KVM: Add KVM_EXIT_SYSTEM_EVENT to user space API header
[linux-2.6/btrfs-unstable.git] / net / ipv6 / ip6_fib.c
blob34e0ded5c14b028ebbb1bb03c1b30e8f25f98811
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
20 #define pr_fmt(fmt) "IPv6: " fmt
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
36 #include <net/ip6_fib.h>
37 #include <net/ip6_route.h>
39 #define RT6_DEBUG 2
41 #if RT6_DEBUG >= 3
42 #define RT6_TRACE(x...) pr_debug(x)
43 #else
44 #define RT6_TRACE(x...) do { ; } while (0)
45 #endif
47 static struct kmem_cache *fib6_node_kmem __read_mostly;
49 enum fib_walk_state_t {
50 #ifdef CONFIG_IPV6_SUBTREES
51 FWS_S,
52 #endif
53 FWS_L,
54 FWS_R,
55 FWS_C,
56 FWS_U
59 struct fib6_cleaner_t {
60 struct fib6_walker_t w;
61 struct net *net;
62 int (*func)(struct rt6_info *, void *arg);
63 void *arg;
66 static DEFINE_RWLOCK(fib6_walker_lock);
68 #ifdef CONFIG_IPV6_SUBTREES
69 #define FWS_INIT FWS_S
70 #else
71 #define FWS_INIT FWS_L
72 #endif
74 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
75 struct rt6_info *rt);
76 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
77 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
78 static int fib6_walk(struct fib6_walker_t *w);
79 static int fib6_walk_continue(struct fib6_walker_t *w);
82 * A routing update causes an increase of the serial number on the
83 * affected subtree. This allows for cached routes to be asynchronously
84 * tested when modifications are made to the destination cache as a
85 * result of redirects, path MTU changes, etc.
88 static __u32 rt_sernum;
90 static void fib6_gc_timer_cb(unsigned long arg);
92 static LIST_HEAD(fib6_walkers);
93 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
95 static inline void fib6_walker_link(struct fib6_walker_t *w)
97 write_lock_bh(&fib6_walker_lock);
98 list_add(&w->lh, &fib6_walkers);
99 write_unlock_bh(&fib6_walker_lock);
102 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
104 write_lock_bh(&fib6_walker_lock);
105 list_del(&w->lh);
106 write_unlock_bh(&fib6_walker_lock);
108 static __inline__ u32 fib6_new_sernum(void)
110 u32 n = ++rt_sernum;
111 if ((__s32)n <= 0)
112 rt_sernum = n = 1;
113 return n;
117 * Auxiliary address test functions for the radix tree.
119 * These assume a 32bit processor (although it will work on
120 * 64bit processors)
124 * test bit
126 #if defined(__LITTLE_ENDIAN)
127 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
128 #else
129 # define BITOP_BE32_SWIZZLE 0
130 #endif
132 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
134 const __be32 *addr = token;
136 * Here,
137 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
138 * is optimized version of
139 * htonl(1 << ((~fn_bit)&0x1F))
140 * See include/asm-generic/bitops/le.h.
142 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143 addr[fn_bit >> 5];
146 static __inline__ struct fib6_node *node_alloc(void)
148 struct fib6_node *fn;
150 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152 return fn;
155 static __inline__ void node_free(struct fib6_node *fn)
157 kmem_cache_free(fib6_node_kmem, fn);
160 static __inline__ void rt6_release(struct rt6_info *rt)
162 if (atomic_dec_and_test(&rt->rt6i_ref))
163 dst_free(&rt->dst);
166 static void fib6_link_table(struct net *net, struct fib6_table *tb)
168 unsigned int h;
171 * Initialize table lock at a single place to give lockdep a key,
172 * tables aren't visible prior to being linked to the list.
174 rwlock_init(&tb->tb6_lock);
176 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
179 * No protection necessary, this is the only list mutatation
180 * operation, tables never disappear once they exist.
182 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
185 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
187 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
189 struct fib6_table *table;
191 table = kzalloc(sizeof(*table), GFP_ATOMIC);
192 if (table) {
193 table->tb6_id = id;
194 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
195 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
196 inet_peer_base_init(&table->tb6_peers);
199 return table;
202 struct fib6_table *fib6_new_table(struct net *net, u32 id)
204 struct fib6_table *tb;
206 if (id == 0)
207 id = RT6_TABLE_MAIN;
208 tb = fib6_get_table(net, id);
209 if (tb)
210 return tb;
212 tb = fib6_alloc_table(net, id);
213 if (tb)
214 fib6_link_table(net, tb);
216 return tb;
219 struct fib6_table *fib6_get_table(struct net *net, u32 id)
221 struct fib6_table *tb;
222 struct hlist_head *head;
223 unsigned int h;
225 if (id == 0)
226 id = RT6_TABLE_MAIN;
227 h = id & (FIB6_TABLE_HASHSZ - 1);
228 rcu_read_lock();
229 head = &net->ipv6.fib_table_hash[h];
230 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
231 if (tb->tb6_id == id) {
232 rcu_read_unlock();
233 return tb;
236 rcu_read_unlock();
238 return NULL;
241 static void __net_init fib6_tables_init(struct net *net)
243 fib6_link_table(net, net->ipv6.fib6_main_tbl);
244 fib6_link_table(net, net->ipv6.fib6_local_tbl);
246 #else
248 struct fib6_table *fib6_new_table(struct net *net, u32 id)
250 return fib6_get_table(net, id);
253 struct fib6_table *fib6_get_table(struct net *net, u32 id)
255 return net->ipv6.fib6_main_tbl;
258 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
259 int flags, pol_lookup_t lookup)
261 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
264 static void __net_init fib6_tables_init(struct net *net)
266 fib6_link_table(net, net->ipv6.fib6_main_tbl);
269 #endif
271 static int fib6_dump_node(struct fib6_walker_t *w)
273 int res;
274 struct rt6_info *rt;
276 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
277 res = rt6_dump_route(rt, w->args);
278 if (res < 0) {
279 /* Frame is full, suspend walking */
280 w->leaf = rt;
281 return 1;
283 WARN_ON(res == 0);
285 w->leaf = NULL;
286 return 0;
289 static void fib6_dump_end(struct netlink_callback *cb)
291 struct fib6_walker_t *w = (void *)cb->args[2];
293 if (w) {
294 if (cb->args[4]) {
295 cb->args[4] = 0;
296 fib6_walker_unlink(w);
298 cb->args[2] = 0;
299 kfree(w);
301 cb->done = (void *)cb->args[3];
302 cb->args[1] = 3;
305 static int fib6_dump_done(struct netlink_callback *cb)
307 fib6_dump_end(cb);
308 return cb->done ? cb->done(cb) : 0;
311 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
312 struct netlink_callback *cb)
314 struct fib6_walker_t *w;
315 int res;
317 w = (void *)cb->args[2];
318 w->root = &table->tb6_root;
320 if (cb->args[4] == 0) {
321 w->count = 0;
322 w->skip = 0;
324 read_lock_bh(&table->tb6_lock);
325 res = fib6_walk(w);
326 read_unlock_bh(&table->tb6_lock);
327 if (res > 0) {
328 cb->args[4] = 1;
329 cb->args[5] = w->root->fn_sernum;
331 } else {
332 if (cb->args[5] != w->root->fn_sernum) {
333 /* Begin at the root if the tree changed */
334 cb->args[5] = w->root->fn_sernum;
335 w->state = FWS_INIT;
336 w->node = w->root;
337 w->skip = w->count;
338 } else
339 w->skip = 0;
341 read_lock_bh(&table->tb6_lock);
342 res = fib6_walk_continue(w);
343 read_unlock_bh(&table->tb6_lock);
344 if (res <= 0) {
345 fib6_walker_unlink(w);
346 cb->args[4] = 0;
350 return res;
353 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
355 struct net *net = sock_net(skb->sk);
356 unsigned int h, s_h;
357 unsigned int e = 0, s_e;
358 struct rt6_rtnl_dump_arg arg;
359 struct fib6_walker_t *w;
360 struct fib6_table *tb;
361 struct hlist_head *head;
362 int res = 0;
364 s_h = cb->args[0];
365 s_e = cb->args[1];
367 w = (void *)cb->args[2];
368 if (!w) {
369 /* New dump:
371 * 1. hook callback destructor.
373 cb->args[3] = (long)cb->done;
374 cb->done = fib6_dump_done;
377 * 2. allocate and initialize walker.
379 w = kzalloc(sizeof(*w), GFP_ATOMIC);
380 if (!w)
381 return -ENOMEM;
382 w->func = fib6_dump_node;
383 cb->args[2] = (long)w;
386 arg.skb = skb;
387 arg.cb = cb;
388 arg.net = net;
389 w->args = &arg;
391 rcu_read_lock();
392 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
393 e = 0;
394 head = &net->ipv6.fib_table_hash[h];
395 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
396 if (e < s_e)
397 goto next;
398 res = fib6_dump_table(tb, skb, cb);
399 if (res != 0)
400 goto out;
401 next:
402 e++;
405 out:
406 rcu_read_unlock();
407 cb->args[1] = e;
408 cb->args[0] = h;
410 res = res < 0 ? res : skb->len;
411 if (res <= 0)
412 fib6_dump_end(cb);
413 return res;
417 * Routing Table
419 * return the appropriate node for a routing tree "add" operation
420 * by either creating and inserting or by returning an existing
421 * node.
424 static struct fib6_node *fib6_add_1(struct fib6_node *root,
425 struct in6_addr *addr, int plen,
426 int offset, int allow_create,
427 int replace_required)
429 struct fib6_node *fn, *in, *ln;
430 struct fib6_node *pn = NULL;
431 struct rt6key *key;
432 int bit;
433 __be32 dir = 0;
434 __u32 sernum = fib6_new_sernum();
436 RT6_TRACE("fib6_add_1\n");
438 /* insert node in tree */
440 fn = root;
442 do {
443 key = (struct rt6key *)((u8 *)fn->leaf + offset);
446 * Prefix match
448 if (plen < fn->fn_bit ||
449 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
450 if (!allow_create) {
451 if (replace_required) {
452 pr_warn("Can't replace route, no match found\n");
453 return ERR_PTR(-ENOENT);
455 pr_warn("NLM_F_CREATE should be set when creating new route\n");
457 goto insert_above;
461 * Exact match ?
464 if (plen == fn->fn_bit) {
465 /* clean up an intermediate node */
466 if (!(fn->fn_flags & RTN_RTINFO)) {
467 rt6_release(fn->leaf);
468 fn->leaf = NULL;
471 fn->fn_sernum = sernum;
473 return fn;
477 * We have more bits to go
480 /* Try to walk down on tree. */
481 fn->fn_sernum = sernum;
482 dir = addr_bit_set(addr, fn->fn_bit);
483 pn = fn;
484 fn = dir ? fn->right : fn->left;
485 } while (fn);
487 if (!allow_create) {
488 /* We should not create new node because
489 * NLM_F_REPLACE was specified without NLM_F_CREATE
490 * I assume it is safe to require NLM_F_CREATE when
491 * REPLACE flag is used! Later we may want to remove the
492 * check for replace_required, because according
493 * to netlink specification, NLM_F_CREATE
494 * MUST be specified if new route is created.
495 * That would keep IPv6 consistent with IPv4
497 if (replace_required) {
498 pr_warn("Can't replace route, no match found\n");
499 return ERR_PTR(-ENOENT);
501 pr_warn("NLM_F_CREATE should be set when creating new route\n");
504 * We walked to the bottom of tree.
505 * Create new leaf node without children.
508 ln = node_alloc();
510 if (!ln)
511 return ERR_PTR(-ENOMEM);
512 ln->fn_bit = plen;
514 ln->parent = pn;
515 ln->fn_sernum = sernum;
517 if (dir)
518 pn->right = ln;
519 else
520 pn->left = ln;
522 return ln;
525 insert_above:
527 * split since we don't have a common prefix anymore or
528 * we have a less significant route.
529 * we've to insert an intermediate node on the list
530 * this new node will point to the one we need to create
531 * and the current
534 pn = fn->parent;
536 /* find 1st bit in difference between the 2 addrs.
538 See comment in __ipv6_addr_diff: bit may be an invalid value,
539 but if it is >= plen, the value is ignored in any case.
542 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
545 * (intermediate)[in]
546 * / \
547 * (new leaf node)[ln] (old node)[fn]
549 if (plen > bit) {
550 in = node_alloc();
551 ln = node_alloc();
553 if (!in || !ln) {
554 if (in)
555 node_free(in);
556 if (ln)
557 node_free(ln);
558 return ERR_PTR(-ENOMEM);
562 * new intermediate node.
563 * RTN_RTINFO will
564 * be off since that an address that chooses one of
565 * the branches would not match less specific routes
566 * in the other branch
569 in->fn_bit = bit;
571 in->parent = pn;
572 in->leaf = fn->leaf;
573 atomic_inc(&in->leaf->rt6i_ref);
575 in->fn_sernum = sernum;
577 /* update parent pointer */
578 if (dir)
579 pn->right = in;
580 else
581 pn->left = in;
583 ln->fn_bit = plen;
585 ln->parent = in;
586 fn->parent = in;
588 ln->fn_sernum = sernum;
590 if (addr_bit_set(addr, bit)) {
591 in->right = ln;
592 in->left = fn;
593 } else {
594 in->left = ln;
595 in->right = fn;
597 } else { /* plen <= bit */
600 * (new leaf node)[ln]
601 * / \
602 * (old node)[fn] NULL
605 ln = node_alloc();
607 if (!ln)
608 return ERR_PTR(-ENOMEM);
610 ln->fn_bit = plen;
612 ln->parent = pn;
614 ln->fn_sernum = sernum;
616 if (dir)
617 pn->right = ln;
618 else
619 pn->left = ln;
621 if (addr_bit_set(&key->addr, plen))
622 ln->right = fn;
623 else
624 ln->left = fn;
626 fn->parent = ln;
628 return ln;
631 static inline bool rt6_qualify_for_ecmp(struct rt6_info *rt)
633 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
634 RTF_GATEWAY;
637 static int fib6_commit_metrics(struct dst_entry *dst,
638 struct nlattr *mx, int mx_len)
640 struct nlattr *nla;
641 int remaining;
642 u32 *mp;
644 if (dst->flags & DST_HOST) {
645 mp = dst_metrics_write_ptr(dst);
646 } else {
647 mp = kzalloc(sizeof(u32) * RTAX_MAX, GFP_KERNEL);
648 if (!mp)
649 return -ENOMEM;
650 dst_init_metrics(dst, mp, 0);
653 nla_for_each_attr(nla, mx, mx_len, remaining) {
654 int type = nla_type(nla);
656 if (type) {
657 if (type > RTAX_MAX)
658 return -EINVAL;
660 mp[type - 1] = nla_get_u32(nla);
663 return 0;
667 * Insert routing information in a node.
670 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
671 struct nl_info *info, struct nlattr *mx, int mx_len)
673 struct rt6_info *iter = NULL;
674 struct rt6_info **ins;
675 int replace = (info->nlh &&
676 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
677 int add = (!info->nlh ||
678 (info->nlh->nlmsg_flags & NLM_F_CREATE));
679 int found = 0;
680 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
681 int err;
683 ins = &fn->leaf;
685 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
687 * Search for duplicates
690 if (iter->rt6i_metric == rt->rt6i_metric) {
692 * Same priority level
694 if (info->nlh &&
695 (info->nlh->nlmsg_flags & NLM_F_EXCL))
696 return -EEXIST;
697 if (replace) {
698 found++;
699 break;
702 if (iter->dst.dev == rt->dst.dev &&
703 iter->rt6i_idev == rt->rt6i_idev &&
704 ipv6_addr_equal(&iter->rt6i_gateway,
705 &rt->rt6i_gateway)) {
706 if (rt->rt6i_nsiblings)
707 rt->rt6i_nsiblings = 0;
708 if (!(iter->rt6i_flags & RTF_EXPIRES))
709 return -EEXIST;
710 if (!(rt->rt6i_flags & RTF_EXPIRES))
711 rt6_clean_expires(iter);
712 else
713 rt6_set_expires(iter, rt->dst.expires);
714 return -EEXIST;
716 /* If we have the same destination and the same metric,
717 * but not the same gateway, then the route we try to
718 * add is sibling to this route, increment our counter
719 * of siblings, and later we will add our route to the
720 * list.
721 * Only static routes (which don't have flag
722 * RTF_EXPIRES) are used for ECMPv6.
724 * To avoid long list, we only had siblings if the
725 * route have a gateway.
727 if (rt_can_ecmp &&
728 rt6_qualify_for_ecmp(iter))
729 rt->rt6i_nsiblings++;
732 if (iter->rt6i_metric > rt->rt6i_metric)
733 break;
735 ins = &iter->dst.rt6_next;
738 /* Reset round-robin state, if necessary */
739 if (ins == &fn->leaf)
740 fn->rr_ptr = NULL;
742 /* Link this route to others same route. */
743 if (rt->rt6i_nsiblings) {
744 unsigned int rt6i_nsiblings;
745 struct rt6_info *sibling, *temp_sibling;
747 /* Find the first route that have the same metric */
748 sibling = fn->leaf;
749 while (sibling) {
750 if (sibling->rt6i_metric == rt->rt6i_metric &&
751 rt6_qualify_for_ecmp(sibling)) {
752 list_add_tail(&rt->rt6i_siblings,
753 &sibling->rt6i_siblings);
754 break;
756 sibling = sibling->dst.rt6_next;
758 /* For each sibling in the list, increment the counter of
759 * siblings. BUG() if counters does not match, list of siblings
760 * is broken!
762 rt6i_nsiblings = 0;
763 list_for_each_entry_safe(sibling, temp_sibling,
764 &rt->rt6i_siblings, rt6i_siblings) {
765 sibling->rt6i_nsiblings++;
766 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
767 rt6i_nsiblings++;
769 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
773 * insert node
775 if (!replace) {
776 if (!add)
777 pr_warn("NLM_F_CREATE should be set when creating new route\n");
779 add:
780 if (mx) {
781 err = fib6_commit_metrics(&rt->dst, mx, mx_len);
782 if (err)
783 return err;
785 rt->dst.rt6_next = iter;
786 *ins = rt;
787 rt->rt6i_node = fn;
788 atomic_inc(&rt->rt6i_ref);
789 inet6_rt_notify(RTM_NEWROUTE, rt, info);
790 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
792 if (!(fn->fn_flags & RTN_RTINFO)) {
793 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
794 fn->fn_flags |= RTN_RTINFO;
797 } else {
798 if (!found) {
799 if (add)
800 goto add;
801 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
802 return -ENOENT;
804 if (mx) {
805 err = fib6_commit_metrics(&rt->dst, mx, mx_len);
806 if (err)
807 return err;
809 *ins = rt;
810 rt->rt6i_node = fn;
811 rt->dst.rt6_next = iter->dst.rt6_next;
812 atomic_inc(&rt->rt6i_ref);
813 inet6_rt_notify(RTM_NEWROUTE, rt, info);
814 rt6_release(iter);
815 if (!(fn->fn_flags & RTN_RTINFO)) {
816 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
817 fn->fn_flags |= RTN_RTINFO;
821 return 0;
824 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
826 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
827 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
828 mod_timer(&net->ipv6.ip6_fib_timer,
829 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
832 void fib6_force_start_gc(struct net *net)
834 if (!timer_pending(&net->ipv6.ip6_fib_timer))
835 mod_timer(&net->ipv6.ip6_fib_timer,
836 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
840 * Add routing information to the routing tree.
841 * <destination addr>/<source addr>
842 * with source addr info in sub-trees
845 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info,
846 struct nlattr *mx, int mx_len)
848 struct fib6_node *fn, *pn = NULL;
849 int err = -ENOMEM;
850 int allow_create = 1;
851 int replace_required = 0;
853 if (info->nlh) {
854 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
855 allow_create = 0;
856 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
857 replace_required = 1;
859 if (!allow_create && !replace_required)
860 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
862 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
863 offsetof(struct rt6_info, rt6i_dst), allow_create,
864 replace_required);
865 if (IS_ERR(fn)) {
866 err = PTR_ERR(fn);
867 fn = NULL;
868 goto out;
871 pn = fn;
873 #ifdef CONFIG_IPV6_SUBTREES
874 if (rt->rt6i_src.plen) {
875 struct fib6_node *sn;
877 if (!fn->subtree) {
878 struct fib6_node *sfn;
881 * Create subtree.
883 * fn[main tree]
885 * sfn[subtree root]
887 * sn[new leaf node]
890 /* Create subtree root node */
891 sfn = node_alloc();
892 if (!sfn)
893 goto st_failure;
895 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
896 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
897 sfn->fn_flags = RTN_ROOT;
898 sfn->fn_sernum = fib6_new_sernum();
900 /* Now add the first leaf node to new subtree */
902 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
903 rt->rt6i_src.plen,
904 offsetof(struct rt6_info, rt6i_src),
905 allow_create, replace_required);
907 if (IS_ERR(sn)) {
908 /* If it is failed, discard just allocated
909 root, and then (in st_failure) stale node
910 in main tree.
912 node_free(sfn);
913 err = PTR_ERR(sn);
914 goto st_failure;
917 /* Now link new subtree to main tree */
918 sfn->parent = fn;
919 fn->subtree = sfn;
920 } else {
921 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
922 rt->rt6i_src.plen,
923 offsetof(struct rt6_info, rt6i_src),
924 allow_create, replace_required);
926 if (IS_ERR(sn)) {
927 err = PTR_ERR(sn);
928 goto st_failure;
932 if (!fn->leaf) {
933 fn->leaf = rt;
934 atomic_inc(&rt->rt6i_ref);
936 fn = sn;
938 #endif
940 err = fib6_add_rt2node(fn, rt, info, mx, mx_len);
941 if (!err) {
942 fib6_start_gc(info->nl_net, rt);
943 if (!(rt->rt6i_flags & RTF_CACHE))
944 fib6_prune_clones(info->nl_net, pn, rt);
947 out:
948 if (err) {
949 #ifdef CONFIG_IPV6_SUBTREES
951 * If fib6_add_1 has cleared the old leaf pointer in the
952 * super-tree leaf node we have to find a new one for it.
954 if (pn != fn && pn->leaf == rt) {
955 pn->leaf = NULL;
956 atomic_dec(&rt->rt6i_ref);
958 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
959 pn->leaf = fib6_find_prefix(info->nl_net, pn);
960 #if RT6_DEBUG >= 2
961 if (!pn->leaf) {
962 WARN_ON(pn->leaf == NULL);
963 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
965 #endif
966 atomic_inc(&pn->leaf->rt6i_ref);
968 #endif
969 dst_free(&rt->dst);
971 return err;
973 #ifdef CONFIG_IPV6_SUBTREES
974 /* Subtree creation failed, probably main tree node
975 is orphan. If it is, shoot it.
977 st_failure:
978 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
979 fib6_repair_tree(info->nl_net, fn);
980 dst_free(&rt->dst);
981 return err;
982 #endif
986 * Routing tree lookup
990 struct lookup_args {
991 int offset; /* key offset on rt6_info */
992 const struct in6_addr *addr; /* search key */
995 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
996 struct lookup_args *args)
998 struct fib6_node *fn;
999 __be32 dir;
1001 if (unlikely(args->offset == 0))
1002 return NULL;
1005 * Descend on a tree
1008 fn = root;
1010 for (;;) {
1011 struct fib6_node *next;
1013 dir = addr_bit_set(args->addr, fn->fn_bit);
1015 next = dir ? fn->right : fn->left;
1017 if (next) {
1018 fn = next;
1019 continue;
1021 break;
1024 while (fn) {
1025 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1026 struct rt6key *key;
1028 key = (struct rt6key *) ((u8 *) fn->leaf +
1029 args->offset);
1031 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1032 #ifdef CONFIG_IPV6_SUBTREES
1033 if (fn->subtree) {
1034 struct fib6_node *sfn;
1035 sfn = fib6_lookup_1(fn->subtree,
1036 args + 1);
1037 if (!sfn)
1038 goto backtrack;
1039 fn = sfn;
1041 #endif
1042 if (fn->fn_flags & RTN_RTINFO)
1043 return fn;
1046 #ifdef CONFIG_IPV6_SUBTREES
1047 backtrack:
1048 #endif
1049 if (fn->fn_flags & RTN_ROOT)
1050 break;
1052 fn = fn->parent;
1055 return NULL;
1058 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1059 const struct in6_addr *saddr)
1061 struct fib6_node *fn;
1062 struct lookup_args args[] = {
1064 .offset = offsetof(struct rt6_info, rt6i_dst),
1065 .addr = daddr,
1067 #ifdef CONFIG_IPV6_SUBTREES
1069 .offset = offsetof(struct rt6_info, rt6i_src),
1070 .addr = saddr,
1072 #endif
1074 .offset = 0, /* sentinel */
1078 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1079 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1080 fn = root;
1082 return fn;
1086 * Get node with specified destination prefix (and source prefix,
1087 * if subtrees are used)
1091 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1092 const struct in6_addr *addr,
1093 int plen, int offset)
1095 struct fib6_node *fn;
1097 for (fn = root; fn ; ) {
1098 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1101 * Prefix match
1103 if (plen < fn->fn_bit ||
1104 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1105 return NULL;
1107 if (plen == fn->fn_bit)
1108 return fn;
1111 * We have more bits to go
1113 if (addr_bit_set(addr, fn->fn_bit))
1114 fn = fn->right;
1115 else
1116 fn = fn->left;
1118 return NULL;
1121 struct fib6_node *fib6_locate(struct fib6_node *root,
1122 const struct in6_addr *daddr, int dst_len,
1123 const struct in6_addr *saddr, int src_len)
1125 struct fib6_node *fn;
1127 fn = fib6_locate_1(root, daddr, dst_len,
1128 offsetof(struct rt6_info, rt6i_dst));
1130 #ifdef CONFIG_IPV6_SUBTREES
1131 if (src_len) {
1132 WARN_ON(saddr == NULL);
1133 if (fn && fn->subtree)
1134 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1135 offsetof(struct rt6_info, rt6i_src));
1137 #endif
1139 if (fn && fn->fn_flags & RTN_RTINFO)
1140 return fn;
1142 return NULL;
1147 * Deletion
1151 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1153 if (fn->fn_flags & RTN_ROOT)
1154 return net->ipv6.ip6_null_entry;
1156 while (fn) {
1157 if (fn->left)
1158 return fn->left->leaf;
1159 if (fn->right)
1160 return fn->right->leaf;
1162 fn = FIB6_SUBTREE(fn);
1164 return NULL;
1168 * Called to trim the tree of intermediate nodes when possible. "fn"
1169 * is the node we want to try and remove.
1172 static struct fib6_node *fib6_repair_tree(struct net *net,
1173 struct fib6_node *fn)
1175 int children;
1176 int nstate;
1177 struct fib6_node *child, *pn;
1178 struct fib6_walker_t *w;
1179 int iter = 0;
1181 for (;;) {
1182 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1183 iter++;
1185 WARN_ON(fn->fn_flags & RTN_RTINFO);
1186 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1187 WARN_ON(fn->leaf != NULL);
1189 children = 0;
1190 child = NULL;
1191 if (fn->right)
1192 child = fn->right, children |= 1;
1193 if (fn->left)
1194 child = fn->left, children |= 2;
1196 if (children == 3 || FIB6_SUBTREE(fn)
1197 #ifdef CONFIG_IPV6_SUBTREES
1198 /* Subtree root (i.e. fn) may have one child */
1199 || (children && fn->fn_flags & RTN_ROOT)
1200 #endif
1202 fn->leaf = fib6_find_prefix(net, fn);
1203 #if RT6_DEBUG >= 2
1204 if (!fn->leaf) {
1205 WARN_ON(!fn->leaf);
1206 fn->leaf = net->ipv6.ip6_null_entry;
1208 #endif
1209 atomic_inc(&fn->leaf->rt6i_ref);
1210 return fn->parent;
1213 pn = fn->parent;
1214 #ifdef CONFIG_IPV6_SUBTREES
1215 if (FIB6_SUBTREE(pn) == fn) {
1216 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1217 FIB6_SUBTREE(pn) = NULL;
1218 nstate = FWS_L;
1219 } else {
1220 WARN_ON(fn->fn_flags & RTN_ROOT);
1221 #endif
1222 if (pn->right == fn)
1223 pn->right = child;
1224 else if (pn->left == fn)
1225 pn->left = child;
1226 #if RT6_DEBUG >= 2
1227 else
1228 WARN_ON(1);
1229 #endif
1230 if (child)
1231 child->parent = pn;
1232 nstate = FWS_R;
1233 #ifdef CONFIG_IPV6_SUBTREES
1235 #endif
1237 read_lock(&fib6_walker_lock);
1238 FOR_WALKERS(w) {
1239 if (!child) {
1240 if (w->root == fn) {
1241 w->root = w->node = NULL;
1242 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1243 } else if (w->node == fn) {
1244 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1245 w->node = pn;
1246 w->state = nstate;
1248 } else {
1249 if (w->root == fn) {
1250 w->root = child;
1251 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1253 if (w->node == fn) {
1254 w->node = child;
1255 if (children&2) {
1256 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1257 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1258 } else {
1259 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1260 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1265 read_unlock(&fib6_walker_lock);
1267 node_free(fn);
1268 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1269 return pn;
1271 rt6_release(pn->leaf);
1272 pn->leaf = NULL;
1273 fn = pn;
1277 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1278 struct nl_info *info)
1280 struct fib6_walker_t *w;
1281 struct rt6_info *rt = *rtp;
1282 struct net *net = info->nl_net;
1284 RT6_TRACE("fib6_del_route\n");
1286 /* Unlink it */
1287 *rtp = rt->dst.rt6_next;
1288 rt->rt6i_node = NULL;
1289 net->ipv6.rt6_stats->fib_rt_entries--;
1290 net->ipv6.rt6_stats->fib_discarded_routes++;
1292 /* Reset round-robin state, if necessary */
1293 if (fn->rr_ptr == rt)
1294 fn->rr_ptr = NULL;
1296 /* Remove this entry from other siblings */
1297 if (rt->rt6i_nsiblings) {
1298 struct rt6_info *sibling, *next_sibling;
1300 list_for_each_entry_safe(sibling, next_sibling,
1301 &rt->rt6i_siblings, rt6i_siblings)
1302 sibling->rt6i_nsiblings--;
1303 rt->rt6i_nsiblings = 0;
1304 list_del_init(&rt->rt6i_siblings);
1307 /* Adjust walkers */
1308 read_lock(&fib6_walker_lock);
1309 FOR_WALKERS(w) {
1310 if (w->state == FWS_C && w->leaf == rt) {
1311 RT6_TRACE("walker %p adjusted by delroute\n", w);
1312 w->leaf = rt->dst.rt6_next;
1313 if (!w->leaf)
1314 w->state = FWS_U;
1317 read_unlock(&fib6_walker_lock);
1319 rt->dst.rt6_next = NULL;
1321 /* If it was last route, expunge its radix tree node */
1322 if (!fn->leaf) {
1323 fn->fn_flags &= ~RTN_RTINFO;
1324 net->ipv6.rt6_stats->fib_route_nodes--;
1325 fn = fib6_repair_tree(net, fn);
1328 if (atomic_read(&rt->rt6i_ref) != 1) {
1329 /* This route is used as dummy address holder in some split
1330 * nodes. It is not leaked, but it still holds other resources,
1331 * which must be released in time. So, scan ascendant nodes
1332 * and replace dummy references to this route with references
1333 * to still alive ones.
1335 while (fn) {
1336 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1337 fn->leaf = fib6_find_prefix(net, fn);
1338 atomic_inc(&fn->leaf->rt6i_ref);
1339 rt6_release(rt);
1341 fn = fn->parent;
1343 /* No more references are possible at this point. */
1344 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1347 inet6_rt_notify(RTM_DELROUTE, rt, info);
1348 rt6_release(rt);
1351 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1353 struct net *net = info->nl_net;
1354 struct fib6_node *fn = rt->rt6i_node;
1355 struct rt6_info **rtp;
1357 #if RT6_DEBUG >= 2
1358 if (rt->dst.obsolete > 0) {
1359 WARN_ON(fn != NULL);
1360 return -ENOENT;
1362 #endif
1363 if (!fn || rt == net->ipv6.ip6_null_entry)
1364 return -ENOENT;
1366 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1368 if (!(rt->rt6i_flags & RTF_CACHE)) {
1369 struct fib6_node *pn = fn;
1370 #ifdef CONFIG_IPV6_SUBTREES
1371 /* clones of this route might be in another subtree */
1372 if (rt->rt6i_src.plen) {
1373 while (!(pn->fn_flags & RTN_ROOT))
1374 pn = pn->parent;
1375 pn = pn->parent;
1377 #endif
1378 fib6_prune_clones(info->nl_net, pn, rt);
1382 * Walk the leaf entries looking for ourself
1385 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1386 if (*rtp == rt) {
1387 fib6_del_route(fn, rtp, info);
1388 return 0;
1391 return -ENOENT;
1395 * Tree traversal function.
1397 * Certainly, it is not interrupt safe.
1398 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1399 * It means, that we can modify tree during walking
1400 * and use this function for garbage collection, clone pruning,
1401 * cleaning tree when a device goes down etc. etc.
1403 * It guarantees that every node will be traversed,
1404 * and that it will be traversed only once.
1406 * Callback function w->func may return:
1407 * 0 -> continue walking.
1408 * positive value -> walking is suspended (used by tree dumps,
1409 * and probably by gc, if it will be split to several slices)
1410 * negative value -> terminate walking.
1412 * The function itself returns:
1413 * 0 -> walk is complete.
1414 * >0 -> walk is incomplete (i.e. suspended)
1415 * <0 -> walk is terminated by an error.
1418 static int fib6_walk_continue(struct fib6_walker_t *w)
1420 struct fib6_node *fn, *pn;
1422 for (;;) {
1423 fn = w->node;
1424 if (!fn)
1425 return 0;
1427 if (w->prune && fn != w->root &&
1428 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1429 w->state = FWS_C;
1430 w->leaf = fn->leaf;
1432 switch (w->state) {
1433 #ifdef CONFIG_IPV6_SUBTREES
1434 case FWS_S:
1435 if (FIB6_SUBTREE(fn)) {
1436 w->node = FIB6_SUBTREE(fn);
1437 continue;
1439 w->state = FWS_L;
1440 #endif
1441 case FWS_L:
1442 if (fn->left) {
1443 w->node = fn->left;
1444 w->state = FWS_INIT;
1445 continue;
1447 w->state = FWS_R;
1448 case FWS_R:
1449 if (fn->right) {
1450 w->node = fn->right;
1451 w->state = FWS_INIT;
1452 continue;
1454 w->state = FWS_C;
1455 w->leaf = fn->leaf;
1456 case FWS_C:
1457 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1458 int err;
1460 if (w->skip) {
1461 w->skip--;
1462 continue;
1465 err = w->func(w);
1466 if (err)
1467 return err;
1469 w->count++;
1470 continue;
1472 w->state = FWS_U;
1473 case FWS_U:
1474 if (fn == w->root)
1475 return 0;
1476 pn = fn->parent;
1477 w->node = pn;
1478 #ifdef CONFIG_IPV6_SUBTREES
1479 if (FIB6_SUBTREE(pn) == fn) {
1480 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1481 w->state = FWS_L;
1482 continue;
1484 #endif
1485 if (pn->left == fn) {
1486 w->state = FWS_R;
1487 continue;
1489 if (pn->right == fn) {
1490 w->state = FWS_C;
1491 w->leaf = w->node->leaf;
1492 continue;
1494 #if RT6_DEBUG >= 2
1495 WARN_ON(1);
1496 #endif
1501 static int fib6_walk(struct fib6_walker_t *w)
1503 int res;
1505 w->state = FWS_INIT;
1506 w->node = w->root;
1508 fib6_walker_link(w);
1509 res = fib6_walk_continue(w);
1510 if (res <= 0)
1511 fib6_walker_unlink(w);
1512 return res;
1515 static int fib6_clean_node(struct fib6_walker_t *w)
1517 int res;
1518 struct rt6_info *rt;
1519 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1520 struct nl_info info = {
1521 .nl_net = c->net,
1524 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1525 res = c->func(rt, c->arg);
1526 if (res < 0) {
1527 w->leaf = rt;
1528 res = fib6_del(rt, &info);
1529 if (res) {
1530 #if RT6_DEBUG >= 2
1531 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1532 __func__, rt, rt->rt6i_node, res);
1533 #endif
1534 continue;
1536 return 0;
1538 WARN_ON(res != 0);
1540 w->leaf = rt;
1541 return 0;
1545 * Convenient frontend to tree walker.
1547 * func is called on each route.
1548 * It may return -1 -> delete this route.
1549 * 0 -> continue walking
1551 * prune==1 -> only immediate children of node (certainly,
1552 * ignoring pure split nodes) will be scanned.
1555 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1556 int (*func)(struct rt6_info *, void *arg),
1557 int prune, void *arg)
1559 struct fib6_cleaner_t c;
1561 c.w.root = root;
1562 c.w.func = fib6_clean_node;
1563 c.w.prune = prune;
1564 c.w.count = 0;
1565 c.w.skip = 0;
1566 c.func = func;
1567 c.arg = arg;
1568 c.net = net;
1570 fib6_walk(&c.w);
1573 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1574 void *arg)
1576 struct fib6_table *table;
1577 struct hlist_head *head;
1578 unsigned int h;
1580 rcu_read_lock();
1581 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1582 head = &net->ipv6.fib_table_hash[h];
1583 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1584 write_lock_bh(&table->tb6_lock);
1585 fib6_clean_tree(net, &table->tb6_root,
1586 func, 0, arg);
1587 write_unlock_bh(&table->tb6_lock);
1590 rcu_read_unlock();
1593 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1595 if (rt->rt6i_flags & RTF_CACHE) {
1596 RT6_TRACE("pruning clone %p\n", rt);
1597 return -1;
1600 return 0;
1603 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1604 struct rt6_info *rt)
1606 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1610 * Garbage collection
1613 static struct fib6_gc_args
1615 int timeout;
1616 int more;
1617 } gc_args;
1619 static int fib6_age(struct rt6_info *rt, void *arg)
1621 unsigned long now = jiffies;
1624 * check addrconf expiration here.
1625 * Routes are expired even if they are in use.
1627 * Also age clones. Note, that clones are aged out
1628 * only if they are not in use now.
1631 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1632 if (time_after(now, rt->dst.expires)) {
1633 RT6_TRACE("expiring %p\n", rt);
1634 return -1;
1636 gc_args.more++;
1637 } else if (rt->rt6i_flags & RTF_CACHE) {
1638 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1639 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1640 RT6_TRACE("aging clone %p\n", rt);
1641 return -1;
1642 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1643 struct neighbour *neigh;
1644 __u8 neigh_flags = 0;
1646 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1647 if (neigh) {
1648 neigh_flags = neigh->flags;
1649 neigh_release(neigh);
1651 if (!(neigh_flags & NTF_ROUTER)) {
1652 RT6_TRACE("purging route %p via non-router but gateway\n",
1653 rt);
1654 return -1;
1657 gc_args.more++;
1660 return 0;
1663 static DEFINE_SPINLOCK(fib6_gc_lock);
1665 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1667 unsigned long now;
1669 if (force) {
1670 spin_lock_bh(&fib6_gc_lock);
1671 } else if (!spin_trylock_bh(&fib6_gc_lock)) {
1672 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1673 return;
1675 gc_args.timeout = expires ? (int)expires :
1676 net->ipv6.sysctl.ip6_rt_gc_interval;
1678 gc_args.more = icmp6_dst_gc();
1680 fib6_clean_all(net, fib6_age, NULL);
1681 now = jiffies;
1682 net->ipv6.ip6_rt_last_gc = now;
1684 if (gc_args.more)
1685 mod_timer(&net->ipv6.ip6_fib_timer,
1686 round_jiffies(now
1687 + net->ipv6.sysctl.ip6_rt_gc_interval));
1688 else
1689 del_timer(&net->ipv6.ip6_fib_timer);
1690 spin_unlock_bh(&fib6_gc_lock);
1693 static void fib6_gc_timer_cb(unsigned long arg)
1695 fib6_run_gc(0, (struct net *)arg, true);
1698 static int __net_init fib6_net_init(struct net *net)
1700 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1702 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1704 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1705 if (!net->ipv6.rt6_stats)
1706 goto out_timer;
1708 /* Avoid false sharing : Use at least a full cache line */
1709 size = max_t(size_t, size, L1_CACHE_BYTES);
1711 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1712 if (!net->ipv6.fib_table_hash)
1713 goto out_rt6_stats;
1715 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1716 GFP_KERNEL);
1717 if (!net->ipv6.fib6_main_tbl)
1718 goto out_fib_table_hash;
1720 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1721 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1722 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1723 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1724 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1726 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1727 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1728 GFP_KERNEL);
1729 if (!net->ipv6.fib6_local_tbl)
1730 goto out_fib6_main_tbl;
1731 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1732 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1733 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1734 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1735 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1736 #endif
1737 fib6_tables_init(net);
1739 return 0;
1741 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1742 out_fib6_main_tbl:
1743 kfree(net->ipv6.fib6_main_tbl);
1744 #endif
1745 out_fib_table_hash:
1746 kfree(net->ipv6.fib_table_hash);
1747 out_rt6_stats:
1748 kfree(net->ipv6.rt6_stats);
1749 out_timer:
1750 return -ENOMEM;
1753 static void fib6_net_exit(struct net *net)
1755 rt6_ifdown(net, NULL);
1756 del_timer_sync(&net->ipv6.ip6_fib_timer);
1758 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1759 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1760 kfree(net->ipv6.fib6_local_tbl);
1761 #endif
1762 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1763 kfree(net->ipv6.fib6_main_tbl);
1764 kfree(net->ipv6.fib_table_hash);
1765 kfree(net->ipv6.rt6_stats);
1768 static struct pernet_operations fib6_net_ops = {
1769 .init = fib6_net_init,
1770 .exit = fib6_net_exit,
1773 int __init fib6_init(void)
1775 int ret = -ENOMEM;
1777 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1778 sizeof(struct fib6_node),
1779 0, SLAB_HWCACHE_ALIGN,
1780 NULL);
1781 if (!fib6_node_kmem)
1782 goto out;
1784 ret = register_pernet_subsys(&fib6_net_ops);
1785 if (ret)
1786 goto out_kmem_cache_create;
1788 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1789 NULL);
1790 if (ret)
1791 goto out_unregister_subsys;
1792 out:
1793 return ret;
1795 out_unregister_subsys:
1796 unregister_pernet_subsys(&fib6_net_ops);
1797 out_kmem_cache_create:
1798 kmem_cache_destroy(fib6_node_kmem);
1799 goto out;
1802 void fib6_gc_cleanup(void)
1804 unregister_pernet_subsys(&fib6_net_ops);
1805 kmem_cache_destroy(fib6_node_kmem);
1808 #ifdef CONFIG_PROC_FS
1810 struct ipv6_route_iter {
1811 struct seq_net_private p;
1812 struct fib6_walker_t w;
1813 loff_t skip;
1814 struct fib6_table *tbl;
1815 __u32 sernum;
1818 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1820 struct rt6_info *rt = v;
1821 struct ipv6_route_iter *iter = seq->private;
1823 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1825 #ifdef CONFIG_IPV6_SUBTREES
1826 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1827 #else
1828 seq_puts(seq, "00000000000000000000000000000000 00 ");
1829 #endif
1830 if (rt->rt6i_flags & RTF_GATEWAY)
1831 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1832 else
1833 seq_puts(seq, "00000000000000000000000000000000");
1835 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1836 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1837 rt->dst.__use, rt->rt6i_flags,
1838 rt->dst.dev ? rt->dst.dev->name : "");
1839 iter->w.leaf = NULL;
1840 return 0;
1843 static int ipv6_route_yield(struct fib6_walker_t *w)
1845 struct ipv6_route_iter *iter = w->args;
1847 if (!iter->skip)
1848 return 1;
1850 do {
1851 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1852 iter->skip--;
1853 if (!iter->skip && iter->w.leaf)
1854 return 1;
1855 } while (iter->w.leaf);
1857 return 0;
1860 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1862 memset(&iter->w, 0, sizeof(iter->w));
1863 iter->w.func = ipv6_route_yield;
1864 iter->w.root = &iter->tbl->tb6_root;
1865 iter->w.state = FWS_INIT;
1866 iter->w.node = iter->w.root;
1867 iter->w.args = iter;
1868 iter->sernum = iter->w.root->fn_sernum;
1869 INIT_LIST_HEAD(&iter->w.lh);
1870 fib6_walker_link(&iter->w);
1873 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1874 struct net *net)
1876 unsigned int h;
1877 struct hlist_node *node;
1879 if (tbl) {
1880 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1881 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1882 } else {
1883 h = 0;
1884 node = NULL;
1887 while (!node && h < FIB6_TABLE_HASHSZ) {
1888 node = rcu_dereference_bh(
1889 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1891 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1894 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1896 if (iter->sernum != iter->w.root->fn_sernum) {
1897 iter->sernum = iter->w.root->fn_sernum;
1898 iter->w.state = FWS_INIT;
1899 iter->w.node = iter->w.root;
1900 WARN_ON(iter->w.skip);
1901 iter->w.skip = iter->w.count;
1905 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1907 int r;
1908 struct rt6_info *n;
1909 struct net *net = seq_file_net(seq);
1910 struct ipv6_route_iter *iter = seq->private;
1912 if (!v)
1913 goto iter_table;
1915 n = ((struct rt6_info *)v)->dst.rt6_next;
1916 if (n) {
1917 ++*pos;
1918 return n;
1921 iter_table:
1922 ipv6_route_check_sernum(iter);
1923 read_lock(&iter->tbl->tb6_lock);
1924 r = fib6_walk_continue(&iter->w);
1925 read_unlock(&iter->tbl->tb6_lock);
1926 if (r > 0) {
1927 if (v)
1928 ++*pos;
1929 return iter->w.leaf;
1930 } else if (r < 0) {
1931 fib6_walker_unlink(&iter->w);
1932 return NULL;
1934 fib6_walker_unlink(&iter->w);
1936 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
1937 if (!iter->tbl)
1938 return NULL;
1940 ipv6_route_seq_setup_walk(iter);
1941 goto iter_table;
1944 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
1945 __acquires(RCU_BH)
1947 struct net *net = seq_file_net(seq);
1948 struct ipv6_route_iter *iter = seq->private;
1950 rcu_read_lock_bh();
1951 iter->tbl = ipv6_route_seq_next_table(NULL, net);
1952 iter->skip = *pos;
1954 if (iter->tbl) {
1955 ipv6_route_seq_setup_walk(iter);
1956 return ipv6_route_seq_next(seq, NULL, pos);
1957 } else {
1958 return NULL;
1962 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
1964 struct fib6_walker_t *w = &iter->w;
1965 return w->node && !(w->state == FWS_U && w->node == w->root);
1968 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
1969 __releases(RCU_BH)
1971 struct ipv6_route_iter *iter = seq->private;
1973 if (ipv6_route_iter_active(iter))
1974 fib6_walker_unlink(&iter->w);
1976 rcu_read_unlock_bh();
1979 static const struct seq_operations ipv6_route_seq_ops = {
1980 .start = ipv6_route_seq_start,
1981 .next = ipv6_route_seq_next,
1982 .stop = ipv6_route_seq_stop,
1983 .show = ipv6_route_seq_show
1986 int ipv6_route_open(struct inode *inode, struct file *file)
1988 return seq_open_net(inode, file, &ipv6_route_seq_ops,
1989 sizeof(struct ipv6_route_iter));
1992 #endif /* CONFIG_PROC_FS */