Merge branch 'phylib-EEE-updates'
[linux-2.6/btrfs-unstable.git] / drivers / misc / panel.c
blobef2ece0f26afc6b513ff72dabb08e2ac81c13a56
1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 #include <linux/module.h>
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <linux/workqueue.h>
60 #include <generated/utsrelease.h>
62 #include <linux/io.h>
63 #include <linux/uaccess.h>
65 #define LCD_MINOR 156
66 #define KEYPAD_MINOR 185
68 #define LCD_MAXBYTES 256 /* max burst write */
70 #define KEYPAD_BUFFER 64
72 /* poll the keyboard this every second */
73 #define INPUT_POLL_TIME (HZ / 50)
74 /* a key starts to repeat after this times INPUT_POLL_TIME */
75 #define KEYPAD_REP_START (10)
76 /* a key repeats this times INPUT_POLL_TIME */
77 #define KEYPAD_REP_DELAY (2)
79 /* keep the light on this many seconds for each flash */
80 #define FLASH_LIGHT_TEMPO (4)
82 /* converts an r_str() input to an active high, bits string : 000BAOSE */
83 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85 #define PNL_PBUSY 0x80 /* inverted input, active low */
86 #define PNL_PACK 0x40 /* direct input, active low */
87 #define PNL_POUTPA 0x20 /* direct input, active high */
88 #define PNL_PSELECD 0x10 /* direct input, active high */
89 #define PNL_PERRORP 0x08 /* direct input, active low */
91 #define PNL_PBIDIR 0x20 /* bi-directional ports */
92 /* high to read data in or-ed with data out */
93 #define PNL_PINTEN 0x10
94 #define PNL_PSELECP 0x08 /* inverted output, active low */
95 #define PNL_PINITP 0x04 /* direct output, active low */
96 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
97 #define PNL_PSTROBE 0x01 /* inverted output */
99 #define PNL_PD0 0x01
100 #define PNL_PD1 0x02
101 #define PNL_PD2 0x04
102 #define PNL_PD3 0x08
103 #define PNL_PD4 0x10
104 #define PNL_PD5 0x20
105 #define PNL_PD6 0x40
106 #define PNL_PD7 0x80
108 #define PIN_NONE 0
109 #define PIN_STROBE 1
110 #define PIN_D0 2
111 #define PIN_D1 3
112 #define PIN_D2 4
113 #define PIN_D3 5
114 #define PIN_D4 6
115 #define PIN_D5 7
116 #define PIN_D6 8
117 #define PIN_D7 9
118 #define PIN_AUTOLF 14
119 #define PIN_INITP 16
120 #define PIN_SELECP 17
121 #define PIN_NOT_SET 127
123 #define LCD_FLAG_B 0x0004 /* blink on */
124 #define LCD_FLAG_C 0x0008 /* cursor on */
125 #define LCD_FLAG_D 0x0010 /* display on */
126 #define LCD_FLAG_F 0x0020 /* large font mode */
127 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
128 #define LCD_FLAG_L 0x0080 /* backlight enabled */
130 /* LCD commands */
131 #define LCD_CMD_DISPLAY_CLEAR 0x01 /* Clear entire display */
133 #define LCD_CMD_ENTRY_MODE 0x04 /* Set entry mode */
134 #define LCD_CMD_CURSOR_INC 0x02 /* Increment cursor */
136 #define LCD_CMD_DISPLAY_CTRL 0x08 /* Display control */
137 #define LCD_CMD_DISPLAY_ON 0x04 /* Set display on */
138 #define LCD_CMD_CURSOR_ON 0x02 /* Set cursor on */
139 #define LCD_CMD_BLINK_ON 0x01 /* Set blink on */
141 #define LCD_CMD_SHIFT 0x10 /* Shift cursor/display */
142 #define LCD_CMD_DISPLAY_SHIFT 0x08 /* Shift display instead of cursor */
143 #define LCD_CMD_SHIFT_RIGHT 0x04 /* Shift display/cursor to the right */
145 #define LCD_CMD_FUNCTION_SET 0x20 /* Set function */
146 #define LCD_CMD_DATA_LEN_8BITS 0x10 /* Set data length to 8 bits */
147 #define LCD_CMD_TWO_LINES 0x08 /* Set to two display lines */
148 #define LCD_CMD_FONT_5X10_DOTS 0x04 /* Set char font to 5x10 dots */
150 #define LCD_CMD_SET_CGRAM_ADDR 0x40 /* Set char generator RAM address */
152 #define LCD_CMD_SET_DDRAM_ADDR 0x80 /* Set display data RAM address */
154 #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
155 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
157 #define NOT_SET -1
159 /* macros to simplify use of the parallel port */
160 #define r_ctr(x) (parport_read_control((x)->port))
161 #define r_dtr(x) (parport_read_data((x)->port))
162 #define r_str(x) (parport_read_status((x)->port))
163 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
164 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
166 /* this defines which bits are to be used and which ones to be ignored */
167 /* logical or of the output bits involved in the scan matrix */
168 static __u8 scan_mask_o;
169 /* logical or of the input bits involved in the scan matrix */
170 static __u8 scan_mask_i;
172 enum input_type {
173 INPUT_TYPE_STD,
174 INPUT_TYPE_KBD,
177 enum input_state {
178 INPUT_ST_LOW,
179 INPUT_ST_RISING,
180 INPUT_ST_HIGH,
181 INPUT_ST_FALLING,
184 struct logical_input {
185 struct list_head list;
186 __u64 mask;
187 __u64 value;
188 enum input_type type;
189 enum input_state state;
190 __u8 rise_time, fall_time;
191 __u8 rise_timer, fall_timer, high_timer;
193 union {
194 struct { /* valid when type == INPUT_TYPE_STD */
195 void (*press_fct)(int);
196 void (*release_fct)(int);
197 int press_data;
198 int release_data;
199 } std;
200 struct { /* valid when type == INPUT_TYPE_KBD */
201 /* strings can be non null-terminated */
202 char press_str[sizeof(void *) + sizeof(int)];
203 char repeat_str[sizeof(void *) + sizeof(int)];
204 char release_str[sizeof(void *) + sizeof(int)];
205 } kbd;
206 } u;
209 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
211 /* physical contacts history
212 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
213 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
214 * corresponds to the ground.
215 * Within each group, bits are stored in the same order as read on the port :
216 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
217 * So, each __u64 is represented like this :
218 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
219 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
222 /* what has just been read from the I/O ports */
223 static __u64 phys_read;
224 /* previous phys_read */
225 static __u64 phys_read_prev;
226 /* stabilized phys_read (phys_read|phys_read_prev) */
227 static __u64 phys_curr;
228 /* previous phys_curr */
229 static __u64 phys_prev;
230 /* 0 means that at least one logical signal needs be computed */
231 static char inputs_stable;
233 /* these variables are specific to the keypad */
234 static struct {
235 bool enabled;
236 } keypad;
238 static char keypad_buffer[KEYPAD_BUFFER];
239 static int keypad_buflen;
240 static int keypad_start;
241 static char keypressed;
242 static wait_queue_head_t keypad_read_wait;
244 /* lcd-specific variables */
245 static struct {
246 bool enabled;
247 bool initialized;
248 bool must_clear;
250 int height;
251 int width;
252 int bwidth;
253 int hwidth;
254 int charset;
255 int proto;
257 struct delayed_work bl_work;
258 struct mutex bl_tempo_lock; /* Protects access to bl_tempo */
259 bool bl_tempo;
261 /* TODO: use union here? */
262 struct {
263 int e;
264 int rs;
265 int rw;
266 int cl;
267 int da;
268 int bl;
269 } pins;
271 /* contains the LCD config state */
272 unsigned long int flags;
274 /* Contains the LCD X and Y offset */
275 struct {
276 unsigned long int x;
277 unsigned long int y;
278 } addr;
280 /* Current escape sequence and it's length or -1 if outside */
281 struct {
282 char buf[LCD_ESCAPE_LEN + 1];
283 int len;
284 } esc_seq;
285 } lcd;
287 /* Needed only for init */
288 static int selected_lcd_type = NOT_SET;
291 * Bit masks to convert LCD signals to parallel port outputs.
292 * _d_ are values for data port, _c_ are for control port.
293 * [0] = signal OFF, [1] = signal ON, [2] = mask
295 #define BIT_CLR 0
296 #define BIT_SET 1
297 #define BIT_MSK 2
298 #define BIT_STATES 3
300 * one entry for each bit on the LCD
302 #define LCD_BIT_E 0
303 #define LCD_BIT_RS 1
304 #define LCD_BIT_RW 2
305 #define LCD_BIT_BL 3
306 #define LCD_BIT_CL 4
307 #define LCD_BIT_DA 5
308 #define LCD_BITS 6
311 * each bit can be either connected to a DATA or CTRL port
313 #define LCD_PORT_C 0
314 #define LCD_PORT_D 1
315 #define LCD_PORTS 2
317 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
320 * LCD protocols
322 #define LCD_PROTO_PARALLEL 0
323 #define LCD_PROTO_SERIAL 1
324 #define LCD_PROTO_TI_DA8XX_LCD 2
327 * LCD character sets
329 #define LCD_CHARSET_NORMAL 0
330 #define LCD_CHARSET_KS0074 1
333 * LCD types
335 #define LCD_TYPE_NONE 0
336 #define LCD_TYPE_CUSTOM 1
337 #define LCD_TYPE_OLD 2
338 #define LCD_TYPE_KS0074 3
339 #define LCD_TYPE_HANTRONIX 4
340 #define LCD_TYPE_NEXCOM 5
343 * keypad types
345 #define KEYPAD_TYPE_NONE 0
346 #define KEYPAD_TYPE_OLD 1
347 #define KEYPAD_TYPE_NEW 2
348 #define KEYPAD_TYPE_NEXCOM 3
351 * panel profiles
353 #define PANEL_PROFILE_CUSTOM 0
354 #define PANEL_PROFILE_OLD 1
355 #define PANEL_PROFILE_NEW 2
356 #define PANEL_PROFILE_HANTRONIX 3
357 #define PANEL_PROFILE_NEXCOM 4
358 #define PANEL_PROFILE_LARGE 5
361 * Construct custom config from the kernel's configuration
363 #define DEFAULT_PARPORT 0
364 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
365 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD
366 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD
367 #define DEFAULT_LCD_HEIGHT 2
368 #define DEFAULT_LCD_WIDTH 40
369 #define DEFAULT_LCD_BWIDTH 40
370 #define DEFAULT_LCD_HWIDTH 64
371 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
372 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
374 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
375 #define DEFAULT_LCD_PIN_RS PIN_SELECP
376 #define DEFAULT_LCD_PIN_RW PIN_INITP
377 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
378 #define DEFAULT_LCD_PIN_SDA PIN_D0
379 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
381 #ifdef CONFIG_PANEL_PARPORT
382 #undef DEFAULT_PARPORT
383 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
384 #endif
386 #ifdef CONFIG_PANEL_PROFILE
387 #undef DEFAULT_PROFILE
388 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
389 #endif
391 #if DEFAULT_PROFILE == 0 /* custom */
392 #ifdef CONFIG_PANEL_KEYPAD
393 #undef DEFAULT_KEYPAD_TYPE
394 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
395 #endif
397 #ifdef CONFIG_PANEL_LCD
398 #undef DEFAULT_LCD_TYPE
399 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
400 #endif
402 #ifdef CONFIG_PANEL_LCD_HEIGHT
403 #undef DEFAULT_LCD_HEIGHT
404 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
405 #endif
407 #ifdef CONFIG_PANEL_LCD_WIDTH
408 #undef DEFAULT_LCD_WIDTH
409 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
410 #endif
412 #ifdef CONFIG_PANEL_LCD_BWIDTH
413 #undef DEFAULT_LCD_BWIDTH
414 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
415 #endif
417 #ifdef CONFIG_PANEL_LCD_HWIDTH
418 #undef DEFAULT_LCD_HWIDTH
419 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
420 #endif
422 #ifdef CONFIG_PANEL_LCD_CHARSET
423 #undef DEFAULT_LCD_CHARSET
424 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
425 #endif
427 #ifdef CONFIG_PANEL_LCD_PROTO
428 #undef DEFAULT_LCD_PROTO
429 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
430 #endif
432 #ifdef CONFIG_PANEL_LCD_PIN_E
433 #undef DEFAULT_LCD_PIN_E
434 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
435 #endif
437 #ifdef CONFIG_PANEL_LCD_PIN_RS
438 #undef DEFAULT_LCD_PIN_RS
439 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
440 #endif
442 #ifdef CONFIG_PANEL_LCD_PIN_RW
443 #undef DEFAULT_LCD_PIN_RW
444 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
445 #endif
447 #ifdef CONFIG_PANEL_LCD_PIN_SCL
448 #undef DEFAULT_LCD_PIN_SCL
449 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
450 #endif
452 #ifdef CONFIG_PANEL_LCD_PIN_SDA
453 #undef DEFAULT_LCD_PIN_SDA
454 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
455 #endif
457 #ifdef CONFIG_PANEL_LCD_PIN_BL
458 #undef DEFAULT_LCD_PIN_BL
459 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
460 #endif
462 #endif /* DEFAULT_PROFILE == 0 */
464 /* global variables */
466 /* Device single-open policy control */
467 static atomic_t lcd_available = ATOMIC_INIT(1);
468 static atomic_t keypad_available = ATOMIC_INIT(1);
470 static struct pardevice *pprt;
472 static int keypad_initialized;
474 static void (*lcd_write_cmd)(int);
475 static void (*lcd_write_data)(int);
476 static void (*lcd_clear_fast)(void);
478 static DEFINE_SPINLOCK(pprt_lock);
479 static struct timer_list scan_timer;
481 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
483 static int parport = DEFAULT_PARPORT;
484 module_param(parport, int, 0000);
485 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
487 static int profile = DEFAULT_PROFILE;
488 module_param(profile, int, 0000);
489 MODULE_PARM_DESC(profile,
490 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
491 "4=16x2 nexcom; default=40x2, old kp");
493 static int keypad_type = NOT_SET;
494 module_param(keypad_type, int, 0000);
495 MODULE_PARM_DESC(keypad_type,
496 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
498 static int lcd_type = NOT_SET;
499 module_param(lcd_type, int, 0000);
500 MODULE_PARM_DESC(lcd_type,
501 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
503 static int lcd_height = NOT_SET;
504 module_param(lcd_height, int, 0000);
505 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
507 static int lcd_width = NOT_SET;
508 module_param(lcd_width, int, 0000);
509 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
511 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */
512 module_param(lcd_bwidth, int, 0000);
513 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
515 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */
516 module_param(lcd_hwidth, int, 0000);
517 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
519 static int lcd_charset = NOT_SET;
520 module_param(lcd_charset, int, 0000);
521 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
523 static int lcd_proto = NOT_SET;
524 module_param(lcd_proto, int, 0000);
525 MODULE_PARM_DESC(lcd_proto,
526 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
529 * These are the parallel port pins the LCD control signals are connected to.
530 * Set this to 0 if the signal is not used. Set it to its opposite value
531 * (negative) if the signal is negated. -MAXINT is used to indicate that the
532 * pin has not been explicitly specified.
534 * WARNING! no check will be performed about collisions with keypad !
537 static int lcd_e_pin = PIN_NOT_SET;
538 module_param(lcd_e_pin, int, 0000);
539 MODULE_PARM_DESC(lcd_e_pin,
540 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
542 static int lcd_rs_pin = PIN_NOT_SET;
543 module_param(lcd_rs_pin, int, 0000);
544 MODULE_PARM_DESC(lcd_rs_pin,
545 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
547 static int lcd_rw_pin = PIN_NOT_SET;
548 module_param(lcd_rw_pin, int, 0000);
549 MODULE_PARM_DESC(lcd_rw_pin,
550 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
552 static int lcd_cl_pin = PIN_NOT_SET;
553 module_param(lcd_cl_pin, int, 0000);
554 MODULE_PARM_DESC(lcd_cl_pin,
555 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
557 static int lcd_da_pin = PIN_NOT_SET;
558 module_param(lcd_da_pin, int, 0000);
559 MODULE_PARM_DESC(lcd_da_pin,
560 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
562 static int lcd_bl_pin = PIN_NOT_SET;
563 module_param(lcd_bl_pin, int, 0000);
564 MODULE_PARM_DESC(lcd_bl_pin,
565 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
567 /* Deprecated module parameters - consider not using them anymore */
569 static int lcd_enabled = NOT_SET;
570 module_param(lcd_enabled, int, 0000);
571 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
573 static int keypad_enabled = NOT_SET;
574 module_param(keypad_enabled, int, 0000);
575 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
577 static const unsigned char *lcd_char_conv;
579 /* for some LCD drivers (ks0074) we need a charset conversion table. */
580 static const unsigned char lcd_char_conv_ks0074[256] = {
581 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
582 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
583 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
584 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
585 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
586 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
587 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
588 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
589 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
590 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
591 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
592 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
593 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
594 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
595 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
596 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
597 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
598 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
599 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
600 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
601 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
602 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
603 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
604 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
605 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
606 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
607 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
608 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
609 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
610 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
611 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
612 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
613 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
616 static const char old_keypad_profile[][4][9] = {
617 {"S0", "Left\n", "Left\n", ""},
618 {"S1", "Down\n", "Down\n", ""},
619 {"S2", "Up\n", "Up\n", ""},
620 {"S3", "Right\n", "Right\n", ""},
621 {"S4", "Esc\n", "Esc\n", ""},
622 {"S5", "Ret\n", "Ret\n", ""},
623 {"", "", "", ""}
626 /* signals, press, repeat, release */
627 static const char new_keypad_profile[][4][9] = {
628 {"S0", "Left\n", "Left\n", ""},
629 {"S1", "Down\n", "Down\n", ""},
630 {"S2", "Up\n", "Up\n", ""},
631 {"S3", "Right\n", "Right\n", ""},
632 {"S4s5", "", "Esc\n", "Esc\n"},
633 {"s4S5", "", "Ret\n", "Ret\n"},
634 {"S4S5", "Help\n", "", ""},
635 /* add new signals above this line */
636 {"", "", "", ""}
639 /* signals, press, repeat, release */
640 static const char nexcom_keypad_profile[][4][9] = {
641 {"a-p-e-", "Down\n", "Down\n", ""},
642 {"a-p-E-", "Ret\n", "Ret\n", ""},
643 {"a-P-E-", "Esc\n", "Esc\n", ""},
644 {"a-P-e-", "Up\n", "Up\n", ""},
645 /* add new signals above this line */
646 {"", "", "", ""}
649 static const char (*keypad_profile)[4][9] = old_keypad_profile;
651 static DECLARE_BITMAP(bits, LCD_BITS);
653 static void lcd_get_bits(unsigned int port, int *val)
655 unsigned int bit, state;
657 for (bit = 0; bit < LCD_BITS; bit++) {
658 state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
659 *val &= lcd_bits[port][bit][BIT_MSK];
660 *val |= lcd_bits[port][bit][state];
664 /* sets data port bits according to current signals values */
665 static int set_data_bits(void)
667 int val;
669 val = r_dtr(pprt);
670 lcd_get_bits(LCD_PORT_D, &val);
671 w_dtr(pprt, val);
672 return val;
675 /* sets ctrl port bits according to current signals values */
676 static int set_ctrl_bits(void)
678 int val;
680 val = r_ctr(pprt);
681 lcd_get_bits(LCD_PORT_C, &val);
682 w_ctr(pprt, val);
683 return val;
686 /* sets ctrl & data port bits according to current signals values */
687 static void panel_set_bits(void)
689 set_data_bits();
690 set_ctrl_bits();
694 * Converts a parallel port pin (from -25 to 25) to data and control ports
695 * masks, and data and control port bits. The signal will be considered
696 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
698 * Result will be used this way :
699 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
700 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
702 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
704 int d_bit, c_bit, inv;
706 d_val[0] = 0;
707 c_val[0] = 0;
708 d_val[1] = 0;
709 c_val[1] = 0;
710 d_val[2] = 0xFF;
711 c_val[2] = 0xFF;
713 if (pin == 0)
714 return;
716 inv = (pin < 0);
717 if (inv)
718 pin = -pin;
720 d_bit = 0;
721 c_bit = 0;
723 switch (pin) {
724 case PIN_STROBE: /* strobe, inverted */
725 c_bit = PNL_PSTROBE;
726 inv = !inv;
727 break;
728 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
729 d_bit = 1 << (pin - 2);
730 break;
731 case PIN_AUTOLF: /* autofeed, inverted */
732 c_bit = PNL_PAUTOLF;
733 inv = !inv;
734 break;
735 case PIN_INITP: /* init, direct */
736 c_bit = PNL_PINITP;
737 break;
738 case PIN_SELECP: /* select_in, inverted */
739 c_bit = PNL_PSELECP;
740 inv = !inv;
741 break;
742 default: /* unknown pin, ignore */
743 break;
746 if (c_bit) {
747 c_val[2] &= ~c_bit;
748 c_val[!inv] = c_bit;
749 } else if (d_bit) {
750 d_val[2] &= ~d_bit;
751 d_val[!inv] = d_bit;
755 /* sleeps that many milliseconds with a reschedule */
756 static void long_sleep(int ms)
758 if (in_interrupt())
759 mdelay(ms);
760 else
761 schedule_timeout_interruptible(msecs_to_jiffies(ms));
765 * send a serial byte to the LCD panel. The caller is responsible for locking
766 * if needed.
768 static void lcd_send_serial(int byte)
770 int bit;
773 * the data bit is set on D0, and the clock on STROBE.
774 * LCD reads D0 on STROBE's rising edge.
776 for (bit = 0; bit < 8; bit++) {
777 clear_bit(LCD_BIT_CL, bits); /* CLK low */
778 panel_set_bits();
779 if (byte & 1) {
780 set_bit(LCD_BIT_DA, bits);
781 } else {
782 clear_bit(LCD_BIT_DA, bits);
785 panel_set_bits();
786 udelay(2); /* maintain the data during 2 us before CLK up */
787 set_bit(LCD_BIT_CL, bits); /* CLK high */
788 panel_set_bits();
789 udelay(1); /* maintain the strobe during 1 us */
790 byte >>= 1;
794 /* turn the backlight on or off */
795 static void __lcd_backlight(int on)
797 /* The backlight is activated by setting the AUTOFEED line to +5V */
798 spin_lock_irq(&pprt_lock);
799 if (on)
800 set_bit(LCD_BIT_BL, bits);
801 else
802 clear_bit(LCD_BIT_BL, bits);
803 panel_set_bits();
804 spin_unlock_irq(&pprt_lock);
807 static void lcd_backlight(int on)
809 if (lcd.pins.bl == PIN_NONE)
810 return;
812 mutex_lock(&lcd.bl_tempo_lock);
813 if (!lcd.bl_tempo)
814 __lcd_backlight(on);
815 mutex_unlock(&lcd.bl_tempo_lock);
818 static void lcd_bl_off(struct work_struct *work)
820 mutex_lock(&lcd.bl_tempo_lock);
821 if (lcd.bl_tempo) {
822 lcd.bl_tempo = false;
823 if (!(lcd.flags & LCD_FLAG_L))
824 __lcd_backlight(0);
826 mutex_unlock(&lcd.bl_tempo_lock);
829 /* turn the backlight on for a little while */
830 static void lcd_poke(void)
832 if (lcd.pins.bl == PIN_NONE)
833 return;
835 cancel_delayed_work_sync(&lcd.bl_work);
837 mutex_lock(&lcd.bl_tempo_lock);
838 if (!lcd.bl_tempo && !(lcd.flags & LCD_FLAG_L))
839 __lcd_backlight(1);
840 lcd.bl_tempo = true;
841 schedule_delayed_work(&lcd.bl_work, FLASH_LIGHT_TEMPO * HZ);
842 mutex_unlock(&lcd.bl_tempo_lock);
845 /* send a command to the LCD panel in serial mode */
846 static void lcd_write_cmd_s(int cmd)
848 spin_lock_irq(&pprt_lock);
849 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
850 lcd_send_serial(cmd & 0x0F);
851 lcd_send_serial((cmd >> 4) & 0x0F);
852 udelay(40); /* the shortest command takes at least 40 us */
853 spin_unlock_irq(&pprt_lock);
856 /* send data to the LCD panel in serial mode */
857 static void lcd_write_data_s(int data)
859 spin_lock_irq(&pprt_lock);
860 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
861 lcd_send_serial(data & 0x0F);
862 lcd_send_serial((data >> 4) & 0x0F);
863 udelay(40); /* the shortest data takes at least 40 us */
864 spin_unlock_irq(&pprt_lock);
867 /* send a command to the LCD panel in 8 bits parallel mode */
868 static void lcd_write_cmd_p8(int cmd)
870 spin_lock_irq(&pprt_lock);
871 /* present the data to the data port */
872 w_dtr(pprt, cmd);
873 udelay(20); /* maintain the data during 20 us before the strobe */
875 set_bit(LCD_BIT_E, bits);
876 clear_bit(LCD_BIT_RS, bits);
877 clear_bit(LCD_BIT_RW, bits);
878 set_ctrl_bits();
880 udelay(40); /* maintain the strobe during 40 us */
882 clear_bit(LCD_BIT_E, bits);
883 set_ctrl_bits();
885 udelay(120); /* the shortest command takes at least 120 us */
886 spin_unlock_irq(&pprt_lock);
889 /* send data to the LCD panel in 8 bits parallel mode */
890 static void lcd_write_data_p8(int data)
892 spin_lock_irq(&pprt_lock);
893 /* present the data to the data port */
894 w_dtr(pprt, data);
895 udelay(20); /* maintain the data during 20 us before the strobe */
897 set_bit(LCD_BIT_E, bits);
898 set_bit(LCD_BIT_RS, bits);
899 clear_bit(LCD_BIT_RW, bits);
900 set_ctrl_bits();
902 udelay(40); /* maintain the strobe during 40 us */
904 clear_bit(LCD_BIT_E, bits);
905 set_ctrl_bits();
907 udelay(45); /* the shortest data takes at least 45 us */
908 spin_unlock_irq(&pprt_lock);
911 /* send a command to the TI LCD panel */
912 static void lcd_write_cmd_tilcd(int cmd)
914 spin_lock_irq(&pprt_lock);
915 /* present the data to the control port */
916 w_ctr(pprt, cmd);
917 udelay(60);
918 spin_unlock_irq(&pprt_lock);
921 /* send data to the TI LCD panel */
922 static void lcd_write_data_tilcd(int data)
924 spin_lock_irq(&pprt_lock);
925 /* present the data to the data port */
926 w_dtr(pprt, data);
927 udelay(60);
928 spin_unlock_irq(&pprt_lock);
931 static void lcd_gotoxy(void)
933 lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
934 | (lcd.addr.y ? lcd.hwidth : 0)
936 * we force the cursor to stay at the end of the
937 * line if it wants to go farther
939 | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
940 (lcd.hwidth - 1) : lcd.bwidth - 1));
943 static void lcd_home(void)
945 lcd.addr.x = 0;
946 lcd.addr.y = 0;
947 lcd_gotoxy();
950 static void lcd_print(char c)
952 if (lcd.addr.x < lcd.bwidth) {
953 if (lcd_char_conv)
954 c = lcd_char_conv[(unsigned char)c];
955 lcd_write_data(c);
956 lcd.addr.x++;
958 /* prevents the cursor from wrapping onto the next line */
959 if (lcd.addr.x == lcd.bwidth)
960 lcd_gotoxy();
963 /* fills the display with spaces and resets X/Y */
964 static void lcd_clear_fast_s(void)
966 int pos;
968 lcd_home();
970 spin_lock_irq(&pprt_lock);
971 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
972 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
973 lcd_send_serial(' ' & 0x0F);
974 lcd_send_serial((' ' >> 4) & 0x0F);
975 /* the shortest data takes at least 40 us */
976 udelay(40);
978 spin_unlock_irq(&pprt_lock);
980 lcd_home();
983 /* fills the display with spaces and resets X/Y */
984 static void lcd_clear_fast_p8(void)
986 int pos;
988 lcd_home();
990 spin_lock_irq(&pprt_lock);
991 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
992 /* present the data to the data port */
993 w_dtr(pprt, ' ');
995 /* maintain the data during 20 us before the strobe */
996 udelay(20);
998 set_bit(LCD_BIT_E, bits);
999 set_bit(LCD_BIT_RS, bits);
1000 clear_bit(LCD_BIT_RW, bits);
1001 set_ctrl_bits();
1003 /* maintain the strobe during 40 us */
1004 udelay(40);
1006 clear_bit(LCD_BIT_E, bits);
1007 set_ctrl_bits();
1009 /* the shortest data takes at least 45 us */
1010 udelay(45);
1012 spin_unlock_irq(&pprt_lock);
1014 lcd_home();
1017 /* fills the display with spaces and resets X/Y */
1018 static void lcd_clear_fast_tilcd(void)
1020 int pos;
1022 lcd_home();
1024 spin_lock_irq(&pprt_lock);
1025 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
1026 /* present the data to the data port */
1027 w_dtr(pprt, ' ');
1028 udelay(60);
1031 spin_unlock_irq(&pprt_lock);
1033 lcd_home();
1036 /* clears the display and resets X/Y */
1037 static void lcd_clear_display(void)
1039 lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1040 lcd.addr.x = 0;
1041 lcd.addr.y = 0;
1042 /* we must wait a few milliseconds (15) */
1043 long_sleep(15);
1046 static void lcd_init_display(void)
1048 lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1049 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1051 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
1053 /* 8bits, 1 line, small fonts; let's do it 3 times */
1054 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1055 long_sleep(10);
1056 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1057 long_sleep(10);
1058 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1059 long_sleep(10);
1061 /* set font height and lines number */
1062 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1063 | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1064 | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1066 long_sleep(10);
1068 /* display off, cursor off, blink off */
1069 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1070 long_sleep(10);
1072 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL /* set display mode */
1073 | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1074 | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1075 | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1078 lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1080 long_sleep(10);
1082 /* entry mode set : increment, cursor shifting */
1083 lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1085 lcd_clear_display();
1089 * These are the file operation function for user access to /dev/lcd
1090 * This function can also be called from inside the kernel, by
1091 * setting file and ppos to NULL.
1095 static inline int handle_lcd_special_code(void)
1097 /* LCD special codes */
1099 int processed = 0;
1101 char *esc = lcd.esc_seq.buf + 2;
1102 int oldflags = lcd.flags;
1104 /* check for display mode flags */
1105 switch (*esc) {
1106 case 'D': /* Display ON */
1107 lcd.flags |= LCD_FLAG_D;
1108 processed = 1;
1109 break;
1110 case 'd': /* Display OFF */
1111 lcd.flags &= ~LCD_FLAG_D;
1112 processed = 1;
1113 break;
1114 case 'C': /* Cursor ON */
1115 lcd.flags |= LCD_FLAG_C;
1116 processed = 1;
1117 break;
1118 case 'c': /* Cursor OFF */
1119 lcd.flags &= ~LCD_FLAG_C;
1120 processed = 1;
1121 break;
1122 case 'B': /* Blink ON */
1123 lcd.flags |= LCD_FLAG_B;
1124 processed = 1;
1125 break;
1126 case 'b': /* Blink OFF */
1127 lcd.flags &= ~LCD_FLAG_B;
1128 processed = 1;
1129 break;
1130 case '+': /* Back light ON */
1131 lcd.flags |= LCD_FLAG_L;
1132 processed = 1;
1133 break;
1134 case '-': /* Back light OFF */
1135 lcd.flags &= ~LCD_FLAG_L;
1136 processed = 1;
1137 break;
1138 case '*':
1139 /* flash back light */
1140 lcd_poke();
1141 processed = 1;
1142 break;
1143 case 'f': /* Small Font */
1144 lcd.flags &= ~LCD_FLAG_F;
1145 processed = 1;
1146 break;
1147 case 'F': /* Large Font */
1148 lcd.flags |= LCD_FLAG_F;
1149 processed = 1;
1150 break;
1151 case 'n': /* One Line */
1152 lcd.flags &= ~LCD_FLAG_N;
1153 processed = 1;
1154 break;
1155 case 'N': /* Two Lines */
1156 lcd.flags |= LCD_FLAG_N;
1157 break;
1158 case 'l': /* Shift Cursor Left */
1159 if (lcd.addr.x > 0) {
1160 /* back one char if not at end of line */
1161 if (lcd.addr.x < lcd.bwidth)
1162 lcd_write_cmd(LCD_CMD_SHIFT);
1163 lcd.addr.x--;
1165 processed = 1;
1166 break;
1167 case 'r': /* shift cursor right */
1168 if (lcd.addr.x < lcd.width) {
1169 /* allow the cursor to pass the end of the line */
1170 if (lcd.addr.x < (lcd.bwidth - 1))
1171 lcd_write_cmd(LCD_CMD_SHIFT |
1172 LCD_CMD_SHIFT_RIGHT);
1173 lcd.addr.x++;
1175 processed = 1;
1176 break;
1177 case 'L': /* shift display left */
1178 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1179 processed = 1;
1180 break;
1181 case 'R': /* shift display right */
1182 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1183 LCD_CMD_SHIFT_RIGHT);
1184 processed = 1;
1185 break;
1186 case 'k': { /* kill end of line */
1187 int x;
1189 for (x = lcd.addr.x; x < lcd.bwidth; x++)
1190 lcd_write_data(' ');
1192 /* restore cursor position */
1193 lcd_gotoxy();
1194 processed = 1;
1195 break;
1197 case 'I': /* reinitialize display */
1198 lcd_init_display();
1199 processed = 1;
1200 break;
1201 case 'G': {
1202 /* Generator : LGcxxxxx...xx; must have <c> between '0'
1203 * and '7', representing the numerical ASCII code of the
1204 * redefined character, and <xx...xx> a sequence of 16
1205 * hex digits representing 8 bytes for each character.
1206 * Most LCDs will only use 5 lower bits of the 7 first
1207 * bytes.
1210 unsigned char cgbytes[8];
1211 unsigned char cgaddr;
1212 int cgoffset;
1213 int shift;
1214 char value;
1215 int addr;
1217 if (!strchr(esc, ';'))
1218 break;
1220 esc++;
1222 cgaddr = *(esc++) - '0';
1223 if (cgaddr > 7) {
1224 processed = 1;
1225 break;
1228 cgoffset = 0;
1229 shift = 0;
1230 value = 0;
1231 while (*esc && cgoffset < 8) {
1232 shift ^= 4;
1233 if (*esc >= '0' && *esc <= '9') {
1234 value |= (*esc - '0') << shift;
1235 } else if (*esc >= 'A' && *esc <= 'Z') {
1236 value |= (*esc - 'A' + 10) << shift;
1237 } else if (*esc >= 'a' && *esc <= 'z') {
1238 value |= (*esc - 'a' + 10) << shift;
1239 } else {
1240 esc++;
1241 continue;
1244 if (shift == 0) {
1245 cgbytes[cgoffset++] = value;
1246 value = 0;
1249 esc++;
1252 lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1253 for (addr = 0; addr < cgoffset; addr++)
1254 lcd_write_data(cgbytes[addr]);
1256 /* ensures that we stop writing to CGRAM */
1257 lcd_gotoxy();
1258 processed = 1;
1259 break;
1261 case 'x': /* gotoxy : LxXXX[yYYY]; */
1262 case 'y': /* gotoxy : LyYYY[xXXX]; */
1263 if (!strchr(esc, ';'))
1264 break;
1266 while (*esc) {
1267 if (*esc == 'x') {
1268 esc++;
1269 if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1270 break;
1271 } else if (*esc == 'y') {
1272 esc++;
1273 if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1274 break;
1275 } else {
1276 break;
1280 lcd_gotoxy();
1281 processed = 1;
1282 break;
1285 /* TODO: This indent party here got ugly, clean it! */
1286 /* Check whether one flag was changed */
1287 if (oldflags != lcd.flags) {
1288 /* check whether one of B,C,D flags were changed */
1289 if ((oldflags ^ lcd.flags) &
1290 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1291 /* set display mode */
1292 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1293 | ((lcd.flags & LCD_FLAG_D)
1294 ? LCD_CMD_DISPLAY_ON : 0)
1295 | ((lcd.flags & LCD_FLAG_C)
1296 ? LCD_CMD_CURSOR_ON : 0)
1297 | ((lcd.flags & LCD_FLAG_B)
1298 ? LCD_CMD_BLINK_ON : 0));
1299 /* check whether one of F,N flags was changed */
1300 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1301 lcd_write_cmd(LCD_CMD_FUNCTION_SET
1302 | LCD_CMD_DATA_LEN_8BITS
1303 | ((lcd.flags & LCD_FLAG_F)
1304 ? LCD_CMD_FONT_5X10_DOTS
1305 : 0)
1306 | ((lcd.flags & LCD_FLAG_N)
1307 ? LCD_CMD_TWO_LINES
1308 : 0));
1309 /* check whether L flag was changed */
1310 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L))
1311 lcd_backlight(!!(lcd.flags & LCD_FLAG_L));
1314 return processed;
1317 static void lcd_write_char(char c)
1319 /* first, we'll test if we're in escape mode */
1320 if ((c != '\n') && lcd.esc_seq.len >= 0) {
1321 /* yes, let's add this char to the buffer */
1322 lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1323 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1324 } else {
1325 /* aborts any previous escape sequence */
1326 lcd.esc_seq.len = -1;
1328 switch (c) {
1329 case LCD_ESCAPE_CHAR:
1330 /* start of an escape sequence */
1331 lcd.esc_seq.len = 0;
1332 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1333 break;
1334 case '\b':
1335 /* go back one char and clear it */
1336 if (lcd.addr.x > 0) {
1338 * check if we're not at the
1339 * end of the line
1341 if (lcd.addr.x < lcd.bwidth)
1342 /* back one char */
1343 lcd_write_cmd(LCD_CMD_SHIFT);
1344 lcd.addr.x--;
1346 /* replace with a space */
1347 lcd_write_data(' ');
1348 /* back one char again */
1349 lcd_write_cmd(LCD_CMD_SHIFT);
1350 break;
1351 case '\014':
1352 /* quickly clear the display */
1353 lcd_clear_fast();
1354 break;
1355 case '\n':
1357 * flush the remainder of the current line and
1358 * go to the beginning of the next line
1360 for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1361 lcd_write_data(' ');
1362 lcd.addr.x = 0;
1363 lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1364 lcd_gotoxy();
1365 break;
1366 case '\r':
1367 /* go to the beginning of the same line */
1368 lcd.addr.x = 0;
1369 lcd_gotoxy();
1370 break;
1371 case '\t':
1372 /* print a space instead of the tab */
1373 lcd_print(' ');
1374 break;
1375 default:
1376 /* simply print this char */
1377 lcd_print(c);
1378 break;
1383 * now we'll see if we're in an escape mode and if the current
1384 * escape sequence can be understood.
1386 if (lcd.esc_seq.len >= 2) {
1387 int processed = 0;
1389 if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1390 /* clear the display */
1391 lcd_clear_fast();
1392 processed = 1;
1393 } else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1394 /* cursor to home */
1395 lcd_home();
1396 processed = 1;
1398 /* codes starting with ^[[L */
1399 else if ((lcd.esc_seq.len >= 3) &&
1400 (lcd.esc_seq.buf[0] == '[') &&
1401 (lcd.esc_seq.buf[1] == 'L')) {
1402 processed = handle_lcd_special_code();
1405 /* LCD special escape codes */
1407 * flush the escape sequence if it's been processed
1408 * or if it is getting too long.
1410 if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1411 lcd.esc_seq.len = -1;
1412 } /* escape codes */
1415 static ssize_t lcd_write(struct file *file,
1416 const char __user *buf, size_t count, loff_t *ppos)
1418 const char __user *tmp = buf;
1419 char c;
1421 for (; count-- > 0; (*ppos)++, tmp++) {
1422 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1424 * let's be a little nice with other processes
1425 * that need some CPU
1427 schedule();
1429 if (get_user(c, tmp))
1430 return -EFAULT;
1432 lcd_write_char(c);
1435 return tmp - buf;
1438 static int lcd_open(struct inode *inode, struct file *file)
1440 if (!atomic_dec_and_test(&lcd_available))
1441 return -EBUSY; /* open only once at a time */
1443 if (file->f_mode & FMODE_READ) /* device is write-only */
1444 return -EPERM;
1446 if (lcd.must_clear) {
1447 lcd_clear_display();
1448 lcd.must_clear = false;
1450 return nonseekable_open(inode, file);
1453 static int lcd_release(struct inode *inode, struct file *file)
1455 atomic_inc(&lcd_available);
1456 return 0;
1459 static const struct file_operations lcd_fops = {
1460 .write = lcd_write,
1461 .open = lcd_open,
1462 .release = lcd_release,
1463 .llseek = no_llseek,
1466 static struct miscdevice lcd_dev = {
1467 .minor = LCD_MINOR,
1468 .name = "lcd",
1469 .fops = &lcd_fops,
1472 /* public function usable from the kernel for any purpose */
1473 static void panel_lcd_print(const char *s)
1475 const char *tmp = s;
1476 int count = strlen(s);
1478 if (lcd.enabled && lcd.initialized) {
1479 for (; count-- > 0; tmp++) {
1480 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1482 * let's be a little nice with other processes
1483 * that need some CPU
1485 schedule();
1487 lcd_write_char(*tmp);
1492 /* initialize the LCD driver */
1493 static void lcd_init(void)
1495 switch (selected_lcd_type) {
1496 case LCD_TYPE_OLD:
1497 /* parallel mode, 8 bits */
1498 lcd.proto = LCD_PROTO_PARALLEL;
1499 lcd.charset = LCD_CHARSET_NORMAL;
1500 lcd.pins.e = PIN_STROBE;
1501 lcd.pins.rs = PIN_AUTOLF;
1503 lcd.width = 40;
1504 lcd.bwidth = 40;
1505 lcd.hwidth = 64;
1506 lcd.height = 2;
1507 break;
1508 case LCD_TYPE_KS0074:
1509 /* serial mode, ks0074 */
1510 lcd.proto = LCD_PROTO_SERIAL;
1511 lcd.charset = LCD_CHARSET_KS0074;
1512 lcd.pins.bl = PIN_AUTOLF;
1513 lcd.pins.cl = PIN_STROBE;
1514 lcd.pins.da = PIN_D0;
1516 lcd.width = 16;
1517 lcd.bwidth = 40;
1518 lcd.hwidth = 16;
1519 lcd.height = 2;
1520 break;
1521 case LCD_TYPE_NEXCOM:
1522 /* parallel mode, 8 bits, generic */
1523 lcd.proto = LCD_PROTO_PARALLEL;
1524 lcd.charset = LCD_CHARSET_NORMAL;
1525 lcd.pins.e = PIN_AUTOLF;
1526 lcd.pins.rs = PIN_SELECP;
1527 lcd.pins.rw = PIN_INITP;
1529 lcd.width = 16;
1530 lcd.bwidth = 40;
1531 lcd.hwidth = 64;
1532 lcd.height = 2;
1533 break;
1534 case LCD_TYPE_CUSTOM:
1535 /* customer-defined */
1536 lcd.proto = DEFAULT_LCD_PROTO;
1537 lcd.charset = DEFAULT_LCD_CHARSET;
1538 /* default geometry will be set later */
1539 break;
1540 case LCD_TYPE_HANTRONIX:
1541 /* parallel mode, 8 bits, hantronix-like */
1542 default:
1543 lcd.proto = LCD_PROTO_PARALLEL;
1544 lcd.charset = LCD_CHARSET_NORMAL;
1545 lcd.pins.e = PIN_STROBE;
1546 lcd.pins.rs = PIN_SELECP;
1548 lcd.width = 16;
1549 lcd.bwidth = 40;
1550 lcd.hwidth = 64;
1551 lcd.height = 2;
1552 break;
1555 /* Overwrite with module params set on loading */
1556 if (lcd_height != NOT_SET)
1557 lcd.height = lcd_height;
1558 if (lcd_width != NOT_SET)
1559 lcd.width = lcd_width;
1560 if (lcd_bwidth != NOT_SET)
1561 lcd.bwidth = lcd_bwidth;
1562 if (lcd_hwidth != NOT_SET)
1563 lcd.hwidth = lcd_hwidth;
1564 if (lcd_charset != NOT_SET)
1565 lcd.charset = lcd_charset;
1566 if (lcd_proto != NOT_SET)
1567 lcd.proto = lcd_proto;
1568 if (lcd_e_pin != PIN_NOT_SET)
1569 lcd.pins.e = lcd_e_pin;
1570 if (lcd_rs_pin != PIN_NOT_SET)
1571 lcd.pins.rs = lcd_rs_pin;
1572 if (lcd_rw_pin != PIN_NOT_SET)
1573 lcd.pins.rw = lcd_rw_pin;
1574 if (lcd_cl_pin != PIN_NOT_SET)
1575 lcd.pins.cl = lcd_cl_pin;
1576 if (lcd_da_pin != PIN_NOT_SET)
1577 lcd.pins.da = lcd_da_pin;
1578 if (lcd_bl_pin != PIN_NOT_SET)
1579 lcd.pins.bl = lcd_bl_pin;
1581 /* this is used to catch wrong and default values */
1582 if (lcd.width <= 0)
1583 lcd.width = DEFAULT_LCD_WIDTH;
1584 if (lcd.bwidth <= 0)
1585 lcd.bwidth = DEFAULT_LCD_BWIDTH;
1586 if (lcd.hwidth <= 0)
1587 lcd.hwidth = DEFAULT_LCD_HWIDTH;
1588 if (lcd.height <= 0)
1589 lcd.height = DEFAULT_LCD_HEIGHT;
1591 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */
1592 lcd_write_cmd = lcd_write_cmd_s;
1593 lcd_write_data = lcd_write_data_s;
1594 lcd_clear_fast = lcd_clear_fast_s;
1596 if (lcd.pins.cl == PIN_NOT_SET)
1597 lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1598 if (lcd.pins.da == PIN_NOT_SET)
1599 lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1601 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1602 lcd_write_cmd = lcd_write_cmd_p8;
1603 lcd_write_data = lcd_write_data_p8;
1604 lcd_clear_fast = lcd_clear_fast_p8;
1606 if (lcd.pins.e == PIN_NOT_SET)
1607 lcd.pins.e = DEFAULT_LCD_PIN_E;
1608 if (lcd.pins.rs == PIN_NOT_SET)
1609 lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1610 if (lcd.pins.rw == PIN_NOT_SET)
1611 lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1612 } else {
1613 lcd_write_cmd = lcd_write_cmd_tilcd;
1614 lcd_write_data = lcd_write_data_tilcd;
1615 lcd_clear_fast = lcd_clear_fast_tilcd;
1618 if (lcd.pins.bl == PIN_NOT_SET)
1619 lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1621 if (lcd.pins.e == PIN_NOT_SET)
1622 lcd.pins.e = PIN_NONE;
1623 if (lcd.pins.rs == PIN_NOT_SET)
1624 lcd.pins.rs = PIN_NONE;
1625 if (lcd.pins.rw == PIN_NOT_SET)
1626 lcd.pins.rw = PIN_NONE;
1627 if (lcd.pins.bl == PIN_NOT_SET)
1628 lcd.pins.bl = PIN_NONE;
1629 if (lcd.pins.cl == PIN_NOT_SET)
1630 lcd.pins.cl = PIN_NONE;
1631 if (lcd.pins.da == PIN_NOT_SET)
1632 lcd.pins.da = PIN_NONE;
1634 if (lcd.charset == NOT_SET)
1635 lcd.charset = DEFAULT_LCD_CHARSET;
1637 if (lcd.charset == LCD_CHARSET_KS0074)
1638 lcd_char_conv = lcd_char_conv_ks0074;
1639 else
1640 lcd_char_conv = NULL;
1642 if (lcd.pins.bl != PIN_NONE) {
1643 mutex_init(&lcd.bl_tempo_lock);
1644 INIT_DELAYED_WORK(&lcd.bl_work, lcd_bl_off);
1647 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1648 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1649 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1650 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1651 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1652 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1653 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1654 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1655 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1656 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1657 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1658 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1661 * before this line, we must NOT send anything to the display.
1662 * Since lcd_init_display() needs to write data, we have to
1663 * enable mark the LCD initialized just before.
1665 lcd.initialized = true;
1666 lcd_init_display();
1668 /* display a short message */
1669 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1670 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1671 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1672 #endif
1673 #else
1674 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE);
1675 #endif
1676 /* clear the display on the next device opening */
1677 lcd.must_clear = true;
1678 lcd_home();
1682 * These are the file operation function for user access to /dev/keypad
1685 static ssize_t keypad_read(struct file *file,
1686 char __user *buf, size_t count, loff_t *ppos)
1688 unsigned i = *ppos;
1689 char __user *tmp = buf;
1691 if (keypad_buflen == 0) {
1692 if (file->f_flags & O_NONBLOCK)
1693 return -EAGAIN;
1695 if (wait_event_interruptible(keypad_read_wait,
1696 keypad_buflen != 0))
1697 return -EINTR;
1700 for (; count-- > 0 && (keypad_buflen > 0);
1701 ++i, ++tmp, --keypad_buflen) {
1702 put_user(keypad_buffer[keypad_start], tmp);
1703 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1705 *ppos = i;
1707 return tmp - buf;
1710 static int keypad_open(struct inode *inode, struct file *file)
1712 if (!atomic_dec_and_test(&keypad_available))
1713 return -EBUSY; /* open only once at a time */
1715 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1716 return -EPERM;
1718 keypad_buflen = 0; /* flush the buffer on opening */
1719 return 0;
1722 static int keypad_release(struct inode *inode, struct file *file)
1724 atomic_inc(&keypad_available);
1725 return 0;
1728 static const struct file_operations keypad_fops = {
1729 .read = keypad_read, /* read */
1730 .open = keypad_open, /* open */
1731 .release = keypad_release, /* close */
1732 .llseek = default_llseek,
1735 static struct miscdevice keypad_dev = {
1736 .minor = KEYPAD_MINOR,
1737 .name = "keypad",
1738 .fops = &keypad_fops,
1741 static void keypad_send_key(const char *string, int max_len)
1743 /* send the key to the device only if a process is attached to it. */
1744 if (!atomic_read(&keypad_available)) {
1745 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1746 keypad_buffer[(keypad_start + keypad_buflen++) %
1747 KEYPAD_BUFFER] = *string++;
1749 wake_up_interruptible(&keypad_read_wait);
1753 /* this function scans all the bits involving at least one logical signal,
1754 * and puts the results in the bitfield "phys_read" (one bit per established
1755 * contact), and sets "phys_read_prev" to "phys_read".
1757 * Note: to debounce input signals, we will only consider as switched a signal
1758 * which is stable across 2 measures. Signals which are different between two
1759 * reads will be kept as they previously were in their logical form (phys_prev).
1760 * A signal which has just switched will have a 1 in
1761 * (phys_read ^ phys_read_prev).
1763 static void phys_scan_contacts(void)
1765 int bit, bitval;
1766 char oldval;
1767 char bitmask;
1768 char gndmask;
1770 phys_prev = phys_curr;
1771 phys_read_prev = phys_read;
1772 phys_read = 0; /* flush all signals */
1774 /* keep track of old value, with all outputs disabled */
1775 oldval = r_dtr(pprt) | scan_mask_o;
1776 /* activate all keyboard outputs (active low) */
1777 w_dtr(pprt, oldval & ~scan_mask_o);
1779 /* will have a 1 for each bit set to gnd */
1780 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1781 /* disable all matrix signals */
1782 w_dtr(pprt, oldval);
1784 /* now that all outputs are cleared, the only active input bits are
1785 * directly connected to the ground
1788 /* 1 for each grounded input */
1789 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1791 /* grounded inputs are signals 40-44 */
1792 phys_read |= (__u64)gndmask << 40;
1794 if (bitmask != gndmask) {
1796 * since clearing the outputs changed some inputs, we know
1797 * that some input signals are currently tied to some outputs.
1798 * So we'll scan them.
1800 for (bit = 0; bit < 8; bit++) {
1801 bitval = BIT(bit);
1803 if (!(scan_mask_o & bitval)) /* skip unused bits */
1804 continue;
1806 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1807 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1808 phys_read |= (__u64)bitmask << (5 * bit);
1810 w_dtr(pprt, oldval); /* disable all outputs */
1813 * this is easy: use old bits when they are flapping,
1814 * use new ones when stable
1816 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1817 (phys_read & ~(phys_read ^ phys_read_prev));
1820 static inline int input_state_high(struct logical_input *input)
1822 #if 0
1823 /* FIXME:
1824 * this is an invalid test. It tries to catch
1825 * transitions from single-key to multiple-key, but
1826 * doesn't take into account the contacts polarity.
1827 * The only solution to the problem is to parse keys
1828 * from the most complex to the simplest combinations,
1829 * and mark them as 'caught' once a combination
1830 * matches, then unmatch it for all other ones.
1833 /* try to catch dangerous transitions cases :
1834 * someone adds a bit, so this signal was a false
1835 * positive resulting from a transition. We should
1836 * invalidate the signal immediately and not call the
1837 * release function.
1838 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1840 if (((phys_prev & input->mask) == input->value) &&
1841 ((phys_curr & input->mask) > input->value)) {
1842 input->state = INPUT_ST_LOW; /* invalidate */
1843 return 1;
1845 #endif
1847 if ((phys_curr & input->mask) == input->value) {
1848 if ((input->type == INPUT_TYPE_STD) &&
1849 (input->high_timer == 0)) {
1850 input->high_timer++;
1851 if (input->u.std.press_fct)
1852 input->u.std.press_fct(input->u.std.press_data);
1853 } else if (input->type == INPUT_TYPE_KBD) {
1854 /* will turn on the light */
1855 keypressed = 1;
1857 if (input->high_timer == 0) {
1858 char *press_str = input->u.kbd.press_str;
1860 if (press_str[0]) {
1861 int s = sizeof(input->u.kbd.press_str);
1863 keypad_send_key(press_str, s);
1867 if (input->u.kbd.repeat_str[0]) {
1868 char *repeat_str = input->u.kbd.repeat_str;
1870 if (input->high_timer >= KEYPAD_REP_START) {
1871 int s = sizeof(input->u.kbd.repeat_str);
1873 input->high_timer -= KEYPAD_REP_DELAY;
1874 keypad_send_key(repeat_str, s);
1876 /* we will need to come back here soon */
1877 inputs_stable = 0;
1880 if (input->high_timer < 255)
1881 input->high_timer++;
1883 return 1;
1886 /* else signal falling down. Let's fall through. */
1887 input->state = INPUT_ST_FALLING;
1888 input->fall_timer = 0;
1890 return 0;
1893 static inline void input_state_falling(struct logical_input *input)
1895 #if 0
1896 /* FIXME !!! same comment as in input_state_high */
1897 if (((phys_prev & input->mask) == input->value) &&
1898 ((phys_curr & input->mask) > input->value)) {
1899 input->state = INPUT_ST_LOW; /* invalidate */
1900 return;
1902 #endif
1904 if ((phys_curr & input->mask) == input->value) {
1905 if (input->type == INPUT_TYPE_KBD) {
1906 /* will turn on the light */
1907 keypressed = 1;
1909 if (input->u.kbd.repeat_str[0]) {
1910 char *repeat_str = input->u.kbd.repeat_str;
1912 if (input->high_timer >= KEYPAD_REP_START) {
1913 int s = sizeof(input->u.kbd.repeat_str);
1915 input->high_timer -= KEYPAD_REP_DELAY;
1916 keypad_send_key(repeat_str, s);
1918 /* we will need to come back here soon */
1919 inputs_stable = 0;
1922 if (input->high_timer < 255)
1923 input->high_timer++;
1925 input->state = INPUT_ST_HIGH;
1926 } else if (input->fall_timer >= input->fall_time) {
1927 /* call release event */
1928 if (input->type == INPUT_TYPE_STD) {
1929 void (*release_fct)(int) = input->u.std.release_fct;
1931 if (release_fct)
1932 release_fct(input->u.std.release_data);
1933 } else if (input->type == INPUT_TYPE_KBD) {
1934 char *release_str = input->u.kbd.release_str;
1936 if (release_str[0]) {
1937 int s = sizeof(input->u.kbd.release_str);
1939 keypad_send_key(release_str, s);
1943 input->state = INPUT_ST_LOW;
1944 } else {
1945 input->fall_timer++;
1946 inputs_stable = 0;
1950 static void panel_process_inputs(void)
1952 struct list_head *item;
1953 struct logical_input *input;
1955 keypressed = 0;
1956 inputs_stable = 1;
1957 list_for_each(item, &logical_inputs) {
1958 input = list_entry(item, struct logical_input, list);
1960 switch (input->state) {
1961 case INPUT_ST_LOW:
1962 if ((phys_curr & input->mask) != input->value)
1963 break;
1964 /* if all needed ones were already set previously,
1965 * this means that this logical signal has been
1966 * activated by the releasing of another combined
1967 * signal, so we don't want to match.
1968 * eg: AB -(release B)-> A -(release A)-> 0 :
1969 * don't match A.
1971 if ((phys_prev & input->mask) == input->value)
1972 break;
1973 input->rise_timer = 0;
1974 input->state = INPUT_ST_RISING;
1975 /* no break here, fall through */
1976 case INPUT_ST_RISING:
1977 if ((phys_curr & input->mask) != input->value) {
1978 input->state = INPUT_ST_LOW;
1979 break;
1981 if (input->rise_timer < input->rise_time) {
1982 inputs_stable = 0;
1983 input->rise_timer++;
1984 break;
1986 input->high_timer = 0;
1987 input->state = INPUT_ST_HIGH;
1988 /* no break here, fall through */
1989 case INPUT_ST_HIGH:
1990 if (input_state_high(input))
1991 break;
1992 /* no break here, fall through */
1993 case INPUT_ST_FALLING:
1994 input_state_falling(input);
1999 static void panel_scan_timer(void)
2001 if (keypad.enabled && keypad_initialized) {
2002 if (spin_trylock_irq(&pprt_lock)) {
2003 phys_scan_contacts();
2005 /* no need for the parport anymore */
2006 spin_unlock_irq(&pprt_lock);
2009 if (!inputs_stable || phys_curr != phys_prev)
2010 panel_process_inputs();
2013 if (keypressed && lcd.enabled && lcd.initialized)
2014 lcd_poke();
2016 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2019 static void init_scan_timer(void)
2021 if (scan_timer.function)
2022 return; /* already started */
2024 setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2025 scan_timer.expires = jiffies + INPUT_POLL_TIME;
2026 add_timer(&scan_timer);
2029 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2030 * if <omask> or <imask> are non-null, they will be or'ed with the bits
2031 * corresponding to out and in bits respectively.
2032 * returns 1 if ok, 0 if error (in which case, nothing is written).
2034 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
2035 u8 *imask, u8 *omask)
2037 const char sigtab[] = "EeSsPpAaBb";
2038 u8 im, om;
2039 __u64 m, v;
2041 om = 0;
2042 im = 0;
2043 m = 0ULL;
2044 v = 0ULL;
2045 while (*name) {
2046 int in, out, bit, neg;
2047 const char *idx;
2049 idx = strchr(sigtab, *name);
2050 if (!idx)
2051 return 0; /* input name not found */
2053 in = idx - sigtab;
2054 neg = (in & 1); /* odd (lower) names are negated */
2055 in >>= 1;
2056 im |= BIT(in);
2058 name++;
2059 if (*name >= '0' && *name <= '7') {
2060 out = *name - '0';
2061 om |= BIT(out);
2062 } else if (*name == '-') {
2063 out = 8;
2064 } else {
2065 return 0; /* unknown bit name */
2068 bit = (out * 5) + in;
2070 m |= 1ULL << bit;
2071 if (!neg)
2072 v |= 1ULL << bit;
2073 name++;
2075 *mask = m;
2076 *value = v;
2077 if (imask)
2078 *imask |= im;
2079 if (omask)
2080 *omask |= om;
2081 return 1;
2084 /* tries to bind a key to the signal name <name>. The key will send the
2085 * strings <press>, <repeat>, <release> for these respective events.
2086 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2088 static struct logical_input *panel_bind_key(const char *name, const char *press,
2089 const char *repeat,
2090 const char *release)
2092 struct logical_input *key;
2094 key = kzalloc(sizeof(*key), GFP_KERNEL);
2095 if (!key)
2096 return NULL;
2098 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2099 &scan_mask_o)) {
2100 kfree(key);
2101 return NULL;
2104 key->type = INPUT_TYPE_KBD;
2105 key->state = INPUT_ST_LOW;
2106 key->rise_time = 1;
2107 key->fall_time = 1;
2109 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2110 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2111 strncpy(key->u.kbd.release_str, release,
2112 sizeof(key->u.kbd.release_str));
2113 list_add(&key->list, &logical_inputs);
2114 return key;
2117 #if 0
2118 /* tries to bind a callback function to the signal name <name>. The function
2119 * <press_fct> will be called with the <press_data> arg when the signal is
2120 * activated, and so on for <release_fct>/<release_data>
2121 * Returns the pointer to the new signal if ok, NULL if the signal could not
2122 * be bound.
2124 static struct logical_input *panel_bind_callback(char *name,
2125 void (*press_fct)(int),
2126 int press_data,
2127 void (*release_fct)(int),
2128 int release_data)
2130 struct logical_input *callback;
2132 callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2133 if (!callback)
2134 return NULL;
2136 memset(callback, 0, sizeof(struct logical_input));
2137 if (!input_name2mask(name, &callback->mask, &callback->value,
2138 &scan_mask_i, &scan_mask_o))
2139 return NULL;
2141 callback->type = INPUT_TYPE_STD;
2142 callback->state = INPUT_ST_LOW;
2143 callback->rise_time = 1;
2144 callback->fall_time = 1;
2145 callback->u.std.press_fct = press_fct;
2146 callback->u.std.press_data = press_data;
2147 callback->u.std.release_fct = release_fct;
2148 callback->u.std.release_data = release_data;
2149 list_add(&callback->list, &logical_inputs);
2150 return callback;
2152 #endif
2154 static void keypad_init(void)
2156 int keynum;
2158 init_waitqueue_head(&keypad_read_wait);
2159 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2161 /* Let's create all known keys */
2163 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2164 panel_bind_key(keypad_profile[keynum][0],
2165 keypad_profile[keynum][1],
2166 keypad_profile[keynum][2],
2167 keypad_profile[keynum][3]);
2170 init_scan_timer();
2171 keypad_initialized = 1;
2174 /**************************************************/
2175 /* device initialization */
2176 /**************************************************/
2178 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2179 void *unused)
2181 if (lcd.enabled && lcd.initialized) {
2182 switch (code) {
2183 case SYS_DOWN:
2184 panel_lcd_print
2185 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2186 break;
2187 case SYS_HALT:
2188 panel_lcd_print
2189 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2190 break;
2191 case SYS_POWER_OFF:
2192 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2193 break;
2194 default:
2195 break;
2198 return NOTIFY_DONE;
2201 static struct notifier_block panel_notifier = {
2202 panel_notify_sys,
2203 NULL,
2207 static void panel_attach(struct parport *port)
2209 struct pardev_cb panel_cb;
2211 if (port->number != parport)
2212 return;
2214 if (pprt) {
2215 pr_err("%s: port->number=%d parport=%d, already registered!\n",
2216 __func__, port->number, parport);
2217 return;
2220 memset(&panel_cb, 0, sizeof(panel_cb));
2221 panel_cb.private = &pprt;
2222 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
2224 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
2225 if (!pprt) {
2226 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2227 __func__, port->number, parport);
2228 return;
2231 if (parport_claim(pprt)) {
2232 pr_err("could not claim access to parport%d. Aborting.\n",
2233 parport);
2234 goto err_unreg_device;
2237 /* must init LCD first, just in case an IRQ from the keypad is
2238 * generated at keypad init
2240 if (lcd.enabled) {
2241 lcd_init();
2242 if (misc_register(&lcd_dev))
2243 goto err_unreg_device;
2246 if (keypad.enabled) {
2247 keypad_init();
2248 if (misc_register(&keypad_dev))
2249 goto err_lcd_unreg;
2251 register_reboot_notifier(&panel_notifier);
2252 return;
2254 err_lcd_unreg:
2255 if (lcd.enabled)
2256 misc_deregister(&lcd_dev);
2257 err_unreg_device:
2258 parport_unregister_device(pprt);
2259 pprt = NULL;
2262 static void panel_detach(struct parport *port)
2264 if (port->number != parport)
2265 return;
2267 if (!pprt) {
2268 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2269 __func__, port->number, parport);
2270 return;
2272 if (scan_timer.function)
2273 del_timer_sync(&scan_timer);
2275 if (keypad.enabled) {
2276 misc_deregister(&keypad_dev);
2277 keypad_initialized = 0;
2280 if (lcd.enabled) {
2281 panel_lcd_print("\x0cLCD driver unloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2282 misc_deregister(&lcd_dev);
2283 if (lcd.pins.bl != PIN_NONE) {
2284 cancel_delayed_work_sync(&lcd.bl_work);
2285 __lcd_backlight(0);
2287 lcd.initialized = false;
2290 /* TODO: free all input signals */
2291 parport_release(pprt);
2292 parport_unregister_device(pprt);
2293 pprt = NULL;
2294 unregister_reboot_notifier(&panel_notifier);
2297 static struct parport_driver panel_driver = {
2298 .name = "panel",
2299 .match_port = panel_attach,
2300 .detach = panel_detach,
2301 .devmodel = true,
2304 /* init function */
2305 static int __init panel_init_module(void)
2307 int selected_keypad_type = NOT_SET, err;
2309 /* take care of an eventual profile */
2310 switch (profile) {
2311 case PANEL_PROFILE_CUSTOM:
2312 /* custom profile */
2313 selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2314 selected_lcd_type = DEFAULT_LCD_TYPE;
2315 break;
2316 case PANEL_PROFILE_OLD:
2317 /* 8 bits, 2*16, old keypad */
2318 selected_keypad_type = KEYPAD_TYPE_OLD;
2319 selected_lcd_type = LCD_TYPE_OLD;
2321 /* TODO: This two are a little hacky, sort it out later */
2322 if (lcd_width == NOT_SET)
2323 lcd_width = 16;
2324 if (lcd_hwidth == NOT_SET)
2325 lcd_hwidth = 16;
2326 break;
2327 case PANEL_PROFILE_NEW:
2328 /* serial, 2*16, new keypad */
2329 selected_keypad_type = KEYPAD_TYPE_NEW;
2330 selected_lcd_type = LCD_TYPE_KS0074;
2331 break;
2332 case PANEL_PROFILE_HANTRONIX:
2333 /* 8 bits, 2*16 hantronix-like, no keypad */
2334 selected_keypad_type = KEYPAD_TYPE_NONE;
2335 selected_lcd_type = LCD_TYPE_HANTRONIX;
2336 break;
2337 case PANEL_PROFILE_NEXCOM:
2338 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2339 selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2340 selected_lcd_type = LCD_TYPE_NEXCOM;
2341 break;
2342 case PANEL_PROFILE_LARGE:
2343 /* 8 bits, 2*40, old keypad */
2344 selected_keypad_type = KEYPAD_TYPE_OLD;
2345 selected_lcd_type = LCD_TYPE_OLD;
2346 break;
2350 * Overwrite selection with module param values (both keypad and lcd),
2351 * where the deprecated params have lower prio.
2353 if (keypad_enabled != NOT_SET)
2354 selected_keypad_type = keypad_enabled;
2355 if (keypad_type != NOT_SET)
2356 selected_keypad_type = keypad_type;
2358 keypad.enabled = (selected_keypad_type > 0);
2360 if (lcd_enabled != NOT_SET)
2361 selected_lcd_type = lcd_enabled;
2362 if (lcd_type != NOT_SET)
2363 selected_lcd_type = lcd_type;
2365 lcd.enabled = (selected_lcd_type > 0);
2367 if (lcd.enabled) {
2369 * Init lcd struct with load-time values to preserve exact
2370 * current functionality (at least for now).
2372 lcd.height = lcd_height;
2373 lcd.width = lcd_width;
2374 lcd.bwidth = lcd_bwidth;
2375 lcd.hwidth = lcd_hwidth;
2376 lcd.charset = lcd_charset;
2377 lcd.proto = lcd_proto;
2378 lcd.pins.e = lcd_e_pin;
2379 lcd.pins.rs = lcd_rs_pin;
2380 lcd.pins.rw = lcd_rw_pin;
2381 lcd.pins.cl = lcd_cl_pin;
2382 lcd.pins.da = lcd_da_pin;
2383 lcd.pins.bl = lcd_bl_pin;
2385 /* Leave it for now, just in case */
2386 lcd.esc_seq.len = -1;
2389 switch (selected_keypad_type) {
2390 case KEYPAD_TYPE_OLD:
2391 keypad_profile = old_keypad_profile;
2392 break;
2393 case KEYPAD_TYPE_NEW:
2394 keypad_profile = new_keypad_profile;
2395 break;
2396 case KEYPAD_TYPE_NEXCOM:
2397 keypad_profile = nexcom_keypad_profile;
2398 break;
2399 default:
2400 keypad_profile = NULL;
2401 break;
2404 if (!lcd.enabled && !keypad.enabled) {
2405 /* no device enabled, let's exit */
2406 pr_err("panel driver disabled.\n");
2407 return -ENODEV;
2410 err = parport_register_driver(&panel_driver);
2411 if (err) {
2412 pr_err("could not register with parport. Aborting.\n");
2413 return err;
2416 if (pprt)
2417 pr_info("panel driver registered on parport%d (io=0x%lx).\n",
2418 parport, pprt->port->base);
2419 else
2420 pr_info("panel driver not yet registered\n");
2421 return 0;
2424 static void __exit panel_cleanup_module(void)
2426 parport_unregister_driver(&panel_driver);
2429 module_init(panel_init_module);
2430 module_exit(panel_cleanup_module);
2431 MODULE_AUTHOR("Willy Tarreau");
2432 MODULE_LICENSE("GPL");
2435 * Local variables:
2436 * c-indent-level: 4
2437 * tab-width: 8
2438 * End: