Merge tag 'usb-serial-3.17-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/btrfs-unstable.git] / arch / arm / common / edma.c
blob88099175fc56c64be13c5a31e5cf05ed18b60e50
1 /*
2 * EDMA3 support for DaVinci
4 * Copyright (C) 2006-2009 Texas Instruments.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/err.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/edma.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/of_dma.h>
32 #include <linux/of_irq.h>
33 #include <linux/pm_runtime.h>
35 #include <linux/platform_data/edma.h>
37 /* Offsets matching "struct edmacc_param" */
38 #define PARM_OPT 0x00
39 #define PARM_SRC 0x04
40 #define PARM_A_B_CNT 0x08
41 #define PARM_DST 0x0c
42 #define PARM_SRC_DST_BIDX 0x10
43 #define PARM_LINK_BCNTRLD 0x14
44 #define PARM_SRC_DST_CIDX 0x18
45 #define PARM_CCNT 0x1c
47 #define PARM_SIZE 0x20
49 /* Offsets for EDMA CC global channel registers and their shadows */
50 #define SH_ER 0x00 /* 64 bits */
51 #define SH_ECR 0x08 /* 64 bits */
52 #define SH_ESR 0x10 /* 64 bits */
53 #define SH_CER 0x18 /* 64 bits */
54 #define SH_EER 0x20 /* 64 bits */
55 #define SH_EECR 0x28 /* 64 bits */
56 #define SH_EESR 0x30 /* 64 bits */
57 #define SH_SER 0x38 /* 64 bits */
58 #define SH_SECR 0x40 /* 64 bits */
59 #define SH_IER 0x50 /* 64 bits */
60 #define SH_IECR 0x58 /* 64 bits */
61 #define SH_IESR 0x60 /* 64 bits */
62 #define SH_IPR 0x68 /* 64 bits */
63 #define SH_ICR 0x70 /* 64 bits */
64 #define SH_IEVAL 0x78
65 #define SH_QER 0x80
66 #define SH_QEER 0x84
67 #define SH_QEECR 0x88
68 #define SH_QEESR 0x8c
69 #define SH_QSER 0x90
70 #define SH_QSECR 0x94
71 #define SH_SIZE 0x200
73 /* Offsets for EDMA CC global registers */
74 #define EDMA_REV 0x0000
75 #define EDMA_CCCFG 0x0004
76 #define EDMA_QCHMAP 0x0200 /* 8 registers */
77 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
78 #define EDMA_QDMAQNUM 0x0260
79 #define EDMA_QUETCMAP 0x0280
80 #define EDMA_QUEPRI 0x0284
81 #define EDMA_EMR 0x0300 /* 64 bits */
82 #define EDMA_EMCR 0x0308 /* 64 bits */
83 #define EDMA_QEMR 0x0310
84 #define EDMA_QEMCR 0x0314
85 #define EDMA_CCERR 0x0318
86 #define EDMA_CCERRCLR 0x031c
87 #define EDMA_EEVAL 0x0320
88 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
89 #define EDMA_QRAE 0x0380 /* 4 registers */
90 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
91 #define EDMA_QSTAT 0x0600 /* 2 registers */
92 #define EDMA_QWMTHRA 0x0620
93 #define EDMA_QWMTHRB 0x0624
94 #define EDMA_CCSTAT 0x0640
96 #define EDMA_M 0x1000 /* global channel registers */
97 #define EDMA_ECR 0x1008
98 #define EDMA_ECRH 0x100C
99 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
100 #define EDMA_PARM 0x4000 /* 128 param entries */
102 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
104 #define EDMA_DCHMAP 0x0100 /* 64 registers */
106 /* CCCFG register */
107 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
108 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
109 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
110 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
111 #define CHMAP_EXIST BIT(24)
113 #define EDMA_MAX_DMACH 64
114 #define EDMA_MAX_PARAMENTRY 512
116 /*****************************************************************************/
118 static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
120 static inline unsigned int edma_read(unsigned ctlr, int offset)
122 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
125 static inline void edma_write(unsigned ctlr, int offset, int val)
127 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
129 static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
130 unsigned or)
132 unsigned val = edma_read(ctlr, offset);
133 val &= and;
134 val |= or;
135 edma_write(ctlr, offset, val);
137 static inline void edma_and(unsigned ctlr, int offset, unsigned and)
139 unsigned val = edma_read(ctlr, offset);
140 val &= and;
141 edma_write(ctlr, offset, val);
143 static inline void edma_or(unsigned ctlr, int offset, unsigned or)
145 unsigned val = edma_read(ctlr, offset);
146 val |= or;
147 edma_write(ctlr, offset, val);
149 static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
151 return edma_read(ctlr, offset + (i << 2));
153 static inline void edma_write_array(unsigned ctlr, int offset, int i,
154 unsigned val)
156 edma_write(ctlr, offset + (i << 2), val);
158 static inline void edma_modify_array(unsigned ctlr, int offset, int i,
159 unsigned and, unsigned or)
161 edma_modify(ctlr, offset + (i << 2), and, or);
163 static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
165 edma_or(ctlr, offset + (i << 2), or);
167 static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
168 unsigned or)
170 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
172 static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
173 unsigned val)
175 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
177 static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
179 return edma_read(ctlr, EDMA_SHADOW0 + offset);
181 static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
182 int i)
184 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
186 static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
188 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
190 static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
191 unsigned val)
193 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
195 static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
196 int param_no)
198 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
200 static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
201 unsigned val)
203 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
205 static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
206 unsigned and, unsigned or)
208 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
210 static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
211 unsigned and)
213 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
215 static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
216 unsigned or)
218 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
221 static inline void set_bits(int offset, int len, unsigned long *p)
223 for (; len > 0; len--)
224 set_bit(offset + (len - 1), p);
227 static inline void clear_bits(int offset, int len, unsigned long *p)
229 for (; len > 0; len--)
230 clear_bit(offset + (len - 1), p);
233 /*****************************************************************************/
235 /* actual number of DMA channels and slots on this silicon */
236 struct edma {
237 /* how many dma resources of each type */
238 unsigned num_channels;
239 unsigned num_region;
240 unsigned num_slots;
241 unsigned num_tc;
242 enum dma_event_q default_queue;
244 /* list of channels with no even trigger; terminated by "-1" */
245 const s8 *noevent;
247 /* The edma_inuse bit for each PaRAM slot is clear unless the
248 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
250 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
252 /* The edma_unused bit for each channel is clear unless
253 * it is not being used on this platform. It uses a bit
254 * of SOC-specific initialization code.
256 DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
258 unsigned irq_res_start;
259 unsigned irq_res_end;
261 struct dma_interrupt_data {
262 void (*callback)(unsigned channel, unsigned short ch_status,
263 void *data);
264 void *data;
265 } intr_data[EDMA_MAX_DMACH];
268 static struct edma *edma_cc[EDMA_MAX_CC];
269 static int arch_num_cc;
271 /* dummy param set used to (re)initialize parameter RAM slots */
272 static const struct edmacc_param dummy_paramset = {
273 .link_bcntrld = 0xffff,
274 .ccnt = 1,
277 static const struct of_device_id edma_of_ids[] = {
278 { .compatible = "ti,edma3", },
282 /*****************************************************************************/
284 static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
285 enum dma_event_q queue_no)
287 int bit = (ch_no & 0x7) * 4;
289 /* default to low priority queue */
290 if (queue_no == EVENTQ_DEFAULT)
291 queue_no = edma_cc[ctlr]->default_queue;
293 queue_no &= 7;
294 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
295 ~(0x7 << bit), queue_no << bit);
298 static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
299 int priority)
301 int bit = queue_no * 4;
302 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
303 ((priority & 0x7) << bit));
307 * map_dmach_param - Maps channel number to param entry number
309 * This maps the dma channel number to param entry numberter. In
310 * other words using the DMA channel mapping registers a param entry
311 * can be mapped to any channel
313 * Callers are responsible for ensuring the channel mapping logic is
314 * included in that particular EDMA variant (Eg : dm646x)
317 static void __init map_dmach_param(unsigned ctlr)
319 int i;
320 for (i = 0; i < EDMA_MAX_DMACH; i++)
321 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
324 static inline void
325 setup_dma_interrupt(unsigned lch,
326 void (*callback)(unsigned channel, u16 ch_status, void *data),
327 void *data)
329 unsigned ctlr;
331 ctlr = EDMA_CTLR(lch);
332 lch = EDMA_CHAN_SLOT(lch);
334 if (!callback)
335 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
336 BIT(lch & 0x1f));
338 edma_cc[ctlr]->intr_data[lch].callback = callback;
339 edma_cc[ctlr]->intr_data[lch].data = data;
341 if (callback) {
342 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
343 BIT(lch & 0x1f));
344 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
345 BIT(lch & 0x1f));
349 static int irq2ctlr(int irq)
351 if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
352 return 0;
353 else if (irq >= edma_cc[1]->irq_res_start &&
354 irq <= edma_cc[1]->irq_res_end)
355 return 1;
357 return -1;
360 /******************************************************************************
362 * DMA interrupt handler
364 *****************************************************************************/
365 static irqreturn_t dma_irq_handler(int irq, void *data)
367 int ctlr;
368 u32 sh_ier;
369 u32 sh_ipr;
370 u32 bank;
372 ctlr = irq2ctlr(irq);
373 if (ctlr < 0)
374 return IRQ_NONE;
376 dev_dbg(data, "dma_irq_handler\n");
378 sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
379 if (!sh_ipr) {
380 sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
381 if (!sh_ipr)
382 return IRQ_NONE;
383 sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
384 bank = 1;
385 } else {
386 sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
387 bank = 0;
390 do {
391 u32 slot;
392 u32 channel;
394 dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
396 slot = __ffs(sh_ipr);
397 sh_ipr &= ~(BIT(slot));
399 if (sh_ier & BIT(slot)) {
400 channel = (bank << 5) | slot;
401 /* Clear the corresponding IPR bits */
402 edma_shadow0_write_array(ctlr, SH_ICR, bank,
403 BIT(slot));
404 if (edma_cc[ctlr]->intr_data[channel].callback)
405 edma_cc[ctlr]->intr_data[channel].callback(
406 channel, EDMA_DMA_COMPLETE,
407 edma_cc[ctlr]->intr_data[channel].data);
409 } while (sh_ipr);
411 edma_shadow0_write(ctlr, SH_IEVAL, 1);
412 return IRQ_HANDLED;
415 /******************************************************************************
417 * DMA error interrupt handler
419 *****************************************************************************/
420 static irqreturn_t dma_ccerr_handler(int irq, void *data)
422 int i;
423 int ctlr;
424 unsigned int cnt = 0;
426 ctlr = irq2ctlr(irq);
427 if (ctlr < 0)
428 return IRQ_NONE;
430 dev_dbg(data, "dma_ccerr_handler\n");
432 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
433 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
434 (edma_read(ctlr, EDMA_QEMR) == 0) &&
435 (edma_read(ctlr, EDMA_CCERR) == 0))
436 return IRQ_NONE;
438 while (1) {
439 int j = -1;
440 if (edma_read_array(ctlr, EDMA_EMR, 0))
441 j = 0;
442 else if (edma_read_array(ctlr, EDMA_EMR, 1))
443 j = 1;
444 if (j >= 0) {
445 dev_dbg(data, "EMR%d %08x\n", j,
446 edma_read_array(ctlr, EDMA_EMR, j));
447 for (i = 0; i < 32; i++) {
448 int k = (j << 5) + i;
449 if (edma_read_array(ctlr, EDMA_EMR, j) &
450 BIT(i)) {
451 /* Clear the corresponding EMR bits */
452 edma_write_array(ctlr, EDMA_EMCR, j,
453 BIT(i));
454 /* Clear any SER */
455 edma_shadow0_write_array(ctlr, SH_SECR,
456 j, BIT(i));
457 if (edma_cc[ctlr]->intr_data[k].
458 callback) {
459 edma_cc[ctlr]->intr_data[k].
460 callback(k,
461 EDMA_DMA_CC_ERROR,
462 edma_cc[ctlr]->intr_data
463 [k].data);
467 } else if (edma_read(ctlr, EDMA_QEMR)) {
468 dev_dbg(data, "QEMR %02x\n",
469 edma_read(ctlr, EDMA_QEMR));
470 for (i = 0; i < 8; i++) {
471 if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
472 /* Clear the corresponding IPR bits */
473 edma_write(ctlr, EDMA_QEMCR, BIT(i));
474 edma_shadow0_write(ctlr, SH_QSECR,
475 BIT(i));
477 /* NOTE: not reported!! */
480 } else if (edma_read(ctlr, EDMA_CCERR)) {
481 dev_dbg(data, "CCERR %08x\n",
482 edma_read(ctlr, EDMA_CCERR));
483 /* FIXME: CCERR.BIT(16) ignored! much better
484 * to just write CCERRCLR with CCERR value...
486 for (i = 0; i < 8; i++) {
487 if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
488 /* Clear the corresponding IPR bits */
489 edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
491 /* NOTE: not reported!! */
495 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
496 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
497 (edma_read(ctlr, EDMA_QEMR) == 0) &&
498 (edma_read(ctlr, EDMA_CCERR) == 0))
499 break;
500 cnt++;
501 if (cnt > 10)
502 break;
504 edma_write(ctlr, EDMA_EEVAL, 1);
505 return IRQ_HANDLED;
508 static int reserve_contiguous_slots(int ctlr, unsigned int id,
509 unsigned int num_slots,
510 unsigned int start_slot)
512 int i, j;
513 unsigned int count = num_slots;
514 int stop_slot = start_slot;
515 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
517 for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
518 j = EDMA_CHAN_SLOT(i);
519 if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
520 /* Record our current beginning slot */
521 if (count == num_slots)
522 stop_slot = i;
524 count--;
525 set_bit(j, tmp_inuse);
527 if (count == 0)
528 break;
529 } else {
530 clear_bit(j, tmp_inuse);
532 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
533 stop_slot = i;
534 break;
535 } else {
536 count = num_slots;
542 * We have to clear any bits that we set
543 * if we run out parameter RAM slots, i.e we do find a set
544 * of contiguous parameter RAM slots but do not find the exact number
545 * requested as we may reach the total number of parameter RAM slots
547 if (i == edma_cc[ctlr]->num_slots)
548 stop_slot = i;
550 j = start_slot;
551 for_each_set_bit_from(j, tmp_inuse, stop_slot)
552 clear_bit(j, edma_cc[ctlr]->edma_inuse);
554 if (count)
555 return -EBUSY;
557 for (j = i - num_slots + 1; j <= i; ++j)
558 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
559 &dummy_paramset, PARM_SIZE);
561 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
564 static int prepare_unused_channel_list(struct device *dev, void *data)
566 struct platform_device *pdev = to_platform_device(dev);
567 int i, count, ctlr;
568 struct of_phandle_args dma_spec;
570 if (dev->of_node) {
571 count = of_property_count_strings(dev->of_node, "dma-names");
572 if (count < 0)
573 return 0;
574 for (i = 0; i < count; i++) {
575 if (of_parse_phandle_with_args(dev->of_node, "dmas",
576 "#dma-cells", i,
577 &dma_spec))
578 continue;
580 if (!of_match_node(edma_of_ids, dma_spec.np)) {
581 of_node_put(dma_spec.np);
582 continue;
585 clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
586 edma_cc[0]->edma_unused);
587 of_node_put(dma_spec.np);
589 return 0;
592 /* For non-OF case */
593 for (i = 0; i < pdev->num_resources; i++) {
594 if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
595 (int)pdev->resource[i].start >= 0) {
596 ctlr = EDMA_CTLR(pdev->resource[i].start);
597 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
598 edma_cc[ctlr]->edma_unused);
602 return 0;
605 /*-----------------------------------------------------------------------*/
607 static bool unused_chan_list_done;
609 /* Resource alloc/free: dma channels, parameter RAM slots */
612 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
613 * @channel: specific channel to allocate; negative for "any unmapped channel"
614 * @callback: optional; to be issued on DMA completion or errors
615 * @data: passed to callback
616 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
617 * Controller (TC) executes requests using this channel. Use
618 * EVENTQ_DEFAULT unless you really need a high priority queue.
620 * This allocates a DMA channel and its associated parameter RAM slot.
621 * The parameter RAM is initialized to hold a dummy transfer.
623 * Normal use is to pass a specific channel number as @channel, to make
624 * use of hardware events mapped to that channel. When the channel will
625 * be used only for software triggering or event chaining, channels not
626 * mapped to hardware events (or mapped to unused events) are preferable.
628 * DMA transfers start from a channel using edma_start(), or by
629 * chaining. When the transfer described in that channel's parameter RAM
630 * slot completes, that slot's data may be reloaded through a link.
632 * DMA errors are only reported to the @callback associated with the
633 * channel driving that transfer, but transfer completion callbacks can
634 * be sent to another channel under control of the TCC field in
635 * the option word of the transfer's parameter RAM set. Drivers must not
636 * use DMA transfer completion callbacks for channels they did not allocate.
637 * (The same applies to TCC codes used in transfer chaining.)
639 * Returns the number of the channel, else negative errno.
641 int edma_alloc_channel(int channel,
642 void (*callback)(unsigned channel, u16 ch_status, void *data),
643 void *data,
644 enum dma_event_q eventq_no)
646 unsigned i, done = 0, ctlr = 0;
647 int ret = 0;
649 if (!unused_chan_list_done) {
651 * Scan all the platform devices to find out the EDMA channels
652 * used and clear them in the unused list, making the rest
653 * available for ARM usage.
655 ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
656 prepare_unused_channel_list);
657 if (ret < 0)
658 return ret;
660 unused_chan_list_done = true;
663 if (channel >= 0) {
664 ctlr = EDMA_CTLR(channel);
665 channel = EDMA_CHAN_SLOT(channel);
668 if (channel < 0) {
669 for (i = 0; i < arch_num_cc; i++) {
670 channel = 0;
671 for (;;) {
672 channel = find_next_bit(edma_cc[i]->edma_unused,
673 edma_cc[i]->num_channels,
674 channel);
675 if (channel == edma_cc[i]->num_channels)
676 break;
677 if (!test_and_set_bit(channel,
678 edma_cc[i]->edma_inuse)) {
679 done = 1;
680 ctlr = i;
681 break;
683 channel++;
685 if (done)
686 break;
688 if (!done)
689 return -ENOMEM;
690 } else if (channel >= edma_cc[ctlr]->num_channels) {
691 return -EINVAL;
692 } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
693 return -EBUSY;
696 /* ensure access through shadow region 0 */
697 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
699 /* ensure no events are pending */
700 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
701 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
702 &dummy_paramset, PARM_SIZE);
704 if (callback)
705 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
706 callback, data);
708 map_dmach_queue(ctlr, channel, eventq_no);
710 return EDMA_CTLR_CHAN(ctlr, channel);
712 EXPORT_SYMBOL(edma_alloc_channel);
716 * edma_free_channel - deallocate DMA channel
717 * @channel: dma channel returned from edma_alloc_channel()
719 * This deallocates the DMA channel and associated parameter RAM slot
720 * allocated by edma_alloc_channel().
722 * Callers are responsible for ensuring the channel is inactive, and
723 * will not be reactivated by linking, chaining, or software calls to
724 * edma_start().
726 void edma_free_channel(unsigned channel)
728 unsigned ctlr;
730 ctlr = EDMA_CTLR(channel);
731 channel = EDMA_CHAN_SLOT(channel);
733 if (channel >= edma_cc[ctlr]->num_channels)
734 return;
736 setup_dma_interrupt(channel, NULL, NULL);
737 /* REVISIT should probably take out of shadow region 0 */
739 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
740 &dummy_paramset, PARM_SIZE);
741 clear_bit(channel, edma_cc[ctlr]->edma_inuse);
743 EXPORT_SYMBOL(edma_free_channel);
746 * edma_alloc_slot - allocate DMA parameter RAM
747 * @slot: specific slot to allocate; negative for "any unused slot"
749 * This allocates a parameter RAM slot, initializing it to hold a
750 * dummy transfer. Slots allocated using this routine have not been
751 * mapped to a hardware DMA channel, and will normally be used by
752 * linking to them from a slot associated with a DMA channel.
754 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
755 * slots may be allocated on behalf of DSP firmware.
757 * Returns the number of the slot, else negative errno.
759 int edma_alloc_slot(unsigned ctlr, int slot)
761 if (!edma_cc[ctlr])
762 return -EINVAL;
764 if (slot >= 0)
765 slot = EDMA_CHAN_SLOT(slot);
767 if (slot < 0) {
768 slot = edma_cc[ctlr]->num_channels;
769 for (;;) {
770 slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
771 edma_cc[ctlr]->num_slots, slot);
772 if (slot == edma_cc[ctlr]->num_slots)
773 return -ENOMEM;
774 if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
775 break;
777 } else if (slot < edma_cc[ctlr]->num_channels ||
778 slot >= edma_cc[ctlr]->num_slots) {
779 return -EINVAL;
780 } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
781 return -EBUSY;
784 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
785 &dummy_paramset, PARM_SIZE);
787 return EDMA_CTLR_CHAN(ctlr, slot);
789 EXPORT_SYMBOL(edma_alloc_slot);
792 * edma_free_slot - deallocate DMA parameter RAM
793 * @slot: parameter RAM slot returned from edma_alloc_slot()
795 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
796 * Callers are responsible for ensuring the slot is inactive, and will
797 * not be activated.
799 void edma_free_slot(unsigned slot)
801 unsigned ctlr;
803 ctlr = EDMA_CTLR(slot);
804 slot = EDMA_CHAN_SLOT(slot);
806 if (slot < edma_cc[ctlr]->num_channels ||
807 slot >= edma_cc[ctlr]->num_slots)
808 return;
810 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
811 &dummy_paramset, PARM_SIZE);
812 clear_bit(slot, edma_cc[ctlr]->edma_inuse);
814 EXPORT_SYMBOL(edma_free_slot);
818 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
819 * The API will return the starting point of a set of
820 * contiguous parameter RAM slots that have been requested
822 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
823 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
824 * @count: number of contiguous Paramter RAM slots
825 * @slot - the start value of Parameter RAM slot that should be passed if id
826 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
828 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
829 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
830 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
832 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
833 * set of contiguous parameter RAM slots from the "slot" that is passed as an
834 * argument to the API.
836 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
837 * starts looking for a set of contiguous parameter RAMs from the "slot"
838 * that is passed as an argument to the API. On failure the API will try to
839 * find a set of contiguous Parameter RAM slots from the remaining Parameter
840 * RAM slots
842 int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
845 * The start slot requested should be greater than
846 * the number of channels and lesser than the total number
847 * of slots
849 if ((id != EDMA_CONT_PARAMS_ANY) &&
850 (slot < edma_cc[ctlr]->num_channels ||
851 slot >= edma_cc[ctlr]->num_slots))
852 return -EINVAL;
855 * The number of parameter RAM slots requested cannot be less than 1
856 * and cannot be more than the number of slots minus the number of
857 * channels
859 if (count < 1 || count >
860 (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
861 return -EINVAL;
863 switch (id) {
864 case EDMA_CONT_PARAMS_ANY:
865 return reserve_contiguous_slots(ctlr, id, count,
866 edma_cc[ctlr]->num_channels);
867 case EDMA_CONT_PARAMS_FIXED_EXACT:
868 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
869 return reserve_contiguous_slots(ctlr, id, count, slot);
870 default:
871 return -EINVAL;
875 EXPORT_SYMBOL(edma_alloc_cont_slots);
878 * edma_free_cont_slots - deallocate DMA parameter RAM slots
879 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
880 * @count: the number of contiguous parameter RAM slots to be freed
882 * This deallocates the parameter RAM slots allocated by
883 * edma_alloc_cont_slots.
884 * Callers/applications need to keep track of sets of contiguous
885 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
886 * API.
887 * Callers are responsible for ensuring the slots are inactive, and will
888 * not be activated.
890 int edma_free_cont_slots(unsigned slot, int count)
892 unsigned ctlr, slot_to_free;
893 int i;
895 ctlr = EDMA_CTLR(slot);
896 slot = EDMA_CHAN_SLOT(slot);
898 if (slot < edma_cc[ctlr]->num_channels ||
899 slot >= edma_cc[ctlr]->num_slots ||
900 count < 1)
901 return -EINVAL;
903 for (i = slot; i < slot + count; ++i) {
904 ctlr = EDMA_CTLR(i);
905 slot_to_free = EDMA_CHAN_SLOT(i);
907 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
908 &dummy_paramset, PARM_SIZE);
909 clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
912 return 0;
914 EXPORT_SYMBOL(edma_free_cont_slots);
916 /*-----------------------------------------------------------------------*/
918 /* Parameter RAM operations (i) -- read/write partial slots */
921 * edma_set_src - set initial DMA source address in parameter RAM slot
922 * @slot: parameter RAM slot being configured
923 * @src_port: physical address of source (memory, controller FIFO, etc)
924 * @addressMode: INCR, except in very rare cases
925 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
926 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
928 * Note that the source address is modified during the DMA transfer
929 * according to edma_set_src_index().
931 void edma_set_src(unsigned slot, dma_addr_t src_port,
932 enum address_mode mode, enum fifo_width width)
934 unsigned ctlr;
936 ctlr = EDMA_CTLR(slot);
937 slot = EDMA_CHAN_SLOT(slot);
939 if (slot < edma_cc[ctlr]->num_slots) {
940 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
942 if (mode) {
943 /* set SAM and program FWID */
944 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
945 } else {
946 /* clear SAM */
947 i &= ~SAM;
949 edma_parm_write(ctlr, PARM_OPT, slot, i);
951 /* set the source port address
952 in source register of param structure */
953 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
956 EXPORT_SYMBOL(edma_set_src);
959 * edma_set_dest - set initial DMA destination address in parameter RAM slot
960 * @slot: parameter RAM slot being configured
961 * @dest_port: physical address of destination (memory, controller FIFO, etc)
962 * @addressMode: INCR, except in very rare cases
963 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
964 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
966 * Note that the destination address is modified during the DMA transfer
967 * according to edma_set_dest_index().
969 void edma_set_dest(unsigned slot, dma_addr_t dest_port,
970 enum address_mode mode, enum fifo_width width)
972 unsigned ctlr;
974 ctlr = EDMA_CTLR(slot);
975 slot = EDMA_CHAN_SLOT(slot);
977 if (slot < edma_cc[ctlr]->num_slots) {
978 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
980 if (mode) {
981 /* set DAM and program FWID */
982 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
983 } else {
984 /* clear DAM */
985 i &= ~DAM;
987 edma_parm_write(ctlr, PARM_OPT, slot, i);
988 /* set the destination port address
989 in dest register of param structure */
990 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
993 EXPORT_SYMBOL(edma_set_dest);
996 * edma_get_position - returns the current transfer point
997 * @slot: parameter RAM slot being examined
998 * @dst: true selects the dest position, false the source
1000 * Returns the position of the current active slot
1002 dma_addr_t edma_get_position(unsigned slot, bool dst)
1004 u32 offs, ctlr = EDMA_CTLR(slot);
1006 slot = EDMA_CHAN_SLOT(slot);
1008 offs = PARM_OFFSET(slot);
1009 offs += dst ? PARM_DST : PARM_SRC;
1011 return edma_read(ctlr, offs);
1015 * edma_set_src_index - configure DMA source address indexing
1016 * @slot: parameter RAM slot being configured
1017 * @src_bidx: byte offset between source arrays in a frame
1018 * @src_cidx: byte offset between source frames in a block
1020 * Offsets are specified to support either contiguous or discontiguous
1021 * memory transfers, or repeated access to a hardware register, as needed.
1022 * When accessing hardware registers, both offsets are normally zero.
1024 void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1026 unsigned ctlr;
1028 ctlr = EDMA_CTLR(slot);
1029 slot = EDMA_CHAN_SLOT(slot);
1031 if (slot < edma_cc[ctlr]->num_slots) {
1032 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1033 0xffff0000, src_bidx);
1034 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1035 0xffff0000, src_cidx);
1038 EXPORT_SYMBOL(edma_set_src_index);
1041 * edma_set_dest_index - configure DMA destination address indexing
1042 * @slot: parameter RAM slot being configured
1043 * @dest_bidx: byte offset between destination arrays in a frame
1044 * @dest_cidx: byte offset between destination frames in a block
1046 * Offsets are specified to support either contiguous or discontiguous
1047 * memory transfers, or repeated access to a hardware register, as needed.
1048 * When accessing hardware registers, both offsets are normally zero.
1050 void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1052 unsigned ctlr;
1054 ctlr = EDMA_CTLR(slot);
1055 slot = EDMA_CHAN_SLOT(slot);
1057 if (slot < edma_cc[ctlr]->num_slots) {
1058 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1059 0x0000ffff, dest_bidx << 16);
1060 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1061 0x0000ffff, dest_cidx << 16);
1064 EXPORT_SYMBOL(edma_set_dest_index);
1067 * edma_set_transfer_params - configure DMA transfer parameters
1068 * @slot: parameter RAM slot being configured
1069 * @acnt: how many bytes per array (at least one)
1070 * @bcnt: how many arrays per frame (at least one)
1071 * @ccnt: how many frames per block (at least one)
1072 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1073 * the value to reload into bcnt when it decrements to zero
1074 * @sync_mode: ASYNC or ABSYNC
1076 * See the EDMA3 documentation to understand how to configure and link
1077 * transfers using the fields in PaRAM slots. If you are not doing it
1078 * all at once with edma_write_slot(), you will use this routine
1079 * plus two calls each for source and destination, setting the initial
1080 * address and saying how to index that address.
1082 * An example of an A-Synchronized transfer is a serial link using a
1083 * single word shift register. In that case, @acnt would be equal to
1084 * that word size; the serial controller issues a DMA synchronization
1085 * event to transfer each word, and memory access by the DMA transfer
1086 * controller will be word-at-a-time.
1088 * An example of an AB-Synchronized transfer is a device using a FIFO.
1089 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1090 * The controller with the FIFO issues DMA synchronization events when
1091 * the FIFO threshold is reached, and the DMA transfer controller will
1092 * transfer one frame to (or from) the FIFO. It will probably use
1093 * efficient burst modes to access memory.
1095 void edma_set_transfer_params(unsigned slot,
1096 u16 acnt, u16 bcnt, u16 ccnt,
1097 u16 bcnt_rld, enum sync_dimension sync_mode)
1099 unsigned ctlr;
1101 ctlr = EDMA_CTLR(slot);
1102 slot = EDMA_CHAN_SLOT(slot);
1104 if (slot < edma_cc[ctlr]->num_slots) {
1105 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1106 0x0000ffff, bcnt_rld << 16);
1107 if (sync_mode == ASYNC)
1108 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1109 else
1110 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1111 /* Set the acount, bcount, ccount registers */
1112 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1113 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1116 EXPORT_SYMBOL(edma_set_transfer_params);
1119 * edma_link - link one parameter RAM slot to another
1120 * @from: parameter RAM slot originating the link
1121 * @to: parameter RAM slot which is the link target
1123 * The originating slot should not be part of any active DMA transfer.
1125 void edma_link(unsigned from, unsigned to)
1127 unsigned ctlr_from, ctlr_to;
1129 ctlr_from = EDMA_CTLR(from);
1130 from = EDMA_CHAN_SLOT(from);
1131 ctlr_to = EDMA_CTLR(to);
1132 to = EDMA_CHAN_SLOT(to);
1134 if (from >= edma_cc[ctlr_from]->num_slots)
1135 return;
1136 if (to >= edma_cc[ctlr_to]->num_slots)
1137 return;
1138 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1139 PARM_OFFSET(to));
1141 EXPORT_SYMBOL(edma_link);
1144 * edma_unlink - cut link from one parameter RAM slot
1145 * @from: parameter RAM slot originating the link
1147 * The originating slot should not be part of any active DMA transfer.
1148 * Its link is set to 0xffff.
1150 void edma_unlink(unsigned from)
1152 unsigned ctlr;
1154 ctlr = EDMA_CTLR(from);
1155 from = EDMA_CHAN_SLOT(from);
1157 if (from >= edma_cc[ctlr]->num_slots)
1158 return;
1159 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1161 EXPORT_SYMBOL(edma_unlink);
1163 /*-----------------------------------------------------------------------*/
1165 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1168 * edma_write_slot - write parameter RAM data for slot
1169 * @slot: number of parameter RAM slot being modified
1170 * @param: data to be written into parameter RAM slot
1172 * Use this to assign all parameters of a transfer at once. This
1173 * allows more efficient setup of transfers than issuing multiple
1174 * calls to set up those parameters in small pieces, and provides
1175 * complete control over all transfer options.
1177 void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1179 unsigned ctlr;
1181 ctlr = EDMA_CTLR(slot);
1182 slot = EDMA_CHAN_SLOT(slot);
1184 if (slot >= edma_cc[ctlr]->num_slots)
1185 return;
1186 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1187 PARM_SIZE);
1189 EXPORT_SYMBOL(edma_write_slot);
1192 * edma_read_slot - read parameter RAM data from slot
1193 * @slot: number of parameter RAM slot being copied
1194 * @param: where to store copy of parameter RAM data
1196 * Use this to read data from a parameter RAM slot, perhaps to
1197 * save them as a template for later reuse.
1199 void edma_read_slot(unsigned slot, struct edmacc_param *param)
1201 unsigned ctlr;
1203 ctlr = EDMA_CTLR(slot);
1204 slot = EDMA_CHAN_SLOT(slot);
1206 if (slot >= edma_cc[ctlr]->num_slots)
1207 return;
1208 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1209 PARM_SIZE);
1211 EXPORT_SYMBOL(edma_read_slot);
1213 /*-----------------------------------------------------------------------*/
1215 /* Various EDMA channel control operations */
1218 * edma_pause - pause dma on a channel
1219 * @channel: on which edma_start() has been called
1221 * This temporarily disables EDMA hardware events on the specified channel,
1222 * preventing them from triggering new transfers on its behalf
1224 void edma_pause(unsigned channel)
1226 unsigned ctlr;
1228 ctlr = EDMA_CTLR(channel);
1229 channel = EDMA_CHAN_SLOT(channel);
1231 if (channel < edma_cc[ctlr]->num_channels) {
1232 unsigned int mask = BIT(channel & 0x1f);
1234 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1237 EXPORT_SYMBOL(edma_pause);
1240 * edma_resume - resumes dma on a paused channel
1241 * @channel: on which edma_pause() has been called
1243 * This re-enables EDMA hardware events on the specified channel.
1245 void edma_resume(unsigned channel)
1247 unsigned ctlr;
1249 ctlr = EDMA_CTLR(channel);
1250 channel = EDMA_CHAN_SLOT(channel);
1252 if (channel < edma_cc[ctlr]->num_channels) {
1253 unsigned int mask = BIT(channel & 0x1f);
1255 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1258 EXPORT_SYMBOL(edma_resume);
1260 int edma_trigger_channel(unsigned channel)
1262 unsigned ctlr;
1263 unsigned int mask;
1265 ctlr = EDMA_CTLR(channel);
1266 channel = EDMA_CHAN_SLOT(channel);
1267 mask = BIT(channel & 0x1f);
1269 edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask);
1271 pr_debug("EDMA: ESR%d %08x\n", (channel >> 5),
1272 edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5)));
1273 return 0;
1275 EXPORT_SYMBOL(edma_trigger_channel);
1278 * edma_start - start dma on a channel
1279 * @channel: channel being activated
1281 * Channels with event associations will be triggered by their hardware
1282 * events, and channels without such associations will be triggered by
1283 * software. (At this writing there is no interface for using software
1284 * triggers except with channels that don't support hardware triggers.)
1286 * Returns zero on success, else negative errno.
1288 int edma_start(unsigned channel)
1290 unsigned ctlr;
1292 ctlr = EDMA_CTLR(channel);
1293 channel = EDMA_CHAN_SLOT(channel);
1295 if (channel < edma_cc[ctlr]->num_channels) {
1296 int j = channel >> 5;
1297 unsigned int mask = BIT(channel & 0x1f);
1299 /* EDMA channels without event association */
1300 if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1301 pr_debug("EDMA: ESR%d %08x\n", j,
1302 edma_shadow0_read_array(ctlr, SH_ESR, j));
1303 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1304 return 0;
1307 /* EDMA channel with event association */
1308 pr_debug("EDMA: ER%d %08x\n", j,
1309 edma_shadow0_read_array(ctlr, SH_ER, j));
1310 /* Clear any pending event or error */
1311 edma_write_array(ctlr, EDMA_ECR, j, mask);
1312 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1313 /* Clear any SER */
1314 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1315 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1316 pr_debug("EDMA: EER%d %08x\n", j,
1317 edma_shadow0_read_array(ctlr, SH_EER, j));
1318 return 0;
1321 return -EINVAL;
1323 EXPORT_SYMBOL(edma_start);
1326 * edma_stop - stops dma on the channel passed
1327 * @channel: channel being deactivated
1329 * When @lch is a channel, any active transfer is paused and
1330 * all pending hardware events are cleared. The current transfer
1331 * may not be resumed, and the channel's Parameter RAM should be
1332 * reinitialized before being reused.
1334 void edma_stop(unsigned channel)
1336 unsigned ctlr;
1338 ctlr = EDMA_CTLR(channel);
1339 channel = EDMA_CHAN_SLOT(channel);
1341 if (channel < edma_cc[ctlr]->num_channels) {
1342 int j = channel >> 5;
1343 unsigned int mask = BIT(channel & 0x1f);
1345 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1346 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1347 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1348 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1350 pr_debug("EDMA: EER%d %08x\n", j,
1351 edma_shadow0_read_array(ctlr, SH_EER, j));
1353 /* REVISIT: consider guarding against inappropriate event
1354 * chaining by overwriting with dummy_paramset.
1358 EXPORT_SYMBOL(edma_stop);
1360 /******************************************************************************
1362 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1363 * been removed before EDMA has finished.It is usedful for removable media.
1364 * Arguments:
1365 * ch_no - channel no
1367 * Return: zero on success, or corresponding error no on failure
1369 * FIXME this should not be needed ... edma_stop() should suffice.
1371 *****************************************************************************/
1373 void edma_clean_channel(unsigned channel)
1375 unsigned ctlr;
1377 ctlr = EDMA_CTLR(channel);
1378 channel = EDMA_CHAN_SLOT(channel);
1380 if (channel < edma_cc[ctlr]->num_channels) {
1381 int j = (channel >> 5);
1382 unsigned int mask = BIT(channel & 0x1f);
1384 pr_debug("EDMA: EMR%d %08x\n", j,
1385 edma_read_array(ctlr, EDMA_EMR, j));
1386 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1387 /* Clear the corresponding EMR bits */
1388 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1389 /* Clear any SER */
1390 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1391 edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1394 EXPORT_SYMBOL(edma_clean_channel);
1397 * edma_clear_event - clear an outstanding event on the DMA channel
1398 * Arguments:
1399 * channel - channel number
1401 void edma_clear_event(unsigned channel)
1403 unsigned ctlr;
1405 ctlr = EDMA_CTLR(channel);
1406 channel = EDMA_CHAN_SLOT(channel);
1408 if (channel >= edma_cc[ctlr]->num_channels)
1409 return;
1410 if (channel < 32)
1411 edma_write(ctlr, EDMA_ECR, BIT(channel));
1412 else
1413 edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1415 EXPORT_SYMBOL(edma_clear_event);
1418 * edma_assign_channel_eventq - move given channel to desired eventq
1419 * Arguments:
1420 * channel - channel number
1421 * eventq_no - queue to move the channel
1423 * Can be used to move a channel to a selected event queue.
1425 void edma_assign_channel_eventq(unsigned channel, enum dma_event_q eventq_no)
1427 unsigned ctlr;
1429 ctlr = EDMA_CTLR(channel);
1430 channel = EDMA_CHAN_SLOT(channel);
1432 if (channel >= edma_cc[ctlr]->num_channels)
1433 return;
1435 /* default to low priority queue */
1436 if (eventq_no == EVENTQ_DEFAULT)
1437 eventq_no = edma_cc[ctlr]->default_queue;
1438 if (eventq_no >= edma_cc[ctlr]->num_tc)
1439 return;
1441 map_dmach_queue(ctlr, channel, eventq_no);
1443 EXPORT_SYMBOL(edma_assign_channel_eventq);
1445 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1446 struct edma *edma_cc)
1448 int i;
1449 u32 value, cccfg;
1450 s8 (*queue_priority_map)[2];
1452 /* Decode the eDMA3 configuration from CCCFG register */
1453 cccfg = edma_read(0, EDMA_CCCFG);
1455 value = GET_NUM_REGN(cccfg);
1456 edma_cc->num_region = BIT(value);
1458 value = GET_NUM_DMACH(cccfg);
1459 edma_cc->num_channels = BIT(value + 1);
1461 value = GET_NUM_PAENTRY(cccfg);
1462 edma_cc->num_slots = BIT(value + 4);
1464 value = GET_NUM_EVQUE(cccfg);
1465 edma_cc->num_tc = value + 1;
1467 dev_dbg(dev, "eDMA3 HW configuration (cccfg: 0x%08x):\n", cccfg);
1468 dev_dbg(dev, "num_region: %u\n", edma_cc->num_region);
1469 dev_dbg(dev, "num_channel: %u\n", edma_cc->num_channels);
1470 dev_dbg(dev, "num_slot: %u\n", edma_cc->num_slots);
1471 dev_dbg(dev, "num_tc: %u\n", edma_cc->num_tc);
1473 /* Nothing need to be done if queue priority is provided */
1474 if (pdata->queue_priority_mapping)
1475 return 0;
1478 * Configure TC/queue priority as follows:
1479 * Q0 - priority 0
1480 * Q1 - priority 1
1481 * Q2 - priority 2
1482 * ...
1483 * The meaning of priority numbers: 0 highest priority, 7 lowest
1484 * priority. So Q0 is the highest priority queue and the last queue has
1485 * the lowest priority.
1487 queue_priority_map = devm_kzalloc(dev,
1488 (edma_cc->num_tc + 1) * sizeof(s8),
1489 GFP_KERNEL);
1490 if (!queue_priority_map)
1491 return -ENOMEM;
1493 for (i = 0; i < edma_cc->num_tc; i++) {
1494 queue_priority_map[i][0] = i;
1495 queue_priority_map[i][1] = i;
1497 queue_priority_map[i][0] = -1;
1498 queue_priority_map[i][1] = -1;
1500 pdata->queue_priority_mapping = queue_priority_map;
1501 /* Default queue has the lowest priority */
1502 pdata->default_queue = i - 1;
1504 return 0;
1507 #if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
1509 static int edma_xbar_event_map(struct device *dev, struct device_node *node,
1510 struct edma_soc_info *pdata, size_t sz)
1512 const char pname[] = "ti,edma-xbar-event-map";
1513 struct resource res;
1514 void __iomem *xbar;
1515 s16 (*xbar_chans)[2];
1516 size_t nelm = sz / sizeof(s16);
1517 u32 shift, offset, mux;
1518 int ret, i;
1520 xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL);
1521 if (!xbar_chans)
1522 return -ENOMEM;
1524 ret = of_address_to_resource(node, 1, &res);
1525 if (ret)
1526 return -ENOMEM;
1528 xbar = devm_ioremap(dev, res.start, resource_size(&res));
1529 if (!xbar)
1530 return -ENOMEM;
1532 ret = of_property_read_u16_array(node, pname, (u16 *)xbar_chans, nelm);
1533 if (ret)
1534 return -EIO;
1536 /* Invalidate last entry for the other user of this mess */
1537 nelm >>= 1;
1538 xbar_chans[nelm][0] = xbar_chans[nelm][1] = -1;
1540 for (i = 0; i < nelm; i++) {
1541 shift = (xbar_chans[i][1] & 0x03) << 3;
1542 offset = xbar_chans[i][1] & 0xfffffffc;
1543 mux = readl(xbar + offset);
1544 mux &= ~(0xff << shift);
1545 mux |= xbar_chans[i][0] << shift;
1546 writel(mux, (xbar + offset));
1549 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
1550 return 0;
1553 static int edma_of_parse_dt(struct device *dev,
1554 struct device_node *node,
1555 struct edma_soc_info *pdata)
1557 int ret = 0;
1558 struct property *prop;
1559 size_t sz;
1560 struct edma_rsv_info *rsv_info;
1562 rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
1563 if (!rsv_info)
1564 return -ENOMEM;
1565 pdata->rsv = rsv_info;
1567 prop = of_find_property(node, "ti,edma-xbar-event-map", &sz);
1568 if (prop)
1569 ret = edma_xbar_event_map(dev, node, pdata, sz);
1571 return ret;
1574 static struct of_dma_filter_info edma_filter_info = {
1575 .filter_fn = edma_filter_fn,
1578 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1579 struct device_node *node)
1581 struct edma_soc_info *info;
1582 int ret;
1584 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1585 if (!info)
1586 return ERR_PTR(-ENOMEM);
1588 ret = edma_of_parse_dt(dev, node, info);
1589 if (ret)
1590 return ERR_PTR(ret);
1592 dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap);
1593 dma_cap_set(DMA_CYCLIC, edma_filter_info.dma_cap);
1594 of_dma_controller_register(dev->of_node, of_dma_simple_xlate,
1595 &edma_filter_info);
1597 return info;
1599 #else
1600 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1601 struct device_node *node)
1603 return ERR_PTR(-ENOSYS);
1605 #endif
1607 static int edma_probe(struct platform_device *pdev)
1609 struct edma_soc_info **info = pdev->dev.platform_data;
1610 struct edma_soc_info *ninfo[EDMA_MAX_CC] = {NULL};
1611 s8 (*queue_priority_mapping)[2];
1612 int i, j, off, ln, found = 0;
1613 int status = -1;
1614 const s16 (*rsv_chans)[2];
1615 const s16 (*rsv_slots)[2];
1616 const s16 (*xbar_chans)[2];
1617 int irq[EDMA_MAX_CC] = {0, 0};
1618 int err_irq[EDMA_MAX_CC] = {0, 0};
1619 struct resource *r[EDMA_MAX_CC] = {NULL};
1620 struct resource res[EDMA_MAX_CC];
1621 char res_name[10];
1622 struct device_node *node = pdev->dev.of_node;
1623 struct device *dev = &pdev->dev;
1624 int ret;
1626 if (node) {
1627 /* Check if this is a second instance registered */
1628 if (arch_num_cc) {
1629 dev_err(dev, "only one EDMA instance is supported via DT\n");
1630 return -ENODEV;
1633 ninfo[0] = edma_setup_info_from_dt(dev, node);
1634 if (IS_ERR(ninfo[0])) {
1635 dev_err(dev, "failed to get DT data\n");
1636 return PTR_ERR(ninfo[0]);
1639 info = ninfo;
1642 if (!info)
1643 return -ENODEV;
1645 pm_runtime_enable(dev);
1646 ret = pm_runtime_get_sync(dev);
1647 if (ret < 0) {
1648 dev_err(dev, "pm_runtime_get_sync() failed\n");
1649 return ret;
1652 for (j = 0; j < EDMA_MAX_CC; j++) {
1653 if (!info[j]) {
1654 if (!found)
1655 return -ENODEV;
1656 break;
1658 if (node) {
1659 ret = of_address_to_resource(node, j, &res[j]);
1660 if (!ret)
1661 r[j] = &res[j];
1662 } else {
1663 sprintf(res_name, "edma_cc%d", j);
1664 r[j] = platform_get_resource_byname(pdev,
1665 IORESOURCE_MEM,
1666 res_name);
1668 if (!r[j]) {
1669 if (found)
1670 break;
1671 else
1672 return -ENODEV;
1673 } else {
1674 found = 1;
1677 edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]);
1678 if (IS_ERR(edmacc_regs_base[j]))
1679 return PTR_ERR(edmacc_regs_base[j]);
1681 edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma),
1682 GFP_KERNEL);
1683 if (!edma_cc[j])
1684 return -ENOMEM;
1686 /* Get eDMA3 configuration from IP */
1687 ret = edma_setup_from_hw(dev, info[j], edma_cc[j]);
1688 if (ret)
1689 return ret;
1691 edma_cc[j]->default_queue = info[j]->default_queue;
1693 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1694 edmacc_regs_base[j]);
1696 for (i = 0; i < edma_cc[j]->num_slots; i++)
1697 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1698 &dummy_paramset, PARM_SIZE);
1700 /* Mark all channels as unused */
1701 memset(edma_cc[j]->edma_unused, 0xff,
1702 sizeof(edma_cc[j]->edma_unused));
1704 if (info[j]->rsv) {
1706 /* Clear the reserved channels in unused list */
1707 rsv_chans = info[j]->rsv->rsv_chans;
1708 if (rsv_chans) {
1709 for (i = 0; rsv_chans[i][0] != -1; i++) {
1710 off = rsv_chans[i][0];
1711 ln = rsv_chans[i][1];
1712 clear_bits(off, ln,
1713 edma_cc[j]->edma_unused);
1717 /* Set the reserved slots in inuse list */
1718 rsv_slots = info[j]->rsv->rsv_slots;
1719 if (rsv_slots) {
1720 for (i = 0; rsv_slots[i][0] != -1; i++) {
1721 off = rsv_slots[i][0];
1722 ln = rsv_slots[i][1];
1723 set_bits(off, ln,
1724 edma_cc[j]->edma_inuse);
1729 /* Clear the xbar mapped channels in unused list */
1730 xbar_chans = info[j]->xbar_chans;
1731 if (xbar_chans) {
1732 for (i = 0; xbar_chans[i][1] != -1; i++) {
1733 off = xbar_chans[i][1];
1734 clear_bits(off, 1,
1735 edma_cc[j]->edma_unused);
1739 if (node) {
1740 irq[j] = irq_of_parse_and_map(node, 0);
1741 err_irq[j] = irq_of_parse_and_map(node, 2);
1742 } else {
1743 char irq_name[10];
1745 sprintf(irq_name, "edma%d", j);
1746 irq[j] = platform_get_irq_byname(pdev, irq_name);
1748 sprintf(irq_name, "edma%d_err", j);
1749 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1751 edma_cc[j]->irq_res_start = irq[j];
1752 edma_cc[j]->irq_res_end = err_irq[j];
1754 status = devm_request_irq(dev, irq[j], dma_irq_handler, 0,
1755 "edma", dev);
1756 if (status < 0) {
1757 dev_dbg(&pdev->dev,
1758 "devm_request_irq %d failed --> %d\n",
1759 irq[j], status);
1760 return status;
1763 status = devm_request_irq(dev, err_irq[j], dma_ccerr_handler, 0,
1764 "edma_error", dev);
1765 if (status < 0) {
1766 dev_dbg(&pdev->dev,
1767 "devm_request_irq %d failed --> %d\n",
1768 err_irq[j], status);
1769 return status;
1772 for (i = 0; i < edma_cc[j]->num_channels; i++)
1773 map_dmach_queue(j, i, info[j]->default_queue);
1775 queue_priority_mapping = info[j]->queue_priority_mapping;
1777 /* Event queue priority mapping */
1778 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1779 assign_priority_to_queue(j,
1780 queue_priority_mapping[i][0],
1781 queue_priority_mapping[i][1]);
1783 /* Map the channel to param entry if channel mapping logic
1784 * exist
1786 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1787 map_dmach_param(j);
1789 for (i = 0; i < edma_cc[j]->num_region; i++) {
1790 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1791 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1792 edma_write_array(j, EDMA_QRAE, i, 0x0);
1794 arch_num_cc++;
1797 return 0;
1800 static struct platform_driver edma_driver = {
1801 .driver = {
1802 .name = "edma",
1803 .of_match_table = edma_of_ids,
1805 .probe = edma_probe,
1808 static int __init edma_init(void)
1810 return platform_driver_probe(&edma_driver, edma_probe);
1812 arch_initcall(edma_init);