mtd: spi-nor: fsl-quadspi: reset the module in the probe
[linux-2.6/btrfs-unstable.git] / include / linux / netdevice.h
blobe20979dfd6a99688a696779b8952ab66bc143739
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the Interfaces handler.
8 * Version: @(#)dev.h 1.0.10 08/12/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
23 * Moved to /usr/include/linux for NET3
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69 #define NET_RX_DROP 1 /* packet dropped */
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS 0x00
90 #define NET_XMIT_DROP 0x01 /* skb dropped */
91 #define NET_XMIT_CN 0x02 /* congestion notification */
92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK 0xf0
104 enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110 typedef enum netdev_tx netdev_tx_t;
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 static inline bool dev_xmit_complete(int rc)
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
127 return false;
131 * Compute the worst case header length according to the protocols
132 * used.
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 # define LL_MAX_HEADER 128
138 # else
139 # define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
153 * Old network device statistics. Fields are native words
154 * (unsigned long) so they can be read and written atomically.
157 struct net_device_stats {
158 unsigned long rx_packets;
159 unsigned long tx_packets;
160 unsigned long rx_bytes;
161 unsigned long tx_bytes;
162 unsigned long rx_errors;
163 unsigned long tx_errors;
164 unsigned long rx_dropped;
165 unsigned long tx_dropped;
166 unsigned long multicast;
167 unsigned long collisions;
168 unsigned long rx_length_errors;
169 unsigned long rx_over_errors;
170 unsigned long rx_crc_errors;
171 unsigned long rx_frame_errors;
172 unsigned long rx_fifo_errors;
173 unsigned long rx_missed_errors;
174 unsigned long tx_aborted_errors;
175 unsigned long tx_carrier_errors;
176 unsigned long tx_fifo_errors;
177 unsigned long tx_heartbeat_errors;
178 unsigned long tx_window_errors;
179 unsigned long rx_compressed;
180 unsigned long tx_compressed;
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
196 struct netdev_hw_addr {
197 struct list_head list;
198 unsigned char addr[MAX_ADDR_LEN];
199 unsigned char type;
200 #define NETDEV_HW_ADDR_T_LAN 1
201 #define NETDEV_HW_ADDR_T_SAN 2
202 #define NETDEV_HW_ADDR_T_SLAVE 3
203 #define NETDEV_HW_ADDR_T_UNICAST 4
204 #define NETDEV_HW_ADDR_T_MULTICAST 5
205 bool global_use;
206 int sync_cnt;
207 int refcount;
208 int synced;
209 struct rcu_head rcu_head;
212 struct netdev_hw_addr_list {
213 struct list_head list;
214 int count;
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 list_for_each_entry(ha, &(l)->list, list)
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
232 struct hh_cache {
233 u16 hh_len;
234 u16 __pad;
235 seqlock_t hh_lock;
237 /* cached hardware header; allow for machine alignment needs. */
238 #define HH_DATA_MOD 16
239 #define HH_DATA_OFF(__len) \
240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247 * Alternative is:
248 * dev->hard_header_len ? (dev->hard_header_len +
249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
251 * We could use other alignment values, but we must maintain the
252 * relationship HH alignment <= LL alignment.
254 #define LL_RESERVED_SPACE(dev) \
255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
259 struct header_ops {
260 int (*create) (struct sk_buff *skb, struct net_device *dev,
261 unsigned short type, const void *daddr,
262 const void *saddr, unsigned int len);
263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 void (*cache_update)(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr);
270 /* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
275 enum netdev_state_t {
276 __LINK_STATE_START,
277 __LINK_STATE_PRESENT,
278 __LINK_STATE_NOCARRIER,
279 __LINK_STATE_LINKWATCH_PENDING,
280 __LINK_STATE_DORMANT,
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
288 struct netdev_boot_setup {
289 char name[IFNAMSIZ];
290 struct ifmap map;
292 #define NETDEV_BOOT_SETUP_MAX 8
294 int __init netdev_boot_setup(char *str);
297 * Structure for NAPI scheduling similar to tasklet but with weighting
299 struct napi_struct {
300 /* The poll_list must only be managed by the entity which
301 * changes the state of the NAPI_STATE_SCHED bit. This means
302 * whoever atomically sets that bit can add this napi_struct
303 * to the per-cpu poll_list, and whoever clears that bit
304 * can remove from the list right before clearing the bit.
306 struct list_head poll_list;
308 unsigned long state;
309 int weight;
310 unsigned int gro_count;
311 int (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 spinlock_t poll_lock;
314 int poll_owner;
315 #endif
316 struct net_device *dev;
317 struct sk_buff *gro_list;
318 struct sk_buff *skb;
319 struct hrtimer timer;
320 struct list_head dev_list;
321 struct hlist_node napi_hash_node;
322 unsigned int napi_id;
325 enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 NAPI_STATE_HASHED, /* In NAPI hash */
332 enum gro_result {
333 GRO_MERGED,
334 GRO_MERGED_FREE,
335 GRO_HELD,
336 GRO_NORMAL,
337 GRO_DROP,
339 typedef enum gro_result gro_result_t;
342 * enum rx_handler_result - Possible return values for rx_handlers.
343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344 * further.
345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346 * case skb->dev was changed by rx_handler.
347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
351 * special processing of the skb, prior to delivery to protocol handlers.
353 * Currently, a net_device can only have a single rx_handler registered. Trying
354 * to register a second rx_handler will return -EBUSY.
356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357 * To unregister a rx_handler on a net_device, use
358 * netdev_rx_handler_unregister().
360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361 * do with the skb.
363 * If the rx_handler consumed to skb in some way, it should return
364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365 * the skb to be delivered in some other ways.
367 * If the rx_handler changed skb->dev, to divert the skb to another
368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369 * new device will be called if it exists.
371 * If the rx_handler consider the skb should be ignored, it should return
372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373 * are registered on exact device (ptype->dev == skb->dev).
375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376 * delivered, it should return RX_HANDLER_PASS.
378 * A device without a registered rx_handler will behave as if rx_handler
379 * returned RX_HANDLER_PASS.
382 enum rx_handler_result {
383 RX_HANDLER_CONSUMED,
384 RX_HANDLER_ANOTHER,
385 RX_HANDLER_EXACT,
386 RX_HANDLER_PASS,
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
394 static inline bool napi_disable_pending(struct napi_struct *n)
396 return test_bit(NAPI_STATE_DISABLE, &n->state);
400 * napi_schedule_prep - check if napi can be scheduled
401 * @n: napi context
403 * Test if NAPI routine is already running, and if not mark
404 * it as running. This is used as a condition variable
405 * insure only one NAPI poll instance runs. We also make
406 * sure there is no pending NAPI disable.
408 static inline bool napi_schedule_prep(struct napi_struct *n)
410 return !napi_disable_pending(n) &&
411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415 * napi_schedule - schedule NAPI poll
416 * @n: napi context
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
421 static inline void napi_schedule(struct napi_struct *n)
423 if (napi_schedule_prep(n))
424 __napi_schedule(n);
428 * napi_schedule_irqoff - schedule NAPI poll
429 * @n: napi context
431 * Variant of napi_schedule(), assuming hard irqs are masked.
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
435 if (napi_schedule_prep(n))
436 __napi_schedule_irqoff(n);
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
440 static inline bool napi_reschedule(struct napi_struct *napi)
442 if (napi_schedule_prep(napi)) {
443 __napi_schedule(napi);
444 return true;
446 return false;
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
452 * napi_complete - NAPI processing complete
453 * @n: napi context
455 * Mark NAPI processing as complete.
456 * Consider using napi_complete_done() instead.
458 static inline void napi_complete(struct napi_struct *n)
460 return napi_complete_done(n, 0);
464 * napi_by_id - lookup a NAPI by napi_id
465 * @napi_id: hashed napi_id
467 * lookup @napi_id in napi_hash table
468 * must be called under rcu_read_lock()
470 struct napi_struct *napi_by_id(unsigned int napi_id);
473 * napi_hash_add - add a NAPI to global hashtable
474 * @napi: napi context
476 * generate a new napi_id and store a @napi under it in napi_hash
478 void napi_hash_add(struct napi_struct *napi);
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: napi context
484 * Warning: caller must observe rcu grace period
485 * before freeing memory containing @napi
487 void napi_hash_del(struct napi_struct *napi);
490 * napi_disable - prevent NAPI from scheduling
491 * @n: napi context
493 * Stop NAPI from being scheduled on this context.
494 * Waits till any outstanding processing completes.
496 void napi_disable(struct napi_struct *n);
499 * napi_enable - enable NAPI scheduling
500 * @n: napi context
502 * Resume NAPI from being scheduled on this context.
503 * Must be paired with napi_disable.
505 static inline void napi_enable(struct napi_struct *n)
507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 smp_mb__before_atomic();
509 clear_bit(NAPI_STATE_SCHED, &n->state);
512 #ifdef CONFIG_SMP
514 * napi_synchronize - wait until NAPI is not running
515 * @n: napi context
517 * Wait until NAPI is done being scheduled on this context.
518 * Waits till any outstanding processing completes but
519 * does not disable future activations.
521 static inline void napi_synchronize(const struct napi_struct *n)
523 while (test_bit(NAPI_STATE_SCHED, &n->state))
524 msleep(1);
526 #else
527 # define napi_synchronize(n) barrier()
528 #endif
530 enum netdev_queue_state_t {
531 __QUEUE_STATE_DRV_XOFF,
532 __QUEUE_STATE_STACK_XOFF,
533 __QUEUE_STATE_FROZEN,
536 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
540 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 QUEUE_STATE_FROZEN)
547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
548 * netif_tx_* functions below are used to manipulate this flag. The
549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550 * queue independently. The netif_xmit_*stopped functions below are called
551 * to check if the queue has been stopped by the driver or stack (either
552 * of the XOFF bits are set in the state). Drivers should not need to call
553 * netif_xmit*stopped functions, they should only be using netif_tx_*.
556 struct netdev_queue {
558 * read mostly part
560 struct net_device *dev;
561 struct Qdisc __rcu *qdisc;
562 struct Qdisc *qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 struct kobject kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 int numa_node;
568 #endif
570 * write mostly part
572 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
573 int xmit_lock_owner;
575 * please use this field instead of dev->trans_start
577 unsigned long trans_start;
580 * Number of TX timeouts for this queue
581 * (/sys/class/net/DEV/Q/trans_timeout)
583 unsigned long trans_timeout;
585 unsigned long state;
587 #ifdef CONFIG_BQL
588 struct dql dql;
589 #endif
590 unsigned long tx_maxrate;
591 } ____cacheline_aligned_in_smp;
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 return q->numa_node;
597 #else
598 return NUMA_NO_NODE;
599 #endif
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 q->numa_node = node;
606 #endif
609 #ifdef CONFIG_RPS
611 * This structure holds an RPS map which can be of variable length. The
612 * map is an array of CPUs.
614 struct rps_map {
615 unsigned int len;
616 struct rcu_head rcu;
617 u16 cpus[0];
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623 * tail pointer for that CPU's input queue at the time of last enqueue, and
624 * a hardware filter index.
626 struct rps_dev_flow {
627 u16 cpu;
628 u16 filter;
629 unsigned int last_qtail;
631 #define RPS_NO_FILTER 0xffff
634 * The rps_dev_flow_table structure contains a table of flow mappings.
636 struct rps_dev_flow_table {
637 unsigned int mask;
638 struct rcu_head rcu;
639 struct rps_dev_flow flows[0];
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642 ((_num) * sizeof(struct rps_dev_flow)))
645 * The rps_sock_flow_table contains mappings of flows to the last CPU
646 * on which they were processed by the application (set in recvmsg).
647 * Each entry is a 32bit value. Upper part is the high order bits
648 * of flow hash, lower part is cpu number.
649 * rps_cpu_mask is used to partition the space, depending on number of
650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652 * meaning we use 32-6=26 bits for the hash.
654 struct rps_sock_flow_table {
655 u32 mask;
657 u32 ents[0] ____cacheline_aligned_in_smp;
659 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661 #define RPS_NO_CPU 0xffff
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 u32 hash)
669 if (table && hash) {
670 unsigned int index = hash & table->mask;
671 u32 val = hash & ~rps_cpu_mask;
673 /* We only give a hint, preemption can change cpu under us */
674 val |= raw_smp_processor_id();
676 if (table->ents[index] != val)
677 table->ents[index] = val;
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 struct rps_map __rcu *rps_map;
691 struct rps_dev_flow_table __rcu *rps_flow_table;
692 #endif
693 struct kobject kobj;
694 struct net_device *dev;
695 } ____cacheline_aligned_in_smp;
698 * RX queue sysfs structures and functions.
700 struct rx_queue_attribute {
701 struct attribute attr;
702 ssize_t (*show)(struct netdev_rx_queue *queue,
703 struct rx_queue_attribute *attr, char *buf);
704 ssize_t (*store)(struct netdev_rx_queue *queue,
705 struct rx_queue_attribute *attr, const char *buf, size_t len);
708 #ifdef CONFIG_XPS
710 * This structure holds an XPS map which can be of variable length. The
711 * map is an array of queues.
713 struct xps_map {
714 unsigned int len;
715 unsigned int alloc_len;
716 struct rcu_head rcu;
717 u16 queues[0];
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
721 / sizeof(u16))
724 * This structure holds all XPS maps for device. Maps are indexed by CPU.
726 struct xps_dev_maps {
727 struct rcu_head rcu;
728 struct xps_map __rcu *cpu_map[0];
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
731 (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
734 #define TC_MAX_QUEUE 16
735 #define TC_BITMASK 15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 u16 count;
739 u16 offset;
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744 * This structure is to hold information about the device
745 * configured to run FCoE protocol stack.
747 struct netdev_fcoe_hbainfo {
748 char manufacturer[64];
749 char serial_number[64];
750 char hardware_version[64];
751 char driver_version[64];
752 char optionrom_version[64];
753 char firmware_version[64];
754 char model[256];
755 char model_description[256];
757 #endif
759 #define MAX_PHYS_ITEM_ID_LEN 32
761 /* This structure holds a unique identifier to identify some
762 * physical item (port for example) used by a netdevice.
764 struct netdev_phys_item_id {
765 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 unsigned char id_len;
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 struct sk_buff *skb);
773 * This structure defines the management hooks for network devices.
774 * The following hooks can be defined; unless noted otherwise, they are
775 * optional and can be filled with a null pointer.
777 * int (*ndo_init)(struct net_device *dev);
778 * This function is called once when network device is registered.
779 * The network device can use this to any late stage initializaton
780 * or semantic validattion. It can fail with an error code which will
781 * be propogated back to register_netdev
783 * void (*ndo_uninit)(struct net_device *dev);
784 * This function is called when device is unregistered or when registration
785 * fails. It is not called if init fails.
787 * int (*ndo_open)(struct net_device *dev);
788 * This function is called when network device transistions to the up
789 * state.
791 * int (*ndo_stop)(struct net_device *dev);
792 * This function is called when network device transistions to the down
793 * state.
795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
796 * struct net_device *dev);
797 * Called when a packet needs to be transmitted.
798 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
799 * the queue before that can happen; it's for obsolete devices and weird
800 * corner cases, but the stack really does a non-trivial amount
801 * of useless work if you return NETDEV_TX_BUSY.
802 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
803 * Required can not be NULL.
805 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
806 * void *accel_priv, select_queue_fallback_t fallback);
807 * Called to decide which queue to when device supports multiple
808 * transmit queues.
810 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
811 * This function is called to allow device receiver to make
812 * changes to configuration when multicast or promiscious is enabled.
814 * void (*ndo_set_rx_mode)(struct net_device *dev);
815 * This function is called device changes address list filtering.
816 * If driver handles unicast address filtering, it should set
817 * IFF_UNICAST_FLT to its priv_flags.
819 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
820 * This function is called when the Media Access Control address
821 * needs to be changed. If this interface is not defined, the
822 * mac address can not be changed.
824 * int (*ndo_validate_addr)(struct net_device *dev);
825 * Test if Media Access Control address is valid for the device.
827 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
828 * Called when a user request an ioctl which can't be handled by
829 * the generic interface code. If not defined ioctl's return
830 * not supported error code.
832 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
833 * Used to set network devices bus interface parameters. This interface
834 * is retained for legacy reason, new devices should use the bus
835 * interface (PCI) for low level management.
837 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
838 * Called when a user wants to change the Maximum Transfer Unit
839 * of a device. If not defined, any request to change MTU will
840 * will return an error.
842 * void (*ndo_tx_timeout)(struct net_device *dev);
843 * Callback uses when the transmitter has not made any progress
844 * for dev->watchdog ticks.
846 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
847 * struct rtnl_link_stats64 *storage);
848 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
849 * Called when a user wants to get the network device usage
850 * statistics. Drivers must do one of the following:
851 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
852 * rtnl_link_stats64 structure passed by the caller.
853 * 2. Define @ndo_get_stats to update a net_device_stats structure
854 * (which should normally be dev->stats) and return a pointer to
855 * it. The structure may be changed asynchronously only if each
856 * field is written atomically.
857 * 3. Update dev->stats asynchronously and atomically, and define
858 * neither operation.
860 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
861 * If device support VLAN filtering this function is called when a
862 * VLAN id is registered.
864 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
865 * If device support VLAN filtering this function is called when a
866 * VLAN id is unregistered.
868 * void (*ndo_poll_controller)(struct net_device *dev);
870 * SR-IOV management functions.
871 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
872 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
873 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
874 * int max_tx_rate);
875 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
876 * int (*ndo_get_vf_config)(struct net_device *dev,
877 * int vf, struct ifla_vf_info *ivf);
878 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
879 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
880 * struct nlattr *port[]);
882 * Enable or disable the VF ability to query its RSS Redirection Table and
883 * Hash Key. This is needed since on some devices VF share this information
884 * with PF and querying it may adduce a theoretical security risk.
885 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
886 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
887 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
888 * Called to setup 'tc' number of traffic classes in the net device. This
889 * is always called from the stack with the rtnl lock held and netif tx
890 * queues stopped. This allows the netdevice to perform queue management
891 * safely.
893 * Fiber Channel over Ethernet (FCoE) offload functions.
894 * int (*ndo_fcoe_enable)(struct net_device *dev);
895 * Called when the FCoE protocol stack wants to start using LLD for FCoE
896 * so the underlying device can perform whatever needed configuration or
897 * initialization to support acceleration of FCoE traffic.
899 * int (*ndo_fcoe_disable)(struct net_device *dev);
900 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
901 * so the underlying device can perform whatever needed clean-ups to
902 * stop supporting acceleration of FCoE traffic.
904 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
905 * struct scatterlist *sgl, unsigned int sgc);
906 * Called when the FCoE Initiator wants to initialize an I/O that
907 * is a possible candidate for Direct Data Placement (DDP). The LLD can
908 * perform necessary setup and returns 1 to indicate the device is set up
909 * successfully to perform DDP on this I/O, otherwise this returns 0.
911 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
912 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
913 * indicated by the FC exchange id 'xid', so the underlying device can
914 * clean up and reuse resources for later DDP requests.
916 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
917 * struct scatterlist *sgl, unsigned int sgc);
918 * Called when the FCoE Target wants to initialize an I/O that
919 * is a possible candidate for Direct Data Placement (DDP). The LLD can
920 * perform necessary setup and returns 1 to indicate the device is set up
921 * successfully to perform DDP on this I/O, otherwise this returns 0.
923 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
924 * struct netdev_fcoe_hbainfo *hbainfo);
925 * Called when the FCoE Protocol stack wants information on the underlying
926 * device. This information is utilized by the FCoE protocol stack to
927 * register attributes with Fiber Channel management service as per the
928 * FC-GS Fabric Device Management Information(FDMI) specification.
930 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
931 * Called when the underlying device wants to override default World Wide
932 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
933 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
934 * protocol stack to use.
936 * RFS acceleration.
937 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
938 * u16 rxq_index, u32 flow_id);
939 * Set hardware filter for RFS. rxq_index is the target queue index;
940 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
941 * Return the filter ID on success, or a negative error code.
943 * Slave management functions (for bridge, bonding, etc).
944 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
945 * Called to make another netdev an underling.
947 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
948 * Called to release previously enslaved netdev.
950 * Feature/offload setting functions.
951 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
952 * netdev_features_t features);
953 * Adjusts the requested feature flags according to device-specific
954 * constraints, and returns the resulting flags. Must not modify
955 * the device state.
957 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
958 * Called to update device configuration to new features. Passed
959 * feature set might be less than what was returned by ndo_fix_features()).
960 * Must return >0 or -errno if it changed dev->features itself.
962 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
963 * struct net_device *dev,
964 * const unsigned char *addr, u16 vid, u16 flags)
965 * Adds an FDB entry to dev for addr.
966 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
967 * struct net_device *dev,
968 * const unsigned char *addr, u16 vid)
969 * Deletes the FDB entry from dev coresponding to addr.
970 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
971 * struct net_device *dev, struct net_device *filter_dev,
972 * int idx)
973 * Used to add FDB entries to dump requests. Implementers should add
974 * entries to skb and update idx with the number of entries.
976 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
977 * u16 flags)
978 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
979 * struct net_device *dev, u32 filter_mask,
980 * int nlflags)
981 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
982 * u16 flags);
984 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
985 * Called to change device carrier. Soft-devices (like dummy, team, etc)
986 * which do not represent real hardware may define this to allow their
987 * userspace components to manage their virtual carrier state. Devices
988 * that determine carrier state from physical hardware properties (eg
989 * network cables) or protocol-dependent mechanisms (eg
990 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
992 * int (*ndo_get_phys_port_id)(struct net_device *dev,
993 * struct netdev_phys_item_id *ppid);
994 * Called to get ID of physical port of this device. If driver does
995 * not implement this, it is assumed that the hw is not able to have
996 * multiple net devices on single physical port.
998 * void (*ndo_add_vxlan_port)(struct net_device *dev,
999 * sa_family_t sa_family, __be16 port);
1000 * Called by vxlan to notiy a driver about the UDP port and socket
1001 * address family that vxlan is listnening to. It is called only when
1002 * a new port starts listening. The operation is protected by the
1003 * vxlan_net->sock_lock.
1005 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1006 * sa_family_t sa_family, __be16 port);
1007 * Called by vxlan to notify the driver about a UDP port and socket
1008 * address family that vxlan is not listening to anymore. The operation
1009 * is protected by the vxlan_net->sock_lock.
1011 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1012 * struct net_device *dev)
1013 * Called by upper layer devices to accelerate switching or other
1014 * station functionality into hardware. 'pdev is the lowerdev
1015 * to use for the offload and 'dev' is the net device that will
1016 * back the offload. Returns a pointer to the private structure
1017 * the upper layer will maintain.
1018 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1019 * Called by upper layer device to delete the station created
1020 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1021 * the station and priv is the structure returned by the add
1022 * operation.
1023 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1024 * struct net_device *dev,
1025 * void *priv);
1026 * Callback to use for xmit over the accelerated station. This
1027 * is used in place of ndo_start_xmit on accelerated net
1028 * devices.
1029 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1030 * struct net_device *dev
1031 * netdev_features_t features);
1032 * Called by core transmit path to determine if device is capable of
1033 * performing offload operations on a given packet. This is to give
1034 * the device an opportunity to implement any restrictions that cannot
1035 * be otherwise expressed by feature flags. The check is called with
1036 * the set of features that the stack has calculated and it returns
1037 * those the driver believes to be appropriate.
1038 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1039 * int queue_index, u32 maxrate);
1040 * Called when a user wants to set a max-rate limitation of specific
1041 * TX queue.
1042 * int (*ndo_get_iflink)(const struct net_device *dev);
1043 * Called to get the iflink value of this device.
1045 struct net_device_ops {
1046 int (*ndo_init)(struct net_device *dev);
1047 void (*ndo_uninit)(struct net_device *dev);
1048 int (*ndo_open)(struct net_device *dev);
1049 int (*ndo_stop)(struct net_device *dev);
1050 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1051 struct net_device *dev);
1052 u16 (*ndo_select_queue)(struct net_device *dev,
1053 struct sk_buff *skb,
1054 void *accel_priv,
1055 select_queue_fallback_t fallback);
1056 void (*ndo_change_rx_flags)(struct net_device *dev,
1057 int flags);
1058 void (*ndo_set_rx_mode)(struct net_device *dev);
1059 int (*ndo_set_mac_address)(struct net_device *dev,
1060 void *addr);
1061 int (*ndo_validate_addr)(struct net_device *dev);
1062 int (*ndo_do_ioctl)(struct net_device *dev,
1063 struct ifreq *ifr, int cmd);
1064 int (*ndo_set_config)(struct net_device *dev,
1065 struct ifmap *map);
1066 int (*ndo_change_mtu)(struct net_device *dev,
1067 int new_mtu);
1068 int (*ndo_neigh_setup)(struct net_device *dev,
1069 struct neigh_parms *);
1070 void (*ndo_tx_timeout) (struct net_device *dev);
1072 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1073 struct rtnl_link_stats64 *storage);
1074 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1076 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1077 __be16 proto, u16 vid);
1078 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1079 __be16 proto, u16 vid);
1080 #ifdef CONFIG_NET_POLL_CONTROLLER
1081 void (*ndo_poll_controller)(struct net_device *dev);
1082 int (*ndo_netpoll_setup)(struct net_device *dev,
1083 struct netpoll_info *info);
1084 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1085 #endif
1086 #ifdef CONFIG_NET_RX_BUSY_POLL
1087 int (*ndo_busy_poll)(struct napi_struct *dev);
1088 #endif
1089 int (*ndo_set_vf_mac)(struct net_device *dev,
1090 int queue, u8 *mac);
1091 int (*ndo_set_vf_vlan)(struct net_device *dev,
1092 int queue, u16 vlan, u8 qos);
1093 int (*ndo_set_vf_rate)(struct net_device *dev,
1094 int vf, int min_tx_rate,
1095 int max_tx_rate);
1096 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1097 int vf, bool setting);
1098 int (*ndo_get_vf_config)(struct net_device *dev,
1099 int vf,
1100 struct ifla_vf_info *ivf);
1101 int (*ndo_set_vf_link_state)(struct net_device *dev,
1102 int vf, int link_state);
1103 int (*ndo_get_vf_stats)(struct net_device *dev,
1104 int vf,
1105 struct ifla_vf_stats
1106 *vf_stats);
1107 int (*ndo_set_vf_port)(struct net_device *dev,
1108 int vf,
1109 struct nlattr *port[]);
1110 int (*ndo_get_vf_port)(struct net_device *dev,
1111 int vf, struct sk_buff *skb);
1112 int (*ndo_set_vf_rss_query_en)(
1113 struct net_device *dev,
1114 int vf, bool setting);
1115 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1116 #if IS_ENABLED(CONFIG_FCOE)
1117 int (*ndo_fcoe_enable)(struct net_device *dev);
1118 int (*ndo_fcoe_disable)(struct net_device *dev);
1119 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1120 u16 xid,
1121 struct scatterlist *sgl,
1122 unsigned int sgc);
1123 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1124 u16 xid);
1125 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1126 u16 xid,
1127 struct scatterlist *sgl,
1128 unsigned int sgc);
1129 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1130 struct netdev_fcoe_hbainfo *hbainfo);
1131 #endif
1133 #if IS_ENABLED(CONFIG_LIBFCOE)
1134 #define NETDEV_FCOE_WWNN 0
1135 #define NETDEV_FCOE_WWPN 1
1136 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1137 u64 *wwn, int type);
1138 #endif
1140 #ifdef CONFIG_RFS_ACCEL
1141 int (*ndo_rx_flow_steer)(struct net_device *dev,
1142 const struct sk_buff *skb,
1143 u16 rxq_index,
1144 u32 flow_id);
1145 #endif
1146 int (*ndo_add_slave)(struct net_device *dev,
1147 struct net_device *slave_dev);
1148 int (*ndo_del_slave)(struct net_device *dev,
1149 struct net_device *slave_dev);
1150 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1151 netdev_features_t features);
1152 int (*ndo_set_features)(struct net_device *dev,
1153 netdev_features_t features);
1154 int (*ndo_neigh_construct)(struct neighbour *n);
1155 void (*ndo_neigh_destroy)(struct neighbour *n);
1157 int (*ndo_fdb_add)(struct ndmsg *ndm,
1158 struct nlattr *tb[],
1159 struct net_device *dev,
1160 const unsigned char *addr,
1161 u16 vid,
1162 u16 flags);
1163 int (*ndo_fdb_del)(struct ndmsg *ndm,
1164 struct nlattr *tb[],
1165 struct net_device *dev,
1166 const unsigned char *addr,
1167 u16 vid);
1168 int (*ndo_fdb_dump)(struct sk_buff *skb,
1169 struct netlink_callback *cb,
1170 struct net_device *dev,
1171 struct net_device *filter_dev,
1172 int idx);
1174 int (*ndo_bridge_setlink)(struct net_device *dev,
1175 struct nlmsghdr *nlh,
1176 u16 flags);
1177 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1178 u32 pid, u32 seq,
1179 struct net_device *dev,
1180 u32 filter_mask,
1181 int nlflags);
1182 int (*ndo_bridge_dellink)(struct net_device *dev,
1183 struct nlmsghdr *nlh,
1184 u16 flags);
1185 int (*ndo_change_carrier)(struct net_device *dev,
1186 bool new_carrier);
1187 int (*ndo_get_phys_port_id)(struct net_device *dev,
1188 struct netdev_phys_item_id *ppid);
1189 int (*ndo_get_phys_port_name)(struct net_device *dev,
1190 char *name, size_t len);
1191 void (*ndo_add_vxlan_port)(struct net_device *dev,
1192 sa_family_t sa_family,
1193 __be16 port);
1194 void (*ndo_del_vxlan_port)(struct net_device *dev,
1195 sa_family_t sa_family,
1196 __be16 port);
1198 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1199 struct net_device *dev);
1200 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1201 void *priv);
1203 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1204 struct net_device *dev,
1205 void *priv);
1206 int (*ndo_get_lock_subclass)(struct net_device *dev);
1207 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1208 struct net_device *dev,
1209 netdev_features_t features);
1210 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1211 int queue_index,
1212 u32 maxrate);
1213 int (*ndo_get_iflink)(const struct net_device *dev);
1217 * enum net_device_priv_flags - &struct net_device priv_flags
1219 * These are the &struct net_device, they are only set internally
1220 * by drivers and used in the kernel. These flags are invisible to
1221 * userspace, this means that the order of these flags can change
1222 * during any kernel release.
1224 * You should have a pretty good reason to be extending these flags.
1226 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1227 * @IFF_EBRIDGE: Ethernet bridging device
1228 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1229 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1230 * @IFF_MASTER_ALB: bonding master, balance-alb
1231 * @IFF_BONDING: bonding master or slave
1232 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1233 * @IFF_ISATAP: ISATAP interface (RFC4214)
1234 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1235 * @IFF_WAN_HDLC: WAN HDLC device
1236 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1237 * release skb->dst
1238 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1239 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1240 * @IFF_MACVLAN_PORT: device used as macvlan port
1241 * @IFF_BRIDGE_PORT: device used as bridge port
1242 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1243 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1244 * @IFF_UNICAST_FLT: Supports unicast filtering
1245 * @IFF_TEAM_PORT: device used as team port
1246 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1247 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1248 * change when it's running
1249 * @IFF_MACVLAN: Macvlan device
1251 enum netdev_priv_flags {
1252 IFF_802_1Q_VLAN = 1<<0,
1253 IFF_EBRIDGE = 1<<1,
1254 IFF_SLAVE_INACTIVE = 1<<2,
1255 IFF_MASTER_8023AD = 1<<3,
1256 IFF_MASTER_ALB = 1<<4,
1257 IFF_BONDING = 1<<5,
1258 IFF_SLAVE_NEEDARP = 1<<6,
1259 IFF_ISATAP = 1<<7,
1260 IFF_MASTER_ARPMON = 1<<8,
1261 IFF_WAN_HDLC = 1<<9,
1262 IFF_XMIT_DST_RELEASE = 1<<10,
1263 IFF_DONT_BRIDGE = 1<<11,
1264 IFF_DISABLE_NETPOLL = 1<<12,
1265 IFF_MACVLAN_PORT = 1<<13,
1266 IFF_BRIDGE_PORT = 1<<14,
1267 IFF_OVS_DATAPATH = 1<<15,
1268 IFF_TX_SKB_SHARING = 1<<16,
1269 IFF_UNICAST_FLT = 1<<17,
1270 IFF_TEAM_PORT = 1<<18,
1271 IFF_SUPP_NOFCS = 1<<19,
1272 IFF_LIVE_ADDR_CHANGE = 1<<20,
1273 IFF_MACVLAN = 1<<21,
1274 IFF_XMIT_DST_RELEASE_PERM = 1<<22,
1275 IFF_IPVLAN_MASTER = 1<<23,
1276 IFF_IPVLAN_SLAVE = 1<<24,
1279 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1280 #define IFF_EBRIDGE IFF_EBRIDGE
1281 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1282 #define IFF_MASTER_8023AD IFF_MASTER_8023AD
1283 #define IFF_MASTER_ALB IFF_MASTER_ALB
1284 #define IFF_BONDING IFF_BONDING
1285 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1286 #define IFF_ISATAP IFF_ISATAP
1287 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1288 #define IFF_WAN_HDLC IFF_WAN_HDLC
1289 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1290 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1291 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1292 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1293 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1294 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1295 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1296 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1297 #define IFF_TEAM_PORT IFF_TEAM_PORT
1298 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1299 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1300 #define IFF_MACVLAN IFF_MACVLAN
1301 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1302 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1303 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1306 * struct net_device - The DEVICE structure.
1307 * Actually, this whole structure is a big mistake. It mixes I/O
1308 * data with strictly "high-level" data, and it has to know about
1309 * almost every data structure used in the INET module.
1311 * @name: This is the first field of the "visible" part of this structure
1312 * (i.e. as seen by users in the "Space.c" file). It is the name
1313 * of the interface.
1315 * @name_hlist: Device name hash chain, please keep it close to name[]
1316 * @ifalias: SNMP alias
1317 * @mem_end: Shared memory end
1318 * @mem_start: Shared memory start
1319 * @base_addr: Device I/O address
1320 * @irq: Device IRQ number
1322 * @carrier_changes: Stats to monitor carrier on<->off transitions
1324 * @state: Generic network queuing layer state, see netdev_state_t
1325 * @dev_list: The global list of network devices
1326 * @napi_list: List entry, that is used for polling napi devices
1327 * @unreg_list: List entry, that is used, when we are unregistering the
1328 * device, see the function unregister_netdev
1329 * @close_list: List entry, that is used, when we are closing the device
1331 * @adj_list: Directly linked devices, like slaves for bonding
1332 * @all_adj_list: All linked devices, *including* neighbours
1333 * @features: Currently active device features
1334 * @hw_features: User-changeable features
1336 * @wanted_features: User-requested features
1337 * @vlan_features: Mask of features inheritable by VLAN devices
1339 * @hw_enc_features: Mask of features inherited by encapsulating devices
1340 * This field indicates what encapsulation
1341 * offloads the hardware is capable of doing,
1342 * and drivers will need to set them appropriately.
1344 * @mpls_features: Mask of features inheritable by MPLS
1346 * @ifindex: interface index
1347 * @group: The group, that the device belongs to
1349 * @stats: Statistics struct, which was left as a legacy, use
1350 * rtnl_link_stats64 instead
1352 * @rx_dropped: Dropped packets by core network,
1353 * do not use this in drivers
1354 * @tx_dropped: Dropped packets by core network,
1355 * do not use this in drivers
1357 * @wireless_handlers: List of functions to handle Wireless Extensions,
1358 * instead of ioctl,
1359 * see <net/iw_handler.h> for details.
1360 * @wireless_data: Instance data managed by the core of wireless extensions
1362 * @netdev_ops: Includes several pointers to callbacks,
1363 * if one wants to override the ndo_*() functions
1364 * @ethtool_ops: Management operations
1365 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1366 * of Layer 2 headers.
1368 * @flags: Interface flags (a la BSD)
1369 * @priv_flags: Like 'flags' but invisible to userspace,
1370 * see if.h for the definitions
1371 * @gflags: Global flags ( kept as legacy )
1372 * @padded: How much padding added by alloc_netdev()
1373 * @operstate: RFC2863 operstate
1374 * @link_mode: Mapping policy to operstate
1375 * @if_port: Selectable AUI, TP, ...
1376 * @dma: DMA channel
1377 * @mtu: Interface MTU value
1378 * @type: Interface hardware type
1379 * @hard_header_len: Hardware header length
1381 * @needed_headroom: Extra headroom the hardware may need, but not in all
1382 * cases can this be guaranteed
1383 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1384 * cases can this be guaranteed. Some cases also use
1385 * LL_MAX_HEADER instead to allocate the skb
1387 * interface address info:
1389 * @perm_addr: Permanent hw address
1390 * @addr_assign_type: Hw address assignment type
1391 * @addr_len: Hardware address length
1392 * @neigh_priv_len; Used in neigh_alloc(),
1393 * initialized only in atm/clip.c
1394 * @dev_id: Used to differentiate devices that share
1395 * the same link layer address
1396 * @dev_port: Used to differentiate devices that share
1397 * the same function
1398 * @addr_list_lock: XXX: need comments on this one
1399 * @uc_promisc: Counter, that indicates, that promiscuous mode
1400 * has been enabled due to the need to listen to
1401 * additional unicast addresses in a device that
1402 * does not implement ndo_set_rx_mode()
1403 * @uc: unicast mac addresses
1404 * @mc: multicast mac addresses
1405 * @dev_addrs: list of device hw addresses
1406 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1407 * @promiscuity: Number of times, the NIC is told to work in
1408 * Promiscuous mode, if it becomes 0 the NIC will
1409 * exit from working in Promiscuous mode
1410 * @allmulti: Counter, enables or disables allmulticast mode
1412 * @vlan_info: VLAN info
1413 * @dsa_ptr: dsa specific data
1414 * @tipc_ptr: TIPC specific data
1415 * @atalk_ptr: AppleTalk link
1416 * @ip_ptr: IPv4 specific data
1417 * @dn_ptr: DECnet specific data
1418 * @ip6_ptr: IPv6 specific data
1419 * @ax25_ptr: AX.25 specific data
1420 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1422 * @last_rx: Time of last Rx
1423 * @dev_addr: Hw address (before bcast,
1424 * because most packets are unicast)
1426 * @_rx: Array of RX queues
1427 * @num_rx_queues: Number of RX queues
1428 * allocated at register_netdev() time
1429 * @real_num_rx_queues: Number of RX queues currently active in device
1431 * @rx_handler: handler for received packets
1432 * @rx_handler_data: XXX: need comments on this one
1433 * @ingress_queue: XXX: need comments on this one
1434 * @broadcast: hw bcast address
1436 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1437 * indexed by RX queue number. Assigned by driver.
1438 * This must only be set if the ndo_rx_flow_steer
1439 * operation is defined
1440 * @index_hlist: Device index hash chain
1442 * @_tx: Array of TX queues
1443 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1444 * @real_num_tx_queues: Number of TX queues currently active in device
1445 * @qdisc: Root qdisc from userspace point of view
1446 * @tx_queue_len: Max frames per queue allowed
1447 * @tx_global_lock: XXX: need comments on this one
1449 * @xps_maps: XXX: need comments on this one
1451 * @trans_start: Time (in jiffies) of last Tx
1452 * @watchdog_timeo: Represents the timeout that is used by
1453 * the watchdog ( see dev_watchdog() )
1454 * @watchdog_timer: List of timers
1456 * @pcpu_refcnt: Number of references to this device
1457 * @todo_list: Delayed register/unregister
1458 * @link_watch_list: XXX: need comments on this one
1460 * @reg_state: Register/unregister state machine
1461 * @dismantle: Device is going to be freed
1462 * @rtnl_link_state: This enum represents the phases of creating
1463 * a new link
1465 * @destructor: Called from unregister,
1466 * can be used to call free_netdev
1467 * @npinfo: XXX: need comments on this one
1468 * @nd_net: Network namespace this network device is inside
1470 * @ml_priv: Mid-layer private
1471 * @lstats: Loopback statistics
1472 * @tstats: Tunnel statistics
1473 * @dstats: Dummy statistics
1474 * @vstats: Virtual ethernet statistics
1476 * @garp_port: GARP
1477 * @mrp_port: MRP
1479 * @dev: Class/net/name entry
1480 * @sysfs_groups: Space for optional device, statistics and wireless
1481 * sysfs groups
1483 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1484 * @rtnl_link_ops: Rtnl_link_ops
1486 * @gso_max_size: Maximum size of generic segmentation offload
1487 * @gso_max_segs: Maximum number of segments that can be passed to the
1488 * NIC for GSO
1489 * @gso_min_segs: Minimum number of segments that can be passed to the
1490 * NIC for GSO
1492 * @dcbnl_ops: Data Center Bridging netlink ops
1493 * @num_tc: Number of traffic classes in the net device
1494 * @tc_to_txq: XXX: need comments on this one
1495 * @prio_tc_map XXX: need comments on this one
1497 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1499 * @priomap: XXX: need comments on this one
1500 * @phydev: Physical device may attach itself
1501 * for hardware timestamping
1503 * @qdisc_tx_busylock: XXX: need comments on this one
1505 * FIXME: cleanup struct net_device such that network protocol info
1506 * moves out.
1509 struct net_device {
1510 char name[IFNAMSIZ];
1511 struct hlist_node name_hlist;
1512 char *ifalias;
1514 * I/O specific fields
1515 * FIXME: Merge these and struct ifmap into one
1517 unsigned long mem_end;
1518 unsigned long mem_start;
1519 unsigned long base_addr;
1520 int irq;
1522 atomic_t carrier_changes;
1525 * Some hardware also needs these fields (state,dev_list,
1526 * napi_list,unreg_list,close_list) but they are not
1527 * part of the usual set specified in Space.c.
1530 unsigned long state;
1532 struct list_head dev_list;
1533 struct list_head napi_list;
1534 struct list_head unreg_list;
1535 struct list_head close_list;
1536 struct list_head ptype_all;
1537 struct list_head ptype_specific;
1539 struct {
1540 struct list_head upper;
1541 struct list_head lower;
1542 } adj_list;
1544 struct {
1545 struct list_head upper;
1546 struct list_head lower;
1547 } all_adj_list;
1549 netdev_features_t features;
1550 netdev_features_t hw_features;
1551 netdev_features_t wanted_features;
1552 netdev_features_t vlan_features;
1553 netdev_features_t hw_enc_features;
1554 netdev_features_t mpls_features;
1556 int ifindex;
1557 int group;
1559 struct net_device_stats stats;
1561 atomic_long_t rx_dropped;
1562 atomic_long_t tx_dropped;
1564 #ifdef CONFIG_WIRELESS_EXT
1565 const struct iw_handler_def * wireless_handlers;
1566 struct iw_public_data * wireless_data;
1567 #endif
1568 const struct net_device_ops *netdev_ops;
1569 const struct ethtool_ops *ethtool_ops;
1570 #ifdef CONFIG_NET_SWITCHDEV
1571 const struct switchdev_ops *switchdev_ops;
1572 #endif
1574 const struct header_ops *header_ops;
1576 unsigned int flags;
1577 unsigned int priv_flags;
1579 unsigned short gflags;
1580 unsigned short padded;
1582 unsigned char operstate;
1583 unsigned char link_mode;
1585 unsigned char if_port;
1586 unsigned char dma;
1588 unsigned int mtu;
1589 unsigned short type;
1590 unsigned short hard_header_len;
1592 unsigned short needed_headroom;
1593 unsigned short needed_tailroom;
1595 /* Interface address info. */
1596 unsigned char perm_addr[MAX_ADDR_LEN];
1597 unsigned char addr_assign_type;
1598 unsigned char addr_len;
1599 unsigned short neigh_priv_len;
1600 unsigned short dev_id;
1601 unsigned short dev_port;
1602 spinlock_t addr_list_lock;
1603 unsigned char name_assign_type;
1604 bool uc_promisc;
1605 struct netdev_hw_addr_list uc;
1606 struct netdev_hw_addr_list mc;
1607 struct netdev_hw_addr_list dev_addrs;
1609 #ifdef CONFIG_SYSFS
1610 struct kset *queues_kset;
1611 #endif
1612 unsigned int promiscuity;
1613 unsigned int allmulti;
1616 /* Protocol specific pointers */
1618 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1619 struct vlan_info __rcu *vlan_info;
1620 #endif
1621 #if IS_ENABLED(CONFIG_NET_DSA)
1622 struct dsa_switch_tree *dsa_ptr;
1623 #endif
1624 #if IS_ENABLED(CONFIG_TIPC)
1625 struct tipc_bearer __rcu *tipc_ptr;
1626 #endif
1627 void *atalk_ptr;
1628 struct in_device __rcu *ip_ptr;
1629 struct dn_dev __rcu *dn_ptr;
1630 struct inet6_dev __rcu *ip6_ptr;
1631 void *ax25_ptr;
1632 struct wireless_dev *ieee80211_ptr;
1633 struct wpan_dev *ieee802154_ptr;
1634 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1635 struct mpls_dev __rcu *mpls_ptr;
1636 #endif
1639 * Cache lines mostly used on receive path (including eth_type_trans())
1641 unsigned long last_rx;
1643 /* Interface address info used in eth_type_trans() */
1644 unsigned char *dev_addr;
1647 #ifdef CONFIG_SYSFS
1648 struct netdev_rx_queue *_rx;
1650 unsigned int num_rx_queues;
1651 unsigned int real_num_rx_queues;
1653 #endif
1655 unsigned long gro_flush_timeout;
1656 rx_handler_func_t __rcu *rx_handler;
1657 void __rcu *rx_handler_data;
1659 #ifdef CONFIG_NET_CLS_ACT
1660 struct tcf_proto __rcu *ingress_cl_list;
1661 #endif
1662 struct netdev_queue __rcu *ingress_queue;
1663 #ifdef CONFIG_NETFILTER_INGRESS
1664 struct list_head nf_hooks_ingress;
1665 #endif
1667 unsigned char broadcast[MAX_ADDR_LEN];
1668 #ifdef CONFIG_RFS_ACCEL
1669 struct cpu_rmap *rx_cpu_rmap;
1670 #endif
1671 struct hlist_node index_hlist;
1674 * Cache lines mostly used on transmit path
1676 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1677 unsigned int num_tx_queues;
1678 unsigned int real_num_tx_queues;
1679 struct Qdisc *qdisc;
1680 unsigned long tx_queue_len;
1681 spinlock_t tx_global_lock;
1682 int watchdog_timeo;
1684 #ifdef CONFIG_XPS
1685 struct xps_dev_maps __rcu *xps_maps;
1686 #endif
1688 /* These may be needed for future network-power-down code. */
1691 * trans_start here is expensive for high speed devices on SMP,
1692 * please use netdev_queue->trans_start instead.
1694 unsigned long trans_start;
1696 struct timer_list watchdog_timer;
1698 int __percpu *pcpu_refcnt;
1699 struct list_head todo_list;
1701 struct list_head link_watch_list;
1703 enum { NETREG_UNINITIALIZED=0,
1704 NETREG_REGISTERED, /* completed register_netdevice */
1705 NETREG_UNREGISTERING, /* called unregister_netdevice */
1706 NETREG_UNREGISTERED, /* completed unregister todo */
1707 NETREG_RELEASED, /* called free_netdev */
1708 NETREG_DUMMY, /* dummy device for NAPI poll */
1709 } reg_state:8;
1711 bool dismantle;
1713 enum {
1714 RTNL_LINK_INITIALIZED,
1715 RTNL_LINK_INITIALIZING,
1716 } rtnl_link_state:16;
1718 void (*destructor)(struct net_device *dev);
1720 #ifdef CONFIG_NETPOLL
1721 struct netpoll_info __rcu *npinfo;
1722 #endif
1724 possible_net_t nd_net;
1726 /* mid-layer private */
1727 union {
1728 void *ml_priv;
1729 struct pcpu_lstats __percpu *lstats;
1730 struct pcpu_sw_netstats __percpu *tstats;
1731 struct pcpu_dstats __percpu *dstats;
1732 struct pcpu_vstats __percpu *vstats;
1735 struct garp_port __rcu *garp_port;
1736 struct mrp_port __rcu *mrp_port;
1738 struct device dev;
1739 const struct attribute_group *sysfs_groups[4];
1740 const struct attribute_group *sysfs_rx_queue_group;
1742 const struct rtnl_link_ops *rtnl_link_ops;
1744 /* for setting kernel sock attribute on TCP connection setup */
1745 #define GSO_MAX_SIZE 65536
1746 unsigned int gso_max_size;
1747 #define GSO_MAX_SEGS 65535
1748 u16 gso_max_segs;
1749 u16 gso_min_segs;
1750 #ifdef CONFIG_DCB
1751 const struct dcbnl_rtnl_ops *dcbnl_ops;
1752 #endif
1753 u8 num_tc;
1754 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1755 u8 prio_tc_map[TC_BITMASK + 1];
1757 #if IS_ENABLED(CONFIG_FCOE)
1758 unsigned int fcoe_ddp_xid;
1759 #endif
1760 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1761 struct netprio_map __rcu *priomap;
1762 #endif
1763 struct phy_device *phydev;
1764 struct lock_class_key *qdisc_tx_busylock;
1766 #define to_net_dev(d) container_of(d, struct net_device, dev)
1768 #define NETDEV_ALIGN 32
1770 static inline
1771 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1773 return dev->prio_tc_map[prio & TC_BITMASK];
1776 static inline
1777 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1779 if (tc >= dev->num_tc)
1780 return -EINVAL;
1782 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1783 return 0;
1786 static inline
1787 void netdev_reset_tc(struct net_device *dev)
1789 dev->num_tc = 0;
1790 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1791 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1794 static inline
1795 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1797 if (tc >= dev->num_tc)
1798 return -EINVAL;
1800 dev->tc_to_txq[tc].count = count;
1801 dev->tc_to_txq[tc].offset = offset;
1802 return 0;
1805 static inline
1806 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1808 if (num_tc > TC_MAX_QUEUE)
1809 return -EINVAL;
1811 dev->num_tc = num_tc;
1812 return 0;
1815 static inline
1816 int netdev_get_num_tc(struct net_device *dev)
1818 return dev->num_tc;
1821 static inline
1822 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1823 unsigned int index)
1825 return &dev->_tx[index];
1828 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1829 const struct sk_buff *skb)
1831 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1834 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1835 void (*f)(struct net_device *,
1836 struct netdev_queue *,
1837 void *),
1838 void *arg)
1840 unsigned int i;
1842 for (i = 0; i < dev->num_tx_queues; i++)
1843 f(dev, &dev->_tx[i], arg);
1846 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1847 struct sk_buff *skb,
1848 void *accel_priv);
1851 * Net namespace inlines
1853 static inline
1854 struct net *dev_net(const struct net_device *dev)
1856 return read_pnet(&dev->nd_net);
1859 static inline
1860 void dev_net_set(struct net_device *dev, struct net *net)
1862 write_pnet(&dev->nd_net, net);
1865 static inline bool netdev_uses_dsa(struct net_device *dev)
1867 #if IS_ENABLED(CONFIG_NET_DSA)
1868 if (dev->dsa_ptr != NULL)
1869 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1870 #endif
1871 return false;
1875 * netdev_priv - access network device private data
1876 * @dev: network device
1878 * Get network device private data
1880 static inline void *netdev_priv(const struct net_device *dev)
1882 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1885 /* Set the sysfs physical device reference for the network logical device
1886 * if set prior to registration will cause a symlink during initialization.
1888 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1890 /* Set the sysfs device type for the network logical device to allow
1891 * fine-grained identification of different network device types. For
1892 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1894 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1896 /* Default NAPI poll() weight
1897 * Device drivers are strongly advised to not use bigger value
1899 #define NAPI_POLL_WEIGHT 64
1902 * netif_napi_add - initialize a napi context
1903 * @dev: network device
1904 * @napi: napi context
1905 * @poll: polling function
1906 * @weight: default weight
1908 * netif_napi_add() must be used to initialize a napi context prior to calling
1909 * *any* of the other napi related functions.
1911 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1912 int (*poll)(struct napi_struct *, int), int weight);
1915 * netif_napi_del - remove a napi context
1916 * @napi: napi context
1918 * netif_napi_del() removes a napi context from the network device napi list
1920 void netif_napi_del(struct napi_struct *napi);
1922 struct napi_gro_cb {
1923 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1924 void *frag0;
1926 /* Length of frag0. */
1927 unsigned int frag0_len;
1929 /* This indicates where we are processing relative to skb->data. */
1930 int data_offset;
1932 /* This is non-zero if the packet cannot be merged with the new skb. */
1933 u16 flush;
1935 /* Save the IP ID here and check when we get to the transport layer */
1936 u16 flush_id;
1938 /* Number of segments aggregated. */
1939 u16 count;
1941 /* Start offset for remote checksum offload */
1942 u16 gro_remcsum_start;
1944 /* jiffies when first packet was created/queued */
1945 unsigned long age;
1947 /* Used in ipv6_gro_receive() and foo-over-udp */
1948 u16 proto;
1950 /* This is non-zero if the packet may be of the same flow. */
1951 u8 same_flow:1;
1953 /* Used in udp_gro_receive */
1954 u8 udp_mark:1;
1956 /* GRO checksum is valid */
1957 u8 csum_valid:1;
1959 /* Number of checksums via CHECKSUM_UNNECESSARY */
1960 u8 csum_cnt:3;
1962 /* Free the skb? */
1963 u8 free:2;
1964 #define NAPI_GRO_FREE 1
1965 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1967 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1968 u8 is_ipv6:1;
1970 /* 7 bit hole */
1972 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1973 __wsum csum;
1975 /* used in skb_gro_receive() slow path */
1976 struct sk_buff *last;
1979 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1981 struct packet_type {
1982 __be16 type; /* This is really htons(ether_type). */
1983 struct net_device *dev; /* NULL is wildcarded here */
1984 int (*func) (struct sk_buff *,
1985 struct net_device *,
1986 struct packet_type *,
1987 struct net_device *);
1988 bool (*id_match)(struct packet_type *ptype,
1989 struct sock *sk);
1990 void *af_packet_priv;
1991 struct list_head list;
1994 struct offload_callbacks {
1995 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1996 netdev_features_t features);
1997 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1998 struct sk_buff *skb);
1999 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2002 struct packet_offload {
2003 __be16 type; /* This is really htons(ether_type). */
2004 u16 priority;
2005 struct offload_callbacks callbacks;
2006 struct list_head list;
2009 struct udp_offload;
2011 struct udp_offload_callbacks {
2012 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2013 struct sk_buff *skb,
2014 struct udp_offload *uoff);
2015 int (*gro_complete)(struct sk_buff *skb,
2016 int nhoff,
2017 struct udp_offload *uoff);
2020 struct udp_offload {
2021 __be16 port;
2022 u8 ipproto;
2023 struct udp_offload_callbacks callbacks;
2026 /* often modified stats are per cpu, other are shared (netdev->stats) */
2027 struct pcpu_sw_netstats {
2028 u64 rx_packets;
2029 u64 rx_bytes;
2030 u64 tx_packets;
2031 u64 tx_bytes;
2032 struct u64_stats_sync syncp;
2035 #define netdev_alloc_pcpu_stats(type) \
2036 ({ \
2037 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2038 if (pcpu_stats) { \
2039 int __cpu; \
2040 for_each_possible_cpu(__cpu) { \
2041 typeof(type) *stat; \
2042 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2043 u64_stats_init(&stat->syncp); \
2046 pcpu_stats; \
2049 #include <linux/notifier.h>
2051 /* netdevice notifier chain. Please remember to update the rtnetlink
2052 * notification exclusion list in rtnetlink_event() when adding new
2053 * types.
2055 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2056 #define NETDEV_DOWN 0x0002
2057 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2058 detected a hardware crash and restarted
2059 - we can use this eg to kick tcp sessions
2060 once done */
2061 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2062 #define NETDEV_REGISTER 0x0005
2063 #define NETDEV_UNREGISTER 0x0006
2064 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2065 #define NETDEV_CHANGEADDR 0x0008
2066 #define NETDEV_GOING_DOWN 0x0009
2067 #define NETDEV_CHANGENAME 0x000A
2068 #define NETDEV_FEAT_CHANGE 0x000B
2069 #define NETDEV_BONDING_FAILOVER 0x000C
2070 #define NETDEV_PRE_UP 0x000D
2071 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2072 #define NETDEV_POST_TYPE_CHANGE 0x000F
2073 #define NETDEV_POST_INIT 0x0010
2074 #define NETDEV_UNREGISTER_FINAL 0x0011
2075 #define NETDEV_RELEASE 0x0012
2076 #define NETDEV_NOTIFY_PEERS 0x0013
2077 #define NETDEV_JOIN 0x0014
2078 #define NETDEV_CHANGEUPPER 0x0015
2079 #define NETDEV_RESEND_IGMP 0x0016
2080 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2081 #define NETDEV_CHANGEINFODATA 0x0018
2082 #define NETDEV_BONDING_INFO 0x0019
2084 int register_netdevice_notifier(struct notifier_block *nb);
2085 int unregister_netdevice_notifier(struct notifier_block *nb);
2087 struct netdev_notifier_info {
2088 struct net_device *dev;
2091 struct netdev_notifier_change_info {
2092 struct netdev_notifier_info info; /* must be first */
2093 unsigned int flags_changed;
2096 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2097 struct net_device *dev)
2099 info->dev = dev;
2102 static inline struct net_device *
2103 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2105 return info->dev;
2108 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2111 extern rwlock_t dev_base_lock; /* Device list lock */
2113 #define for_each_netdev(net, d) \
2114 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2115 #define for_each_netdev_reverse(net, d) \
2116 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2117 #define for_each_netdev_rcu(net, d) \
2118 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2119 #define for_each_netdev_safe(net, d, n) \
2120 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2121 #define for_each_netdev_continue(net, d) \
2122 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2123 #define for_each_netdev_continue_rcu(net, d) \
2124 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2125 #define for_each_netdev_in_bond_rcu(bond, slave) \
2126 for_each_netdev_rcu(&init_net, slave) \
2127 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2128 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2130 static inline struct net_device *next_net_device(struct net_device *dev)
2132 struct list_head *lh;
2133 struct net *net;
2135 net = dev_net(dev);
2136 lh = dev->dev_list.next;
2137 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2140 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2142 struct list_head *lh;
2143 struct net *net;
2145 net = dev_net(dev);
2146 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2147 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2150 static inline struct net_device *first_net_device(struct net *net)
2152 return list_empty(&net->dev_base_head) ? NULL :
2153 net_device_entry(net->dev_base_head.next);
2156 static inline struct net_device *first_net_device_rcu(struct net *net)
2158 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2160 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2163 int netdev_boot_setup_check(struct net_device *dev);
2164 unsigned long netdev_boot_base(const char *prefix, int unit);
2165 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2166 const char *hwaddr);
2167 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2168 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2169 void dev_add_pack(struct packet_type *pt);
2170 void dev_remove_pack(struct packet_type *pt);
2171 void __dev_remove_pack(struct packet_type *pt);
2172 void dev_add_offload(struct packet_offload *po);
2173 void dev_remove_offload(struct packet_offload *po);
2175 int dev_get_iflink(const struct net_device *dev);
2176 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2177 unsigned short mask);
2178 struct net_device *dev_get_by_name(struct net *net, const char *name);
2179 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2180 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2181 int dev_alloc_name(struct net_device *dev, const char *name);
2182 int dev_open(struct net_device *dev);
2183 int dev_close(struct net_device *dev);
2184 int dev_close_many(struct list_head *head, bool unlink);
2185 void dev_disable_lro(struct net_device *dev);
2186 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2187 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2188 static inline int dev_queue_xmit(struct sk_buff *skb)
2190 return dev_queue_xmit_sk(skb->sk, skb);
2192 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2193 int register_netdevice(struct net_device *dev);
2194 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2195 void unregister_netdevice_many(struct list_head *head);
2196 static inline void unregister_netdevice(struct net_device *dev)
2198 unregister_netdevice_queue(dev, NULL);
2201 int netdev_refcnt_read(const struct net_device *dev);
2202 void free_netdev(struct net_device *dev);
2203 void netdev_freemem(struct net_device *dev);
2204 void synchronize_net(void);
2205 int init_dummy_netdev(struct net_device *dev);
2207 DECLARE_PER_CPU(int, xmit_recursion);
2208 static inline int dev_recursion_level(void)
2210 return this_cpu_read(xmit_recursion);
2213 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2214 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2215 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2216 int netdev_get_name(struct net *net, char *name, int ifindex);
2217 int dev_restart(struct net_device *dev);
2218 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2220 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2222 return NAPI_GRO_CB(skb)->data_offset;
2225 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2227 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2230 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2232 NAPI_GRO_CB(skb)->data_offset += len;
2235 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2236 unsigned int offset)
2238 return NAPI_GRO_CB(skb)->frag0 + offset;
2241 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2243 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2246 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2247 unsigned int offset)
2249 if (!pskb_may_pull(skb, hlen))
2250 return NULL;
2252 NAPI_GRO_CB(skb)->frag0 = NULL;
2253 NAPI_GRO_CB(skb)->frag0_len = 0;
2254 return skb->data + offset;
2257 static inline void *skb_gro_network_header(struct sk_buff *skb)
2259 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2260 skb_network_offset(skb);
2263 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2264 const void *start, unsigned int len)
2266 if (NAPI_GRO_CB(skb)->csum_valid)
2267 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2268 csum_partial(start, len, 0));
2271 /* GRO checksum functions. These are logical equivalents of the normal
2272 * checksum functions (in skbuff.h) except that they operate on the GRO
2273 * offsets and fields in sk_buff.
2276 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2278 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2280 return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2281 skb_gro_offset(skb));
2284 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2285 bool zero_okay,
2286 __sum16 check)
2288 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2289 skb_checksum_start_offset(skb) <
2290 skb_gro_offset(skb)) &&
2291 !skb_at_gro_remcsum_start(skb) &&
2292 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2293 (!zero_okay || check));
2296 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2297 __wsum psum)
2299 if (NAPI_GRO_CB(skb)->csum_valid &&
2300 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2301 return 0;
2303 NAPI_GRO_CB(skb)->csum = psum;
2305 return __skb_gro_checksum_complete(skb);
2308 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2310 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2311 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2312 NAPI_GRO_CB(skb)->csum_cnt--;
2313 } else {
2314 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2315 * verified a new top level checksum or an encapsulated one
2316 * during GRO. This saves work if we fallback to normal path.
2318 __skb_incr_checksum_unnecessary(skb);
2322 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2323 compute_pseudo) \
2324 ({ \
2325 __sum16 __ret = 0; \
2326 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2327 __ret = __skb_gro_checksum_validate_complete(skb, \
2328 compute_pseudo(skb, proto)); \
2329 if (__ret) \
2330 __skb_mark_checksum_bad(skb); \
2331 else \
2332 skb_gro_incr_csum_unnecessary(skb); \
2333 __ret; \
2336 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2337 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2339 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2340 compute_pseudo) \
2341 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2343 #define skb_gro_checksum_simple_validate(skb) \
2344 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2346 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2348 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2349 !NAPI_GRO_CB(skb)->csum_valid);
2352 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2353 __sum16 check, __wsum pseudo)
2355 NAPI_GRO_CB(skb)->csum = ~pseudo;
2356 NAPI_GRO_CB(skb)->csum_valid = 1;
2359 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2360 do { \
2361 if (__skb_gro_checksum_convert_check(skb)) \
2362 __skb_gro_checksum_convert(skb, check, \
2363 compute_pseudo(skb, proto)); \
2364 } while (0)
2366 struct gro_remcsum {
2367 int offset;
2368 __wsum delta;
2371 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2373 grc->offset = 0;
2374 grc->delta = 0;
2377 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2378 int start, int offset,
2379 struct gro_remcsum *grc,
2380 bool nopartial)
2382 __wsum delta;
2384 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2386 if (!nopartial) {
2387 NAPI_GRO_CB(skb)->gro_remcsum_start =
2388 ((unsigned char *)ptr + start) - skb->head;
2389 return;
2392 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2394 /* Adjust skb->csum since we changed the packet */
2395 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2397 grc->offset = (ptr + offset) - (void *)skb->head;
2398 grc->delta = delta;
2401 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2402 struct gro_remcsum *grc)
2404 if (!grc->delta)
2405 return;
2407 remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2410 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2411 unsigned short type,
2412 const void *daddr, const void *saddr,
2413 unsigned int len)
2415 if (!dev->header_ops || !dev->header_ops->create)
2416 return 0;
2418 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2421 static inline int dev_parse_header(const struct sk_buff *skb,
2422 unsigned char *haddr)
2424 const struct net_device *dev = skb->dev;
2426 if (!dev->header_ops || !dev->header_ops->parse)
2427 return 0;
2428 return dev->header_ops->parse(skb, haddr);
2431 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2432 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2433 static inline int unregister_gifconf(unsigned int family)
2435 return register_gifconf(family, NULL);
2438 #ifdef CONFIG_NET_FLOW_LIMIT
2439 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2440 struct sd_flow_limit {
2441 u64 count;
2442 unsigned int num_buckets;
2443 unsigned int history_head;
2444 u16 history[FLOW_LIMIT_HISTORY];
2445 u8 buckets[];
2448 extern int netdev_flow_limit_table_len;
2449 #endif /* CONFIG_NET_FLOW_LIMIT */
2452 * Incoming packets are placed on per-cpu queues
2454 struct softnet_data {
2455 struct list_head poll_list;
2456 struct sk_buff_head process_queue;
2458 /* stats */
2459 unsigned int processed;
2460 unsigned int time_squeeze;
2461 unsigned int cpu_collision;
2462 unsigned int received_rps;
2463 #ifdef CONFIG_RPS
2464 struct softnet_data *rps_ipi_list;
2465 #endif
2466 #ifdef CONFIG_NET_FLOW_LIMIT
2467 struct sd_flow_limit __rcu *flow_limit;
2468 #endif
2469 struct Qdisc *output_queue;
2470 struct Qdisc **output_queue_tailp;
2471 struct sk_buff *completion_queue;
2473 #ifdef CONFIG_RPS
2474 /* Elements below can be accessed between CPUs for RPS */
2475 struct call_single_data csd ____cacheline_aligned_in_smp;
2476 struct softnet_data *rps_ipi_next;
2477 unsigned int cpu;
2478 unsigned int input_queue_head;
2479 unsigned int input_queue_tail;
2480 #endif
2481 unsigned int dropped;
2482 struct sk_buff_head input_pkt_queue;
2483 struct napi_struct backlog;
2487 static inline void input_queue_head_incr(struct softnet_data *sd)
2489 #ifdef CONFIG_RPS
2490 sd->input_queue_head++;
2491 #endif
2494 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2495 unsigned int *qtail)
2497 #ifdef CONFIG_RPS
2498 *qtail = ++sd->input_queue_tail;
2499 #endif
2502 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2504 void __netif_schedule(struct Qdisc *q);
2505 void netif_schedule_queue(struct netdev_queue *txq);
2507 static inline void netif_tx_schedule_all(struct net_device *dev)
2509 unsigned int i;
2511 for (i = 0; i < dev->num_tx_queues; i++)
2512 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2515 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2517 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2521 * netif_start_queue - allow transmit
2522 * @dev: network device
2524 * Allow upper layers to call the device hard_start_xmit routine.
2526 static inline void netif_start_queue(struct net_device *dev)
2528 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2531 static inline void netif_tx_start_all_queues(struct net_device *dev)
2533 unsigned int i;
2535 for (i = 0; i < dev->num_tx_queues; i++) {
2536 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2537 netif_tx_start_queue(txq);
2541 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2544 * netif_wake_queue - restart transmit
2545 * @dev: network device
2547 * Allow upper layers to call the device hard_start_xmit routine.
2548 * Used for flow control when transmit resources are available.
2550 static inline void netif_wake_queue(struct net_device *dev)
2552 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2555 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2557 unsigned int i;
2559 for (i = 0; i < dev->num_tx_queues; i++) {
2560 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2561 netif_tx_wake_queue(txq);
2565 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2567 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2571 * netif_stop_queue - stop transmitted packets
2572 * @dev: network device
2574 * Stop upper layers calling the device hard_start_xmit routine.
2575 * Used for flow control when transmit resources are unavailable.
2577 static inline void netif_stop_queue(struct net_device *dev)
2579 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2582 void netif_tx_stop_all_queues(struct net_device *dev);
2584 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2586 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2590 * netif_queue_stopped - test if transmit queue is flowblocked
2591 * @dev: network device
2593 * Test if transmit queue on device is currently unable to send.
2595 static inline bool netif_queue_stopped(const struct net_device *dev)
2597 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2600 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2602 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2605 static inline bool
2606 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2608 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2611 static inline bool
2612 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2614 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2618 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2619 * @dev_queue: pointer to transmit queue
2621 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2622 * to give appropriate hint to the cpu.
2624 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2626 #ifdef CONFIG_BQL
2627 prefetchw(&dev_queue->dql.num_queued);
2628 #endif
2632 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2633 * @dev_queue: pointer to transmit queue
2635 * BQL enabled drivers might use this helper in their TX completion path,
2636 * to give appropriate hint to the cpu.
2638 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2640 #ifdef CONFIG_BQL
2641 prefetchw(&dev_queue->dql.limit);
2642 #endif
2645 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2646 unsigned int bytes)
2648 #ifdef CONFIG_BQL
2649 dql_queued(&dev_queue->dql, bytes);
2651 if (likely(dql_avail(&dev_queue->dql) >= 0))
2652 return;
2654 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2657 * The XOFF flag must be set before checking the dql_avail below,
2658 * because in netdev_tx_completed_queue we update the dql_completed
2659 * before checking the XOFF flag.
2661 smp_mb();
2663 /* check again in case another CPU has just made room avail */
2664 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2665 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2666 #endif
2670 * netdev_sent_queue - report the number of bytes queued to hardware
2671 * @dev: network device
2672 * @bytes: number of bytes queued to the hardware device queue
2674 * Report the number of bytes queued for sending/completion to the network
2675 * device hardware queue. @bytes should be a good approximation and should
2676 * exactly match netdev_completed_queue() @bytes
2678 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2680 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2683 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2684 unsigned int pkts, unsigned int bytes)
2686 #ifdef CONFIG_BQL
2687 if (unlikely(!bytes))
2688 return;
2690 dql_completed(&dev_queue->dql, bytes);
2693 * Without the memory barrier there is a small possiblity that
2694 * netdev_tx_sent_queue will miss the update and cause the queue to
2695 * be stopped forever
2697 smp_mb();
2699 if (dql_avail(&dev_queue->dql) < 0)
2700 return;
2702 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2703 netif_schedule_queue(dev_queue);
2704 #endif
2708 * netdev_completed_queue - report bytes and packets completed by device
2709 * @dev: network device
2710 * @pkts: actual number of packets sent over the medium
2711 * @bytes: actual number of bytes sent over the medium
2713 * Report the number of bytes and packets transmitted by the network device
2714 * hardware queue over the physical medium, @bytes must exactly match the
2715 * @bytes amount passed to netdev_sent_queue()
2717 static inline void netdev_completed_queue(struct net_device *dev,
2718 unsigned int pkts, unsigned int bytes)
2720 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2723 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2725 #ifdef CONFIG_BQL
2726 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2727 dql_reset(&q->dql);
2728 #endif
2732 * netdev_reset_queue - reset the packets and bytes count of a network device
2733 * @dev_queue: network device
2735 * Reset the bytes and packet count of a network device and clear the
2736 * software flow control OFF bit for this network device
2738 static inline void netdev_reset_queue(struct net_device *dev_queue)
2740 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2744 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2745 * @dev: network device
2746 * @queue_index: given tx queue index
2748 * Returns 0 if given tx queue index >= number of device tx queues,
2749 * otherwise returns the originally passed tx queue index.
2751 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2753 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2754 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2755 dev->name, queue_index,
2756 dev->real_num_tx_queues);
2757 return 0;
2760 return queue_index;
2764 * netif_running - test if up
2765 * @dev: network device
2767 * Test if the device has been brought up.
2769 static inline bool netif_running(const struct net_device *dev)
2771 return test_bit(__LINK_STATE_START, &dev->state);
2775 * Routines to manage the subqueues on a device. We only need start
2776 * stop, and a check if it's stopped. All other device management is
2777 * done at the overall netdevice level.
2778 * Also test the device if we're multiqueue.
2782 * netif_start_subqueue - allow sending packets on subqueue
2783 * @dev: network device
2784 * @queue_index: sub queue index
2786 * Start individual transmit queue of a device with multiple transmit queues.
2788 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2790 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2792 netif_tx_start_queue(txq);
2796 * netif_stop_subqueue - stop sending packets on subqueue
2797 * @dev: network device
2798 * @queue_index: sub queue index
2800 * Stop individual transmit queue of a device with multiple transmit queues.
2802 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2804 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2805 netif_tx_stop_queue(txq);
2809 * netif_subqueue_stopped - test status of subqueue
2810 * @dev: network device
2811 * @queue_index: sub queue index
2813 * Check individual transmit queue of a device with multiple transmit queues.
2815 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2816 u16 queue_index)
2818 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2820 return netif_tx_queue_stopped(txq);
2823 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2824 struct sk_buff *skb)
2826 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2829 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2831 #ifdef CONFIG_XPS
2832 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2833 u16 index);
2834 #else
2835 static inline int netif_set_xps_queue(struct net_device *dev,
2836 const struct cpumask *mask,
2837 u16 index)
2839 return 0;
2841 #endif
2843 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2844 unsigned int num_tx_queues);
2847 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2848 * as a distribution range limit for the returned value.
2850 static inline u16 skb_tx_hash(const struct net_device *dev,
2851 struct sk_buff *skb)
2853 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2857 * netif_is_multiqueue - test if device has multiple transmit queues
2858 * @dev: network device
2860 * Check if device has multiple transmit queues
2862 static inline bool netif_is_multiqueue(const struct net_device *dev)
2864 return dev->num_tx_queues > 1;
2867 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2869 #ifdef CONFIG_SYSFS
2870 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2871 #else
2872 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2873 unsigned int rxq)
2875 return 0;
2877 #endif
2879 #ifdef CONFIG_SYSFS
2880 static inline unsigned int get_netdev_rx_queue_index(
2881 struct netdev_rx_queue *queue)
2883 struct net_device *dev = queue->dev;
2884 int index = queue - dev->_rx;
2886 BUG_ON(index >= dev->num_rx_queues);
2887 return index;
2889 #endif
2891 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2892 int netif_get_num_default_rss_queues(void);
2894 enum skb_free_reason {
2895 SKB_REASON_CONSUMED,
2896 SKB_REASON_DROPPED,
2899 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2900 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2903 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2904 * interrupt context or with hardware interrupts being disabled.
2905 * (in_irq() || irqs_disabled())
2907 * We provide four helpers that can be used in following contexts :
2909 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2910 * replacing kfree_skb(skb)
2912 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2913 * Typically used in place of consume_skb(skb) in TX completion path
2915 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2916 * replacing kfree_skb(skb)
2918 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2919 * and consumed a packet. Used in place of consume_skb(skb)
2921 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2923 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2926 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2928 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2931 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2933 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2936 static inline void dev_consume_skb_any(struct sk_buff *skb)
2938 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2941 int netif_rx(struct sk_buff *skb);
2942 int netif_rx_ni(struct sk_buff *skb);
2943 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2944 static inline int netif_receive_skb(struct sk_buff *skb)
2946 return netif_receive_skb_sk(skb->sk, skb);
2948 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2949 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2950 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2951 gro_result_t napi_gro_frags(struct napi_struct *napi);
2952 struct packet_offload *gro_find_receive_by_type(__be16 type);
2953 struct packet_offload *gro_find_complete_by_type(__be16 type);
2955 static inline void napi_free_frags(struct napi_struct *napi)
2957 kfree_skb(napi->skb);
2958 napi->skb = NULL;
2961 int netdev_rx_handler_register(struct net_device *dev,
2962 rx_handler_func_t *rx_handler,
2963 void *rx_handler_data);
2964 void netdev_rx_handler_unregister(struct net_device *dev);
2966 bool dev_valid_name(const char *name);
2967 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2968 int dev_ethtool(struct net *net, struct ifreq *);
2969 unsigned int dev_get_flags(const struct net_device *);
2970 int __dev_change_flags(struct net_device *, unsigned int flags);
2971 int dev_change_flags(struct net_device *, unsigned int);
2972 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2973 unsigned int gchanges);
2974 int dev_change_name(struct net_device *, const char *);
2975 int dev_set_alias(struct net_device *, const char *, size_t);
2976 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2977 int dev_set_mtu(struct net_device *, int);
2978 void dev_set_group(struct net_device *, int);
2979 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2980 int dev_change_carrier(struct net_device *, bool new_carrier);
2981 int dev_get_phys_port_id(struct net_device *dev,
2982 struct netdev_phys_item_id *ppid);
2983 int dev_get_phys_port_name(struct net_device *dev,
2984 char *name, size_t len);
2985 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2986 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2987 struct netdev_queue *txq, int *ret);
2988 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2989 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2990 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2992 extern int netdev_budget;
2994 /* Called by rtnetlink.c:rtnl_unlock() */
2995 void netdev_run_todo(void);
2998 * dev_put - release reference to device
2999 * @dev: network device
3001 * Release reference to device to allow it to be freed.
3003 static inline void dev_put(struct net_device *dev)
3005 this_cpu_dec(*dev->pcpu_refcnt);
3009 * dev_hold - get reference to device
3010 * @dev: network device
3012 * Hold reference to device to keep it from being freed.
3014 static inline void dev_hold(struct net_device *dev)
3016 this_cpu_inc(*dev->pcpu_refcnt);
3019 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3020 * and _off may be called from IRQ context, but it is caller
3021 * who is responsible for serialization of these calls.
3023 * The name carrier is inappropriate, these functions should really be
3024 * called netif_lowerlayer_*() because they represent the state of any
3025 * kind of lower layer not just hardware media.
3028 void linkwatch_init_dev(struct net_device *dev);
3029 void linkwatch_fire_event(struct net_device *dev);
3030 void linkwatch_forget_dev(struct net_device *dev);
3033 * netif_carrier_ok - test if carrier present
3034 * @dev: network device
3036 * Check if carrier is present on device
3038 static inline bool netif_carrier_ok(const struct net_device *dev)
3040 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3043 unsigned long dev_trans_start(struct net_device *dev);
3045 void __netdev_watchdog_up(struct net_device *dev);
3047 void netif_carrier_on(struct net_device *dev);
3049 void netif_carrier_off(struct net_device *dev);
3052 * netif_dormant_on - mark device as dormant.
3053 * @dev: network device
3055 * Mark device as dormant (as per RFC2863).
3057 * The dormant state indicates that the relevant interface is not
3058 * actually in a condition to pass packets (i.e., it is not 'up') but is
3059 * in a "pending" state, waiting for some external event. For "on-
3060 * demand" interfaces, this new state identifies the situation where the
3061 * interface is waiting for events to place it in the up state.
3064 static inline void netif_dormant_on(struct net_device *dev)
3066 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3067 linkwatch_fire_event(dev);
3071 * netif_dormant_off - set device as not dormant.
3072 * @dev: network device
3074 * Device is not in dormant state.
3076 static inline void netif_dormant_off(struct net_device *dev)
3078 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3079 linkwatch_fire_event(dev);
3083 * netif_dormant - test if carrier present
3084 * @dev: network device
3086 * Check if carrier is present on device
3088 static inline bool netif_dormant(const struct net_device *dev)
3090 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3095 * netif_oper_up - test if device is operational
3096 * @dev: network device
3098 * Check if carrier is operational
3100 static inline bool netif_oper_up(const struct net_device *dev)
3102 return (dev->operstate == IF_OPER_UP ||
3103 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3107 * netif_device_present - is device available or removed
3108 * @dev: network device
3110 * Check if device has not been removed from system.
3112 static inline bool netif_device_present(struct net_device *dev)
3114 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3117 void netif_device_detach(struct net_device *dev);
3119 void netif_device_attach(struct net_device *dev);
3122 * Network interface message level settings
3125 enum {
3126 NETIF_MSG_DRV = 0x0001,
3127 NETIF_MSG_PROBE = 0x0002,
3128 NETIF_MSG_LINK = 0x0004,
3129 NETIF_MSG_TIMER = 0x0008,
3130 NETIF_MSG_IFDOWN = 0x0010,
3131 NETIF_MSG_IFUP = 0x0020,
3132 NETIF_MSG_RX_ERR = 0x0040,
3133 NETIF_MSG_TX_ERR = 0x0080,
3134 NETIF_MSG_TX_QUEUED = 0x0100,
3135 NETIF_MSG_INTR = 0x0200,
3136 NETIF_MSG_TX_DONE = 0x0400,
3137 NETIF_MSG_RX_STATUS = 0x0800,
3138 NETIF_MSG_PKTDATA = 0x1000,
3139 NETIF_MSG_HW = 0x2000,
3140 NETIF_MSG_WOL = 0x4000,
3143 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3144 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3145 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3146 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3147 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3148 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3149 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3150 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3151 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3152 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3153 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3154 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3155 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3156 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3157 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3159 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3161 /* use default */
3162 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3163 return default_msg_enable_bits;
3164 if (debug_value == 0) /* no output */
3165 return 0;
3166 /* set low N bits */
3167 return (1 << debug_value) - 1;
3170 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3172 spin_lock(&txq->_xmit_lock);
3173 txq->xmit_lock_owner = cpu;
3176 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3178 spin_lock_bh(&txq->_xmit_lock);
3179 txq->xmit_lock_owner = smp_processor_id();
3182 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3184 bool ok = spin_trylock(&txq->_xmit_lock);
3185 if (likely(ok))
3186 txq->xmit_lock_owner = smp_processor_id();
3187 return ok;
3190 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3192 txq->xmit_lock_owner = -1;
3193 spin_unlock(&txq->_xmit_lock);
3196 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3198 txq->xmit_lock_owner = -1;
3199 spin_unlock_bh(&txq->_xmit_lock);
3202 static inline void txq_trans_update(struct netdev_queue *txq)
3204 if (txq->xmit_lock_owner != -1)
3205 txq->trans_start = jiffies;
3209 * netif_tx_lock - grab network device transmit lock
3210 * @dev: network device
3212 * Get network device transmit lock
3214 static inline void netif_tx_lock(struct net_device *dev)
3216 unsigned int i;
3217 int cpu;
3219 spin_lock(&dev->tx_global_lock);
3220 cpu = smp_processor_id();
3221 for (i = 0; i < dev->num_tx_queues; i++) {
3222 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3224 /* We are the only thread of execution doing a
3225 * freeze, but we have to grab the _xmit_lock in
3226 * order to synchronize with threads which are in
3227 * the ->hard_start_xmit() handler and already
3228 * checked the frozen bit.
3230 __netif_tx_lock(txq, cpu);
3231 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3232 __netif_tx_unlock(txq);
3236 static inline void netif_tx_lock_bh(struct net_device *dev)
3238 local_bh_disable();
3239 netif_tx_lock(dev);
3242 static inline void netif_tx_unlock(struct net_device *dev)
3244 unsigned int i;
3246 for (i = 0; i < dev->num_tx_queues; i++) {
3247 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3249 /* No need to grab the _xmit_lock here. If the
3250 * queue is not stopped for another reason, we
3251 * force a schedule.
3253 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3254 netif_schedule_queue(txq);
3256 spin_unlock(&dev->tx_global_lock);
3259 static inline void netif_tx_unlock_bh(struct net_device *dev)
3261 netif_tx_unlock(dev);
3262 local_bh_enable();
3265 #define HARD_TX_LOCK(dev, txq, cpu) { \
3266 if ((dev->features & NETIF_F_LLTX) == 0) { \
3267 __netif_tx_lock(txq, cpu); \
3271 #define HARD_TX_TRYLOCK(dev, txq) \
3272 (((dev->features & NETIF_F_LLTX) == 0) ? \
3273 __netif_tx_trylock(txq) : \
3274 true )
3276 #define HARD_TX_UNLOCK(dev, txq) { \
3277 if ((dev->features & NETIF_F_LLTX) == 0) { \
3278 __netif_tx_unlock(txq); \
3282 static inline void netif_tx_disable(struct net_device *dev)
3284 unsigned int i;
3285 int cpu;
3287 local_bh_disable();
3288 cpu = smp_processor_id();
3289 for (i = 0; i < dev->num_tx_queues; i++) {
3290 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3292 __netif_tx_lock(txq, cpu);
3293 netif_tx_stop_queue(txq);
3294 __netif_tx_unlock(txq);
3296 local_bh_enable();
3299 static inline void netif_addr_lock(struct net_device *dev)
3301 spin_lock(&dev->addr_list_lock);
3304 static inline void netif_addr_lock_nested(struct net_device *dev)
3306 int subclass = SINGLE_DEPTH_NESTING;
3308 if (dev->netdev_ops->ndo_get_lock_subclass)
3309 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3311 spin_lock_nested(&dev->addr_list_lock, subclass);
3314 static inline void netif_addr_lock_bh(struct net_device *dev)
3316 spin_lock_bh(&dev->addr_list_lock);
3319 static inline void netif_addr_unlock(struct net_device *dev)
3321 spin_unlock(&dev->addr_list_lock);
3324 static inline void netif_addr_unlock_bh(struct net_device *dev)
3326 spin_unlock_bh(&dev->addr_list_lock);
3330 * dev_addrs walker. Should be used only for read access. Call with
3331 * rcu_read_lock held.
3333 #define for_each_dev_addr(dev, ha) \
3334 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3336 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3338 void ether_setup(struct net_device *dev);
3340 /* Support for loadable net-drivers */
3341 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3342 unsigned char name_assign_type,
3343 void (*setup)(struct net_device *),
3344 unsigned int txqs, unsigned int rxqs);
3345 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3346 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3348 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3349 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3350 count)
3352 int register_netdev(struct net_device *dev);
3353 void unregister_netdev(struct net_device *dev);
3355 /* General hardware address lists handling functions */
3356 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3357 struct netdev_hw_addr_list *from_list, int addr_len);
3358 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3359 struct netdev_hw_addr_list *from_list, int addr_len);
3360 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3361 struct net_device *dev,
3362 int (*sync)(struct net_device *, const unsigned char *),
3363 int (*unsync)(struct net_device *,
3364 const unsigned char *));
3365 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3366 struct net_device *dev,
3367 int (*unsync)(struct net_device *,
3368 const unsigned char *));
3369 void __hw_addr_init(struct netdev_hw_addr_list *list);
3371 /* Functions used for device addresses handling */
3372 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3373 unsigned char addr_type);
3374 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3375 unsigned char addr_type);
3376 void dev_addr_flush(struct net_device *dev);
3377 int dev_addr_init(struct net_device *dev);
3379 /* Functions used for unicast addresses handling */
3380 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3381 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3382 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3383 int dev_uc_sync(struct net_device *to, struct net_device *from);
3384 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3385 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3386 void dev_uc_flush(struct net_device *dev);
3387 void dev_uc_init(struct net_device *dev);
3390 * __dev_uc_sync - Synchonize device's unicast list
3391 * @dev: device to sync
3392 * @sync: function to call if address should be added
3393 * @unsync: function to call if address should be removed
3395 * Add newly added addresses to the interface, and release
3396 * addresses that have been deleted.
3398 static inline int __dev_uc_sync(struct net_device *dev,
3399 int (*sync)(struct net_device *,
3400 const unsigned char *),
3401 int (*unsync)(struct net_device *,
3402 const unsigned char *))
3404 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3408 * __dev_uc_unsync - Remove synchronized addresses from device
3409 * @dev: device to sync
3410 * @unsync: function to call if address should be removed
3412 * Remove all addresses that were added to the device by dev_uc_sync().
3414 static inline void __dev_uc_unsync(struct net_device *dev,
3415 int (*unsync)(struct net_device *,
3416 const unsigned char *))
3418 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3421 /* Functions used for multicast addresses handling */
3422 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3423 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3424 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3425 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3426 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3427 int dev_mc_sync(struct net_device *to, struct net_device *from);
3428 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3429 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3430 void dev_mc_flush(struct net_device *dev);
3431 void dev_mc_init(struct net_device *dev);
3434 * __dev_mc_sync - Synchonize device's multicast list
3435 * @dev: device to sync
3436 * @sync: function to call if address should be added
3437 * @unsync: function to call if address should be removed
3439 * Add newly added addresses to the interface, and release
3440 * addresses that have been deleted.
3442 static inline int __dev_mc_sync(struct net_device *dev,
3443 int (*sync)(struct net_device *,
3444 const unsigned char *),
3445 int (*unsync)(struct net_device *,
3446 const unsigned char *))
3448 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3452 * __dev_mc_unsync - Remove synchronized addresses from device
3453 * @dev: device to sync
3454 * @unsync: function to call if address should be removed
3456 * Remove all addresses that were added to the device by dev_mc_sync().
3458 static inline void __dev_mc_unsync(struct net_device *dev,
3459 int (*unsync)(struct net_device *,
3460 const unsigned char *))
3462 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3465 /* Functions used for secondary unicast and multicast support */
3466 void dev_set_rx_mode(struct net_device *dev);
3467 void __dev_set_rx_mode(struct net_device *dev);
3468 int dev_set_promiscuity(struct net_device *dev, int inc);
3469 int dev_set_allmulti(struct net_device *dev, int inc);
3470 void netdev_state_change(struct net_device *dev);
3471 void netdev_notify_peers(struct net_device *dev);
3472 void netdev_features_change(struct net_device *dev);
3473 /* Load a device via the kmod */
3474 void dev_load(struct net *net, const char *name);
3475 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3476 struct rtnl_link_stats64 *storage);
3477 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3478 const struct net_device_stats *netdev_stats);
3480 extern int netdev_max_backlog;
3481 extern int netdev_tstamp_prequeue;
3482 extern int weight_p;
3483 extern int bpf_jit_enable;
3485 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3486 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3487 struct list_head **iter);
3488 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3489 struct list_head **iter);
3491 /* iterate through upper list, must be called under RCU read lock */
3492 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3493 for (iter = &(dev)->adj_list.upper, \
3494 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3495 updev; \
3496 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3498 /* iterate through upper list, must be called under RCU read lock */
3499 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3500 for (iter = &(dev)->all_adj_list.upper, \
3501 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3502 updev; \
3503 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3505 void *netdev_lower_get_next_private(struct net_device *dev,
3506 struct list_head **iter);
3507 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3508 struct list_head **iter);
3510 #define netdev_for_each_lower_private(dev, priv, iter) \
3511 for (iter = (dev)->adj_list.lower.next, \
3512 priv = netdev_lower_get_next_private(dev, &(iter)); \
3513 priv; \
3514 priv = netdev_lower_get_next_private(dev, &(iter)))
3516 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3517 for (iter = &(dev)->adj_list.lower, \
3518 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3519 priv; \
3520 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3522 void *netdev_lower_get_next(struct net_device *dev,
3523 struct list_head **iter);
3524 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3525 for (iter = &(dev)->adj_list.lower, \
3526 ldev = netdev_lower_get_next(dev, &(iter)); \
3527 ldev; \
3528 ldev = netdev_lower_get_next(dev, &(iter)))
3530 void *netdev_adjacent_get_private(struct list_head *adj_list);
3531 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3532 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3533 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3534 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3535 int netdev_master_upper_dev_link(struct net_device *dev,
3536 struct net_device *upper_dev);
3537 int netdev_master_upper_dev_link_private(struct net_device *dev,
3538 struct net_device *upper_dev,
3539 void *private);
3540 void netdev_upper_dev_unlink(struct net_device *dev,
3541 struct net_device *upper_dev);
3542 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3543 void *netdev_lower_dev_get_private(struct net_device *dev,
3544 struct net_device *lower_dev);
3546 /* RSS keys are 40 or 52 bytes long */
3547 #define NETDEV_RSS_KEY_LEN 52
3548 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3549 void netdev_rss_key_fill(void *buffer, size_t len);
3551 int dev_get_nest_level(struct net_device *dev,
3552 bool (*type_check)(struct net_device *dev));
3553 int skb_checksum_help(struct sk_buff *skb);
3554 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3555 netdev_features_t features, bool tx_path);
3556 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3557 netdev_features_t features);
3559 struct netdev_bonding_info {
3560 ifslave slave;
3561 ifbond master;
3564 struct netdev_notifier_bonding_info {
3565 struct netdev_notifier_info info; /* must be first */
3566 struct netdev_bonding_info bonding_info;
3569 void netdev_bonding_info_change(struct net_device *dev,
3570 struct netdev_bonding_info *bonding_info);
3572 static inline
3573 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3575 return __skb_gso_segment(skb, features, true);
3577 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3579 static inline bool can_checksum_protocol(netdev_features_t features,
3580 __be16 protocol)
3582 return ((features & NETIF_F_GEN_CSUM) ||
3583 ((features & NETIF_F_V4_CSUM) &&
3584 protocol == htons(ETH_P_IP)) ||
3585 ((features & NETIF_F_V6_CSUM) &&
3586 protocol == htons(ETH_P_IPV6)) ||
3587 ((features & NETIF_F_FCOE_CRC) &&
3588 protocol == htons(ETH_P_FCOE)));
3591 #ifdef CONFIG_BUG
3592 void netdev_rx_csum_fault(struct net_device *dev);
3593 #else
3594 static inline void netdev_rx_csum_fault(struct net_device *dev)
3597 #endif
3598 /* rx skb timestamps */
3599 void net_enable_timestamp(void);
3600 void net_disable_timestamp(void);
3602 #ifdef CONFIG_PROC_FS
3603 int __init dev_proc_init(void);
3604 #else
3605 #define dev_proc_init() 0
3606 #endif
3608 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3609 struct sk_buff *skb, struct net_device *dev,
3610 bool more)
3612 skb->xmit_more = more ? 1 : 0;
3613 return ops->ndo_start_xmit(skb, dev);
3616 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3617 struct netdev_queue *txq, bool more)
3619 const struct net_device_ops *ops = dev->netdev_ops;
3620 int rc;
3622 rc = __netdev_start_xmit(ops, skb, dev, more);
3623 if (rc == NETDEV_TX_OK)
3624 txq_trans_update(txq);
3626 return rc;
3629 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3630 const void *ns);
3631 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3632 const void *ns);
3634 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3636 return netdev_class_create_file_ns(class_attr, NULL);
3639 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3641 netdev_class_remove_file_ns(class_attr, NULL);
3644 extern struct kobj_ns_type_operations net_ns_type_operations;
3646 const char *netdev_drivername(const struct net_device *dev);
3648 void linkwatch_run_queue(void);
3650 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3651 netdev_features_t f2)
3653 if (f1 & NETIF_F_GEN_CSUM)
3654 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3655 if (f2 & NETIF_F_GEN_CSUM)
3656 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3657 f1 &= f2;
3658 if (f1 & NETIF_F_GEN_CSUM)
3659 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3661 return f1;
3664 static inline netdev_features_t netdev_get_wanted_features(
3665 struct net_device *dev)
3667 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3669 netdev_features_t netdev_increment_features(netdev_features_t all,
3670 netdev_features_t one, netdev_features_t mask);
3672 /* Allow TSO being used on stacked device :
3673 * Performing the GSO segmentation before last device
3674 * is a performance improvement.
3676 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3677 netdev_features_t mask)
3679 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3682 int __netdev_update_features(struct net_device *dev);
3683 void netdev_update_features(struct net_device *dev);
3684 void netdev_change_features(struct net_device *dev);
3686 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3687 struct net_device *dev);
3689 netdev_features_t passthru_features_check(struct sk_buff *skb,
3690 struct net_device *dev,
3691 netdev_features_t features);
3692 netdev_features_t netif_skb_features(struct sk_buff *skb);
3694 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3696 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3698 /* check flags correspondence */
3699 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3700 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3701 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3702 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3703 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3704 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3705 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3706 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3707 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3708 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3709 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3710 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3711 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3713 return (features & feature) == feature;
3716 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3718 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3719 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3722 static inline bool netif_needs_gso(struct sk_buff *skb,
3723 netdev_features_t features)
3725 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3726 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3727 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3730 static inline void netif_set_gso_max_size(struct net_device *dev,
3731 unsigned int size)
3733 dev->gso_max_size = size;
3736 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3737 int pulled_hlen, u16 mac_offset,
3738 int mac_len)
3740 skb->protocol = protocol;
3741 skb->encapsulation = 1;
3742 skb_push(skb, pulled_hlen);
3743 skb_reset_transport_header(skb);
3744 skb->mac_header = mac_offset;
3745 skb->network_header = skb->mac_header + mac_len;
3746 skb->mac_len = mac_len;
3749 static inline bool netif_is_macvlan(struct net_device *dev)
3751 return dev->priv_flags & IFF_MACVLAN;
3754 static inline bool netif_is_macvlan_port(struct net_device *dev)
3756 return dev->priv_flags & IFF_MACVLAN_PORT;
3759 static inline bool netif_is_ipvlan(struct net_device *dev)
3761 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3764 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3766 return dev->priv_flags & IFF_IPVLAN_MASTER;
3769 static inline bool netif_is_bond_master(struct net_device *dev)
3771 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3774 static inline bool netif_is_bond_slave(struct net_device *dev)
3776 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3779 static inline bool netif_supports_nofcs(struct net_device *dev)
3781 return dev->priv_flags & IFF_SUPP_NOFCS;
3784 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3785 static inline void netif_keep_dst(struct net_device *dev)
3787 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3790 extern struct pernet_operations __net_initdata loopback_net_ops;
3792 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3794 /* netdev_printk helpers, similar to dev_printk */
3796 static inline const char *netdev_name(const struct net_device *dev)
3798 if (!dev->name[0] || strchr(dev->name, '%'))
3799 return "(unnamed net_device)";
3800 return dev->name;
3803 static inline const char *netdev_reg_state(const struct net_device *dev)
3805 switch (dev->reg_state) {
3806 case NETREG_UNINITIALIZED: return " (uninitialized)";
3807 case NETREG_REGISTERED: return "";
3808 case NETREG_UNREGISTERING: return " (unregistering)";
3809 case NETREG_UNREGISTERED: return " (unregistered)";
3810 case NETREG_RELEASED: return " (released)";
3811 case NETREG_DUMMY: return " (dummy)";
3814 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3815 return " (unknown)";
3818 __printf(3, 4)
3819 void netdev_printk(const char *level, const struct net_device *dev,
3820 const char *format, ...);
3821 __printf(2, 3)
3822 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3823 __printf(2, 3)
3824 void netdev_alert(const struct net_device *dev, const char *format, ...);
3825 __printf(2, 3)
3826 void netdev_crit(const struct net_device *dev, const char *format, ...);
3827 __printf(2, 3)
3828 void netdev_err(const struct net_device *dev, const char *format, ...);
3829 __printf(2, 3)
3830 void netdev_warn(const struct net_device *dev, const char *format, ...);
3831 __printf(2, 3)
3832 void netdev_notice(const struct net_device *dev, const char *format, ...);
3833 __printf(2, 3)
3834 void netdev_info(const struct net_device *dev, const char *format, ...);
3836 #define MODULE_ALIAS_NETDEV(device) \
3837 MODULE_ALIAS("netdev-" device)
3839 #if defined(CONFIG_DYNAMIC_DEBUG)
3840 #define netdev_dbg(__dev, format, args...) \
3841 do { \
3842 dynamic_netdev_dbg(__dev, format, ##args); \
3843 } while (0)
3844 #elif defined(DEBUG)
3845 #define netdev_dbg(__dev, format, args...) \
3846 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3847 #else
3848 #define netdev_dbg(__dev, format, args...) \
3849 ({ \
3850 if (0) \
3851 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3853 #endif
3855 #if defined(VERBOSE_DEBUG)
3856 #define netdev_vdbg netdev_dbg
3857 #else
3859 #define netdev_vdbg(dev, format, args...) \
3860 ({ \
3861 if (0) \
3862 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3863 0; \
3865 #endif
3868 * netdev_WARN() acts like dev_printk(), but with the key difference
3869 * of using a WARN/WARN_ON to get the message out, including the
3870 * file/line information and a backtrace.
3872 #define netdev_WARN(dev, format, args...) \
3873 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3874 netdev_reg_state(dev), ##args)
3876 /* netif printk helpers, similar to netdev_printk */
3878 #define netif_printk(priv, type, level, dev, fmt, args...) \
3879 do { \
3880 if (netif_msg_##type(priv)) \
3881 netdev_printk(level, (dev), fmt, ##args); \
3882 } while (0)
3884 #define netif_level(level, priv, type, dev, fmt, args...) \
3885 do { \
3886 if (netif_msg_##type(priv)) \
3887 netdev_##level(dev, fmt, ##args); \
3888 } while (0)
3890 #define netif_emerg(priv, type, dev, fmt, args...) \
3891 netif_level(emerg, priv, type, dev, fmt, ##args)
3892 #define netif_alert(priv, type, dev, fmt, args...) \
3893 netif_level(alert, priv, type, dev, fmt, ##args)
3894 #define netif_crit(priv, type, dev, fmt, args...) \
3895 netif_level(crit, priv, type, dev, fmt, ##args)
3896 #define netif_err(priv, type, dev, fmt, args...) \
3897 netif_level(err, priv, type, dev, fmt, ##args)
3898 #define netif_warn(priv, type, dev, fmt, args...) \
3899 netif_level(warn, priv, type, dev, fmt, ##args)
3900 #define netif_notice(priv, type, dev, fmt, args...) \
3901 netif_level(notice, priv, type, dev, fmt, ##args)
3902 #define netif_info(priv, type, dev, fmt, args...) \
3903 netif_level(info, priv, type, dev, fmt, ##args)
3905 #if defined(CONFIG_DYNAMIC_DEBUG)
3906 #define netif_dbg(priv, type, netdev, format, args...) \
3907 do { \
3908 if (netif_msg_##type(priv)) \
3909 dynamic_netdev_dbg(netdev, format, ##args); \
3910 } while (0)
3911 #elif defined(DEBUG)
3912 #define netif_dbg(priv, type, dev, format, args...) \
3913 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3914 #else
3915 #define netif_dbg(priv, type, dev, format, args...) \
3916 ({ \
3917 if (0) \
3918 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3919 0; \
3921 #endif
3923 #if defined(VERBOSE_DEBUG)
3924 #define netif_vdbg netif_dbg
3925 #else
3926 #define netif_vdbg(priv, type, dev, format, args...) \
3927 ({ \
3928 if (0) \
3929 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3930 0; \
3932 #endif
3935 * The list of packet types we will receive (as opposed to discard)
3936 * and the routines to invoke.
3938 * Why 16. Because with 16 the only overlap we get on a hash of the
3939 * low nibble of the protocol value is RARP/SNAP/X.25.
3941 * NOTE: That is no longer true with the addition of VLAN tags. Not
3942 * sure which should go first, but I bet it won't make much
3943 * difference if we are running VLANs. The good news is that
3944 * this protocol won't be in the list unless compiled in, so
3945 * the average user (w/out VLANs) will not be adversely affected.
3946 * --BLG
3948 * 0800 IP
3949 * 8100 802.1Q VLAN
3950 * 0001 802.3
3951 * 0002 AX.25
3952 * 0004 802.2
3953 * 8035 RARP
3954 * 0005 SNAP
3955 * 0805 X.25
3956 * 0806 ARP
3957 * 8137 IPX
3958 * 0009 Localtalk
3959 * 86DD IPv6
3961 #define PTYPE_HASH_SIZE (16)
3962 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3964 #endif /* _LINUX_NETDEVICE_H */