 0x1) == 0) continue;
5303 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5304 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5308 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5310 start_cycles = ia64_get_itc();
5313 * call custom buffer format record (handler) routine
5315 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5317 end_cycles = ia64_get_itc();
5320 * For those controls, we take the union because they have
5321 * an all or nothing behavior.
5323 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5324 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5325 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5327 * build the bitmask of pmds to reset now
5329 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5331 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5334 * when the module cannot handle the rest of the overflows, we abort right here
5336 if (ret && pmd_mask) {
5337 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5338 pmd_mask<<PMU_FIRST_COUNTER));
5341 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5343 ovfl_pmds &= ~reset_pmds;
5344 } else {
5346 * when no sampling module is used, then the default
5347 * is to notify on overflow if requested by user
5349 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5350 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5351 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5352 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5354 * if needed, we reset all overflowed pmds
5356 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5359 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5362 * reset the requested PMD registers using the short reset values
5364 if (reset_pmds) {
5365 unsigned long bm = reset_pmds;
5366 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5369 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5371 * keep track of what to reset when unblocking
5373 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5376 * check for blocking context
5378 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5380 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5383 * set the perfmon specific checking pending work for the task
5385 PFM_SET_WORK_PENDING(task, 1);
5388 * when coming from ctxsw, current still points to the
5389 * previous task, therefore we must work with task and not current.
5391 set_notify_resume(task);
5394 * defer until state is changed (shorten spin window). the context is locked
5395 * anyway, so the signal receiver would come spin for nothing.
5397 must_notify = 1;
5400 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5401 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5402 PFM_GET_WORK_PENDING(task),
5403 ctx->ctx_fl_trap_reason,
5404 ovfl_pmds,
5405 ovfl_notify,
5406 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5408 * in case monitoring must be stopped, we toggle the psr bits
5410 if (ovfl_ctrl.bits.mask_monitoring) {
5411 pfm_mask_monitoring(task);
5412 ctx->ctx_state = PFM_CTX_MASKED;
5413 ctx->ctx_fl_can_restart = 1;
5417 * send notification now
5419 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5421 return;
5423 sanity_check:
5424 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5425 smp_processor_id(),
5426 task ? task_pid_nr(task) : -1,
5427 pmc0);
5428 return;
5430 stop_monitoring:
5432 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5433 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5434 * come here as zombie only if the task is the current task. In which case, we
5435 * can access the PMU hardware directly.
5437 * Note that zombies do have PM_VALID set. So here we do the minimal.
5439 * In case the context was zombified it could not be reclaimed at the time
5440 * the monitoring program exited. At this point, the PMU reservation has been
5441 * returned, the sampiing buffer has been freed. We must convert this call
5442 * into a spurious interrupt. However, we must also avoid infinite overflows
5443 * by stopping monitoring for this task. We can only come here for a per-task
5444 * context. All we need to do is to stop monitoring using the psr bits which
5445 * are always task private. By re-enabling secure montioring, we ensure that
5446 * the monitored task will not be able to re-activate monitoring.
5447 * The task will eventually be context switched out, at which point the context
5448 * will be reclaimed (that includes releasing ownership of the PMU).
5450 * So there might be a window of time where the number of per-task session is zero
5451 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5452 * context. This is safe because if a per-task session comes in, it will push this one
5453 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5454 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5455 * also push our zombie context out.
5457 * Overall pretty hairy stuff....
5459 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5460 pfm_clear_psr_up();
5461 ia64_psr(regs)->up = 0;
5462 ia64_psr(regs)->sp = 1;
5463 return;
5466 static int
5467 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5469 struct task_struct *task;
5470 pfm_context_t *ctx;
5471 unsigned long flags;
5472 u64 pmc0;
5473 int this_cpu = smp_processor_id();
5474 int retval = 0;
5476 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5479 * srlz.d done before arriving here
5481 pmc0 = ia64_get_pmc(0);
5483 task = GET_PMU_OWNER();
5484 ctx = GET_PMU_CTX();
5487 * if we have some pending bits set
5488 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5490 if (PMC0_HAS_OVFL(pmc0) && task) {
5492 * we assume that pmc0.fr is always set here
5495 /* sanity check */
5496 if (!ctx) goto report_spurious1;
5498 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5499 goto report_spurious2;
5501 PROTECT_CTX_NOPRINT(ctx, flags);
5503 pfm_overflow_handler(task, ctx, pmc0, regs);
5505 UNPROTECT_CTX_NOPRINT(ctx, flags);
5507 } else {
5508 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5509 retval = -1;
5512 * keep it unfrozen at all times
5514 pfm_unfreeze_pmu();
5516 return retval;
5518 report_spurious1:
5519 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5520 this_cpu, task_pid_nr(task));
5521 pfm_unfreeze_pmu();
5522 return -1;
5523 report_spurious2:
5524 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5525 this_cpu,
5526 task_pid_nr(task));
5527 pfm_unfreeze_pmu();
5528 return -1;
5531 static irqreturn_t
5532 pfm_interrupt_handler(int irq, void *arg)
5534 unsigned long start_cycles, total_cycles;
5535 unsigned long min, max;
5536 int this_cpu;
5537 int ret;
5538 struct pt_regs *regs = get_irq_regs();
5540 this_cpu = get_cpu();
5541 if (likely(!pfm_alt_intr_handler)) {
5542 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5543 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5545 start_cycles = ia64_get_itc();
5547 ret = pfm_do_interrupt_handler(arg, regs);
5549 total_cycles = ia64_get_itc();
5552 * don't measure spurious interrupts
5554 if (likely(ret == 0)) {
5555 total_cycles -= start_cycles;
5557 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5558 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5560 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5563 else {
5564 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5567 put_cpu();
5568 return IRQ_HANDLED;
5572 * /proc/perfmon interface, for debug only
5575 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5577 static void *
5578 pfm_proc_start(struct seq_file *m, loff_t *pos)
5580 if (*pos == 0) {
5581 return PFM_PROC_SHOW_HEADER;
5584 while (*pos <= nr_cpu_ids) {
5585 if (cpu_online(*pos - 1)) {
5586 return (void *)*pos;
5588 ++*pos;
5590 return NULL;
5593 static void *
5594 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5596 ++*pos;
5597 return pfm_proc_start(m, pos);
5600 static void
5601 pfm_proc_stop(struct seq_file *m, void *v)
5605 static void
5606 pfm_proc_show_header(struct seq_file *m)
5608 struct list_head * pos;
5609 pfm_buffer_fmt_t * entry;
5610 unsigned long flags;
5612 seq_printf(m,
5613 "perfmon version : %u.%u\n"
5614 "model : %s\n"
5615 "fastctxsw : %s\n"
5616 "expert mode : %s\n"
5617 "ovfl_mask : 0x%lx\n"
5618 "PMU flags : 0x%x\n",
5619 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5620 pmu_conf->pmu_name,
5621 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5622 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5623 pmu_conf->ovfl_val,
5624 pmu_conf->flags);
5626 LOCK_PFS(flags);
5628 seq_printf(m,
5629 "proc_sessions : %u\n"
5630 "sys_sessions : %u\n"
5631 "sys_use_dbregs : %u\n"
5632 "ptrace_use_dbregs : %u\n",
5633 pfm_sessions.pfs_task_sessions,
5634 pfm_sessions.pfs_sys_sessions,
5635 pfm_sessions.pfs_sys_use_dbregs,
5636 pfm_sessions.pfs_ptrace_use_dbregs);
5638 UNLOCK_PFS(flags);
5640 spin_lock(&pfm_buffer_fmt_lock);
5642 list_for_each(pos, &pfm_buffer_fmt_list) {
5643 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5644 seq_printf(m, "format : %16phD %s\n",
5645 entry->fmt_uuid, entry->fmt_name);
5647 spin_unlock(&pfm_buffer_fmt_lock);
5651 static int
5652 pfm_proc_show(struct seq_file *m, void *v)
5654 unsigned long psr;
5655 unsigned int i;
5656 int cpu;
5658 if (v == PFM_PROC_SHOW_HEADER) {
5659 pfm_proc_show_header(m);
5660 return 0;
5663 /* show info for CPU (v - 1) */
5665 cpu = (long)v - 1;
5666 seq_printf(m,
5667 "CPU%-2d overflow intrs : %lu\n"
5668 "CPU%-2d overflow cycles : %lu\n"
5669 "CPU%-2d overflow min : %lu\n"
5670 "CPU%-2d overflow max : %lu\n"
5671 "CPU%-2d smpl handler calls : %lu\n"
5672 "CPU%-2d smpl handler cycles : %lu\n"
5673 "CPU%-2d spurious intrs : %lu\n"
5674 "CPU%-2d replay intrs : %lu\n"
5675 "CPU%-2d syst_wide : %d\n"
5676 "CPU%-2d dcr_pp : %d\n"
5677 "CPU%-2d exclude idle : %d\n"
5678 "CPU%-2d owner : %d\n"
5679 "CPU%-2d context : %p\n"
5680 "CPU%-2d activations : %lu\n",
5681 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5682 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5683 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5684 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5685 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5686 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5687 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5688 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5689 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5690 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5691 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5692 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5693 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5694 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5696 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5698 psr = pfm_get_psr();
5700 ia64_srlz_d();
5702 seq_printf(m,
5703 "CPU%-2d psr : 0x%lx\n"
5704 "CPU%-2d pmc0 : 0x%lx\n",
5705 cpu, psr,
5706 cpu, ia64_get_pmc(0));
5708 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5709 if (PMC_IS_COUNTING(i) == 0) continue;
5710 seq_printf(m,
5711 "CPU%-2d pmc%u : 0x%lx\n"
5712 "CPU%-2d pmd%u : 0x%lx\n",
5713 cpu, i, ia64_get_pmc(i),
5714 cpu, i, ia64_get_pmd(i));
5717 return 0;
5720 const struct seq_operations pfm_seq_ops = {
5721 .start = pfm_proc_start,
5722 .next = pfm_proc_next,
5723 .stop = pfm_proc_stop,
5724 .show = pfm_proc_show
5727 static int
5728 pfm_proc_open(struct inode *inode, struct file *file)
5730 return seq_open(file, &pfm_seq_ops);
5735 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5736 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5737 * is active or inactive based on mode. We must rely on the value in
5738 * local_cpu_data->pfm_syst_info
5740 void
5741 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5743 struct pt_regs *regs;
5744 unsigned long dcr;
5745 unsigned long dcr_pp;
5747 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5750 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5751 * on every CPU, so we can rely on the pid to identify the idle task.
5753 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5754 regs = task_pt_regs(task);
5755 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5756 return;
5759 * if monitoring has started
5761 if (dcr_pp) {
5762 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5764 * context switching in?
5766 if (is_ctxswin) {
5767 /* mask monitoring for the idle task */
5768 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5769 pfm_clear_psr_pp();
5770 ia64_srlz_i();
5771 return;
5774 * context switching out
5775 * restore monitoring for next task
5777 * Due to inlining this odd if-then-else construction generates
5778 * better code.
5780 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5781 pfm_set_psr_pp();
5782 ia64_srlz_i();
5786 #ifdef CONFIG_SMP
5788 static void
5789 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5791 struct task_struct *task = ctx->ctx_task;
5793 ia64_psr(regs)->up = 0;
5794 ia64_psr(regs)->sp = 1;
5796 if (GET_PMU_OWNER() == task) {
5797 DPRINT(("cleared ownership for [%d]\n",
5798 task_pid_nr(ctx->ctx_task)));
5799 SET_PMU_OWNER(NULL, NULL);
5803 * disconnect the task from the context and vice-versa
5805 PFM_SET_WORK_PENDING(task, 0);
5807 task->thread.pfm_context = NULL;
5808 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5810 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5815 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5817 void
5818 pfm_save_regs(struct task_struct *task)
5820 pfm_context_t *ctx;
5821 unsigned long flags;
5822 u64 psr;
5825 ctx = PFM_GET_CTX(task);
5826 if (ctx == NULL) return;
5829 * we always come here with interrupts ALREADY disabled by
5830 * the scheduler. So we simply need to protect against concurrent
5831 * access, not CPU concurrency.
5833 flags = pfm_protect_ctx_ctxsw(ctx);
5835 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5836 struct pt_regs *regs = task_pt_regs(task);
5838 pfm_clear_psr_up();
5840 pfm_force_cleanup(ctx, regs);
5842 BUG_ON(ctx->ctx_smpl_hdr);
5844 pfm_unprotect_ctx_ctxsw(ctx, flags);
5846 pfm_context_free(ctx);
5847 return;
5851 * save current PSR: needed because we modify it
5853 ia64_srlz_d();
5854 psr = pfm_get_psr();
5856 BUG_ON(psr & (IA64_PSR_I));
5859 * stop monitoring:
5860 * This is the last instruction which may generate an overflow
5862 * We do not need to set psr.sp because, it is irrelevant in kernel.
5863 * It will be restored from ipsr when going back to user level
5865 pfm_clear_psr_up();
5868 * keep a copy of psr.up (for reload)
5870 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5873 * release ownership of this PMU.
5874 * PM interrupts are masked, so nothing
5875 * can happen.
5877 SET_PMU_OWNER(NULL, NULL);
5880 * we systematically save the PMD as we have no
5881 * guarantee we will be schedule at that same
5882 * CPU again.
5884 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5887 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5888 * we will need it on the restore path to check
5889 * for pending overflow.
5891 ctx->th_pmcs[0] = ia64_get_pmc(0);
5894 * unfreeze PMU if had pending overflows
5896 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5899 * finally, allow context access.
5900 * interrupts will still be masked after this call.
5902 pfm_unprotect_ctx_ctxsw(ctx, flags);
5905 #else /* !CONFIG_SMP */
5906 void
5907 pfm_save_regs(struct task_struct *task)
5909 pfm_context_t *ctx;
5910 u64 psr;
5912 ctx = PFM_GET_CTX(task);
5913 if (ctx == NULL) return;
5916 * save current PSR: needed because we modify it
5918 psr = pfm_get_psr();
5920 BUG_ON(psr & (IA64_PSR_I));
5923 * stop monitoring:
5924 * This is the last instruction which may generate an overflow
5926 * We do not need to set psr.sp because, it is irrelevant in kernel.
5927 * It will be restored from ipsr when going back to user level
5929 pfm_clear_psr_up();
5932 * keep a copy of psr.up (for reload)
5934 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5937 static void
5938 pfm_lazy_save_regs (struct task_struct *task)
5940 pfm_context_t *ctx;
5941 unsigned long flags;
5943 { u64 psr = pfm_get_psr();
5944 BUG_ON(psr & IA64_PSR_UP);
5947 ctx = PFM_GET_CTX(task);
5950 * we need to mask PMU overflow here to
5951 * make sure that we maintain pmc0 until
5952 * we save it. overflow interrupts are
5953 * treated as spurious if there is no
5954 * owner.
5956 * XXX: I don't think this is necessary
5958 PROTECT_CTX(ctx,flags);
5961 * release ownership of this PMU.
5962 * must be done before we save the registers.
5964 * after this call any PMU interrupt is treated
5965 * as spurious.
5967 SET_PMU_OWNER(NULL, NULL);
5970 * save all the pmds we use
5972 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5975 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5976 * it is needed to check for pended overflow
5977 * on the restore path
5979 ctx->th_pmcs[0] = ia64_get_pmc(0);
5982 * unfreeze PMU if had pending overflows
5984 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5987 * now get can unmask PMU interrupts, they will
5988 * be treated as purely spurious and we will not
5989 * lose any information
5991 UNPROTECT_CTX(ctx,flags);
5993 #endif /* CONFIG_SMP */
5995 #ifdef CONFIG_SMP
5997 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5999 void
6000 pfm_load_regs (struct task_struct *task)
6002 pfm_context_t *ctx;
6003 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6004 unsigned long flags;
6005 u64 psr, psr_up;
6006 int need_irq_resend;
6008 ctx = PFM_GET_CTX(task);
6009 if (unlikely(ctx == NULL)) return;
6011 BUG_ON(GET_PMU_OWNER());
6014 * possible on unload
6016 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6019 * we always come here with interrupts ALREADY disabled by
6020 * the scheduler. So we simply need to protect against concurrent
6021 * access, not CPU concurrency.
6023 flags = pfm_protect_ctx_ctxsw(ctx);
6024 psr = pfm_get_psr();
6026 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6028 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6029 BUG_ON(psr & IA64_PSR_I);
6031 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6032 struct pt_regs *regs = task_pt_regs(task);
6034 BUG_ON(ctx->ctx_smpl_hdr);
6036 pfm_force_cleanup(ctx, regs);
6038 pfm_unprotect_ctx_ctxsw(ctx, flags);
6041 * this one (kmalloc'ed) is fine with interrupts disabled
6043 pfm_context_free(ctx);
6045 return;
6049 * we restore ALL the debug registers to avoid picking up
6050 * stale state.
6052 if (ctx->ctx_fl_using_dbreg) {
6053 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6054 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6057 * retrieve saved psr.up
6059 psr_up = ctx->ctx_saved_psr_up;
6062 * if we were the last user of the PMU on that CPU,
6063 * then nothing to do except restore psr
6065 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6068 * retrieve partial reload masks (due to user modifications)
6070 pmc_mask = ctx->ctx_reload_pmcs[0];
6071 pmd_mask = ctx->ctx_reload_pmds[0];
6073 } else {
6075 * To avoid leaking information to the user level when psr.sp=0,
6076 * we must reload ALL implemented pmds (even the ones we don't use).
6077 * In the kernel we only allow PFM_READ_PMDS on registers which
6078 * we initialized or requested (sampling) so there is no risk there.
6080 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6083 * ALL accessible PMCs are systematically reloaded, unused registers
6084 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6085 * up stale configuration.
6087 * PMC0 is never in the mask. It is always restored separately.
6089 pmc_mask = ctx->ctx_all_pmcs[0];
6092 * when context is MASKED, we will restore PMC with plm=0
6093 * and PMD with stale information, but that's ok, nothing
6094 * will be captured.
6096 * XXX: optimize here
6098 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6099 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6102 * check for pending overflow at the time the state
6103 * was saved.
6105 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6107 * reload pmc0 with the overflow information
6108 * On McKinley PMU, this will trigger a PMU interrupt
6110 ia64_set_pmc(0, ctx->th_pmcs[0]);
6111 ia64_srlz_d();
6112 ctx->th_pmcs[0] = 0UL;
6115 * will replay the PMU interrupt
6117 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6119 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6123 * we just did a reload, so we reset the partial reload fields
6125 ctx->ctx_reload_pmcs[0] = 0UL;
6126 ctx->ctx_reload_pmds[0] = 0UL;
6128 SET_LAST_CPU(ctx, smp_processor_id());
6131 * dump activation value for this PMU
6133 INC_ACTIVATION();
6135 * record current activation for this context
6137 SET_ACTIVATION(ctx);
6140 * establish new ownership.
6142 SET_PMU_OWNER(task, ctx);
6145 * restore the psr.up bit. measurement
6146 * is active again.
6147 * no PMU interrupt can happen at this point
6148 * because we still have interrupts disabled.
6150 if (likely(psr_up)) pfm_set_psr_up();
6153 * allow concurrent access to context
6155 pfm_unprotect_ctx_ctxsw(ctx, flags);
6157 #else /* !CONFIG_SMP */
6159 * reload PMU state for UP kernels
6160 * in 2.5 we come here with interrupts disabled
6162 void
6163 pfm_load_regs (struct task_struct *task)
6165 pfm_context_t *ctx;
6166 struct task_struct *owner;
6167 unsigned long pmd_mask, pmc_mask;
6168 u64 psr, psr_up;
6169 int need_irq_resend;
6171 owner = GET_PMU_OWNER();
6172 ctx = PFM_GET_CTX(task);
6173 psr = pfm_get_psr();
6175 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6176 BUG_ON(psr & IA64_PSR_I);
6179 * we restore ALL the debug registers to avoid picking up
6180 * stale state.
6182 * This must be done even when the task is still the owner
6183 * as the registers may have been modified via ptrace()
6184 * (not perfmon) by the previous task.
6186 if (ctx->ctx_fl_using_dbreg) {
6187 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6188 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6192 * retrieved saved psr.up
6194 psr_up = ctx->ctx_saved_psr_up;
6195 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6198 * short path, our state is still there, just
6199 * need to restore psr and we go
6201 * we do not touch either PMC nor PMD. the psr is not touched
6202 * by the overflow_handler. So we are safe w.r.t. to interrupt
6203 * concurrency even without interrupt masking.
6205 if (likely(owner == task)) {
6206 if (likely(psr_up)) pfm_set_psr_up();
6207 return;
6211 * someone else is still using the PMU, first push it out and
6212 * then we'll be able to install our stuff !
6214 * Upon return, there will be no owner for the current PMU
6216 if (owner) pfm_lazy_save_regs(owner);
6219 * To avoid leaking information to the user level when psr.sp=0,
6220 * we must reload ALL implemented pmds (even the ones we don't use).
6221 * In the kernel we only allow PFM_READ_PMDS on registers which
6222 * we initialized or requested (sampling) so there is no risk there.
6224 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6227 * ALL accessible PMCs are systematically reloaded, unused registers
6228 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6229 * up stale configuration.
6231 * PMC0 is never in the mask. It is always restored separately
6233 pmc_mask = ctx->ctx_all_pmcs[0];
6235 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6236 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6239 * check for pending overflow at the time the state
6240 * was saved.
6242 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6244 * reload pmc0 with the overflow information
6245 * On McKinley PMU, this will trigger a PMU interrupt
6247 ia64_set_pmc(0, ctx->th_pmcs[0]);
6248 ia64_srlz_d();
6250 ctx->th_pmcs[0] = 0UL;
6253 * will replay the PMU interrupt
6255 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6257 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6261 * establish new ownership.
6263 SET_PMU_OWNER(task, ctx);
6266 * restore the psr.up bit. measurement
6267 * is active again.
6268 * no PMU interrupt can happen at this point
6269 * because we still have interrupts disabled.
6271 if (likely(psr_up)) pfm_set_psr_up();
6273 #endif /* CONFIG_SMP */
6276 * this function assumes monitoring is stopped
6278 static void
6279 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6281 u64 pmc0;
6282 unsigned long mask2, val, pmd_val, ovfl_val;
6283 int i, can_access_pmu = 0;
6284 int is_self;
6287 * is the caller the task being monitored (or which initiated the
6288 * session for system wide measurements)
6290 is_self = ctx->ctx_task == task ? 1 : 0;
6293 * can access PMU is task is the owner of the PMU state on the current CPU
6294 * or if we are running on the CPU bound to the context in system-wide mode
6295 * (that is not necessarily the task the context is attached to in this mode).
6296 * In system-wide we always have can_access_pmu true because a task running on an
6297 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6299 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6300 if (can_access_pmu) {
6302 * Mark the PMU as not owned
6303 * This will cause the interrupt handler to do nothing in case an overflow
6304 * interrupt was in-flight
6305 * This also guarantees that pmc0 will contain the final state
6306 * It virtually gives us full control on overflow processing from that point
6307 * on.
6309 SET_PMU_OWNER(NULL, NULL);
6310 DPRINT(("releasing ownership\n"));
6313 * read current overflow status:
6315 * we are guaranteed to read the final stable state
6317 ia64_srlz_d();
6318 pmc0 = ia64_get_pmc(0); /* slow */
6321 * reset freeze bit, overflow status information destroyed
6323 pfm_unfreeze_pmu();
6324 } else {
6325 pmc0 = ctx->th_pmcs[0];
6327 * clear whatever overflow status bits there were
6329 ctx->th_pmcs[0] = 0;
6331 ovfl_val = pmu_conf->ovfl_val;
6333 * we save all the used pmds
6334 * we take care of overflows for counting PMDs
6336 * XXX: sampling situation is not taken into account here
6338 mask2 = ctx->ctx_used_pmds[0];
6340 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6342 for (i = 0; mask2; i++, mask2>>=1) {
6344 /* skip non used pmds */
6345 if ((mask2 & 0x1) == 0) continue;
6348 * can access PMU always true in system wide mode
6350 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6352 if (PMD_IS_COUNTING(i)) {
6353 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6354 task_pid_nr(task),
6356 ctx->ctx_pmds[i].val,
6357 val & ovfl_val));
6360 * we rebuild the full 64 bit value of the counter
6362 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6365 * now everything is in ctx_pmds[] and we need
6366 * to clear the saved context from save_regs() such that
6367 * pfm_read_pmds() gets the correct value
6369 pmd_val = 0UL;
6372 * take care of overflow inline
6374 if (pmc0 & (1UL << i)) {
6375 val += 1 + ovfl_val;
6376 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6380 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6382 if (is_self) ctx->th_pmds[i] = pmd_val;
6384 ctx->ctx_pmds[i].val = val;
6388 static struct irqaction perfmon_irqaction = {
6389 .handler = pfm_interrupt_handler,
6390 .flags = IRQF_DISABLED,
6391 .name = "perfmon"
6394 static void
6395 pfm_alt_save_pmu_state(void *data)
6397 struct pt_regs *regs;
6399 regs = task_pt_regs(current);
6401 DPRINT(("called\n"));
6404 * should not be necessary but
6405 * let's take not risk
6407 pfm_clear_psr_up();
6408 pfm_clear_psr_pp();
6409 ia64_psr(regs)->pp = 0;
6412 * This call is required
6413 * May cause a spurious interrupt on some processors
6415 pfm_freeze_pmu();
6417 ia64_srlz_d();
6420 void
6421 pfm_alt_restore_pmu_state(void *data)
6423 struct pt_regs *regs;
6425 regs = task_pt_regs(current);
6427 DPRINT(("called\n"));
6430 * put PMU back in state expected
6431 * by perfmon
6433 pfm_clear_psr_up();
6434 pfm_clear_psr_pp();
6435 ia64_psr(regs)->pp = 0;
6438 * perfmon runs with PMU unfrozen at all times
6440 pfm_unfreeze_pmu();
6442 ia64_srlz_d();
6446 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6448 int ret, i;
6449 int reserve_cpu;
6451 /* some sanity checks */
6452 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6454 /* do the easy test first */
6455 if (pfm_alt_intr_handler) return -EBUSY;
6457 /* one at a time in the install or remove, just fail the others */
6458 if (!spin_trylock(&pfm_alt_install_check)) {
6459 return -EBUSY;
6462 /* reserve our session */
6463 for_each_online_cpu(reserve_cpu) {
6464 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6465 if (ret) goto cleanup_reserve;
6468 /* save the current system wide pmu states */
6469 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6470 if (ret) {
6471 DPRINT(("on_each_cpu() failed: %d\n", ret));
6472 goto cleanup_reserve;
6475 /* officially change to the alternate interrupt handler */
6476 pfm_alt_intr_handler = hdl;
6478 spin_unlock(&pfm_alt_install_check);
6480 return 0;
6482 cleanup_reserve:
6483 for_each_online_cpu(i) {
6484 /* don't unreserve more than we reserved */
6485 if (i >= reserve_cpu) break;
6487 pfm_unreserve_session(NULL, 1, i);
6490 spin_unlock(&pfm_alt_install_check);
6492 return ret;
6494 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6497 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6499 int i;
6500 int ret;
6502 if (hdl == NULL) return -EINVAL;
6504 /* cannot remove someone else's handler! */
6505 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6507 /* one at a time in the install or remove, just fail the others */
6508 if (!spin_trylock(&pfm_alt_install_check)) {
6509 return -EBUSY;
6512 pfm_alt_intr_handler = NULL;
6514 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6515 if (ret) {
6516 DPRINT(("on_each_cpu() failed: %d\n", ret));
6519 for_each_online_cpu(i) {
6520 pfm_unreserve_session(NULL, 1, i);
6523 spin_unlock(&pfm_alt_install_check);
6525 return 0;
6527 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6530 * perfmon initialization routine, called from the initcall() table
6532 static int init_pfm_fs(void);
6534 static int __init
6535 pfm_probe_pmu(void)
6537 pmu_config_t **p;
6538 int family;
6540 family = local_cpu_data->family;
6541 p = pmu_confs;
6543 while(*p) {
6544 if ((*p)->probe) {
6545 if ((*p)->probe() == 0) goto found;
6546 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6547 goto found;
6549 p++;
6551 return -1;
6552 found:
6553 pmu_conf = *p;
6554 return 0;
6557 static const struct file_operations pfm_proc_fops = {
6558 .open = pfm_proc_open,
6559 .read = seq_read,
6560 .llseek = seq_lseek,
6561 .release = seq_release,
6564 int __init
6565 pfm_init(void)
6567 unsigned int n, n_counters, i;
6569 printk("perfmon: version %u.%u IRQ %u\n",
6570 PFM_VERSION_MAJ,
6571 PFM_VERSION_MIN,
6572 IA64_PERFMON_VECTOR);
6574 if (pfm_probe_pmu()) {
6575 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6576 local_cpu_data->family);
6577 return -ENODEV;
6581 * compute the number of implemented PMD/PMC from the
6582 * description tables
6584 n = 0;
6585 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6586 if (PMC_IS_IMPL(i) == 0) continue;
6587 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6588 n++;
6590 pmu_conf->num_pmcs = n;
6592 n = 0; n_counters = 0;
6593 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6594 if (PMD_IS_IMPL(i) == 0) continue;
6595 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6596 n++;
6597 if (PMD_IS_COUNTING(i)) n_counters++;
6599 pmu_conf->num_pmds = n;
6600 pmu_conf->num_counters = n_counters;
6603 * sanity checks on the number of debug registers
6605 if (pmu_conf->use_rr_dbregs) {
6606 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6607 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6608 pmu_conf = NULL;
6609 return -1;
6611 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6612 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6613 pmu_conf = NULL;
6614 return -1;
6618 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6619 pmu_conf->pmu_name,
6620 pmu_conf->num_pmcs,
6621 pmu_conf->num_pmds,
6622 pmu_conf->num_counters,
6623 ffz(pmu_conf->ovfl_val));
6625 /* sanity check */
6626 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6627 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6628 pmu_conf = NULL;
6629 return -1;
6633 * create /proc/perfmon (mostly for debugging purposes)
6635 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6636 if (perfmon_dir == NULL) {
6637 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6638 pmu_conf = NULL;
6639 return -1;
6643 * create /proc/sys/kernel/perfmon (for debugging purposes)
6645 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6648 * initialize all our spinlocks
6650 spin_lock_init(&pfm_sessions.pfs_lock);
6651 spin_lock_init(&pfm_buffer_fmt_lock);
6653 init_pfm_fs();
6655 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6657 return 0;
6660 __initcall(pfm_init);
6663 * this function is called before pfm_init()
6665 void
6666 pfm_init_percpu (void)
6668 static int first_time=1;
6670 * make sure no measurement is active
6671 * (may inherit programmed PMCs from EFI).
6673 pfm_clear_psr_pp();
6674 pfm_clear_psr_up();
6677 * we run with the PMU not frozen at all times
6679 pfm_unfreeze_pmu();
6681 if (first_time) {
6682 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6683 first_time=0;
6686 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6687 ia64_srlz_d();
6691 * used for debug purposes only
6693 void
6694 dump_pmu_state(const char *from)
6696 struct task_struct *task;
6697 struct pt_regs *regs;
6698 pfm_context_t *ctx;
6699 unsigned long psr, dcr, info, flags;
6700 int i, this_cpu;
6702 local_irq_save(flags);
6704 this_cpu = smp_processor_id();
6705 regs = task_pt_regs(current);
6706 info = PFM_CPUINFO_GET();
6707 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6709 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6710 local_irq_restore(flags);
6711 return;
6714 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6715 this_cpu,
6716 from,
6717 task_pid_nr(current),
6718 regs->cr_iip,
6719 current->comm);
6721 task = GET_PMU_OWNER();
6722 ctx = GET_PMU_CTX();
6724 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6726 psr = pfm_get_psr();
6728 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6729 this_cpu,
6730 ia64_get_pmc(0),
6731 psr & IA64_PSR_PP ? 1 : 0,
6732 psr & IA64_PSR_UP ? 1 : 0,
6733 dcr & IA64_DCR_PP ? 1 : 0,
6734 info,
6735 ia64_psr(regs)->up,
6736 ia64_psr(regs)->pp);
6738 ia64_psr(regs)->up = 0;
6739 ia64_psr(regs)->pp = 0;
6741 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6742 if (PMC_IS_IMPL(i) == 0) continue;
6743 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6746 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6747 if (PMD_IS_IMPL(i) == 0) continue;
6748 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6751 if (ctx) {
6752 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6753 this_cpu,
6754 ctx->ctx_state,
6755 ctx->ctx_smpl_vaddr,
6756 ctx->ctx_smpl_hdr,
6757 ctx->ctx_msgq_head,
6758 ctx->ctx_msgq_tail,
6759 ctx->ctx_saved_psr_up);
6761 local_irq_restore(flags);
6765 * called from process.c:copy_thread(). task is new child.
6767 void
6768 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6770 struct thread_struct *thread;
6772 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6774 thread = &task->thread;
6777 * cut links inherited from parent (current)
6779 thread->pfm_context = NULL;
6781 PFM_SET_WORK_PENDING(task, 0);
6784 * the psr bits are already set properly in copy_threads()
6787 #else /* !CONFIG_PERFMON */
6788 asmlinkage long
6789 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6791 return -ENOSYS;
6793 #endif /* CONFIG_PERFMON */