userfaultfd: hugetlbfs: gup: support VM_FAULT_RETRY
[linux-2.6/btrfs-unstable.git] / mm / page_alloc.c
blob05c0a59323bd94afaef725c01c224e92b905774a
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/page_ext.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
72 #include "internal.h"
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #endif
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
90 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
93 #endif
95 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
96 volatile unsigned long latent_entropy __latent_entropy;
97 EXPORT_SYMBOL(latent_entropy);
98 #endif
101 * Array of node states.
103 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
104 [N_POSSIBLE] = NODE_MASK_ALL,
105 [N_ONLINE] = { { [0] = 1UL } },
106 #ifndef CONFIG_NUMA
107 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
108 #ifdef CONFIG_HIGHMEM
109 [N_HIGH_MEMORY] = { { [0] = 1UL } },
110 #endif
111 #ifdef CONFIG_MOVABLE_NODE
112 [N_MEMORY] = { { [0] = 1UL } },
113 #endif
114 [N_CPU] = { { [0] = 1UL } },
115 #endif /* NUMA */
117 EXPORT_SYMBOL(node_states);
119 /* Protect totalram_pages and zone->managed_pages */
120 static DEFINE_SPINLOCK(managed_page_count_lock);
122 unsigned long totalram_pages __read_mostly;
123 unsigned long totalreserve_pages __read_mostly;
124 unsigned long totalcma_pages __read_mostly;
126 int percpu_pagelist_fraction;
127 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
130 * A cached value of the page's pageblock's migratetype, used when the page is
131 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
132 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
133 * Also the migratetype set in the page does not necessarily match the pcplist
134 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
135 * other index - this ensures that it will be put on the correct CMA freelist.
137 static inline int get_pcppage_migratetype(struct page *page)
139 return page->index;
142 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
144 page->index = migratetype;
147 #ifdef CONFIG_PM_SLEEP
149 * The following functions are used by the suspend/hibernate code to temporarily
150 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
151 * while devices are suspended. To avoid races with the suspend/hibernate code,
152 * they should always be called with pm_mutex held (gfp_allowed_mask also should
153 * only be modified with pm_mutex held, unless the suspend/hibernate code is
154 * guaranteed not to run in parallel with that modification).
157 static gfp_t saved_gfp_mask;
159 void pm_restore_gfp_mask(void)
161 WARN_ON(!mutex_is_locked(&pm_mutex));
162 if (saved_gfp_mask) {
163 gfp_allowed_mask = saved_gfp_mask;
164 saved_gfp_mask = 0;
168 void pm_restrict_gfp_mask(void)
170 WARN_ON(!mutex_is_locked(&pm_mutex));
171 WARN_ON(saved_gfp_mask);
172 saved_gfp_mask = gfp_allowed_mask;
173 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
176 bool pm_suspended_storage(void)
178 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
179 return false;
180 return true;
182 #endif /* CONFIG_PM_SLEEP */
184 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
185 unsigned int pageblock_order __read_mostly;
186 #endif
188 static void __free_pages_ok(struct page *page, unsigned int order);
191 * results with 256, 32 in the lowmem_reserve sysctl:
192 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
193 * 1G machine -> (16M dma, 784M normal, 224M high)
194 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
195 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
196 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
198 * TBD: should special case ZONE_DMA32 machines here - in those we normally
199 * don't need any ZONE_NORMAL reservation
201 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
202 #ifdef CONFIG_ZONE_DMA
203 256,
204 #endif
205 #ifdef CONFIG_ZONE_DMA32
206 256,
207 #endif
208 #ifdef CONFIG_HIGHMEM
210 #endif
214 EXPORT_SYMBOL(totalram_pages);
216 static char * const zone_names[MAX_NR_ZONES] = {
217 #ifdef CONFIG_ZONE_DMA
218 "DMA",
219 #endif
220 #ifdef CONFIG_ZONE_DMA32
221 "DMA32",
222 #endif
223 "Normal",
224 #ifdef CONFIG_HIGHMEM
225 "HighMem",
226 #endif
227 "Movable",
228 #ifdef CONFIG_ZONE_DEVICE
229 "Device",
230 #endif
233 char * const migratetype_names[MIGRATE_TYPES] = {
234 "Unmovable",
235 "Movable",
236 "Reclaimable",
237 "HighAtomic",
238 #ifdef CONFIG_CMA
239 "CMA",
240 #endif
241 #ifdef CONFIG_MEMORY_ISOLATION
242 "Isolate",
243 #endif
246 compound_page_dtor * const compound_page_dtors[] = {
247 NULL,
248 free_compound_page,
249 #ifdef CONFIG_HUGETLB_PAGE
250 free_huge_page,
251 #endif
252 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
253 free_transhuge_page,
254 #endif
257 int min_free_kbytes = 1024;
258 int user_min_free_kbytes = -1;
259 int watermark_scale_factor = 10;
261 static unsigned long __meminitdata nr_kernel_pages;
262 static unsigned long __meminitdata nr_all_pages;
263 static unsigned long __meminitdata dma_reserve;
265 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
266 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
268 static unsigned long __initdata required_kernelcore;
269 static unsigned long __initdata required_movablecore;
270 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
271 static bool mirrored_kernelcore;
273 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
274 int movable_zone;
275 EXPORT_SYMBOL(movable_zone);
276 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
278 #if MAX_NUMNODES > 1
279 int nr_node_ids __read_mostly = MAX_NUMNODES;
280 int nr_online_nodes __read_mostly = 1;
281 EXPORT_SYMBOL(nr_node_ids);
282 EXPORT_SYMBOL(nr_online_nodes);
283 #endif
285 int page_group_by_mobility_disabled __read_mostly;
287 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
288 static inline void reset_deferred_meminit(pg_data_t *pgdat)
290 pgdat->first_deferred_pfn = ULONG_MAX;
293 /* Returns true if the struct page for the pfn is uninitialised */
294 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
296 int nid = early_pfn_to_nid(pfn);
298 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
299 return true;
301 return false;
305 * Returns false when the remaining initialisation should be deferred until
306 * later in the boot cycle when it can be parallelised.
308 static inline bool update_defer_init(pg_data_t *pgdat,
309 unsigned long pfn, unsigned long zone_end,
310 unsigned long *nr_initialised)
312 unsigned long max_initialise;
314 /* Always populate low zones for address-contrained allocations */
315 if (zone_end < pgdat_end_pfn(pgdat))
316 return true;
318 * Initialise at least 2G of a node but also take into account that
319 * two large system hashes that can take up 1GB for 0.25TB/node.
321 max_initialise = max(2UL << (30 - PAGE_SHIFT),
322 (pgdat->node_spanned_pages >> 8));
324 (*nr_initialised)++;
325 if ((*nr_initialised > max_initialise) &&
326 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
327 pgdat->first_deferred_pfn = pfn;
328 return false;
331 return true;
333 #else
334 static inline void reset_deferred_meminit(pg_data_t *pgdat)
338 static inline bool early_page_uninitialised(unsigned long pfn)
340 return false;
343 static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
347 return true;
349 #endif
351 /* Return a pointer to the bitmap storing bits affecting a block of pages */
352 static inline unsigned long *get_pageblock_bitmap(struct page *page,
353 unsigned long pfn)
355 #ifdef CONFIG_SPARSEMEM
356 return __pfn_to_section(pfn)->pageblock_flags;
357 #else
358 return page_zone(page)->pageblock_flags;
359 #endif /* CONFIG_SPARSEMEM */
362 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
364 #ifdef CONFIG_SPARSEMEM
365 pfn &= (PAGES_PER_SECTION-1);
366 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
367 #else
368 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
369 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
370 #endif /* CONFIG_SPARSEMEM */
374 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
375 * @page: The page within the block of interest
376 * @pfn: The target page frame number
377 * @end_bitidx: The last bit of interest to retrieve
378 * @mask: mask of bits that the caller is interested in
380 * Return: pageblock_bits flags
382 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
383 unsigned long pfn,
384 unsigned long end_bitidx,
385 unsigned long mask)
387 unsigned long *bitmap;
388 unsigned long bitidx, word_bitidx;
389 unsigned long word;
391 bitmap = get_pageblock_bitmap(page, pfn);
392 bitidx = pfn_to_bitidx(page, pfn);
393 word_bitidx = bitidx / BITS_PER_LONG;
394 bitidx &= (BITS_PER_LONG-1);
396 word = bitmap[word_bitidx];
397 bitidx += end_bitidx;
398 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
401 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
402 unsigned long end_bitidx,
403 unsigned long mask)
405 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
408 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
410 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
414 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
415 * @page: The page within the block of interest
416 * @flags: The flags to set
417 * @pfn: The target page frame number
418 * @end_bitidx: The last bit of interest
419 * @mask: mask of bits that the caller is interested in
421 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
422 unsigned long pfn,
423 unsigned long end_bitidx,
424 unsigned long mask)
426 unsigned long *bitmap;
427 unsigned long bitidx, word_bitidx;
428 unsigned long old_word, word;
430 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
432 bitmap = get_pageblock_bitmap(page, pfn);
433 bitidx = pfn_to_bitidx(page, pfn);
434 word_bitidx = bitidx / BITS_PER_LONG;
435 bitidx &= (BITS_PER_LONG-1);
437 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
439 bitidx += end_bitidx;
440 mask <<= (BITS_PER_LONG - bitidx - 1);
441 flags <<= (BITS_PER_LONG - bitidx - 1);
443 word = READ_ONCE(bitmap[word_bitidx]);
444 for (;;) {
445 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
446 if (word == old_word)
447 break;
448 word = old_word;
452 void set_pageblock_migratetype(struct page *page, int migratetype)
454 if (unlikely(page_group_by_mobility_disabled &&
455 migratetype < MIGRATE_PCPTYPES))
456 migratetype = MIGRATE_UNMOVABLE;
458 set_pageblock_flags_group(page, (unsigned long)migratetype,
459 PB_migrate, PB_migrate_end);
462 #ifdef CONFIG_DEBUG_VM
463 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
465 int ret = 0;
466 unsigned seq;
467 unsigned long pfn = page_to_pfn(page);
468 unsigned long sp, start_pfn;
470 do {
471 seq = zone_span_seqbegin(zone);
472 start_pfn = zone->zone_start_pfn;
473 sp = zone->spanned_pages;
474 if (!zone_spans_pfn(zone, pfn))
475 ret = 1;
476 } while (zone_span_seqretry(zone, seq));
478 if (ret)
479 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
480 pfn, zone_to_nid(zone), zone->name,
481 start_pfn, start_pfn + sp);
483 return ret;
486 static int page_is_consistent(struct zone *zone, struct page *page)
488 if (!pfn_valid_within(page_to_pfn(page)))
489 return 0;
490 if (zone != page_zone(page))
491 return 0;
493 return 1;
496 * Temporary debugging check for pages not lying within a given zone.
498 static int bad_range(struct zone *zone, struct page *page)
500 if (page_outside_zone_boundaries(zone, page))
501 return 1;
502 if (!page_is_consistent(zone, page))
503 return 1;
505 return 0;
507 #else
508 static inline int bad_range(struct zone *zone, struct page *page)
510 return 0;
512 #endif
514 static void bad_page(struct page *page, const char *reason,
515 unsigned long bad_flags)
517 static unsigned long resume;
518 static unsigned long nr_shown;
519 static unsigned long nr_unshown;
522 * Allow a burst of 60 reports, then keep quiet for that minute;
523 * or allow a steady drip of one report per second.
525 if (nr_shown == 60) {
526 if (time_before(jiffies, resume)) {
527 nr_unshown++;
528 goto out;
530 if (nr_unshown) {
531 pr_alert(
532 "BUG: Bad page state: %lu messages suppressed\n",
533 nr_unshown);
534 nr_unshown = 0;
536 nr_shown = 0;
538 if (nr_shown++ == 0)
539 resume = jiffies + 60 * HZ;
541 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
542 current->comm, page_to_pfn(page));
543 __dump_page(page, reason);
544 bad_flags &= page->flags;
545 if (bad_flags)
546 pr_alert("bad because of flags: %#lx(%pGp)\n",
547 bad_flags, &bad_flags);
548 dump_page_owner(page);
550 print_modules();
551 dump_stack();
552 out:
553 /* Leave bad fields for debug, except PageBuddy could make trouble */
554 page_mapcount_reset(page); /* remove PageBuddy */
555 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
559 * Higher-order pages are called "compound pages". They are structured thusly:
561 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
563 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
564 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
566 * The first tail page's ->compound_dtor holds the offset in array of compound
567 * page destructors. See compound_page_dtors.
569 * The first tail page's ->compound_order holds the order of allocation.
570 * This usage means that zero-order pages may not be compound.
573 void free_compound_page(struct page *page)
575 __free_pages_ok(page, compound_order(page));
578 void prep_compound_page(struct page *page, unsigned int order)
580 int i;
581 int nr_pages = 1 << order;
583 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
584 set_compound_order(page, order);
585 __SetPageHead(page);
586 for (i = 1; i < nr_pages; i++) {
587 struct page *p = page + i;
588 set_page_count(p, 0);
589 p->mapping = TAIL_MAPPING;
590 set_compound_head(p, page);
592 atomic_set(compound_mapcount_ptr(page), -1);
595 #ifdef CONFIG_DEBUG_PAGEALLOC
596 unsigned int _debug_guardpage_minorder;
597 bool _debug_pagealloc_enabled __read_mostly
598 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
599 EXPORT_SYMBOL(_debug_pagealloc_enabled);
600 bool _debug_guardpage_enabled __read_mostly;
602 static int __init early_debug_pagealloc(char *buf)
604 if (!buf)
605 return -EINVAL;
606 return kstrtobool(buf, &_debug_pagealloc_enabled);
608 early_param("debug_pagealloc", early_debug_pagealloc);
610 static bool need_debug_guardpage(void)
612 /* If we don't use debug_pagealloc, we don't need guard page */
613 if (!debug_pagealloc_enabled())
614 return false;
616 if (!debug_guardpage_minorder())
617 return false;
619 return true;
622 static void init_debug_guardpage(void)
624 if (!debug_pagealloc_enabled())
625 return;
627 if (!debug_guardpage_minorder())
628 return;
630 _debug_guardpage_enabled = true;
633 struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
638 static int __init debug_guardpage_minorder_setup(char *buf)
640 unsigned long res;
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
643 pr_err("Bad debug_guardpage_minorder value\n");
644 return 0;
646 _debug_guardpage_minorder = res;
647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
648 return 0;
650 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
652 static inline bool set_page_guard(struct zone *zone, struct page *page,
653 unsigned int order, int migratetype)
655 struct page_ext *page_ext;
657 if (!debug_guardpage_enabled())
658 return false;
660 if (order >= debug_guardpage_minorder())
661 return false;
663 page_ext = lookup_page_ext(page);
664 if (unlikely(!page_ext))
665 return false;
667 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
669 INIT_LIST_HEAD(&page->lru);
670 set_page_private(page, order);
671 /* Guard pages are not available for any usage */
672 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
674 return true;
677 static inline void clear_page_guard(struct zone *zone, struct page *page,
678 unsigned int order, int migratetype)
680 struct page_ext *page_ext;
682 if (!debug_guardpage_enabled())
683 return;
685 page_ext = lookup_page_ext(page);
686 if (unlikely(!page_ext))
687 return;
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
695 #else
696 struct page_ext_operations debug_guardpage_ops;
697 static inline bool set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) { return false; }
699 static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
701 #endif
703 static inline void set_page_order(struct page *page, unsigned int order)
705 set_page_private(page, order);
706 __SetPageBuddy(page);
709 static inline void rmv_page_order(struct page *page)
711 __ClearPageBuddy(page);
712 set_page_private(page, 0);
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
718 * (a) the buddy is not in a hole (check before calling!) &&
719 * (b) the buddy is in the buddy system &&
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
728 * For recording page's order, we use page_private(page).
730 static inline int page_is_buddy(struct page *page, struct page *buddy,
731 unsigned int order)
733 if (page_is_guard(buddy) && page_order(buddy) == order) {
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
739 return 1;
742 if (PageBuddy(buddy) && page_order(buddy) == order) {
744 * zone check is done late to avoid uselessly
745 * calculating zone/node ids for pages that could
746 * never merge.
748 if (page_zone_id(page) != page_zone_id(buddy))
749 return 0;
751 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
753 return 1;
755 return 0;
759 * Freeing function for a buddy system allocator.
761 * The concept of a buddy system is to maintain direct-mapped table
762 * (containing bit values) for memory blocks of various "orders".
763 * The bottom level table contains the map for the smallest allocatable
764 * units of memory (here, pages), and each level above it describes
765 * pairs of units from the levels below, hence, "buddies".
766 * At a high level, all that happens here is marking the table entry
767 * at the bottom level available, and propagating the changes upward
768 * as necessary, plus some accounting needed to play nicely with other
769 * parts of the VM system.
770 * At each level, we keep a list of pages, which are heads of continuous
771 * free pages of length of (1 << order) and marked with _mapcount
772 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
773 * field.
774 * So when we are allocating or freeing one, we can derive the state of the
775 * other. That is, if we allocate a small block, and both were
776 * free, the remainder of the region must be split into blocks.
777 * If a block is freed, and its buddy is also free, then this
778 * triggers coalescing into a block of larger size.
780 * -- nyc
783 static inline void __free_one_page(struct page *page,
784 unsigned long pfn,
785 struct zone *zone, unsigned int order,
786 int migratetype)
788 unsigned long combined_pfn;
789 unsigned long uninitialized_var(buddy_pfn);
790 struct page *buddy;
791 unsigned int max_order;
793 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
795 VM_BUG_ON(!zone_is_initialized(zone));
796 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
798 VM_BUG_ON(migratetype == -1);
799 if (likely(!is_migrate_isolate(migratetype)))
800 __mod_zone_freepage_state(zone, 1 << order, migratetype);
802 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
803 VM_BUG_ON_PAGE(bad_range(zone, page), page);
805 continue_merging:
806 while (order < max_order - 1) {
807 buddy_pfn = __find_buddy_pfn(pfn, order);
808 buddy = page + (buddy_pfn - pfn);
810 if (!pfn_valid_within(buddy_pfn))
811 goto done_merging;
812 if (!page_is_buddy(page, buddy, order))
813 goto done_merging;
815 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
816 * merge with it and move up one order.
818 if (page_is_guard(buddy)) {
819 clear_page_guard(zone, buddy, order, migratetype);
820 } else {
821 list_del(&buddy->lru);
822 zone->free_area[order].nr_free--;
823 rmv_page_order(buddy);
825 combined_pfn = buddy_pfn & pfn;
826 page = page + (combined_pfn - pfn);
827 pfn = combined_pfn;
828 order++;
830 if (max_order < MAX_ORDER) {
831 /* If we are here, it means order is >= pageblock_order.
832 * We want to prevent merge between freepages on isolate
833 * pageblock and normal pageblock. Without this, pageblock
834 * isolation could cause incorrect freepage or CMA accounting.
836 * We don't want to hit this code for the more frequent
837 * low-order merging.
839 if (unlikely(has_isolate_pageblock(zone))) {
840 int buddy_mt;
842 buddy_pfn = __find_buddy_pfn(pfn, order);
843 buddy = page + (buddy_pfn - pfn);
844 buddy_mt = get_pageblock_migratetype(buddy);
846 if (migratetype != buddy_mt
847 && (is_migrate_isolate(migratetype) ||
848 is_migrate_isolate(buddy_mt)))
849 goto done_merging;
851 max_order++;
852 goto continue_merging;
855 done_merging:
856 set_page_order(page, order);
859 * If this is not the largest possible page, check if the buddy
860 * of the next-highest order is free. If it is, it's possible
861 * that pages are being freed that will coalesce soon. In case,
862 * that is happening, add the free page to the tail of the list
863 * so it's less likely to be used soon and more likely to be merged
864 * as a higher order page
866 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
867 struct page *higher_page, *higher_buddy;
868 combined_pfn = buddy_pfn & pfn;
869 higher_page = page + (combined_pfn - pfn);
870 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
871 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
872 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
873 list_add_tail(&page->lru,
874 &zone->free_area[order].free_list[migratetype]);
875 goto out;
879 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
880 out:
881 zone->free_area[order].nr_free++;
885 * A bad page could be due to a number of fields. Instead of multiple branches,
886 * try and check multiple fields with one check. The caller must do a detailed
887 * check if necessary.
889 static inline bool page_expected_state(struct page *page,
890 unsigned long check_flags)
892 if (unlikely(atomic_read(&page->_mapcount) != -1))
893 return false;
895 if (unlikely((unsigned long)page->mapping |
896 page_ref_count(page) |
897 #ifdef CONFIG_MEMCG
898 (unsigned long)page->mem_cgroup |
899 #endif
900 (page->flags & check_flags)))
901 return false;
903 return true;
906 static void free_pages_check_bad(struct page *page)
908 const char *bad_reason;
909 unsigned long bad_flags;
911 bad_reason = NULL;
912 bad_flags = 0;
914 if (unlikely(atomic_read(&page->_mapcount) != -1))
915 bad_reason = "nonzero mapcount";
916 if (unlikely(page->mapping != NULL))
917 bad_reason = "non-NULL mapping";
918 if (unlikely(page_ref_count(page) != 0))
919 bad_reason = "nonzero _refcount";
920 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
921 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
922 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
924 #ifdef CONFIG_MEMCG
925 if (unlikely(page->mem_cgroup))
926 bad_reason = "page still charged to cgroup";
927 #endif
928 bad_page(page, bad_reason, bad_flags);
931 static inline int free_pages_check(struct page *page)
933 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
934 return 0;
936 /* Something has gone sideways, find it */
937 free_pages_check_bad(page);
938 return 1;
941 static int free_tail_pages_check(struct page *head_page, struct page *page)
943 int ret = 1;
946 * We rely page->lru.next never has bit 0 set, unless the page
947 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
949 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
951 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
952 ret = 0;
953 goto out;
955 switch (page - head_page) {
956 case 1:
957 /* the first tail page: ->mapping is compound_mapcount() */
958 if (unlikely(compound_mapcount(page))) {
959 bad_page(page, "nonzero compound_mapcount", 0);
960 goto out;
962 break;
963 case 2:
965 * the second tail page: ->mapping is
966 * page_deferred_list().next -- ignore value.
968 break;
969 default:
970 if (page->mapping != TAIL_MAPPING) {
971 bad_page(page, "corrupted mapping in tail page", 0);
972 goto out;
974 break;
976 if (unlikely(!PageTail(page))) {
977 bad_page(page, "PageTail not set", 0);
978 goto out;
980 if (unlikely(compound_head(page) != head_page)) {
981 bad_page(page, "compound_head not consistent", 0);
982 goto out;
984 ret = 0;
985 out:
986 page->mapping = NULL;
987 clear_compound_head(page);
988 return ret;
991 static __always_inline bool free_pages_prepare(struct page *page,
992 unsigned int order, bool check_free)
994 int bad = 0;
996 VM_BUG_ON_PAGE(PageTail(page), page);
998 trace_mm_page_free(page, order);
999 kmemcheck_free_shadow(page, order);
1002 * Check tail pages before head page information is cleared to
1003 * avoid checking PageCompound for order-0 pages.
1005 if (unlikely(order)) {
1006 bool compound = PageCompound(page);
1007 int i;
1009 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1011 if (compound)
1012 ClearPageDoubleMap(page);
1013 for (i = 1; i < (1 << order); i++) {
1014 if (compound)
1015 bad += free_tail_pages_check(page, page + i);
1016 if (unlikely(free_pages_check(page + i))) {
1017 bad++;
1018 continue;
1020 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 if (PageMappingFlags(page))
1024 page->mapping = NULL;
1025 if (memcg_kmem_enabled() && PageKmemcg(page))
1026 memcg_kmem_uncharge(page, order);
1027 if (check_free)
1028 bad += free_pages_check(page);
1029 if (bad)
1030 return false;
1032 page_cpupid_reset_last(page);
1033 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1034 reset_page_owner(page, order);
1036 if (!PageHighMem(page)) {
1037 debug_check_no_locks_freed(page_address(page),
1038 PAGE_SIZE << order);
1039 debug_check_no_obj_freed(page_address(page),
1040 PAGE_SIZE << order);
1042 arch_free_page(page, order);
1043 kernel_poison_pages(page, 1 << order, 0);
1044 kernel_map_pages(page, 1 << order, 0);
1045 kasan_free_pages(page, order);
1047 return true;
1050 #ifdef CONFIG_DEBUG_VM
1051 static inline bool free_pcp_prepare(struct page *page)
1053 return free_pages_prepare(page, 0, true);
1056 static inline bool bulkfree_pcp_prepare(struct page *page)
1058 return false;
1060 #else
1061 static bool free_pcp_prepare(struct page *page)
1063 return free_pages_prepare(page, 0, false);
1066 static bool bulkfree_pcp_prepare(struct page *page)
1068 return free_pages_check(page);
1070 #endif /* CONFIG_DEBUG_VM */
1073 * Frees a number of pages from the PCP lists
1074 * Assumes all pages on list are in same zone, and of same order.
1075 * count is the number of pages to free.
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1083 static void free_pcppages_bulk(struct zone *zone, int count,
1084 struct per_cpu_pages *pcp)
1086 int migratetype = 0;
1087 int batch_free = 0;
1088 unsigned long nr_scanned;
1089 bool isolated_pageblocks;
1091 spin_lock(&zone->lock);
1092 isolated_pageblocks = has_isolate_pageblock(zone);
1093 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1094 if (nr_scanned)
1095 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1097 while (count) {
1098 struct page *page;
1099 struct list_head *list;
1102 * Remove pages from lists in a round-robin fashion. A
1103 * batch_free count is maintained that is incremented when an
1104 * empty list is encountered. This is so more pages are freed
1105 * off fuller lists instead of spinning excessively around empty
1106 * lists
1108 do {
1109 batch_free++;
1110 if (++migratetype == MIGRATE_PCPTYPES)
1111 migratetype = 0;
1112 list = &pcp->lists[migratetype];
1113 } while (list_empty(list));
1115 /* This is the only non-empty list. Free them all. */
1116 if (batch_free == MIGRATE_PCPTYPES)
1117 batch_free = count;
1119 do {
1120 int mt; /* migratetype of the to-be-freed page */
1122 page = list_last_entry(list, struct page, lru);
1123 /* must delete as __free_one_page list manipulates */
1124 list_del(&page->lru);
1126 mt = get_pcppage_migratetype(page);
1127 /* MIGRATE_ISOLATE page should not go to pcplists */
1128 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1129 /* Pageblock could have been isolated meanwhile */
1130 if (unlikely(isolated_pageblocks))
1131 mt = get_pageblock_migratetype(page);
1133 if (bulkfree_pcp_prepare(page))
1134 continue;
1136 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1137 trace_mm_page_pcpu_drain(page, 0, mt);
1138 } while (--count && --batch_free && !list_empty(list));
1140 spin_unlock(&zone->lock);
1143 static void free_one_page(struct zone *zone,
1144 struct page *page, unsigned long pfn,
1145 unsigned int order,
1146 int migratetype)
1148 unsigned long nr_scanned;
1149 spin_lock(&zone->lock);
1150 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1151 if (nr_scanned)
1152 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1154 if (unlikely(has_isolate_pageblock(zone) ||
1155 is_migrate_isolate(migratetype))) {
1156 migratetype = get_pfnblock_migratetype(page, pfn);
1158 __free_one_page(page, pfn, zone, order, migratetype);
1159 spin_unlock(&zone->lock);
1162 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1163 unsigned long zone, int nid)
1165 set_page_links(page, zone, nid, pfn);
1166 init_page_count(page);
1167 page_mapcount_reset(page);
1168 page_cpupid_reset_last(page);
1170 INIT_LIST_HEAD(&page->lru);
1171 #ifdef WANT_PAGE_VIRTUAL
1172 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1173 if (!is_highmem_idx(zone))
1174 set_page_address(page, __va(pfn << PAGE_SHIFT));
1175 #endif
1178 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1179 int nid)
1181 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1185 static void init_reserved_page(unsigned long pfn)
1187 pg_data_t *pgdat;
1188 int nid, zid;
1190 if (!early_page_uninitialised(pfn))
1191 return;
1193 nid = early_pfn_to_nid(pfn);
1194 pgdat = NODE_DATA(nid);
1196 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1197 struct zone *zone = &pgdat->node_zones[zid];
1199 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1200 break;
1202 __init_single_pfn(pfn, zid, nid);
1204 #else
1205 static inline void init_reserved_page(unsigned long pfn)
1208 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211 * Initialised pages do not have PageReserved set. This function is
1212 * called for each range allocated by the bootmem allocator and
1213 * marks the pages PageReserved. The remaining valid pages are later
1214 * sent to the buddy page allocator.
1216 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1218 unsigned long start_pfn = PFN_DOWN(start);
1219 unsigned long end_pfn = PFN_UP(end);
1221 for (; start_pfn < end_pfn; start_pfn++) {
1222 if (pfn_valid(start_pfn)) {
1223 struct page *page = pfn_to_page(start_pfn);
1225 init_reserved_page(start_pfn);
1227 /* Avoid false-positive PageTail() */
1228 INIT_LIST_HEAD(&page->lru);
1230 SetPageReserved(page);
1235 static void __free_pages_ok(struct page *page, unsigned int order)
1237 unsigned long flags;
1238 int migratetype;
1239 unsigned long pfn = page_to_pfn(page);
1241 if (!free_pages_prepare(page, order, true))
1242 return;
1244 migratetype = get_pfnblock_migratetype(page, pfn);
1245 local_irq_save(flags);
1246 __count_vm_events(PGFREE, 1 << order);
1247 free_one_page(page_zone(page), page, pfn, order, migratetype);
1248 local_irq_restore(flags);
1251 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1253 unsigned int nr_pages = 1 << order;
1254 struct page *p = page;
1255 unsigned int loop;
1257 prefetchw(p);
1258 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1259 prefetchw(p + 1);
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
1263 __ClearPageReserved(p);
1264 set_page_count(p, 0);
1266 page_zone(page)->managed_pages += nr_pages;
1267 set_page_refcounted(page);
1268 __free_pages(page, order);
1271 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1272 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1274 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1276 int __meminit early_pfn_to_nid(unsigned long pfn)
1278 static DEFINE_SPINLOCK(early_pfn_lock);
1279 int nid;
1281 spin_lock(&early_pfn_lock);
1282 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1283 if (nid < 0)
1284 nid = first_online_node;
1285 spin_unlock(&early_pfn_lock);
1287 return nid;
1289 #endif
1291 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1292 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1293 struct mminit_pfnnid_cache *state)
1295 int nid;
1297 nid = __early_pfn_to_nid(pfn, state);
1298 if (nid >= 0 && nid != node)
1299 return false;
1300 return true;
1303 /* Only safe to use early in boot when initialisation is single-threaded */
1304 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1306 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309 #else
1311 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313 return true;
1315 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1316 struct mminit_pfnnid_cache *state)
1318 return true;
1320 #endif
1323 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1324 unsigned int order)
1326 if (early_page_uninitialised(pfn))
1327 return;
1328 return __free_pages_boot_core(page, order);
1332 * Check that the whole (or subset of) a pageblock given by the interval of
1333 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1334 * with the migration of free compaction scanner. The scanners then need to
1335 * use only pfn_valid_within() check for arches that allow holes within
1336 * pageblocks.
1338 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1340 * It's possible on some configurations to have a setup like node0 node1 node0
1341 * i.e. it's possible that all pages within a zones range of pages do not
1342 * belong to a single zone. We assume that a border between node0 and node1
1343 * can occur within a single pageblock, but not a node0 node1 node0
1344 * interleaving within a single pageblock. It is therefore sufficient to check
1345 * the first and last page of a pageblock and avoid checking each individual
1346 * page in a pageblock.
1348 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1349 unsigned long end_pfn, struct zone *zone)
1351 struct page *start_page;
1352 struct page *end_page;
1354 /* end_pfn is one past the range we are checking */
1355 end_pfn--;
1357 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1358 return NULL;
1360 start_page = pfn_to_page(start_pfn);
1362 if (page_zone(start_page) != zone)
1363 return NULL;
1365 end_page = pfn_to_page(end_pfn);
1367 /* This gives a shorter code than deriving page_zone(end_page) */
1368 if (page_zone_id(start_page) != page_zone_id(end_page))
1369 return NULL;
1371 return start_page;
1374 void set_zone_contiguous(struct zone *zone)
1376 unsigned long block_start_pfn = zone->zone_start_pfn;
1377 unsigned long block_end_pfn;
1379 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1380 for (; block_start_pfn < zone_end_pfn(zone);
1381 block_start_pfn = block_end_pfn,
1382 block_end_pfn += pageblock_nr_pages) {
1384 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1386 if (!__pageblock_pfn_to_page(block_start_pfn,
1387 block_end_pfn, zone))
1388 return;
1391 /* We confirm that there is no hole */
1392 zone->contiguous = true;
1395 void clear_zone_contiguous(struct zone *zone)
1397 zone->contiguous = false;
1400 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1401 static void __init deferred_free_range(struct page *page,
1402 unsigned long pfn, int nr_pages)
1404 int i;
1406 if (!page)
1407 return;
1409 /* Free a large naturally-aligned chunk if possible */
1410 if (nr_pages == pageblock_nr_pages &&
1411 (pfn & (pageblock_nr_pages - 1)) == 0) {
1412 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1413 __free_pages_boot_core(page, pageblock_order);
1414 return;
1417 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1418 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1419 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1420 __free_pages_boot_core(page, 0);
1424 /* Completion tracking for deferred_init_memmap() threads */
1425 static atomic_t pgdat_init_n_undone __initdata;
1426 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1428 static inline void __init pgdat_init_report_one_done(void)
1430 if (atomic_dec_and_test(&pgdat_init_n_undone))
1431 complete(&pgdat_init_all_done_comp);
1434 /* Initialise remaining memory on a node */
1435 static int __init deferred_init_memmap(void *data)
1437 pg_data_t *pgdat = data;
1438 int nid = pgdat->node_id;
1439 struct mminit_pfnnid_cache nid_init_state = { };
1440 unsigned long start = jiffies;
1441 unsigned long nr_pages = 0;
1442 unsigned long walk_start, walk_end;
1443 int i, zid;
1444 struct zone *zone;
1445 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1446 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1448 if (first_init_pfn == ULONG_MAX) {
1449 pgdat_init_report_one_done();
1450 return 0;
1453 /* Bind memory initialisation thread to a local node if possible */
1454 if (!cpumask_empty(cpumask))
1455 set_cpus_allowed_ptr(current, cpumask);
1457 /* Sanity check boundaries */
1458 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1459 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1460 pgdat->first_deferred_pfn = ULONG_MAX;
1462 /* Only the highest zone is deferred so find it */
1463 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1464 zone = pgdat->node_zones + zid;
1465 if (first_init_pfn < zone_end_pfn(zone))
1466 break;
1469 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1470 unsigned long pfn, end_pfn;
1471 struct page *page = NULL;
1472 struct page *free_base_page = NULL;
1473 unsigned long free_base_pfn = 0;
1474 int nr_to_free = 0;
1476 end_pfn = min(walk_end, zone_end_pfn(zone));
1477 pfn = first_init_pfn;
1478 if (pfn < walk_start)
1479 pfn = walk_start;
1480 if (pfn < zone->zone_start_pfn)
1481 pfn = zone->zone_start_pfn;
1483 for (; pfn < end_pfn; pfn++) {
1484 if (!pfn_valid_within(pfn))
1485 goto free_range;
1488 * Ensure pfn_valid is checked every
1489 * pageblock_nr_pages for memory holes
1491 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1492 if (!pfn_valid(pfn)) {
1493 page = NULL;
1494 goto free_range;
1498 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1499 page = NULL;
1500 goto free_range;
1503 /* Minimise pfn page lookups and scheduler checks */
1504 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1505 page++;
1506 } else {
1507 nr_pages += nr_to_free;
1508 deferred_free_range(free_base_page,
1509 free_base_pfn, nr_to_free);
1510 free_base_page = NULL;
1511 free_base_pfn = nr_to_free = 0;
1513 page = pfn_to_page(pfn);
1514 cond_resched();
1517 if (page->flags) {
1518 VM_BUG_ON(page_zone(page) != zone);
1519 goto free_range;
1522 __init_single_page(page, pfn, zid, nid);
1523 if (!free_base_page) {
1524 free_base_page = page;
1525 free_base_pfn = pfn;
1526 nr_to_free = 0;
1528 nr_to_free++;
1530 /* Where possible, batch up pages for a single free */
1531 continue;
1532 free_range:
1533 /* Free the current block of pages to allocator */
1534 nr_pages += nr_to_free;
1535 deferred_free_range(free_base_page, free_base_pfn,
1536 nr_to_free);
1537 free_base_page = NULL;
1538 free_base_pfn = nr_to_free = 0;
1540 /* Free the last block of pages to allocator */
1541 nr_pages += nr_to_free;
1542 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1544 first_init_pfn = max(end_pfn, first_init_pfn);
1547 /* Sanity check that the next zone really is unpopulated */
1548 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1550 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1551 jiffies_to_msecs(jiffies - start));
1553 pgdat_init_report_one_done();
1554 return 0;
1556 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1558 void __init page_alloc_init_late(void)
1560 struct zone *zone;
1562 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1563 int nid;
1565 /* There will be num_node_state(N_MEMORY) threads */
1566 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1567 for_each_node_state(nid, N_MEMORY) {
1568 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 /* Block until all are initialised */
1572 wait_for_completion(&pgdat_init_all_done_comp);
1574 /* Reinit limits that are based on free pages after the kernel is up */
1575 files_maxfiles_init();
1576 #endif
1578 for_each_populated_zone(zone)
1579 set_zone_contiguous(zone);
1582 #ifdef CONFIG_CMA
1583 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1584 void __init init_cma_reserved_pageblock(struct page *page)
1586 unsigned i = pageblock_nr_pages;
1587 struct page *p = page;
1589 do {
1590 __ClearPageReserved(p);
1591 set_page_count(p, 0);
1592 } while (++p, --i);
1594 set_pageblock_migratetype(page, MIGRATE_CMA);
1596 if (pageblock_order >= MAX_ORDER) {
1597 i = pageblock_nr_pages;
1598 p = page;
1599 do {
1600 set_page_refcounted(p);
1601 __free_pages(p, MAX_ORDER - 1);
1602 p += MAX_ORDER_NR_PAGES;
1603 } while (i -= MAX_ORDER_NR_PAGES);
1604 } else {
1605 set_page_refcounted(page);
1606 __free_pages(page, pageblock_order);
1609 adjust_managed_page_count(page, pageblock_nr_pages);
1611 #endif
1614 * The order of subdivision here is critical for the IO subsystem.
1615 * Please do not alter this order without good reasons and regression
1616 * testing. Specifically, as large blocks of memory are subdivided,
1617 * the order in which smaller blocks are delivered depends on the order
1618 * they're subdivided in this function. This is the primary factor
1619 * influencing the order in which pages are delivered to the IO
1620 * subsystem according to empirical testing, and this is also justified
1621 * by considering the behavior of a buddy system containing a single
1622 * large block of memory acted on by a series of small allocations.
1623 * This behavior is a critical factor in sglist merging's success.
1625 * -- nyc
1627 static inline void expand(struct zone *zone, struct page *page,
1628 int low, int high, struct free_area *area,
1629 int migratetype)
1631 unsigned long size = 1 << high;
1633 while (high > low) {
1634 area--;
1635 high--;
1636 size >>= 1;
1637 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640 * Mark as guard pages (or page), that will allow to
1641 * merge back to allocator when buddy will be freed.
1642 * Corresponding page table entries will not be touched,
1643 * pages will stay not present in virtual address space
1645 if (set_page_guard(zone, &page[size], high, migratetype))
1646 continue;
1648 list_add(&page[size].lru, &area->free_list[migratetype]);
1649 area->nr_free++;
1650 set_page_order(&page[size], high);
1654 static void check_new_page_bad(struct page *page)
1656 const char *bad_reason = NULL;
1657 unsigned long bad_flags = 0;
1659 if (unlikely(atomic_read(&page->_mapcount) != -1))
1660 bad_reason = "nonzero mapcount";
1661 if (unlikely(page->mapping != NULL))
1662 bad_reason = "non-NULL mapping";
1663 if (unlikely(page_ref_count(page) != 0))
1664 bad_reason = "nonzero _count";
1665 if (unlikely(page->flags & __PG_HWPOISON)) {
1666 bad_reason = "HWPoisoned (hardware-corrupted)";
1667 bad_flags = __PG_HWPOISON;
1668 /* Don't complain about hwpoisoned pages */
1669 page_mapcount_reset(page); /* remove PageBuddy */
1670 return;
1672 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1673 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1674 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1676 #ifdef CONFIG_MEMCG
1677 if (unlikely(page->mem_cgroup))
1678 bad_reason = "page still charged to cgroup";
1679 #endif
1680 bad_page(page, bad_reason, bad_flags);
1684 * This page is about to be returned from the page allocator
1686 static inline int check_new_page(struct page *page)
1688 if (likely(page_expected_state(page,
1689 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1690 return 0;
1692 check_new_page_bad(page);
1693 return 1;
1696 static inline bool free_pages_prezeroed(bool poisoned)
1698 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1699 page_poisoning_enabled() && poisoned;
1702 #ifdef CONFIG_DEBUG_VM
1703 static bool check_pcp_refill(struct page *page)
1705 return false;
1708 static bool check_new_pcp(struct page *page)
1710 return check_new_page(page);
1712 #else
1713 static bool check_pcp_refill(struct page *page)
1715 return check_new_page(page);
1717 static bool check_new_pcp(struct page *page)
1719 return false;
1721 #endif /* CONFIG_DEBUG_VM */
1723 static bool check_new_pages(struct page *page, unsigned int order)
1725 int i;
1726 for (i = 0; i < (1 << order); i++) {
1727 struct page *p = page + i;
1729 if (unlikely(check_new_page(p)))
1730 return true;
1733 return false;
1736 inline void post_alloc_hook(struct page *page, unsigned int order,
1737 gfp_t gfp_flags)
1739 set_page_private(page, 0);
1740 set_page_refcounted(page);
1742 arch_alloc_page(page, order);
1743 kernel_map_pages(page, 1 << order, 1);
1744 kernel_poison_pages(page, 1 << order, 1);
1745 kasan_alloc_pages(page, order);
1746 set_page_owner(page, order, gfp_flags);
1749 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1750 unsigned int alloc_flags)
1752 int i;
1753 bool poisoned = true;
1755 for (i = 0; i < (1 << order); i++) {
1756 struct page *p = page + i;
1757 if (poisoned)
1758 poisoned &= page_is_poisoned(p);
1761 post_alloc_hook(page, order, gfp_flags);
1763 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1764 for (i = 0; i < (1 << order); i++)
1765 clear_highpage(page + i);
1767 if (order && (gfp_flags & __GFP_COMP))
1768 prep_compound_page(page, order);
1771 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1772 * allocate the page. The expectation is that the caller is taking
1773 * steps that will free more memory. The caller should avoid the page
1774 * being used for !PFMEMALLOC purposes.
1776 if (alloc_flags & ALLOC_NO_WATERMARKS)
1777 set_page_pfmemalloc(page);
1778 else
1779 clear_page_pfmemalloc(page);
1783 * Go through the free lists for the given migratetype and remove
1784 * the smallest available page from the freelists
1786 static inline
1787 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1788 int migratetype)
1790 unsigned int current_order;
1791 struct free_area *area;
1792 struct page *page;
1794 /* Find a page of the appropriate size in the preferred list */
1795 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1796 area = &(zone->free_area[current_order]);
1797 page = list_first_entry_or_null(&area->free_list[migratetype],
1798 struct page, lru);
1799 if (!page)
1800 continue;
1801 list_del(&page->lru);
1802 rmv_page_order(page);
1803 area->nr_free--;
1804 expand(zone, page, order, current_order, area, migratetype);
1805 set_pcppage_migratetype(page, migratetype);
1806 return page;
1809 return NULL;
1814 * This array describes the order lists are fallen back to when
1815 * the free lists for the desirable migrate type are depleted
1817 static int fallbacks[MIGRATE_TYPES][4] = {
1818 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1819 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1820 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1821 #ifdef CONFIG_CMA
1822 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1823 #endif
1824 #ifdef CONFIG_MEMORY_ISOLATION
1825 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1826 #endif
1829 #ifdef CONFIG_CMA
1830 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1831 unsigned int order)
1833 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1835 #else
1836 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1837 unsigned int order) { return NULL; }
1838 #endif
1841 * Move the free pages in a range to the free lists of the requested type.
1842 * Note that start_page and end_pages are not aligned on a pageblock
1843 * boundary. If alignment is required, use move_freepages_block()
1845 int move_freepages(struct zone *zone,
1846 struct page *start_page, struct page *end_page,
1847 int migratetype)
1849 struct page *page;
1850 unsigned int order;
1851 int pages_moved = 0;
1853 #ifndef CONFIG_HOLES_IN_ZONE
1855 * page_zone is not safe to call in this context when
1856 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1857 * anyway as we check zone boundaries in move_freepages_block().
1858 * Remove at a later date when no bug reports exist related to
1859 * grouping pages by mobility
1861 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1862 #endif
1864 for (page = start_page; page <= end_page;) {
1865 if (!pfn_valid_within(page_to_pfn(page))) {
1866 page++;
1867 continue;
1870 /* Make sure we are not inadvertently changing nodes */
1871 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1873 if (!PageBuddy(page)) {
1874 page++;
1875 continue;
1878 order = page_order(page);
1879 list_move(&page->lru,
1880 &zone->free_area[order].free_list[migratetype]);
1881 page += 1 << order;
1882 pages_moved += 1 << order;
1885 return pages_moved;
1888 int move_freepages_block(struct zone *zone, struct page *page,
1889 int migratetype)
1891 unsigned long start_pfn, end_pfn;
1892 struct page *start_page, *end_page;
1894 start_pfn = page_to_pfn(page);
1895 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1896 start_page = pfn_to_page(start_pfn);
1897 end_page = start_page + pageblock_nr_pages - 1;
1898 end_pfn = start_pfn + pageblock_nr_pages - 1;
1900 /* Do not cross zone boundaries */
1901 if (!zone_spans_pfn(zone, start_pfn))
1902 start_page = page;
1903 if (!zone_spans_pfn(zone, end_pfn))
1904 return 0;
1906 return move_freepages(zone, start_page, end_page, migratetype);
1909 static void change_pageblock_range(struct page *pageblock_page,
1910 int start_order, int migratetype)
1912 int nr_pageblocks = 1 << (start_order - pageblock_order);
1914 while (nr_pageblocks--) {
1915 set_pageblock_migratetype(pageblock_page, migratetype);
1916 pageblock_page += pageblock_nr_pages;
1921 * When we are falling back to another migratetype during allocation, try to
1922 * steal extra free pages from the same pageblocks to satisfy further
1923 * allocations, instead of polluting multiple pageblocks.
1925 * If we are stealing a relatively large buddy page, it is likely there will
1926 * be more free pages in the pageblock, so try to steal them all. For
1927 * reclaimable and unmovable allocations, we steal regardless of page size,
1928 * as fragmentation caused by those allocations polluting movable pageblocks
1929 * is worse than movable allocations stealing from unmovable and reclaimable
1930 * pageblocks.
1932 static bool can_steal_fallback(unsigned int order, int start_mt)
1935 * Leaving this order check is intended, although there is
1936 * relaxed order check in next check. The reason is that
1937 * we can actually steal whole pageblock if this condition met,
1938 * but, below check doesn't guarantee it and that is just heuristic
1939 * so could be changed anytime.
1941 if (order >= pageblock_order)
1942 return true;
1944 if (order >= pageblock_order / 2 ||
1945 start_mt == MIGRATE_RECLAIMABLE ||
1946 start_mt == MIGRATE_UNMOVABLE ||
1947 page_group_by_mobility_disabled)
1948 return true;
1950 return false;
1954 * This function implements actual steal behaviour. If order is large enough,
1955 * we can steal whole pageblock. If not, we first move freepages in this
1956 * pageblock and check whether half of pages are moved or not. If half of
1957 * pages are moved, we can change migratetype of pageblock and permanently
1958 * use it's pages as requested migratetype in the future.
1960 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1961 int start_type)
1963 unsigned int current_order = page_order(page);
1964 int pages;
1966 /* Take ownership for orders >= pageblock_order */
1967 if (current_order >= pageblock_order) {
1968 change_pageblock_range(page, current_order, start_type);
1969 return;
1972 pages = move_freepages_block(zone, page, start_type);
1974 /* Claim the whole block if over half of it is free */
1975 if (pages >= (1 << (pageblock_order-1)) ||
1976 page_group_by_mobility_disabled)
1977 set_pageblock_migratetype(page, start_type);
1981 * Check whether there is a suitable fallback freepage with requested order.
1982 * If only_stealable is true, this function returns fallback_mt only if
1983 * we can steal other freepages all together. This would help to reduce
1984 * fragmentation due to mixed migratetype pages in one pageblock.
1986 int find_suitable_fallback(struct free_area *area, unsigned int order,
1987 int migratetype, bool only_stealable, bool *can_steal)
1989 int i;
1990 int fallback_mt;
1992 if (area->nr_free == 0)
1993 return -1;
1995 *can_steal = false;
1996 for (i = 0;; i++) {
1997 fallback_mt = fallbacks[migratetype][i];
1998 if (fallback_mt == MIGRATE_TYPES)
1999 break;
2001 if (list_empty(&area->free_list[fallback_mt]))
2002 continue;
2004 if (can_steal_fallback(order, migratetype))
2005 *can_steal = true;
2007 if (!only_stealable)
2008 return fallback_mt;
2010 if (*can_steal)
2011 return fallback_mt;
2014 return -1;
2018 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2019 * there are no empty page blocks that contain a page with a suitable order
2021 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2022 unsigned int alloc_order)
2024 int mt;
2025 unsigned long max_managed, flags;
2028 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2029 * Check is race-prone but harmless.
2031 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2032 if (zone->nr_reserved_highatomic >= max_managed)
2033 return;
2035 spin_lock_irqsave(&zone->lock, flags);
2037 /* Recheck the nr_reserved_highatomic limit under the lock */
2038 if (zone->nr_reserved_highatomic >= max_managed)
2039 goto out_unlock;
2041 /* Yoink! */
2042 mt = get_pageblock_migratetype(page);
2043 if (mt != MIGRATE_HIGHATOMIC &&
2044 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2045 zone->nr_reserved_highatomic += pageblock_nr_pages;
2046 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2047 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 out_unlock:
2051 spin_unlock_irqrestore(&zone->lock, flags);
2055 * Used when an allocation is about to fail under memory pressure. This
2056 * potentially hurts the reliability of high-order allocations when under
2057 * intense memory pressure but failed atomic allocations should be easier
2058 * to recover from than an OOM.
2060 * If @force is true, try to unreserve a pageblock even though highatomic
2061 * pageblock is exhausted.
2063 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2064 bool force)
2066 struct zonelist *zonelist = ac->zonelist;
2067 unsigned long flags;
2068 struct zoneref *z;
2069 struct zone *zone;
2070 struct page *page;
2071 int order;
2072 bool ret;
2074 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2075 ac->nodemask) {
2077 * Preserve at least one pageblock unless memory pressure
2078 * is really high.
2080 if (!force && zone->nr_reserved_highatomic <=
2081 pageblock_nr_pages)
2082 continue;
2084 spin_lock_irqsave(&zone->lock, flags);
2085 for (order = 0; order < MAX_ORDER; order++) {
2086 struct free_area *area = &(zone->free_area[order]);
2088 page = list_first_entry_or_null(
2089 &area->free_list[MIGRATE_HIGHATOMIC],
2090 struct page, lru);
2091 if (!page)
2092 continue;
2095 * In page freeing path, migratetype change is racy so
2096 * we can counter several free pages in a pageblock
2097 * in this loop althoug we changed the pageblock type
2098 * from highatomic to ac->migratetype. So we should
2099 * adjust the count once.
2101 if (get_pageblock_migratetype(page) ==
2102 MIGRATE_HIGHATOMIC) {
2104 * It should never happen but changes to
2105 * locking could inadvertently allow a per-cpu
2106 * drain to add pages to MIGRATE_HIGHATOMIC
2107 * while unreserving so be safe and watch for
2108 * underflows.
2110 zone->nr_reserved_highatomic -= min(
2111 pageblock_nr_pages,
2112 zone->nr_reserved_highatomic);
2116 * Convert to ac->migratetype and avoid the normal
2117 * pageblock stealing heuristics. Minimally, the caller
2118 * is doing the work and needs the pages. More
2119 * importantly, if the block was always converted to
2120 * MIGRATE_UNMOVABLE or another type then the number
2121 * of pageblocks that cannot be completely freed
2122 * may increase.
2124 set_pageblock_migratetype(page, ac->migratetype);
2125 ret = move_freepages_block(zone, page, ac->migratetype);
2126 if (ret) {
2127 spin_unlock_irqrestore(&zone->lock, flags);
2128 return ret;
2131 spin_unlock_irqrestore(&zone->lock, flags);
2134 return false;
2137 /* Remove an element from the buddy allocator from the fallback list */
2138 static inline struct page *
2139 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2141 struct free_area *area;
2142 unsigned int current_order;
2143 struct page *page;
2144 int fallback_mt;
2145 bool can_steal;
2147 /* Find the largest possible block of pages in the other list */
2148 for (current_order = MAX_ORDER-1;
2149 current_order >= order && current_order <= MAX_ORDER-1;
2150 --current_order) {
2151 area = &(zone->free_area[current_order]);
2152 fallback_mt = find_suitable_fallback(area, current_order,
2153 start_migratetype, false, &can_steal);
2154 if (fallback_mt == -1)
2155 continue;
2157 page = list_first_entry(&area->free_list[fallback_mt],
2158 struct page, lru);
2159 if (can_steal &&
2160 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2161 steal_suitable_fallback(zone, page, start_migratetype);
2163 /* Remove the page from the freelists */
2164 area->nr_free--;
2165 list_del(&page->lru);
2166 rmv_page_order(page);
2168 expand(zone, page, order, current_order, area,
2169 start_migratetype);
2171 * The pcppage_migratetype may differ from pageblock's
2172 * migratetype depending on the decisions in
2173 * find_suitable_fallback(). This is OK as long as it does not
2174 * differ for MIGRATE_CMA pageblocks. Those can be used as
2175 * fallback only via special __rmqueue_cma_fallback() function
2177 set_pcppage_migratetype(page, start_migratetype);
2179 trace_mm_page_alloc_extfrag(page, order, current_order,
2180 start_migratetype, fallback_mt);
2182 return page;
2185 return NULL;
2189 * Do the hard work of removing an element from the buddy allocator.
2190 * Call me with the zone->lock already held.
2192 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2193 int migratetype)
2195 struct page *page;
2197 page = __rmqueue_smallest(zone, order, migratetype);
2198 if (unlikely(!page)) {
2199 if (migratetype == MIGRATE_MOVABLE)
2200 page = __rmqueue_cma_fallback(zone, order);
2202 if (!page)
2203 page = __rmqueue_fallback(zone, order, migratetype);
2206 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2207 return page;
2211 * Obtain a specified number of elements from the buddy allocator, all under
2212 * a single hold of the lock, for efficiency. Add them to the supplied list.
2213 * Returns the number of new pages which were placed at *list.
2215 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2216 unsigned long count, struct list_head *list,
2217 int migratetype, bool cold)
2219 int i, alloced = 0;
2221 spin_lock(&zone->lock);
2222 for (i = 0; i < count; ++i) {
2223 struct page *page = __rmqueue(zone, order, migratetype);
2224 if (unlikely(page == NULL))
2225 break;
2227 if (unlikely(check_pcp_refill(page)))
2228 continue;
2231 * Split buddy pages returned by expand() are received here
2232 * in physical page order. The page is added to the callers and
2233 * list and the list head then moves forward. From the callers
2234 * perspective, the linked list is ordered by page number in
2235 * some conditions. This is useful for IO devices that can
2236 * merge IO requests if the physical pages are ordered
2237 * properly.
2239 if (likely(!cold))
2240 list_add(&page->lru, list);
2241 else
2242 list_add_tail(&page->lru, list);
2243 list = &page->lru;
2244 alloced++;
2245 if (is_migrate_cma(get_pcppage_migratetype(page)))
2246 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2247 -(1 << order));
2251 * i pages were removed from the buddy list even if some leak due
2252 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2253 * on i. Do not confuse with 'alloced' which is the number of
2254 * pages added to the pcp list.
2256 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2257 spin_unlock(&zone->lock);
2258 return alloced;
2261 #ifdef CONFIG_NUMA
2263 * Called from the vmstat counter updater to drain pagesets of this
2264 * currently executing processor on remote nodes after they have
2265 * expired.
2267 * Note that this function must be called with the thread pinned to
2268 * a single processor.
2270 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2272 unsigned long flags;
2273 int to_drain, batch;
2275 local_irq_save(flags);
2276 batch = READ_ONCE(pcp->batch);
2277 to_drain = min(pcp->count, batch);
2278 if (to_drain > 0) {
2279 free_pcppages_bulk(zone, to_drain, pcp);
2280 pcp->count -= to_drain;
2282 local_irq_restore(flags);
2284 #endif
2287 * Drain pcplists of the indicated processor and zone.
2289 * The processor must either be the current processor and the
2290 * thread pinned to the current processor or a processor that
2291 * is not online.
2293 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2295 unsigned long flags;
2296 struct per_cpu_pageset *pset;
2297 struct per_cpu_pages *pcp;
2299 local_irq_save(flags);
2300 pset = per_cpu_ptr(zone->pageset, cpu);
2302 pcp = &pset->pcp;
2303 if (pcp->count) {
2304 free_pcppages_bulk(zone, pcp->count, pcp);
2305 pcp->count = 0;
2307 local_irq_restore(flags);
2311 * Drain pcplists of all zones on the indicated processor.
2313 * The processor must either be the current processor and the
2314 * thread pinned to the current processor or a processor that
2315 * is not online.
2317 static void drain_pages(unsigned int cpu)
2319 struct zone *zone;
2321 for_each_populated_zone(zone) {
2322 drain_pages_zone(cpu, zone);
2327 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2329 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2330 * the single zone's pages.
2332 void drain_local_pages(struct zone *zone)
2334 int cpu = smp_processor_id();
2336 if (zone)
2337 drain_pages_zone(cpu, zone);
2338 else
2339 drain_pages(cpu);
2343 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2345 * When zone parameter is non-NULL, spill just the single zone's pages.
2347 * Note that this code is protected against sending an IPI to an offline
2348 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2349 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2350 * nothing keeps CPUs from showing up after we populated the cpumask and
2351 * before the call to on_each_cpu_mask().
2353 void drain_all_pages(struct zone *zone)
2355 int cpu;
2358 * Allocate in the BSS so we wont require allocation in
2359 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2361 static cpumask_t cpus_with_pcps;
2364 * We don't care about racing with CPU hotplug event
2365 * as offline notification will cause the notified
2366 * cpu to drain that CPU pcps and on_each_cpu_mask
2367 * disables preemption as part of its processing
2369 for_each_online_cpu(cpu) {
2370 struct per_cpu_pageset *pcp;
2371 struct zone *z;
2372 bool has_pcps = false;
2374 if (zone) {
2375 pcp = per_cpu_ptr(zone->pageset, cpu);
2376 if (pcp->pcp.count)
2377 has_pcps = true;
2378 } else {
2379 for_each_populated_zone(z) {
2380 pcp = per_cpu_ptr(z->pageset, cpu);
2381 if (pcp->pcp.count) {
2382 has_pcps = true;
2383 break;
2388 if (has_pcps)
2389 cpumask_set_cpu(cpu, &cpus_with_pcps);
2390 else
2391 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2393 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2394 zone, 1);
2397 #ifdef CONFIG_HIBERNATION
2399 void mark_free_pages(struct zone *zone)
2401 unsigned long pfn, max_zone_pfn;
2402 unsigned long flags;
2403 unsigned int order, t;
2404 struct page *page;
2406 if (zone_is_empty(zone))
2407 return;
2409 spin_lock_irqsave(&zone->lock, flags);
2411 max_zone_pfn = zone_end_pfn(zone);
2412 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2413 if (pfn_valid(pfn)) {
2414 page = pfn_to_page(pfn);
2416 if (page_zone(page) != zone)
2417 continue;
2419 if (!swsusp_page_is_forbidden(page))
2420 swsusp_unset_page_free(page);
2423 for_each_migratetype_order(order, t) {
2424 list_for_each_entry(page,
2425 &zone->free_area[order].free_list[t], lru) {
2426 unsigned long i;
2428 pfn = page_to_pfn(page);
2429 for (i = 0; i < (1UL << order); i++)
2430 swsusp_set_page_free(pfn_to_page(pfn + i));
2433 spin_unlock_irqrestore(&zone->lock, flags);
2435 #endif /* CONFIG_PM */
2438 * Free a 0-order page
2439 * cold == true ? free a cold page : free a hot page
2441 void free_hot_cold_page(struct page *page, bool cold)
2443 struct zone *zone = page_zone(page);
2444 struct per_cpu_pages *pcp;
2445 unsigned long flags;
2446 unsigned long pfn = page_to_pfn(page);
2447 int migratetype;
2449 if (!free_pcp_prepare(page))
2450 return;
2452 migratetype = get_pfnblock_migratetype(page, pfn);
2453 set_pcppage_migratetype(page, migratetype);
2454 local_irq_save(flags);
2455 __count_vm_event(PGFREE);
2458 * We only track unmovable, reclaimable and movable on pcp lists.
2459 * Free ISOLATE pages back to the allocator because they are being
2460 * offlined but treat RESERVE as movable pages so we can get those
2461 * areas back if necessary. Otherwise, we may have to free
2462 * excessively into the page allocator
2464 if (migratetype >= MIGRATE_PCPTYPES) {
2465 if (unlikely(is_migrate_isolate(migratetype))) {
2466 free_one_page(zone, page, pfn, 0, migratetype);
2467 goto out;
2469 migratetype = MIGRATE_MOVABLE;
2472 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2473 if (!cold)
2474 list_add(&page->lru, &pcp->lists[migratetype]);
2475 else
2476 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2477 pcp->count++;
2478 if (pcp->count >= pcp->high) {
2479 unsigned long batch = READ_ONCE(pcp->batch);
2480 free_pcppages_bulk(zone, batch, pcp);
2481 pcp->count -= batch;
2484 out:
2485 local_irq_restore(flags);
2489 * Free a list of 0-order pages
2491 void free_hot_cold_page_list(struct list_head *list, bool cold)
2493 struct page *page, *next;
2495 list_for_each_entry_safe(page, next, list, lru) {
2496 trace_mm_page_free_batched(page, cold);
2497 free_hot_cold_page(page, cold);
2502 * split_page takes a non-compound higher-order page, and splits it into
2503 * n (1<<order) sub-pages: page[0..n]
2504 * Each sub-page must be freed individually.
2506 * Note: this is probably too low level an operation for use in drivers.
2507 * Please consult with lkml before using this in your driver.
2509 void split_page(struct page *page, unsigned int order)
2511 int i;
2513 VM_BUG_ON_PAGE(PageCompound(page), page);
2514 VM_BUG_ON_PAGE(!page_count(page), page);
2516 #ifdef CONFIG_KMEMCHECK
2518 * Split shadow pages too, because free(page[0]) would
2519 * otherwise free the whole shadow.
2521 if (kmemcheck_page_is_tracked(page))
2522 split_page(virt_to_page(page[0].shadow), order);
2523 #endif
2525 for (i = 1; i < (1 << order); i++)
2526 set_page_refcounted(page + i);
2527 split_page_owner(page, order);
2529 EXPORT_SYMBOL_GPL(split_page);
2531 int __isolate_free_page(struct page *page, unsigned int order)
2533 unsigned long watermark;
2534 struct zone *zone;
2535 int mt;
2537 BUG_ON(!PageBuddy(page));
2539 zone = page_zone(page);
2540 mt = get_pageblock_migratetype(page);
2542 if (!is_migrate_isolate(mt)) {
2544 * Obey watermarks as if the page was being allocated. We can
2545 * emulate a high-order watermark check with a raised order-0
2546 * watermark, because we already know our high-order page
2547 * exists.
2549 watermark = min_wmark_pages(zone) + (1UL << order);
2550 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2551 return 0;
2553 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2556 /* Remove page from free list */
2557 list_del(&page->lru);
2558 zone->free_area[order].nr_free--;
2559 rmv_page_order(page);
2562 * Set the pageblock if the isolated page is at least half of a
2563 * pageblock
2565 if (order >= pageblock_order - 1) {
2566 struct page *endpage = page + (1 << order) - 1;
2567 for (; page < endpage; page += pageblock_nr_pages) {
2568 int mt = get_pageblock_migratetype(page);
2569 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2570 && mt != MIGRATE_HIGHATOMIC)
2571 set_pageblock_migratetype(page,
2572 MIGRATE_MOVABLE);
2577 return 1UL << order;
2581 * Update NUMA hit/miss statistics
2583 * Must be called with interrupts disabled.
2585 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2587 #ifdef CONFIG_NUMA
2588 enum zone_stat_item local_stat = NUMA_LOCAL;
2590 if (z->node != numa_node_id())
2591 local_stat = NUMA_OTHER;
2593 if (z->node == preferred_zone->node)
2594 __inc_zone_state(z, NUMA_HIT);
2595 else {
2596 __inc_zone_state(z, NUMA_MISS);
2597 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2599 __inc_zone_state(z, local_stat);
2600 #endif
2604 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2606 static inline
2607 struct page *buffered_rmqueue(struct zone *preferred_zone,
2608 struct zone *zone, unsigned int order,
2609 gfp_t gfp_flags, unsigned int alloc_flags,
2610 int migratetype)
2612 unsigned long flags;
2613 struct page *page;
2614 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2616 if (likely(order == 0)) {
2617 struct per_cpu_pages *pcp;
2618 struct list_head *list;
2620 local_irq_save(flags);
2621 do {
2622 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2623 list = &pcp->lists[migratetype];
2624 if (list_empty(list)) {
2625 pcp->count += rmqueue_bulk(zone, 0,
2626 pcp->batch, list,
2627 migratetype, cold);
2628 if (unlikely(list_empty(list)))
2629 goto failed;
2632 if (cold)
2633 page = list_last_entry(list, struct page, lru);
2634 else
2635 page = list_first_entry(list, struct page, lru);
2637 list_del(&page->lru);
2638 pcp->count--;
2640 } while (check_new_pcp(page));
2641 } else {
2643 * We most definitely don't want callers attempting to
2644 * allocate greater than order-1 page units with __GFP_NOFAIL.
2646 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2647 spin_lock_irqsave(&zone->lock, flags);
2649 do {
2650 page = NULL;
2651 if (alloc_flags & ALLOC_HARDER) {
2652 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2653 if (page)
2654 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2656 if (!page)
2657 page = __rmqueue(zone, order, migratetype);
2658 } while (page && check_new_pages(page, order));
2659 spin_unlock(&zone->lock);
2660 if (!page)
2661 goto failed;
2662 __mod_zone_freepage_state(zone, -(1 << order),
2663 get_pcppage_migratetype(page));
2666 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2667 zone_statistics(preferred_zone, zone);
2668 local_irq_restore(flags);
2670 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2671 return page;
2673 failed:
2674 local_irq_restore(flags);
2675 return NULL;
2678 #ifdef CONFIG_FAIL_PAGE_ALLOC
2680 static struct {
2681 struct fault_attr attr;
2683 bool ignore_gfp_highmem;
2684 bool ignore_gfp_reclaim;
2685 u32 min_order;
2686 } fail_page_alloc = {
2687 .attr = FAULT_ATTR_INITIALIZER,
2688 .ignore_gfp_reclaim = true,
2689 .ignore_gfp_highmem = true,
2690 .min_order = 1,
2693 static int __init setup_fail_page_alloc(char *str)
2695 return setup_fault_attr(&fail_page_alloc.attr, str);
2697 __setup("fail_page_alloc=", setup_fail_page_alloc);
2699 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2701 if (order < fail_page_alloc.min_order)
2702 return false;
2703 if (gfp_mask & __GFP_NOFAIL)
2704 return false;
2705 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2706 return false;
2707 if (fail_page_alloc.ignore_gfp_reclaim &&
2708 (gfp_mask & __GFP_DIRECT_RECLAIM))
2709 return false;
2711 return should_fail(&fail_page_alloc.attr, 1 << order);
2714 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2716 static int __init fail_page_alloc_debugfs(void)
2718 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2719 struct dentry *dir;
2721 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2722 &fail_page_alloc.attr);
2723 if (IS_ERR(dir))
2724 return PTR_ERR(dir);
2726 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2727 &fail_page_alloc.ignore_gfp_reclaim))
2728 goto fail;
2729 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2730 &fail_page_alloc.ignore_gfp_highmem))
2731 goto fail;
2732 if (!debugfs_create_u32("min-order", mode, dir,
2733 &fail_page_alloc.min_order))
2734 goto fail;
2736 return 0;
2737 fail:
2738 debugfs_remove_recursive(dir);
2740 return -ENOMEM;
2743 late_initcall(fail_page_alloc_debugfs);
2745 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2747 #else /* CONFIG_FAIL_PAGE_ALLOC */
2749 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2751 return false;
2754 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2757 * Return true if free base pages are above 'mark'. For high-order checks it
2758 * will return true of the order-0 watermark is reached and there is at least
2759 * one free page of a suitable size. Checking now avoids taking the zone lock
2760 * to check in the allocation paths if no pages are free.
2762 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2763 int classzone_idx, unsigned int alloc_flags,
2764 long free_pages)
2766 long min = mark;
2767 int o;
2768 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2770 /* free_pages may go negative - that's OK */
2771 free_pages -= (1 << order) - 1;
2773 if (alloc_flags & ALLOC_HIGH)
2774 min -= min / 2;
2777 * If the caller does not have rights to ALLOC_HARDER then subtract
2778 * the high-atomic reserves. This will over-estimate the size of the
2779 * atomic reserve but it avoids a search.
2781 if (likely(!alloc_harder))
2782 free_pages -= z->nr_reserved_highatomic;
2783 else
2784 min -= min / 4;
2786 #ifdef CONFIG_CMA
2787 /* If allocation can't use CMA areas don't use free CMA pages */
2788 if (!(alloc_flags & ALLOC_CMA))
2789 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2790 #endif
2793 * Check watermarks for an order-0 allocation request. If these
2794 * are not met, then a high-order request also cannot go ahead
2795 * even if a suitable page happened to be free.
2797 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2798 return false;
2800 /* If this is an order-0 request then the watermark is fine */
2801 if (!order)
2802 return true;
2804 /* For a high-order request, check at least one suitable page is free */
2805 for (o = order; o < MAX_ORDER; o++) {
2806 struct free_area *area = &z->free_area[o];
2807 int mt;
2809 if (!area->nr_free)
2810 continue;
2812 if (alloc_harder)
2813 return true;
2815 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2816 if (!list_empty(&area->free_list[mt]))
2817 return true;
2820 #ifdef CONFIG_CMA
2821 if ((alloc_flags & ALLOC_CMA) &&
2822 !list_empty(&area->free_list[MIGRATE_CMA])) {
2823 return true;
2825 #endif
2827 return false;
2830 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2831 int classzone_idx, unsigned int alloc_flags)
2833 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2834 zone_page_state(z, NR_FREE_PAGES));
2837 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2838 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2840 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2841 long cma_pages = 0;
2843 #ifdef CONFIG_CMA
2844 /* If allocation can't use CMA areas don't use free CMA pages */
2845 if (!(alloc_flags & ALLOC_CMA))
2846 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2847 #endif
2850 * Fast check for order-0 only. If this fails then the reserves
2851 * need to be calculated. There is a corner case where the check
2852 * passes but only the high-order atomic reserve are free. If
2853 * the caller is !atomic then it'll uselessly search the free
2854 * list. That corner case is then slower but it is harmless.
2856 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2857 return true;
2859 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2860 free_pages);
2863 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2864 unsigned long mark, int classzone_idx)
2866 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2868 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2869 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2871 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2872 free_pages);
2875 #ifdef CONFIG_NUMA
2876 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2878 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2879 RECLAIM_DISTANCE;
2881 #else /* CONFIG_NUMA */
2882 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2884 return true;
2886 #endif /* CONFIG_NUMA */
2889 * get_page_from_freelist goes through the zonelist trying to allocate
2890 * a page.
2892 static struct page *
2893 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2894 const struct alloc_context *ac)
2896 struct zoneref *z = ac->preferred_zoneref;
2897 struct zone *zone;
2898 struct pglist_data *last_pgdat_dirty_limit = NULL;
2901 * Scan zonelist, looking for a zone with enough free.
2902 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2904 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2905 ac->nodemask) {
2906 struct page *page;
2907 unsigned long mark;
2909 if (cpusets_enabled() &&
2910 (alloc_flags & ALLOC_CPUSET) &&
2911 !__cpuset_zone_allowed(zone, gfp_mask))
2912 continue;
2914 * When allocating a page cache page for writing, we
2915 * want to get it from a node that is within its dirty
2916 * limit, such that no single node holds more than its
2917 * proportional share of globally allowed dirty pages.
2918 * The dirty limits take into account the node's
2919 * lowmem reserves and high watermark so that kswapd
2920 * should be able to balance it without having to
2921 * write pages from its LRU list.
2923 * XXX: For now, allow allocations to potentially
2924 * exceed the per-node dirty limit in the slowpath
2925 * (spread_dirty_pages unset) before going into reclaim,
2926 * which is important when on a NUMA setup the allowed
2927 * nodes are together not big enough to reach the
2928 * global limit. The proper fix for these situations
2929 * will require awareness of nodes in the
2930 * dirty-throttling and the flusher threads.
2932 if (ac->spread_dirty_pages) {
2933 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2934 continue;
2936 if (!node_dirty_ok(zone->zone_pgdat)) {
2937 last_pgdat_dirty_limit = zone->zone_pgdat;
2938 continue;
2942 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2943 if (!zone_watermark_fast(zone, order, mark,
2944 ac_classzone_idx(ac), alloc_flags)) {
2945 int ret;
2947 /* Checked here to keep the fast path fast */
2948 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2949 if (alloc_flags & ALLOC_NO_WATERMARKS)
2950 goto try_this_zone;
2952 if (node_reclaim_mode == 0 ||
2953 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2954 continue;
2956 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2957 switch (ret) {
2958 case NODE_RECLAIM_NOSCAN:
2959 /* did not scan */
2960 continue;
2961 case NODE_RECLAIM_FULL:
2962 /* scanned but unreclaimable */
2963 continue;
2964 default:
2965 /* did we reclaim enough */
2966 if (zone_watermark_ok(zone, order, mark,
2967 ac_classzone_idx(ac), alloc_flags))
2968 goto try_this_zone;
2970 continue;
2974 try_this_zone:
2975 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2976 gfp_mask, alloc_flags, ac->migratetype);
2977 if (page) {
2978 prep_new_page(page, order, gfp_mask, alloc_flags);
2981 * If this is a high-order atomic allocation then check
2982 * if the pageblock should be reserved for the future
2984 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2985 reserve_highatomic_pageblock(page, zone, order);
2987 return page;
2991 return NULL;
2995 * Large machines with many possible nodes should not always dump per-node
2996 * meminfo in irq context.
2998 static inline bool should_suppress_show_mem(void)
3000 bool ret = false;
3002 #if NODES_SHIFT > 8
3003 ret = in_interrupt();
3004 #endif
3005 return ret;
3008 static void warn_alloc_show_mem(gfp_t gfp_mask)
3010 unsigned int filter = SHOW_MEM_FILTER_NODES;
3011 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3013 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3014 return;
3017 * This documents exceptions given to allocations in certain
3018 * contexts that are allowed to allocate outside current's set
3019 * of allowed nodes.
3021 if (!(gfp_mask & __GFP_NOMEMALLOC))
3022 if (test_thread_flag(TIF_MEMDIE) ||
3023 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3024 filter &= ~SHOW_MEM_FILTER_NODES;
3025 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3026 filter &= ~SHOW_MEM_FILTER_NODES;
3028 show_mem(filter);
3031 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
3033 struct va_format vaf;
3034 va_list args;
3035 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3036 DEFAULT_RATELIMIT_BURST);
3038 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3039 debug_guardpage_minorder() > 0)
3040 return;
3042 pr_warn("%s: ", current->comm);
3044 va_start(args, fmt);
3045 vaf.fmt = fmt;
3046 vaf.va = &args;
3047 pr_cont("%pV", &vaf);
3048 va_end(args);
3050 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3052 dump_stack();
3053 warn_alloc_show_mem(gfp_mask);
3056 static inline struct page *
3057 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3058 const struct alloc_context *ac, unsigned long *did_some_progress)
3060 struct oom_control oc = {
3061 .zonelist = ac->zonelist,
3062 .nodemask = ac->nodemask,
3063 .memcg = NULL,
3064 .gfp_mask = gfp_mask,
3065 .order = order,
3067 struct page *page;
3069 *did_some_progress = 0;
3072 * Acquire the oom lock. If that fails, somebody else is
3073 * making progress for us.
3075 if (!mutex_trylock(&oom_lock)) {
3076 *did_some_progress = 1;
3077 schedule_timeout_uninterruptible(1);
3078 return NULL;
3082 * Go through the zonelist yet one more time, keep very high watermark
3083 * here, this is only to catch a parallel oom killing, we must fail if
3084 * we're still under heavy pressure.
3086 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3087 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3088 if (page)
3089 goto out;
3091 if (!(gfp_mask & __GFP_NOFAIL)) {
3092 /* Coredumps can quickly deplete all memory reserves */
3093 if (current->flags & PF_DUMPCORE)
3094 goto out;
3095 /* The OOM killer will not help higher order allocs */
3096 if (order > PAGE_ALLOC_COSTLY_ORDER)
3097 goto out;
3098 /* The OOM killer does not needlessly kill tasks for lowmem */
3099 if (ac->high_zoneidx < ZONE_NORMAL)
3100 goto out;
3101 if (pm_suspended_storage())
3102 goto out;
3104 * XXX: GFP_NOFS allocations should rather fail than rely on
3105 * other request to make a forward progress.
3106 * We are in an unfortunate situation where out_of_memory cannot
3107 * do much for this context but let's try it to at least get
3108 * access to memory reserved if the current task is killed (see
3109 * out_of_memory). Once filesystems are ready to handle allocation
3110 * failures more gracefully we should just bail out here.
3113 /* The OOM killer may not free memory on a specific node */
3114 if (gfp_mask & __GFP_THISNODE)
3115 goto out;
3117 /* Exhausted what can be done so it's blamo time */
3118 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3119 *did_some_progress = 1;
3121 if (gfp_mask & __GFP_NOFAIL) {
3122 page = get_page_from_freelist(gfp_mask, order,
3123 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3125 * fallback to ignore cpuset restriction if our nodes
3126 * are depleted
3128 if (!page)
3129 page = get_page_from_freelist(gfp_mask, order,
3130 ALLOC_NO_WATERMARKS, ac);
3133 out:
3134 mutex_unlock(&oom_lock);
3135 return page;
3139 * Maximum number of compaction retries wit a progress before OOM
3140 * killer is consider as the only way to move forward.
3142 #define MAX_COMPACT_RETRIES 16
3144 #ifdef CONFIG_COMPACTION
3145 /* Try memory compaction for high-order allocations before reclaim */
3146 static struct page *
3147 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3148 unsigned int alloc_flags, const struct alloc_context *ac,
3149 enum compact_priority prio, enum compact_result *compact_result)
3151 struct page *page;
3153 if (!order)
3154 return NULL;
3156 current->flags |= PF_MEMALLOC;
3157 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3158 prio);
3159 current->flags &= ~PF_MEMALLOC;
3161 if (*compact_result <= COMPACT_INACTIVE)
3162 return NULL;
3165 * At least in one zone compaction wasn't deferred or skipped, so let's
3166 * count a compaction stall
3168 count_vm_event(COMPACTSTALL);
3170 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3172 if (page) {
3173 struct zone *zone = page_zone(page);
3175 zone->compact_blockskip_flush = false;
3176 compaction_defer_reset(zone, order, true);
3177 count_vm_event(COMPACTSUCCESS);
3178 return page;
3182 * It's bad if compaction run occurs and fails. The most likely reason
3183 * is that pages exist, but not enough to satisfy watermarks.
3185 count_vm_event(COMPACTFAIL);
3187 cond_resched();
3189 return NULL;
3192 static inline bool
3193 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3194 enum compact_result compact_result,
3195 enum compact_priority *compact_priority,
3196 int *compaction_retries)
3198 int max_retries = MAX_COMPACT_RETRIES;
3199 int min_priority;
3200 bool ret = false;
3201 int retries = *compaction_retries;
3202 enum compact_priority priority = *compact_priority;
3204 if (!order)
3205 return false;
3207 if (compaction_made_progress(compact_result))
3208 (*compaction_retries)++;
3211 * compaction considers all the zone as desperately out of memory
3212 * so it doesn't really make much sense to retry except when the
3213 * failure could be caused by insufficient priority
3215 if (compaction_failed(compact_result))
3216 goto check_priority;
3219 * make sure the compaction wasn't deferred or didn't bail out early
3220 * due to locks contention before we declare that we should give up.
3221 * But do not retry if the given zonelist is not suitable for
3222 * compaction.
3224 if (compaction_withdrawn(compact_result)) {
3225 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3226 goto out;
3230 * !costly requests are much more important than __GFP_REPEAT
3231 * costly ones because they are de facto nofail and invoke OOM
3232 * killer to move on while costly can fail and users are ready
3233 * to cope with that. 1/4 retries is rather arbitrary but we
3234 * would need much more detailed feedback from compaction to
3235 * make a better decision.
3237 if (order > PAGE_ALLOC_COSTLY_ORDER)
3238 max_retries /= 4;
3239 if (*compaction_retries <= max_retries) {
3240 ret = true;
3241 goto out;
3245 * Make sure there are attempts at the highest priority if we exhausted
3246 * all retries or failed at the lower priorities.
3248 check_priority:
3249 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3250 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3252 if (*compact_priority > min_priority) {
3253 (*compact_priority)--;
3254 *compaction_retries = 0;
3255 ret = true;
3257 out:
3258 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3259 return ret;
3261 #else
3262 static inline struct page *
3263 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3264 unsigned int alloc_flags, const struct alloc_context *ac,
3265 enum compact_priority prio, enum compact_result *compact_result)
3267 *compact_result = COMPACT_SKIPPED;
3268 return NULL;
3271 static inline bool
3272 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3273 enum compact_result compact_result,
3274 enum compact_priority *compact_priority,
3275 int *compaction_retries)
3277 struct zone *zone;
3278 struct zoneref *z;
3280 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3281 return false;
3284 * There are setups with compaction disabled which would prefer to loop
3285 * inside the allocator rather than hit the oom killer prematurely.
3286 * Let's give them a good hope and keep retrying while the order-0
3287 * watermarks are OK.
3289 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3290 ac->nodemask) {
3291 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3292 ac_classzone_idx(ac), alloc_flags))
3293 return true;
3295 return false;
3297 #endif /* CONFIG_COMPACTION */
3299 /* Perform direct synchronous page reclaim */
3300 static int
3301 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3302 const struct alloc_context *ac)
3304 struct reclaim_state reclaim_state;
3305 int progress;
3307 cond_resched();
3309 /* We now go into synchronous reclaim */
3310 cpuset_memory_pressure_bump();
3311 current->flags |= PF_MEMALLOC;
3312 lockdep_set_current_reclaim_state(gfp_mask);
3313 reclaim_state.reclaimed_slab = 0;
3314 current->reclaim_state = &reclaim_state;
3316 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3317 ac->nodemask);
3319 current->reclaim_state = NULL;
3320 lockdep_clear_current_reclaim_state();
3321 current->flags &= ~PF_MEMALLOC;
3323 cond_resched();
3325 return progress;
3328 /* The really slow allocator path where we enter direct reclaim */
3329 static inline struct page *
3330 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3331 unsigned int alloc_flags, const struct alloc_context *ac,
3332 unsigned long *did_some_progress)
3334 struct page *page = NULL;
3335 bool drained = false;
3337 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3338 if (unlikely(!(*did_some_progress)))
3339 return NULL;
3341 retry:
3342 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3345 * If an allocation failed after direct reclaim, it could be because
3346 * pages are pinned on the per-cpu lists or in high alloc reserves.
3347 * Shrink them them and try again
3349 if (!page && !drained) {
3350 unreserve_highatomic_pageblock(ac, false);
3351 drain_all_pages(NULL);
3352 drained = true;
3353 goto retry;
3356 return page;
3359 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3361 struct zoneref *z;
3362 struct zone *zone;
3363 pg_data_t *last_pgdat = NULL;
3365 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3366 ac->high_zoneidx, ac->nodemask) {
3367 if (last_pgdat != zone->zone_pgdat)
3368 wakeup_kswapd(zone, order, ac->high_zoneidx);
3369 last_pgdat = zone->zone_pgdat;
3373 static inline unsigned int
3374 gfp_to_alloc_flags(gfp_t gfp_mask)
3376 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3378 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3379 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3382 * The caller may dip into page reserves a bit more if the caller
3383 * cannot run direct reclaim, or if the caller has realtime scheduling
3384 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3385 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3387 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3389 if (gfp_mask & __GFP_ATOMIC) {
3391 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3392 * if it can't schedule.
3394 if (!(gfp_mask & __GFP_NOMEMALLOC))
3395 alloc_flags |= ALLOC_HARDER;
3397 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3398 * comment for __cpuset_node_allowed().
3400 alloc_flags &= ~ALLOC_CPUSET;
3401 } else if (unlikely(rt_task(current)) && !in_interrupt())
3402 alloc_flags |= ALLOC_HARDER;
3404 #ifdef CONFIG_CMA
3405 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3406 alloc_flags |= ALLOC_CMA;
3407 #endif
3408 return alloc_flags;
3411 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3413 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3414 return false;
3416 if (gfp_mask & __GFP_MEMALLOC)
3417 return true;
3418 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3419 return true;
3420 if (!in_interrupt() &&
3421 ((current->flags & PF_MEMALLOC) ||
3422 unlikely(test_thread_flag(TIF_MEMDIE))))
3423 return true;
3425 return false;
3429 * Maximum number of reclaim retries without any progress before OOM killer
3430 * is consider as the only way to move forward.
3432 #define MAX_RECLAIM_RETRIES 16
3435 * Checks whether it makes sense to retry the reclaim to make a forward progress
3436 * for the given allocation request.
3437 * The reclaim feedback represented by did_some_progress (any progress during
3438 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3439 * any progress in a row) is considered as well as the reclaimable pages on the
3440 * applicable zone list (with a backoff mechanism which is a function of
3441 * no_progress_loops).
3443 * Returns true if a retry is viable or false to enter the oom path.
3445 static inline bool
3446 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3447 struct alloc_context *ac, int alloc_flags,
3448 bool did_some_progress, int *no_progress_loops)
3450 struct zone *zone;
3451 struct zoneref *z;
3454 * Costly allocations might have made a progress but this doesn't mean
3455 * their order will become available due to high fragmentation so
3456 * always increment the no progress counter for them
3458 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3459 *no_progress_loops = 0;
3460 else
3461 (*no_progress_loops)++;
3464 * Make sure we converge to OOM if we cannot make any progress
3465 * several times in the row.
3467 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3468 /* Before OOM, exhaust highatomic_reserve */
3469 return unreserve_highatomic_pageblock(ac, true);
3473 * Keep reclaiming pages while there is a chance this will lead
3474 * somewhere. If none of the target zones can satisfy our allocation
3475 * request even if all reclaimable pages are considered then we are
3476 * screwed and have to go OOM.
3478 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3479 ac->nodemask) {
3480 unsigned long available;
3481 unsigned long reclaimable;
3482 unsigned long min_wmark = min_wmark_pages(zone);
3483 bool wmark;
3485 available = reclaimable = zone_reclaimable_pages(zone);
3486 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3487 MAX_RECLAIM_RETRIES);
3488 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3491 * Would the allocation succeed if we reclaimed the whole
3492 * available?
3494 wmark = __zone_watermark_ok(zone, order, min_wmark,
3495 ac_classzone_idx(ac), alloc_flags, available);
3496 trace_reclaim_retry_zone(z, order, reclaimable,
3497 available, min_wmark, *no_progress_loops, wmark);
3498 if (wmark) {
3500 * If we didn't make any progress and have a lot of
3501 * dirty + writeback pages then we should wait for
3502 * an IO to complete to slow down the reclaim and
3503 * prevent from pre mature OOM
3505 if (!did_some_progress) {
3506 unsigned long write_pending;
3508 write_pending = zone_page_state_snapshot(zone,
3509 NR_ZONE_WRITE_PENDING);
3511 if (2 * write_pending > reclaimable) {
3512 congestion_wait(BLK_RW_ASYNC, HZ/10);
3513 return true;
3518 * Memory allocation/reclaim might be called from a WQ
3519 * context and the current implementation of the WQ
3520 * concurrency control doesn't recognize that
3521 * a particular WQ is congested if the worker thread is
3522 * looping without ever sleeping. Therefore we have to
3523 * do a short sleep here rather than calling
3524 * cond_resched().
3526 if (current->flags & PF_WQ_WORKER)
3527 schedule_timeout_uninterruptible(1);
3528 else
3529 cond_resched();
3531 return true;
3535 return false;
3538 static inline struct page *
3539 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3540 struct alloc_context *ac)
3542 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3543 struct page *page = NULL;
3544 unsigned int alloc_flags;
3545 unsigned long did_some_progress;
3546 enum compact_priority compact_priority;
3547 enum compact_result compact_result;
3548 int compaction_retries;
3549 int no_progress_loops;
3550 unsigned long alloc_start = jiffies;
3551 unsigned int stall_timeout = 10 * HZ;
3552 unsigned int cpuset_mems_cookie;
3555 * In the slowpath, we sanity check order to avoid ever trying to
3556 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3557 * be using allocators in order of preference for an area that is
3558 * too large.
3560 if (order >= MAX_ORDER) {
3561 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3562 return NULL;
3566 * We also sanity check to catch abuse of atomic reserves being used by
3567 * callers that are not in atomic context.
3569 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3570 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3571 gfp_mask &= ~__GFP_ATOMIC;
3573 retry_cpuset:
3574 compaction_retries = 0;
3575 no_progress_loops = 0;
3576 compact_priority = DEF_COMPACT_PRIORITY;
3577 cpuset_mems_cookie = read_mems_allowed_begin();
3579 * We need to recalculate the starting point for the zonelist iterator
3580 * because we might have used different nodemask in the fast path, or
3581 * there was a cpuset modification and we are retrying - otherwise we
3582 * could end up iterating over non-eligible zones endlessly.
3584 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3585 ac->high_zoneidx, ac->nodemask);
3586 if (!ac->preferred_zoneref->zone)
3587 goto nopage;
3591 * The fast path uses conservative alloc_flags to succeed only until
3592 * kswapd needs to be woken up, and to avoid the cost of setting up
3593 * alloc_flags precisely. So we do that now.
3595 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3597 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3598 wake_all_kswapds(order, ac);
3601 * The adjusted alloc_flags might result in immediate success, so try
3602 * that first
3604 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3605 if (page)
3606 goto got_pg;
3609 * For costly allocations, try direct compaction first, as it's likely
3610 * that we have enough base pages and don't need to reclaim. Don't try
3611 * that for allocations that are allowed to ignore watermarks, as the
3612 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3614 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3615 !gfp_pfmemalloc_allowed(gfp_mask)) {
3616 page = __alloc_pages_direct_compact(gfp_mask, order,
3617 alloc_flags, ac,
3618 INIT_COMPACT_PRIORITY,
3619 &compact_result);
3620 if (page)
3621 goto got_pg;
3624 * Checks for costly allocations with __GFP_NORETRY, which
3625 * includes THP page fault allocations
3627 if (gfp_mask & __GFP_NORETRY) {
3629 * If compaction is deferred for high-order allocations,
3630 * it is because sync compaction recently failed. If
3631 * this is the case and the caller requested a THP
3632 * allocation, we do not want to heavily disrupt the
3633 * system, so we fail the allocation instead of entering
3634 * direct reclaim.
3636 if (compact_result == COMPACT_DEFERRED)
3637 goto nopage;
3640 * Looks like reclaim/compaction is worth trying, but
3641 * sync compaction could be very expensive, so keep
3642 * using async compaction.
3644 compact_priority = INIT_COMPACT_PRIORITY;
3648 retry:
3649 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3650 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3651 wake_all_kswapds(order, ac);
3653 if (gfp_pfmemalloc_allowed(gfp_mask))
3654 alloc_flags = ALLOC_NO_WATERMARKS;
3657 * Reset the zonelist iterators if memory policies can be ignored.
3658 * These allocations are high priority and system rather than user
3659 * orientated.
3661 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3662 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3663 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3664 ac->high_zoneidx, ac->nodemask);
3667 /* Attempt with potentially adjusted zonelist and alloc_flags */
3668 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3669 if (page)
3670 goto got_pg;
3672 /* Caller is not willing to reclaim, we can't balance anything */
3673 if (!can_direct_reclaim) {
3675 * All existing users of the __GFP_NOFAIL are blockable, so warn
3676 * of any new users that actually allow this type of allocation
3677 * to fail.
3679 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3680 goto nopage;
3683 /* Avoid recursion of direct reclaim */
3684 if (current->flags & PF_MEMALLOC) {
3686 * __GFP_NOFAIL request from this context is rather bizarre
3687 * because we cannot reclaim anything and only can loop waiting
3688 * for somebody to do a work for us.
3690 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3691 cond_resched();
3692 goto retry;
3694 goto nopage;
3697 /* Avoid allocations with no watermarks from looping endlessly */
3698 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3699 goto nopage;
3702 /* Try direct reclaim and then allocating */
3703 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3704 &did_some_progress);
3705 if (page)
3706 goto got_pg;
3708 /* Try direct compaction and then allocating */
3709 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3710 compact_priority, &compact_result);
3711 if (page)
3712 goto got_pg;
3714 /* Do not loop if specifically requested */
3715 if (gfp_mask & __GFP_NORETRY)
3716 goto nopage;
3719 * Do not retry costly high order allocations unless they are
3720 * __GFP_REPEAT
3722 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3723 goto nopage;
3725 /* Make sure we know about allocations which stall for too long */
3726 if (time_after(jiffies, alloc_start + stall_timeout)) {
3727 warn_alloc(gfp_mask,
3728 "page allocation stalls for %ums, order:%u",
3729 jiffies_to_msecs(jiffies-alloc_start), order);
3730 stall_timeout += 10 * HZ;
3733 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3734 did_some_progress > 0, &no_progress_loops))
3735 goto retry;
3738 * It doesn't make any sense to retry for the compaction if the order-0
3739 * reclaim is not able to make any progress because the current
3740 * implementation of the compaction depends on the sufficient amount
3741 * of free memory (see __compaction_suitable)
3743 if (did_some_progress > 0 &&
3744 should_compact_retry(ac, order, alloc_flags,
3745 compact_result, &compact_priority,
3746 &compaction_retries))
3747 goto retry;
3750 * It's possible we raced with cpuset update so the OOM would be
3751 * premature (see below the nopage: label for full explanation).
3753 if (read_mems_allowed_retry(cpuset_mems_cookie))
3754 goto retry_cpuset;
3756 /* Reclaim has failed us, start killing things */
3757 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3758 if (page)
3759 goto got_pg;
3761 /* Retry as long as the OOM killer is making progress */
3762 if (did_some_progress) {
3763 no_progress_loops = 0;
3764 goto retry;
3767 nopage:
3769 * When updating a task's mems_allowed or mempolicy nodemask, it is
3770 * possible to race with parallel threads in such a way that our
3771 * allocation can fail while the mask is being updated. If we are about
3772 * to fail, check if the cpuset changed during allocation and if so,
3773 * retry.
3775 if (read_mems_allowed_retry(cpuset_mems_cookie))
3776 goto retry_cpuset;
3778 warn_alloc(gfp_mask,
3779 "page allocation failure: order:%u", order);
3780 got_pg:
3781 return page;
3785 * This is the 'heart' of the zoned buddy allocator.
3787 struct page *
3788 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3789 struct zonelist *zonelist, nodemask_t *nodemask)
3791 struct page *page;
3792 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3793 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3794 struct alloc_context ac = {
3795 .high_zoneidx = gfp_zone(gfp_mask),
3796 .zonelist = zonelist,
3797 .nodemask = nodemask,
3798 .migratetype = gfpflags_to_migratetype(gfp_mask),
3801 if (cpusets_enabled()) {
3802 alloc_mask |= __GFP_HARDWALL;
3803 alloc_flags |= ALLOC_CPUSET;
3804 if (!ac.nodemask)
3805 ac.nodemask = &cpuset_current_mems_allowed;
3808 gfp_mask &= gfp_allowed_mask;
3810 lockdep_trace_alloc(gfp_mask);
3812 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3814 if (should_fail_alloc_page(gfp_mask, order))
3815 return NULL;
3818 * Check the zones suitable for the gfp_mask contain at least one
3819 * valid zone. It's possible to have an empty zonelist as a result
3820 * of __GFP_THISNODE and a memoryless node
3822 if (unlikely(!zonelist->_zonerefs->zone))
3823 return NULL;
3825 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3826 alloc_flags |= ALLOC_CMA;
3828 /* Dirty zone balancing only done in the fast path */
3829 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3832 * The preferred zone is used for statistics but crucially it is
3833 * also used as the starting point for the zonelist iterator. It
3834 * may get reset for allocations that ignore memory policies.
3836 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3837 ac.high_zoneidx, ac.nodemask);
3838 if (!ac.preferred_zoneref->zone) {
3839 page = NULL;
3841 * This might be due to race with cpuset_current_mems_allowed
3842 * update, so make sure we retry with original nodemask in the
3843 * slow path.
3845 goto no_zone;
3848 /* First allocation attempt */
3849 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3850 if (likely(page))
3851 goto out;
3853 no_zone:
3855 * Runtime PM, block IO and its error handling path can deadlock
3856 * because I/O on the device might not complete.
3858 alloc_mask = memalloc_noio_flags(gfp_mask);
3859 ac.spread_dirty_pages = false;
3862 * Restore the original nodemask if it was potentially replaced with
3863 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3865 if (unlikely(ac.nodemask != nodemask))
3866 ac.nodemask = nodemask;
3868 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3870 out:
3871 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3872 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3873 __free_pages(page, order);
3874 page = NULL;
3877 if (kmemcheck_enabled && page)
3878 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3880 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3882 return page;
3884 EXPORT_SYMBOL(__alloc_pages_nodemask);
3887 * Common helper functions.
3889 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3891 struct page *page;
3894 * __get_free_pages() returns a 32-bit address, which cannot represent
3895 * a highmem page
3897 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3899 page = alloc_pages(gfp_mask, order);
3900 if (!page)
3901 return 0;
3902 return (unsigned long) page_address(page);
3904 EXPORT_SYMBOL(__get_free_pages);
3906 unsigned long get_zeroed_page(gfp_t gfp_mask)
3908 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3910 EXPORT_SYMBOL(get_zeroed_page);
3912 void __free_pages(struct page *page, unsigned int order)
3914 if (put_page_testzero(page)) {
3915 if (order == 0)
3916 free_hot_cold_page(page, false);
3917 else
3918 __free_pages_ok(page, order);
3922 EXPORT_SYMBOL(__free_pages);
3924 void free_pages(unsigned long addr, unsigned int order)
3926 if (addr != 0) {
3927 VM_BUG_ON(!virt_addr_valid((void *)addr));
3928 __free_pages(virt_to_page((void *)addr), order);
3932 EXPORT_SYMBOL(free_pages);
3935 * Page Fragment:
3936 * An arbitrary-length arbitrary-offset area of memory which resides
3937 * within a 0 or higher order page. Multiple fragments within that page
3938 * are individually refcounted, in the page's reference counter.
3940 * The page_frag functions below provide a simple allocation framework for
3941 * page fragments. This is used by the network stack and network device
3942 * drivers to provide a backing region of memory for use as either an
3943 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3945 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
3946 gfp_t gfp_mask)
3948 struct page *page = NULL;
3949 gfp_t gfp = gfp_mask;
3951 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3952 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3953 __GFP_NOMEMALLOC;
3954 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3955 PAGE_FRAG_CACHE_MAX_ORDER);
3956 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3957 #endif
3958 if (unlikely(!page))
3959 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3961 nc->va = page ? page_address(page) : NULL;
3963 return page;
3966 void __page_frag_cache_drain(struct page *page, unsigned int count)
3968 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
3970 if (page_ref_sub_and_test(page, count)) {
3971 unsigned int order = compound_order(page);
3973 if (order == 0)
3974 free_hot_cold_page(page, false);
3975 else
3976 __free_pages_ok(page, order);
3979 EXPORT_SYMBOL(__page_frag_cache_drain);
3981 void *page_frag_alloc(struct page_frag_cache *nc,
3982 unsigned int fragsz, gfp_t gfp_mask)
3984 unsigned int size = PAGE_SIZE;
3985 struct page *page;
3986 int offset;
3988 if (unlikely(!nc->va)) {
3989 refill:
3990 page = __page_frag_cache_refill(nc, gfp_mask);
3991 if (!page)
3992 return NULL;
3994 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3995 /* if size can vary use size else just use PAGE_SIZE */
3996 size = nc->size;
3997 #endif
3998 /* Even if we own the page, we do not use atomic_set().
3999 * This would break get_page_unless_zero() users.
4001 page_ref_add(page, size - 1);
4003 /* reset page count bias and offset to start of new frag */
4004 nc->pfmemalloc = page_is_pfmemalloc(page);
4005 nc->pagecnt_bias = size;
4006 nc->offset = size;
4009 offset = nc->offset - fragsz;
4010 if (unlikely(offset < 0)) {
4011 page = virt_to_page(nc->va);
4013 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4014 goto refill;
4016 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4017 /* if size can vary use size else just use PAGE_SIZE */
4018 size = nc->size;
4019 #endif
4020 /* OK, page count is 0, we can safely set it */
4021 set_page_count(page, size);
4023 /* reset page count bias and offset to start of new frag */
4024 nc->pagecnt_bias = size;
4025 offset = size - fragsz;
4028 nc->pagecnt_bias--;
4029 nc->offset = offset;
4031 return nc->va + offset;
4033 EXPORT_SYMBOL(page_frag_alloc);
4036 * Frees a page fragment allocated out of either a compound or order 0 page.
4038 void page_frag_free(void *addr)
4040 struct page *page = virt_to_head_page(addr);
4042 if (unlikely(put_page_testzero(page)))
4043 __free_pages_ok(page, compound_order(page));
4045 EXPORT_SYMBOL(page_frag_free);
4047 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4048 size_t size)
4050 if (addr) {
4051 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4052 unsigned long used = addr + PAGE_ALIGN(size);
4054 split_page(virt_to_page((void *)addr), order);
4055 while (used < alloc_end) {
4056 free_page(used);
4057 used += PAGE_SIZE;
4060 return (void *)addr;
4064 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4065 * @size: the number of bytes to allocate
4066 * @gfp_mask: GFP flags for the allocation
4068 * This function is similar to alloc_pages(), except that it allocates the
4069 * minimum number of pages to satisfy the request. alloc_pages() can only
4070 * allocate memory in power-of-two pages.
4072 * This function is also limited by MAX_ORDER.
4074 * Memory allocated by this function must be released by free_pages_exact().
4076 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4078 unsigned int order = get_order(size);
4079 unsigned long addr;
4081 addr = __get_free_pages(gfp_mask, order);
4082 return make_alloc_exact(addr, order, size);
4084 EXPORT_SYMBOL(alloc_pages_exact);
4087 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4088 * pages on a node.
4089 * @nid: the preferred node ID where memory should be allocated
4090 * @size: the number of bytes to allocate
4091 * @gfp_mask: GFP flags for the allocation
4093 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4094 * back.
4096 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4098 unsigned int order = get_order(size);
4099 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4100 if (!p)
4101 return NULL;
4102 return make_alloc_exact((unsigned long)page_address(p), order, size);
4106 * free_pages_exact - release memory allocated via alloc_pages_exact()
4107 * @virt: the value returned by alloc_pages_exact.
4108 * @size: size of allocation, same value as passed to alloc_pages_exact().
4110 * Release the memory allocated by a previous call to alloc_pages_exact.
4112 void free_pages_exact(void *virt, size_t size)
4114 unsigned long addr = (unsigned long)virt;
4115 unsigned long end = addr + PAGE_ALIGN(size);
4117 while (addr < end) {
4118 free_page(addr);
4119 addr += PAGE_SIZE;
4122 EXPORT_SYMBOL(free_pages_exact);
4125 * nr_free_zone_pages - count number of pages beyond high watermark
4126 * @offset: The zone index of the highest zone
4128 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4129 * high watermark within all zones at or below a given zone index. For each
4130 * zone, the number of pages is calculated as:
4131 * managed_pages - high_pages
4133 static unsigned long nr_free_zone_pages(int offset)
4135 struct zoneref *z;
4136 struct zone *zone;
4138 /* Just pick one node, since fallback list is circular */
4139 unsigned long sum = 0;
4141 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4143 for_each_zone_zonelist(zone, z, zonelist, offset) {
4144 unsigned long size = zone->managed_pages;
4145 unsigned long high = high_wmark_pages(zone);
4146 if (size > high)
4147 sum += size - high;
4150 return sum;
4154 * nr_free_buffer_pages - count number of pages beyond high watermark
4156 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4157 * watermark within ZONE_DMA and ZONE_NORMAL.
4159 unsigned long nr_free_buffer_pages(void)
4161 return nr_free_zone_pages(gfp_zone(GFP_USER));
4163 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4166 * nr_free_pagecache_pages - count number of pages beyond high watermark
4168 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4169 * high watermark within all zones.
4171 unsigned long nr_free_pagecache_pages(void)
4173 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4176 static inline void show_node(struct zone *zone)
4178 if (IS_ENABLED(CONFIG_NUMA))
4179 printk("Node %d ", zone_to_nid(zone));
4182 long si_mem_available(void)
4184 long available;
4185 unsigned long pagecache;
4186 unsigned long wmark_low = 0;
4187 unsigned long pages[NR_LRU_LISTS];
4188 struct zone *zone;
4189 int lru;
4191 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4192 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4194 for_each_zone(zone)
4195 wmark_low += zone->watermark[WMARK_LOW];
4198 * Estimate the amount of memory available for userspace allocations,
4199 * without causing swapping.
4201 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4204 * Not all the page cache can be freed, otherwise the system will
4205 * start swapping. Assume at least half of the page cache, or the
4206 * low watermark worth of cache, needs to stay.
4208 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4209 pagecache -= min(pagecache / 2, wmark_low);
4210 available += pagecache;
4213 * Part of the reclaimable slab consists of items that are in use,
4214 * and cannot be freed. Cap this estimate at the low watermark.
4216 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4217 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4219 if (available < 0)
4220 available = 0;
4221 return available;
4223 EXPORT_SYMBOL_GPL(si_mem_available);
4225 void si_meminfo(struct sysinfo *val)
4227 val->totalram = totalram_pages;
4228 val->sharedram = global_node_page_state(NR_SHMEM);
4229 val->freeram = global_page_state(NR_FREE_PAGES);
4230 val->bufferram = nr_blockdev_pages();
4231 val->totalhigh = totalhigh_pages;
4232 val->freehigh = nr_free_highpages();
4233 val->mem_unit = PAGE_SIZE;
4236 EXPORT_SYMBOL(si_meminfo);
4238 #ifdef CONFIG_NUMA
4239 void si_meminfo_node(struct sysinfo *val, int nid)
4241 int zone_type; /* needs to be signed */
4242 unsigned long managed_pages = 0;
4243 unsigned long managed_highpages = 0;
4244 unsigned long free_highpages = 0;
4245 pg_data_t *pgdat = NODE_DATA(nid);
4247 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4248 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4249 val->totalram = managed_pages;
4250 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4251 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4252 #ifdef CONFIG_HIGHMEM
4253 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4254 struct zone *zone = &pgdat->node_zones[zone_type];
4256 if (is_highmem(zone)) {
4257 managed_highpages += zone->managed_pages;
4258 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4261 val->totalhigh = managed_highpages;
4262 val->freehigh = free_highpages;
4263 #else
4264 val->totalhigh = managed_highpages;
4265 val->freehigh = free_highpages;
4266 #endif
4267 val->mem_unit = PAGE_SIZE;
4269 #endif
4272 * Determine whether the node should be displayed or not, depending on whether
4273 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4275 bool skip_free_areas_node(unsigned int flags, int nid)
4277 bool ret = false;
4278 unsigned int cpuset_mems_cookie;
4280 if (!(flags & SHOW_MEM_FILTER_NODES))
4281 goto out;
4283 do {
4284 cpuset_mems_cookie = read_mems_allowed_begin();
4285 ret = !node_isset(nid, cpuset_current_mems_allowed);
4286 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4287 out:
4288 return ret;
4291 #define K(x) ((x) << (PAGE_SHIFT-10))
4293 static void show_migration_types(unsigned char type)
4295 static const char types[MIGRATE_TYPES] = {
4296 [MIGRATE_UNMOVABLE] = 'U',
4297 [MIGRATE_MOVABLE] = 'M',
4298 [MIGRATE_RECLAIMABLE] = 'E',
4299 [MIGRATE_HIGHATOMIC] = 'H',
4300 #ifdef CONFIG_CMA
4301 [MIGRATE_CMA] = 'C',
4302 #endif
4303 #ifdef CONFIG_MEMORY_ISOLATION
4304 [MIGRATE_ISOLATE] = 'I',
4305 #endif
4307 char tmp[MIGRATE_TYPES + 1];
4308 char *p = tmp;
4309 int i;
4311 for (i = 0; i < MIGRATE_TYPES; i++) {
4312 if (type & (1 << i))
4313 *p++ = types[i];
4316 *p = '\0';
4317 printk(KERN_CONT "(%s) ", tmp);
4321 * Show free area list (used inside shift_scroll-lock stuff)
4322 * We also calculate the percentage fragmentation. We do this by counting the
4323 * memory on each free list with the exception of the first item on the list.
4325 * Bits in @filter:
4326 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4327 * cpuset.
4329 void show_free_areas(unsigned int filter)
4331 unsigned long free_pcp = 0;
4332 int cpu;
4333 struct zone *zone;
4334 pg_data_t *pgdat;
4336 for_each_populated_zone(zone) {
4337 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4338 continue;
4340 for_each_online_cpu(cpu)
4341 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4344 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4345 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4346 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4347 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4348 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4349 " free:%lu free_pcp:%lu free_cma:%lu\n",
4350 global_node_page_state(NR_ACTIVE_ANON),
4351 global_node_page_state(NR_INACTIVE_ANON),
4352 global_node_page_state(NR_ISOLATED_ANON),
4353 global_node_page_state(NR_ACTIVE_FILE),
4354 global_node_page_state(NR_INACTIVE_FILE),
4355 global_node_page_state(NR_ISOLATED_FILE),
4356 global_node_page_state(NR_UNEVICTABLE),
4357 global_node_page_state(NR_FILE_DIRTY),
4358 global_node_page_state(NR_WRITEBACK),
4359 global_node_page_state(NR_UNSTABLE_NFS),
4360 global_page_state(NR_SLAB_RECLAIMABLE),
4361 global_page_state(NR_SLAB_UNRECLAIMABLE),
4362 global_node_page_state(NR_FILE_MAPPED),
4363 global_node_page_state(NR_SHMEM),
4364 global_page_state(NR_PAGETABLE),
4365 global_page_state(NR_BOUNCE),
4366 global_page_state(NR_FREE_PAGES),
4367 free_pcp,
4368 global_page_state(NR_FREE_CMA_PAGES));
4370 for_each_online_pgdat(pgdat) {
4371 printk("Node %d"
4372 " active_anon:%lukB"
4373 " inactive_anon:%lukB"
4374 " active_file:%lukB"
4375 " inactive_file:%lukB"
4376 " unevictable:%lukB"
4377 " isolated(anon):%lukB"
4378 " isolated(file):%lukB"
4379 " mapped:%lukB"
4380 " dirty:%lukB"
4381 " writeback:%lukB"
4382 " shmem:%lukB"
4383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4384 " shmem_thp: %lukB"
4385 " shmem_pmdmapped: %lukB"
4386 " anon_thp: %lukB"
4387 #endif
4388 " writeback_tmp:%lukB"
4389 " unstable:%lukB"
4390 " pages_scanned:%lu"
4391 " all_unreclaimable? %s"
4392 "\n",
4393 pgdat->node_id,
4394 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4395 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4396 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4397 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4398 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4399 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4400 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4401 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4402 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4403 K(node_page_state(pgdat, NR_WRITEBACK)),
4404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4405 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4406 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4407 * HPAGE_PMD_NR),
4408 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4409 #endif
4410 K(node_page_state(pgdat, NR_SHMEM)),
4411 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4412 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4413 node_page_state(pgdat, NR_PAGES_SCANNED),
4414 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4417 for_each_populated_zone(zone) {
4418 int i;
4420 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4421 continue;
4423 free_pcp = 0;
4424 for_each_online_cpu(cpu)
4425 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4427 show_node(zone);
4428 printk(KERN_CONT
4429 "%s"
4430 " free:%lukB"
4431 " min:%lukB"
4432 " low:%lukB"
4433 " high:%lukB"
4434 " active_anon:%lukB"
4435 " inactive_anon:%lukB"
4436 " active_file:%lukB"
4437 " inactive_file:%lukB"
4438 " unevictable:%lukB"
4439 " writepending:%lukB"
4440 " present:%lukB"
4441 " managed:%lukB"
4442 " mlocked:%lukB"
4443 " slab_reclaimable:%lukB"
4444 " slab_unreclaimable:%lukB"
4445 " kernel_stack:%lukB"
4446 " pagetables:%lukB"
4447 " bounce:%lukB"
4448 " free_pcp:%lukB"
4449 " local_pcp:%ukB"
4450 " free_cma:%lukB"
4451 "\n",
4452 zone->name,
4453 K(zone_page_state(zone, NR_FREE_PAGES)),
4454 K(min_wmark_pages(zone)),
4455 K(low_wmark_pages(zone)),
4456 K(high_wmark_pages(zone)),
4457 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4458 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4459 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4460 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4461 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4462 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4463 K(zone->present_pages),
4464 K(zone->managed_pages),
4465 K(zone_page_state(zone, NR_MLOCK)),
4466 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4467 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4468 zone_page_state(zone, NR_KERNEL_STACK_KB),
4469 K(zone_page_state(zone, NR_PAGETABLE)),
4470 K(zone_page_state(zone, NR_BOUNCE)),
4471 K(free_pcp),
4472 K(this_cpu_read(zone->pageset->pcp.count)),
4473 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4474 printk("lowmem_reserve[]:");
4475 for (i = 0; i < MAX_NR_ZONES; i++)
4476 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4477 printk(KERN_CONT "\n");
4480 for_each_populated_zone(zone) {
4481 unsigned int order;
4482 unsigned long nr[MAX_ORDER], flags, total = 0;
4483 unsigned char types[MAX_ORDER];
4485 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4486 continue;
4487 show_node(zone);
4488 printk(KERN_CONT "%s: ", zone->name);
4490 spin_lock_irqsave(&zone->lock, flags);
4491 for (order = 0; order < MAX_ORDER; order++) {
4492 struct free_area *area = &zone->free_area[order];
4493 int type;
4495 nr[order] = area->nr_free;
4496 total += nr[order] << order;
4498 types[order] = 0;
4499 for (type = 0; type < MIGRATE_TYPES; type++) {
4500 if (!list_empty(&area->free_list[type]))
4501 types[order] |= 1 << type;
4504 spin_unlock_irqrestore(&zone->lock, flags);
4505 for (order = 0; order < MAX_ORDER; order++) {
4506 printk(KERN_CONT "%lu*%lukB ",
4507 nr[order], K(1UL) << order);
4508 if (nr[order])
4509 show_migration_types(types[order]);
4511 printk(KERN_CONT "= %lukB\n", K(total));
4514 hugetlb_show_meminfo();
4516 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4518 show_swap_cache_info();
4521 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4523 zoneref->zone = zone;
4524 zoneref->zone_idx = zone_idx(zone);
4528 * Builds allocation fallback zone lists.
4530 * Add all populated zones of a node to the zonelist.
4532 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4533 int nr_zones)
4535 struct zone *zone;
4536 enum zone_type zone_type = MAX_NR_ZONES;
4538 do {
4539 zone_type--;
4540 zone = pgdat->node_zones + zone_type;
4541 if (managed_zone(zone)) {
4542 zoneref_set_zone(zone,
4543 &zonelist->_zonerefs[nr_zones++]);
4544 check_highest_zone(zone_type);
4546 } while (zone_type);
4548 return nr_zones;
4553 * zonelist_order:
4554 * 0 = automatic detection of better ordering.
4555 * 1 = order by ([node] distance, -zonetype)
4556 * 2 = order by (-zonetype, [node] distance)
4558 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4559 * the same zonelist. So only NUMA can configure this param.
4561 #define ZONELIST_ORDER_DEFAULT 0
4562 #define ZONELIST_ORDER_NODE 1
4563 #define ZONELIST_ORDER_ZONE 2
4565 /* zonelist order in the kernel.
4566 * set_zonelist_order() will set this to NODE or ZONE.
4568 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4569 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4572 #ifdef CONFIG_NUMA
4573 /* The value user specified ....changed by config */
4574 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4575 /* string for sysctl */
4576 #define NUMA_ZONELIST_ORDER_LEN 16
4577 char numa_zonelist_order[16] = "default";
4580 * interface for configure zonelist ordering.
4581 * command line option "numa_zonelist_order"
4582 * = "[dD]efault - default, automatic configuration.
4583 * = "[nN]ode - order by node locality, then by zone within node
4584 * = "[zZ]one - order by zone, then by locality within zone
4587 static int __parse_numa_zonelist_order(char *s)
4589 if (*s == 'd' || *s == 'D') {
4590 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4591 } else if (*s == 'n' || *s == 'N') {
4592 user_zonelist_order = ZONELIST_ORDER_NODE;
4593 } else if (*s == 'z' || *s == 'Z') {
4594 user_zonelist_order = ZONELIST_ORDER_ZONE;
4595 } else {
4596 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4597 return -EINVAL;
4599 return 0;
4602 static __init int setup_numa_zonelist_order(char *s)
4604 int ret;
4606 if (!s)
4607 return 0;
4609 ret = __parse_numa_zonelist_order(s);
4610 if (ret == 0)
4611 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4613 return ret;
4615 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4618 * sysctl handler for numa_zonelist_order
4620 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4621 void __user *buffer, size_t *length,
4622 loff_t *ppos)
4624 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4625 int ret;
4626 static DEFINE_MUTEX(zl_order_mutex);
4628 mutex_lock(&zl_order_mutex);
4629 if (write) {
4630 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4631 ret = -EINVAL;
4632 goto out;
4634 strcpy(saved_string, (char *)table->data);
4636 ret = proc_dostring(table, write, buffer, length, ppos);
4637 if (ret)
4638 goto out;
4639 if (write) {
4640 int oldval = user_zonelist_order;
4642 ret = __parse_numa_zonelist_order((char *)table->data);
4643 if (ret) {
4645 * bogus value. restore saved string
4647 strncpy((char *)table->data, saved_string,
4648 NUMA_ZONELIST_ORDER_LEN);
4649 user_zonelist_order = oldval;
4650 } else if (oldval != user_zonelist_order) {
4651 mutex_lock(&zonelists_mutex);
4652 build_all_zonelists(NULL, NULL);
4653 mutex_unlock(&zonelists_mutex);
4656 out:
4657 mutex_unlock(&zl_order_mutex);
4658 return ret;
4662 #define MAX_NODE_LOAD (nr_online_nodes)
4663 static int node_load[MAX_NUMNODES];
4666 * find_next_best_node - find the next node that should appear in a given node's fallback list
4667 * @node: node whose fallback list we're appending
4668 * @used_node_mask: nodemask_t of already used nodes
4670 * We use a number of factors to determine which is the next node that should
4671 * appear on a given node's fallback list. The node should not have appeared
4672 * already in @node's fallback list, and it should be the next closest node
4673 * according to the distance array (which contains arbitrary distance values
4674 * from each node to each node in the system), and should also prefer nodes
4675 * with no CPUs, since presumably they'll have very little allocation pressure
4676 * on them otherwise.
4677 * It returns -1 if no node is found.
4679 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4681 int n, val;
4682 int min_val = INT_MAX;
4683 int best_node = NUMA_NO_NODE;
4684 const struct cpumask *tmp = cpumask_of_node(0);
4686 /* Use the local node if we haven't already */
4687 if (!node_isset(node, *used_node_mask)) {
4688 node_set(node, *used_node_mask);
4689 return node;
4692 for_each_node_state(n, N_MEMORY) {
4694 /* Don't want a node to appear more than once */
4695 if (node_isset(n, *used_node_mask))
4696 continue;
4698 /* Use the distance array to find the distance */
4699 val = node_distance(node, n);
4701 /* Penalize nodes under us ("prefer the next node") */
4702 val += (n < node);
4704 /* Give preference to headless and unused nodes */
4705 tmp = cpumask_of_node(n);
4706 if (!cpumask_empty(tmp))
4707 val += PENALTY_FOR_NODE_WITH_CPUS;
4709 /* Slight preference for less loaded node */
4710 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4711 val += node_load[n];
4713 if (val < min_val) {
4714 min_val = val;
4715 best_node = n;
4719 if (best_node >= 0)
4720 node_set(best_node, *used_node_mask);
4722 return best_node;
4727 * Build zonelists ordered by node and zones within node.
4728 * This results in maximum locality--normal zone overflows into local
4729 * DMA zone, if any--but risks exhausting DMA zone.
4731 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4733 int j;
4734 struct zonelist *zonelist;
4736 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4737 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4739 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4740 zonelist->_zonerefs[j].zone = NULL;
4741 zonelist->_zonerefs[j].zone_idx = 0;
4745 * Build gfp_thisnode zonelists
4747 static void build_thisnode_zonelists(pg_data_t *pgdat)
4749 int j;
4750 struct zonelist *zonelist;
4752 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4753 j = build_zonelists_node(pgdat, zonelist, 0);
4754 zonelist->_zonerefs[j].zone = NULL;
4755 zonelist->_zonerefs[j].zone_idx = 0;
4759 * Build zonelists ordered by zone and nodes within zones.
4760 * This results in conserving DMA zone[s] until all Normal memory is
4761 * exhausted, but results in overflowing to remote node while memory
4762 * may still exist in local DMA zone.
4764 static int node_order[MAX_NUMNODES];
4766 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4768 int pos, j, node;
4769 int zone_type; /* needs to be signed */
4770 struct zone *z;
4771 struct zonelist *zonelist;
4773 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4774 pos = 0;
4775 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4776 for (j = 0; j < nr_nodes; j++) {
4777 node = node_order[j];
4778 z = &NODE_DATA(node)->node_zones[zone_type];
4779 if (managed_zone(z)) {
4780 zoneref_set_zone(z,
4781 &zonelist->_zonerefs[pos++]);
4782 check_highest_zone(zone_type);
4786 zonelist->_zonerefs[pos].zone = NULL;
4787 zonelist->_zonerefs[pos].zone_idx = 0;
4790 #if defined(CONFIG_64BIT)
4792 * Devices that require DMA32/DMA are relatively rare and do not justify a
4793 * penalty to every machine in case the specialised case applies. Default
4794 * to Node-ordering on 64-bit NUMA machines
4796 static int default_zonelist_order(void)
4798 return ZONELIST_ORDER_NODE;
4800 #else
4802 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4803 * by the kernel. If processes running on node 0 deplete the low memory zone
4804 * then reclaim will occur more frequency increasing stalls and potentially
4805 * be easier to OOM if a large percentage of the zone is under writeback or
4806 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4807 * Hence, default to zone ordering on 32-bit.
4809 static int default_zonelist_order(void)
4811 return ZONELIST_ORDER_ZONE;
4813 #endif /* CONFIG_64BIT */
4815 static void set_zonelist_order(void)
4817 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4818 current_zonelist_order = default_zonelist_order();
4819 else
4820 current_zonelist_order = user_zonelist_order;
4823 static void build_zonelists(pg_data_t *pgdat)
4825 int i, node, load;
4826 nodemask_t used_mask;
4827 int local_node, prev_node;
4828 struct zonelist *zonelist;
4829 unsigned int order = current_zonelist_order;
4831 /* initialize zonelists */
4832 for (i = 0; i < MAX_ZONELISTS; i++) {
4833 zonelist = pgdat->node_zonelists + i;
4834 zonelist->_zonerefs[0].zone = NULL;
4835 zonelist->_zonerefs[0].zone_idx = 0;
4838 /* NUMA-aware ordering of nodes */
4839 local_node = pgdat->node_id;
4840 load = nr_online_nodes;
4841 prev_node = local_node;
4842 nodes_clear(used_mask);
4844 memset(node_order, 0, sizeof(node_order));
4845 i = 0;
4847 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4849 * We don't want to pressure a particular node.
4850 * So adding penalty to the first node in same
4851 * distance group to make it round-robin.
4853 if (node_distance(local_node, node) !=
4854 node_distance(local_node, prev_node))
4855 node_load[node] = load;
4857 prev_node = node;
4858 load--;
4859 if (order == ZONELIST_ORDER_NODE)
4860 build_zonelists_in_node_order(pgdat, node);
4861 else
4862 node_order[i++] = node; /* remember order */
4865 if (order == ZONELIST_ORDER_ZONE) {
4866 /* calculate node order -- i.e., DMA last! */
4867 build_zonelists_in_zone_order(pgdat, i);
4870 build_thisnode_zonelists(pgdat);
4873 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4875 * Return node id of node used for "local" allocations.
4876 * I.e., first node id of first zone in arg node's generic zonelist.
4877 * Used for initializing percpu 'numa_mem', which is used primarily
4878 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4880 int local_memory_node(int node)
4882 struct zoneref *z;
4884 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4885 gfp_zone(GFP_KERNEL),
4886 NULL);
4887 return z->zone->node;
4889 #endif
4891 static void setup_min_unmapped_ratio(void);
4892 static void setup_min_slab_ratio(void);
4893 #else /* CONFIG_NUMA */
4895 static void set_zonelist_order(void)
4897 current_zonelist_order = ZONELIST_ORDER_ZONE;
4900 static void build_zonelists(pg_data_t *pgdat)
4902 int node, local_node;
4903 enum zone_type j;
4904 struct zonelist *zonelist;
4906 local_node = pgdat->node_id;
4908 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4909 j = build_zonelists_node(pgdat, zonelist, 0);
4912 * Now we build the zonelist so that it contains the zones
4913 * of all the other nodes.
4914 * We don't want to pressure a particular node, so when
4915 * building the zones for node N, we make sure that the
4916 * zones coming right after the local ones are those from
4917 * node N+1 (modulo N)
4919 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4920 if (!node_online(node))
4921 continue;
4922 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4924 for (node = 0; node < local_node; node++) {
4925 if (!node_online(node))
4926 continue;
4927 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4930 zonelist->_zonerefs[j].zone = NULL;
4931 zonelist->_zonerefs[j].zone_idx = 0;
4934 #endif /* CONFIG_NUMA */
4937 * Boot pageset table. One per cpu which is going to be used for all
4938 * zones and all nodes. The parameters will be set in such a way
4939 * that an item put on a list will immediately be handed over to
4940 * the buddy list. This is safe since pageset manipulation is done
4941 * with interrupts disabled.
4943 * The boot_pagesets must be kept even after bootup is complete for
4944 * unused processors and/or zones. They do play a role for bootstrapping
4945 * hotplugged processors.
4947 * zoneinfo_show() and maybe other functions do
4948 * not check if the processor is online before following the pageset pointer.
4949 * Other parts of the kernel may not check if the zone is available.
4951 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4952 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4953 static void setup_zone_pageset(struct zone *zone);
4956 * Global mutex to protect against size modification of zonelists
4957 * as well as to serialize pageset setup for the new populated zone.
4959 DEFINE_MUTEX(zonelists_mutex);
4961 /* return values int ....just for stop_machine() */
4962 static int __build_all_zonelists(void *data)
4964 int nid;
4965 int cpu;
4966 pg_data_t *self = data;
4968 #ifdef CONFIG_NUMA
4969 memset(node_load, 0, sizeof(node_load));
4970 #endif
4972 if (self && !node_online(self->node_id)) {
4973 build_zonelists(self);
4976 for_each_online_node(nid) {
4977 pg_data_t *pgdat = NODE_DATA(nid);
4979 build_zonelists(pgdat);
4983 * Initialize the boot_pagesets that are going to be used
4984 * for bootstrapping processors. The real pagesets for
4985 * each zone will be allocated later when the per cpu
4986 * allocator is available.
4988 * boot_pagesets are used also for bootstrapping offline
4989 * cpus if the system is already booted because the pagesets
4990 * are needed to initialize allocators on a specific cpu too.
4991 * F.e. the percpu allocator needs the page allocator which
4992 * needs the percpu allocator in order to allocate its pagesets
4993 * (a chicken-egg dilemma).
4995 for_each_possible_cpu(cpu) {
4996 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4998 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5000 * We now know the "local memory node" for each node--
5001 * i.e., the node of the first zone in the generic zonelist.
5002 * Set up numa_mem percpu variable for on-line cpus. During
5003 * boot, only the boot cpu should be on-line; we'll init the
5004 * secondary cpus' numa_mem as they come on-line. During
5005 * node/memory hotplug, we'll fixup all on-line cpus.
5007 if (cpu_online(cpu))
5008 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5009 #endif
5012 return 0;
5015 static noinline void __init
5016 build_all_zonelists_init(void)
5018 __build_all_zonelists(NULL);
5019 mminit_verify_zonelist();
5020 cpuset_init_current_mems_allowed();
5024 * Called with zonelists_mutex held always
5025 * unless system_state == SYSTEM_BOOTING.
5027 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5028 * [we're only called with non-NULL zone through __meminit paths] and
5029 * (2) call of __init annotated helper build_all_zonelists_init
5030 * [protected by SYSTEM_BOOTING].
5032 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5034 set_zonelist_order();
5036 if (system_state == SYSTEM_BOOTING) {
5037 build_all_zonelists_init();
5038 } else {
5039 #ifdef CONFIG_MEMORY_HOTPLUG
5040 if (zone)
5041 setup_zone_pageset(zone);
5042 #endif
5043 /* we have to stop all cpus to guarantee there is no user
5044 of zonelist */
5045 stop_machine(__build_all_zonelists, pgdat, NULL);
5046 /* cpuset refresh routine should be here */
5048 vm_total_pages = nr_free_pagecache_pages();
5050 * Disable grouping by mobility if the number of pages in the
5051 * system is too low to allow the mechanism to work. It would be
5052 * more accurate, but expensive to check per-zone. This check is
5053 * made on memory-hotadd so a system can start with mobility
5054 * disabled and enable it later
5056 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5057 page_group_by_mobility_disabled = 1;
5058 else
5059 page_group_by_mobility_disabled = 0;
5061 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5062 nr_online_nodes,
5063 zonelist_order_name[current_zonelist_order],
5064 page_group_by_mobility_disabled ? "off" : "on",
5065 vm_total_pages);
5066 #ifdef CONFIG_NUMA
5067 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5068 #endif
5072 * Initially all pages are reserved - free ones are freed
5073 * up by free_all_bootmem() once the early boot process is
5074 * done. Non-atomic initialization, single-pass.
5076 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5077 unsigned long start_pfn, enum memmap_context context)
5079 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5080 unsigned long end_pfn = start_pfn + size;
5081 pg_data_t *pgdat = NODE_DATA(nid);
5082 unsigned long pfn;
5083 unsigned long nr_initialised = 0;
5084 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5085 struct memblock_region *r = NULL, *tmp;
5086 #endif
5088 if (highest_memmap_pfn < end_pfn - 1)
5089 highest_memmap_pfn = end_pfn - 1;
5092 * Honor reservation requested by the driver for this ZONE_DEVICE
5093 * memory
5095 if (altmap && start_pfn == altmap->base_pfn)
5096 start_pfn += altmap->reserve;
5098 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5100 * There can be holes in boot-time mem_map[]s handed to this
5101 * function. They do not exist on hotplugged memory.
5103 if (context != MEMMAP_EARLY)
5104 goto not_early;
5106 if (!early_pfn_valid(pfn))
5107 continue;
5108 if (!early_pfn_in_nid(pfn, nid))
5109 continue;
5110 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5111 break;
5113 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5115 * Check given memblock attribute by firmware which can affect
5116 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5117 * mirrored, it's an overlapped memmap init. skip it.
5119 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5120 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5121 for_each_memblock(memory, tmp)
5122 if (pfn < memblock_region_memory_end_pfn(tmp))
5123 break;
5124 r = tmp;
5126 if (pfn >= memblock_region_memory_base_pfn(r) &&
5127 memblock_is_mirror(r)) {
5128 /* already initialized as NORMAL */
5129 pfn = memblock_region_memory_end_pfn(r);
5130 continue;
5133 #endif
5135 not_early:
5137 * Mark the block movable so that blocks are reserved for
5138 * movable at startup. This will force kernel allocations
5139 * to reserve their blocks rather than leaking throughout
5140 * the address space during boot when many long-lived
5141 * kernel allocations are made.
5143 * bitmap is created for zone's valid pfn range. but memmap
5144 * can be created for invalid pages (for alignment)
5145 * check here not to call set_pageblock_migratetype() against
5146 * pfn out of zone.
5148 if (!(pfn & (pageblock_nr_pages - 1))) {
5149 struct page *page = pfn_to_page(pfn);
5151 __init_single_page(page, pfn, zone, nid);
5152 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5153 } else {
5154 __init_single_pfn(pfn, zone, nid);
5159 static void __meminit zone_init_free_lists(struct zone *zone)
5161 unsigned int order, t;
5162 for_each_migratetype_order(order, t) {
5163 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5164 zone->free_area[order].nr_free = 0;
5168 #ifndef __HAVE_ARCH_MEMMAP_INIT
5169 #define memmap_init(size, nid, zone, start_pfn) \
5170 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5171 #endif
5173 static int zone_batchsize(struct zone *zone)
5175 #ifdef CONFIG_MMU
5176 int batch;
5179 * The per-cpu-pages pools are set to around 1000th of the
5180 * size of the zone. But no more than 1/2 of a meg.
5182 * OK, so we don't know how big the cache is. So guess.
5184 batch = zone->managed_pages / 1024;
5185 if (batch * PAGE_SIZE > 512 * 1024)
5186 batch = (512 * 1024) / PAGE_SIZE;
5187 batch /= 4; /* We effectively *= 4 below */
5188 if (batch < 1)
5189 batch = 1;
5192 * Clamp the batch to a 2^n - 1 value. Having a power
5193 * of 2 value was found to be more likely to have
5194 * suboptimal cache aliasing properties in some cases.
5196 * For example if 2 tasks are alternately allocating
5197 * batches of pages, one task can end up with a lot
5198 * of pages of one half of the possible page colors
5199 * and the other with pages of the other colors.
5201 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5203 return batch;
5205 #else
5206 /* The deferral and batching of frees should be suppressed under NOMMU
5207 * conditions.
5209 * The problem is that NOMMU needs to be able to allocate large chunks
5210 * of contiguous memory as there's no hardware page translation to
5211 * assemble apparent contiguous memory from discontiguous pages.
5213 * Queueing large contiguous runs of pages for batching, however,
5214 * causes the pages to actually be freed in smaller chunks. As there
5215 * can be a significant delay between the individual batches being
5216 * recycled, this leads to the once large chunks of space being
5217 * fragmented and becoming unavailable for high-order allocations.
5219 return 0;
5220 #endif
5224 * pcp->high and pcp->batch values are related and dependent on one another:
5225 * ->batch must never be higher then ->high.
5226 * The following function updates them in a safe manner without read side
5227 * locking.
5229 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5230 * those fields changing asynchronously (acording the the above rule).
5232 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5233 * outside of boot time (or some other assurance that no concurrent updaters
5234 * exist).
5236 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5237 unsigned long batch)
5239 /* start with a fail safe value for batch */
5240 pcp->batch = 1;
5241 smp_wmb();
5243 /* Update high, then batch, in order */
5244 pcp->high = high;
5245 smp_wmb();
5247 pcp->batch = batch;
5250 /* a companion to pageset_set_high() */
5251 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5253 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5256 static void pageset_init(struct per_cpu_pageset *p)
5258 struct per_cpu_pages *pcp;
5259 int migratetype;
5261 memset(p, 0, sizeof(*p));
5263 pcp = &p->pcp;
5264 pcp->count = 0;
5265 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5266 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5269 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5271 pageset_init(p);
5272 pageset_set_batch(p, batch);
5276 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5277 * to the value high for the pageset p.
5279 static void pageset_set_high(struct per_cpu_pageset *p,
5280 unsigned long high)
5282 unsigned long batch = max(1UL, high / 4);
5283 if ((high / 4) > (PAGE_SHIFT * 8))
5284 batch = PAGE_SHIFT * 8;
5286 pageset_update(&p->pcp, high, batch);
5289 static void pageset_set_high_and_batch(struct zone *zone,
5290 struct per_cpu_pageset *pcp)
5292 if (percpu_pagelist_fraction)
5293 pageset_set_high(pcp,
5294 (zone->managed_pages /
5295 percpu_pagelist_fraction));
5296 else
5297 pageset_set_batch(pcp, zone_batchsize(zone));
5300 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5302 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5304 pageset_init(pcp);
5305 pageset_set_high_and_batch(zone, pcp);
5308 static void __meminit setup_zone_pageset(struct zone *zone)
5310 int cpu;
5311 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5312 for_each_possible_cpu(cpu)
5313 zone_pageset_init(zone, cpu);
5317 * Allocate per cpu pagesets and initialize them.
5318 * Before this call only boot pagesets were available.
5320 void __init setup_per_cpu_pageset(void)
5322 struct pglist_data *pgdat;
5323 struct zone *zone;
5325 for_each_populated_zone(zone)
5326 setup_zone_pageset(zone);
5328 for_each_online_pgdat(pgdat)
5329 pgdat->per_cpu_nodestats =
5330 alloc_percpu(struct per_cpu_nodestat);
5333 static __meminit void zone_pcp_init(struct zone *zone)
5336 * per cpu subsystem is not up at this point. The following code
5337 * relies on the ability of the linker to provide the
5338 * offset of a (static) per cpu variable into the per cpu area.
5340 zone->pageset = &boot_pageset;
5342 if (populated_zone(zone))
5343 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5344 zone->name, zone->present_pages,
5345 zone_batchsize(zone));
5348 int __meminit init_currently_empty_zone(struct zone *zone,
5349 unsigned long zone_start_pfn,
5350 unsigned long size)
5352 struct pglist_data *pgdat = zone->zone_pgdat;
5354 pgdat->nr_zones = zone_idx(zone) + 1;
5356 zone->zone_start_pfn = zone_start_pfn;
5358 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5359 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5360 pgdat->node_id,
5361 (unsigned long)zone_idx(zone),
5362 zone_start_pfn, (zone_start_pfn + size));
5364 zone_init_free_lists(zone);
5365 zone->initialized = 1;
5367 return 0;
5370 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5371 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5374 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5376 int __meminit __early_pfn_to_nid(unsigned long pfn,
5377 struct mminit_pfnnid_cache *state)
5379 unsigned long start_pfn, end_pfn;
5380 int nid;
5382 if (state->last_start <= pfn && pfn < state->last_end)
5383 return state->last_nid;
5385 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5386 if (nid != -1) {
5387 state->last_start = start_pfn;
5388 state->last_end = end_pfn;
5389 state->last_nid = nid;
5392 return nid;
5394 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5397 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5398 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5399 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5401 * If an architecture guarantees that all ranges registered contain no holes
5402 * and may be freed, this this function may be used instead of calling
5403 * memblock_free_early_nid() manually.
5405 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5407 unsigned long start_pfn, end_pfn;
5408 int i, this_nid;
5410 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5411 start_pfn = min(start_pfn, max_low_pfn);
5412 end_pfn = min(end_pfn, max_low_pfn);
5414 if (start_pfn < end_pfn)
5415 memblock_free_early_nid(PFN_PHYS(start_pfn),
5416 (end_pfn - start_pfn) << PAGE_SHIFT,
5417 this_nid);
5422 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5423 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5425 * If an architecture guarantees that all ranges registered contain no holes and may
5426 * be freed, this function may be used instead of calling memory_present() manually.
5428 void __init sparse_memory_present_with_active_regions(int nid)
5430 unsigned long start_pfn, end_pfn;
5431 int i, this_nid;
5433 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5434 memory_present(this_nid, start_pfn, end_pfn);
5438 * get_pfn_range_for_nid - Return the start and end page frames for a node
5439 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5440 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5441 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5443 * It returns the start and end page frame of a node based on information
5444 * provided by memblock_set_node(). If called for a node
5445 * with no available memory, a warning is printed and the start and end
5446 * PFNs will be 0.
5448 void __meminit get_pfn_range_for_nid(unsigned int nid,
5449 unsigned long *start_pfn, unsigned long *end_pfn)
5451 unsigned long this_start_pfn, this_end_pfn;
5452 int i;
5454 *start_pfn = -1UL;
5455 *end_pfn = 0;
5457 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5458 *start_pfn = min(*start_pfn, this_start_pfn);
5459 *end_pfn = max(*end_pfn, this_end_pfn);
5462 if (*start_pfn == -1UL)
5463 *start_pfn = 0;
5467 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5468 * assumption is made that zones within a node are ordered in monotonic
5469 * increasing memory addresses so that the "highest" populated zone is used
5471 static void __init find_usable_zone_for_movable(void)
5473 int zone_index;
5474 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5475 if (zone_index == ZONE_MOVABLE)
5476 continue;
5478 if (arch_zone_highest_possible_pfn[zone_index] >
5479 arch_zone_lowest_possible_pfn[zone_index])
5480 break;
5483 VM_BUG_ON(zone_index == -1);
5484 movable_zone = zone_index;
5488 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5489 * because it is sized independent of architecture. Unlike the other zones,
5490 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5491 * in each node depending on the size of each node and how evenly kernelcore
5492 * is distributed. This helper function adjusts the zone ranges
5493 * provided by the architecture for a given node by using the end of the
5494 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5495 * zones within a node are in order of monotonic increases memory addresses
5497 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5498 unsigned long zone_type,
5499 unsigned long node_start_pfn,
5500 unsigned long node_end_pfn,
5501 unsigned long *zone_start_pfn,
5502 unsigned long *zone_end_pfn)
5504 /* Only adjust if ZONE_MOVABLE is on this node */
5505 if (zone_movable_pfn[nid]) {
5506 /* Size ZONE_MOVABLE */
5507 if (zone_type == ZONE_MOVABLE) {
5508 *zone_start_pfn = zone_movable_pfn[nid];
5509 *zone_end_pfn = min(node_end_pfn,
5510 arch_zone_highest_possible_pfn[movable_zone]);
5512 /* Adjust for ZONE_MOVABLE starting within this range */
5513 } else if (!mirrored_kernelcore &&
5514 *zone_start_pfn < zone_movable_pfn[nid] &&
5515 *zone_end_pfn > zone_movable_pfn[nid]) {
5516 *zone_end_pfn = zone_movable_pfn[nid];
5518 /* Check if this whole range is within ZONE_MOVABLE */
5519 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5520 *zone_start_pfn = *zone_end_pfn;
5525 * Return the number of pages a zone spans in a node, including holes
5526 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5528 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5529 unsigned long zone_type,
5530 unsigned long node_start_pfn,
5531 unsigned long node_end_pfn,
5532 unsigned long *zone_start_pfn,
5533 unsigned long *zone_end_pfn,
5534 unsigned long *ignored)
5536 /* When hotadd a new node from cpu_up(), the node should be empty */
5537 if (!node_start_pfn && !node_end_pfn)
5538 return 0;
5540 /* Get the start and end of the zone */
5541 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5542 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5543 adjust_zone_range_for_zone_movable(nid, zone_type,
5544 node_start_pfn, node_end_pfn,
5545 zone_start_pfn, zone_end_pfn);
5547 /* Check that this node has pages within the zone's required range */
5548 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5549 return 0;
5551 /* Move the zone boundaries inside the node if necessary */
5552 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5553 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5555 /* Return the spanned pages */
5556 return *zone_end_pfn - *zone_start_pfn;
5560 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5561 * then all holes in the requested range will be accounted for.
5563 unsigned long __meminit __absent_pages_in_range(int nid,
5564 unsigned long range_start_pfn,
5565 unsigned long range_end_pfn)
5567 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5568 unsigned long start_pfn, end_pfn;
5569 int i;
5571 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5572 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5573 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5574 nr_absent -= end_pfn - start_pfn;
5576 return nr_absent;
5580 * absent_pages_in_range - Return number of page frames in holes within a range
5581 * @start_pfn: The start PFN to start searching for holes
5582 * @end_pfn: The end PFN to stop searching for holes
5584 * It returns the number of pages frames in memory holes within a range.
5586 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5587 unsigned long end_pfn)
5589 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5592 /* Return the number of page frames in holes in a zone on a node */
5593 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5594 unsigned long zone_type,
5595 unsigned long node_start_pfn,
5596 unsigned long node_end_pfn,
5597 unsigned long *ignored)
5599 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5600 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5601 unsigned long zone_start_pfn, zone_end_pfn;
5602 unsigned long nr_absent;
5604 /* When hotadd a new node from cpu_up(), the node should be empty */
5605 if (!node_start_pfn && !node_end_pfn)
5606 return 0;
5608 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5609 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5611 adjust_zone_range_for_zone_movable(nid, zone_type,
5612 node_start_pfn, node_end_pfn,
5613 &zone_start_pfn, &zone_end_pfn);
5614 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5617 * ZONE_MOVABLE handling.
5618 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5619 * and vice versa.
5621 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5622 unsigned long start_pfn, end_pfn;
5623 struct memblock_region *r;
5625 for_each_memblock(memory, r) {
5626 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5627 zone_start_pfn, zone_end_pfn);
5628 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5629 zone_start_pfn, zone_end_pfn);
5631 if (zone_type == ZONE_MOVABLE &&
5632 memblock_is_mirror(r))
5633 nr_absent += end_pfn - start_pfn;
5635 if (zone_type == ZONE_NORMAL &&
5636 !memblock_is_mirror(r))
5637 nr_absent += end_pfn - start_pfn;
5641 return nr_absent;
5644 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5645 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5646 unsigned long zone_type,
5647 unsigned long node_start_pfn,
5648 unsigned long node_end_pfn,
5649 unsigned long *zone_start_pfn,
5650 unsigned long *zone_end_pfn,
5651 unsigned long *zones_size)
5653 unsigned int zone;
5655 *zone_start_pfn = node_start_pfn;
5656 for (zone = 0; zone < zone_type; zone++)
5657 *zone_start_pfn += zones_size[zone];
5659 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5661 return zones_size[zone_type];
5664 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5665 unsigned long zone_type,
5666 unsigned long node_start_pfn,
5667 unsigned long node_end_pfn,
5668 unsigned long *zholes_size)
5670 if (!zholes_size)
5671 return 0;
5673 return zholes_size[zone_type];
5676 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5678 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5679 unsigned long node_start_pfn,
5680 unsigned long node_end_pfn,
5681 unsigned long *zones_size,
5682 unsigned long *zholes_size)
5684 unsigned long realtotalpages = 0, totalpages = 0;
5685 enum zone_type i;
5687 for (i = 0; i < MAX_NR_ZONES; i++) {
5688 struct zone *zone = pgdat->node_zones + i;
5689 unsigned long zone_start_pfn, zone_end_pfn;
5690 unsigned long size, real_size;
5692 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5693 node_start_pfn,
5694 node_end_pfn,
5695 &zone_start_pfn,
5696 &zone_end_pfn,
5697 zones_size);
5698 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5699 node_start_pfn, node_end_pfn,
5700 zholes_size);
5701 if (size)
5702 zone->zone_start_pfn = zone_start_pfn;
5703 else
5704 zone->zone_start_pfn = 0;
5705 zone->spanned_pages = size;
5706 zone->present_pages = real_size;
5708 totalpages += size;
5709 realtotalpages += real_size;
5712 pgdat->node_spanned_pages = totalpages;
5713 pgdat->node_present_pages = realtotalpages;
5714 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5715 realtotalpages);
5718 #ifndef CONFIG_SPARSEMEM
5720 * Calculate the size of the zone->blockflags rounded to an unsigned long
5721 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5722 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5723 * round what is now in bits to nearest long in bits, then return it in
5724 * bytes.
5726 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5728 unsigned long usemapsize;
5730 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5731 usemapsize = roundup(zonesize, pageblock_nr_pages);
5732 usemapsize = usemapsize >> pageblock_order;
5733 usemapsize *= NR_PAGEBLOCK_BITS;
5734 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5736 return usemapsize / 8;
5739 static void __init setup_usemap(struct pglist_data *pgdat,
5740 struct zone *zone,
5741 unsigned long zone_start_pfn,
5742 unsigned long zonesize)
5744 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5745 zone->pageblock_flags = NULL;
5746 if (usemapsize)
5747 zone->pageblock_flags =
5748 memblock_virt_alloc_node_nopanic(usemapsize,
5749 pgdat->node_id);
5751 #else
5752 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5753 unsigned long zone_start_pfn, unsigned long zonesize) {}
5754 #endif /* CONFIG_SPARSEMEM */
5756 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5758 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5759 void __paginginit set_pageblock_order(void)
5761 unsigned int order;
5763 /* Check that pageblock_nr_pages has not already been setup */
5764 if (pageblock_order)
5765 return;
5767 if (HPAGE_SHIFT > PAGE_SHIFT)
5768 order = HUGETLB_PAGE_ORDER;
5769 else
5770 order = MAX_ORDER - 1;
5773 * Assume the largest contiguous order of interest is a huge page.
5774 * This value may be variable depending on boot parameters on IA64 and
5775 * powerpc.
5777 pageblock_order = order;
5779 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5782 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5783 * is unused as pageblock_order is set at compile-time. See
5784 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5785 * the kernel config
5787 void __paginginit set_pageblock_order(void)
5791 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5793 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5794 unsigned long present_pages)
5796 unsigned long pages = spanned_pages;
5799 * Provide a more accurate estimation if there are holes within
5800 * the zone and SPARSEMEM is in use. If there are holes within the
5801 * zone, each populated memory region may cost us one or two extra
5802 * memmap pages due to alignment because memmap pages for each
5803 * populated regions may not naturally algined on page boundary.
5804 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5806 if (spanned_pages > present_pages + (present_pages >> 4) &&
5807 IS_ENABLED(CONFIG_SPARSEMEM))
5808 pages = present_pages;
5810 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5814 * Set up the zone data structures:
5815 * - mark all pages reserved
5816 * - mark all memory queues empty
5817 * - clear the memory bitmaps
5819 * NOTE: pgdat should get zeroed by caller.
5821 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5823 enum zone_type j;
5824 int nid = pgdat->node_id;
5825 int ret;
5827 pgdat_resize_init(pgdat);
5828 #ifdef CONFIG_NUMA_BALANCING
5829 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5830 pgdat->numabalancing_migrate_nr_pages = 0;
5831 pgdat->numabalancing_migrate_next_window = jiffies;
5832 #endif
5833 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5834 spin_lock_init(&pgdat->split_queue_lock);
5835 INIT_LIST_HEAD(&pgdat->split_queue);
5836 pgdat->split_queue_len = 0;
5837 #endif
5838 init_waitqueue_head(&pgdat->kswapd_wait);
5839 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5840 #ifdef CONFIG_COMPACTION
5841 init_waitqueue_head(&pgdat->kcompactd_wait);
5842 #endif
5843 pgdat_page_ext_init(pgdat);
5844 spin_lock_init(&pgdat->lru_lock);
5845 lruvec_init(node_lruvec(pgdat));
5847 for (j = 0; j < MAX_NR_ZONES; j++) {
5848 struct zone *zone = pgdat->node_zones + j;
5849 unsigned long size, realsize, freesize, memmap_pages;
5850 unsigned long zone_start_pfn = zone->zone_start_pfn;
5852 size = zone->spanned_pages;
5853 realsize = freesize = zone->present_pages;
5856 * Adjust freesize so that it accounts for how much memory
5857 * is used by this zone for memmap. This affects the watermark
5858 * and per-cpu initialisations
5860 memmap_pages = calc_memmap_size(size, realsize);
5861 if (!is_highmem_idx(j)) {
5862 if (freesize >= memmap_pages) {
5863 freesize -= memmap_pages;
5864 if (memmap_pages)
5865 printk(KERN_DEBUG
5866 " %s zone: %lu pages used for memmap\n",
5867 zone_names[j], memmap_pages);
5868 } else
5869 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5870 zone_names[j], memmap_pages, freesize);
5873 /* Account for reserved pages */
5874 if (j == 0 && freesize > dma_reserve) {
5875 freesize -= dma_reserve;
5876 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5877 zone_names[0], dma_reserve);
5880 if (!is_highmem_idx(j))
5881 nr_kernel_pages += freesize;
5882 /* Charge for highmem memmap if there are enough kernel pages */
5883 else if (nr_kernel_pages > memmap_pages * 2)
5884 nr_kernel_pages -= memmap_pages;
5885 nr_all_pages += freesize;
5888 * Set an approximate value for lowmem here, it will be adjusted
5889 * when the bootmem allocator frees pages into the buddy system.
5890 * And all highmem pages will be managed by the buddy system.
5892 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5893 #ifdef CONFIG_NUMA
5894 zone->node = nid;
5895 #endif
5896 zone->name = zone_names[j];
5897 zone->zone_pgdat = pgdat;
5898 spin_lock_init(&zone->lock);
5899 zone_seqlock_init(zone);
5900 zone_pcp_init(zone);
5902 if (!size)
5903 continue;
5905 set_pageblock_order();
5906 setup_usemap(pgdat, zone, zone_start_pfn, size);
5907 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5908 BUG_ON(ret);
5909 memmap_init(size, nid, j, zone_start_pfn);
5913 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5915 unsigned long __maybe_unused start = 0;
5916 unsigned long __maybe_unused offset = 0;
5918 /* Skip empty nodes */
5919 if (!pgdat->node_spanned_pages)
5920 return;
5922 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5923 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5924 offset = pgdat->node_start_pfn - start;
5925 /* ia64 gets its own node_mem_map, before this, without bootmem */
5926 if (!pgdat->node_mem_map) {
5927 unsigned long size, end;
5928 struct page *map;
5931 * The zone's endpoints aren't required to be MAX_ORDER
5932 * aligned but the node_mem_map endpoints must be in order
5933 * for the buddy allocator to function correctly.
5935 end = pgdat_end_pfn(pgdat);
5936 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5937 size = (end - start) * sizeof(struct page);
5938 map = alloc_remap(pgdat->node_id, size);
5939 if (!map)
5940 map = memblock_virt_alloc_node_nopanic(size,
5941 pgdat->node_id);
5942 pgdat->node_mem_map = map + offset;
5944 #ifndef CONFIG_NEED_MULTIPLE_NODES
5946 * With no DISCONTIG, the global mem_map is just set as node 0's
5948 if (pgdat == NODE_DATA(0)) {
5949 mem_map = NODE_DATA(0)->node_mem_map;
5950 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5951 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5952 mem_map -= offset;
5953 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5955 #endif
5956 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5959 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5960 unsigned long node_start_pfn, unsigned long *zholes_size)
5962 pg_data_t *pgdat = NODE_DATA(nid);
5963 unsigned long start_pfn = 0;
5964 unsigned long end_pfn = 0;
5966 /* pg_data_t should be reset to zero when it's allocated */
5967 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5969 reset_deferred_meminit(pgdat);
5970 pgdat->node_id = nid;
5971 pgdat->node_start_pfn = node_start_pfn;
5972 pgdat->per_cpu_nodestats = NULL;
5973 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5974 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5975 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5976 (u64)start_pfn << PAGE_SHIFT,
5977 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5978 #else
5979 start_pfn = node_start_pfn;
5980 #endif
5981 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5982 zones_size, zholes_size);
5984 alloc_node_mem_map(pgdat);
5985 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5986 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5987 nid, (unsigned long)pgdat,
5988 (unsigned long)pgdat->node_mem_map);
5989 #endif
5991 free_area_init_core(pgdat);
5994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5996 #if MAX_NUMNODES > 1
5998 * Figure out the number of possible node ids.
6000 void __init setup_nr_node_ids(void)
6002 unsigned int highest;
6004 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6005 nr_node_ids = highest + 1;
6007 #endif
6010 * node_map_pfn_alignment - determine the maximum internode alignment
6012 * This function should be called after node map is populated and sorted.
6013 * It calculates the maximum power of two alignment which can distinguish
6014 * all the nodes.
6016 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6017 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6018 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6019 * shifted, 1GiB is enough and this function will indicate so.
6021 * This is used to test whether pfn -> nid mapping of the chosen memory
6022 * model has fine enough granularity to avoid incorrect mapping for the
6023 * populated node map.
6025 * Returns the determined alignment in pfn's. 0 if there is no alignment
6026 * requirement (single node).
6028 unsigned long __init node_map_pfn_alignment(void)
6030 unsigned long accl_mask = 0, last_end = 0;
6031 unsigned long start, end, mask;
6032 int last_nid = -1;
6033 int i, nid;
6035 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6036 if (!start || last_nid < 0 || last_nid == nid) {
6037 last_nid = nid;
6038 last_end = end;
6039 continue;
6043 * Start with a mask granular enough to pin-point to the
6044 * start pfn and tick off bits one-by-one until it becomes
6045 * too coarse to separate the current node from the last.
6047 mask = ~((1 << __ffs(start)) - 1);
6048 while (mask && last_end <= (start & (mask << 1)))
6049 mask <<= 1;
6051 /* accumulate all internode masks */
6052 accl_mask |= mask;
6055 /* convert mask to number of pages */
6056 return ~accl_mask + 1;
6059 /* Find the lowest pfn for a node */
6060 static unsigned long __init find_min_pfn_for_node(int nid)
6062 unsigned long min_pfn = ULONG_MAX;
6063 unsigned long start_pfn;
6064 int i;
6066 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6067 min_pfn = min(min_pfn, start_pfn);
6069 if (min_pfn == ULONG_MAX) {
6070 pr_warn("Could not find start_pfn for node %d\n", nid);
6071 return 0;
6074 return min_pfn;
6078 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6080 * It returns the minimum PFN based on information provided via
6081 * memblock_set_node().
6083 unsigned long __init find_min_pfn_with_active_regions(void)
6085 return find_min_pfn_for_node(MAX_NUMNODES);
6089 * early_calculate_totalpages()
6090 * Sum pages in active regions for movable zone.
6091 * Populate N_MEMORY for calculating usable_nodes.
6093 static unsigned long __init early_calculate_totalpages(void)
6095 unsigned long totalpages = 0;
6096 unsigned long start_pfn, end_pfn;
6097 int i, nid;
6099 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6100 unsigned long pages = end_pfn - start_pfn;
6102 totalpages += pages;
6103 if (pages)
6104 node_set_state(nid, N_MEMORY);
6106 return totalpages;
6110 * Find the PFN the Movable zone begins in each node. Kernel memory
6111 * is spread evenly between nodes as long as the nodes have enough
6112 * memory. When they don't, some nodes will have more kernelcore than
6113 * others
6115 static void __init find_zone_movable_pfns_for_nodes(void)
6117 int i, nid;
6118 unsigned long usable_startpfn;
6119 unsigned long kernelcore_node, kernelcore_remaining;
6120 /* save the state before borrow the nodemask */
6121 nodemask_t saved_node_state = node_states[N_MEMORY];
6122 unsigned long totalpages = early_calculate_totalpages();
6123 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6124 struct memblock_region *r;
6126 /* Need to find movable_zone earlier when movable_node is specified. */
6127 find_usable_zone_for_movable();
6130 * If movable_node is specified, ignore kernelcore and movablecore
6131 * options.
6133 if (movable_node_is_enabled()) {
6134 for_each_memblock(memory, r) {
6135 if (!memblock_is_hotpluggable(r))
6136 continue;
6138 nid = r->nid;
6140 usable_startpfn = PFN_DOWN(r->base);
6141 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6142 min(usable_startpfn, zone_movable_pfn[nid]) :
6143 usable_startpfn;
6146 goto out2;
6150 * If kernelcore=mirror is specified, ignore movablecore option
6152 if (mirrored_kernelcore) {
6153 bool mem_below_4gb_not_mirrored = false;
6155 for_each_memblock(memory, r) {
6156 if (memblock_is_mirror(r))
6157 continue;
6159 nid = r->nid;
6161 usable_startpfn = memblock_region_memory_base_pfn(r);
6163 if (usable_startpfn < 0x100000) {
6164 mem_below_4gb_not_mirrored = true;
6165 continue;
6168 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6169 min(usable_startpfn, zone_movable_pfn[nid]) :
6170 usable_startpfn;
6173 if (mem_below_4gb_not_mirrored)
6174 pr_warn("This configuration results in unmirrored kernel memory.");
6176 goto out2;
6180 * If movablecore=nn[KMG] was specified, calculate what size of
6181 * kernelcore that corresponds so that memory usable for
6182 * any allocation type is evenly spread. If both kernelcore
6183 * and movablecore are specified, then the value of kernelcore
6184 * will be used for required_kernelcore if it's greater than
6185 * what movablecore would have allowed.
6187 if (required_movablecore) {
6188 unsigned long corepages;
6191 * Round-up so that ZONE_MOVABLE is at least as large as what
6192 * was requested by the user
6194 required_movablecore =
6195 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6196 required_movablecore = min(totalpages, required_movablecore);
6197 corepages = totalpages - required_movablecore;
6199 required_kernelcore = max(required_kernelcore, corepages);
6203 * If kernelcore was not specified or kernelcore size is larger
6204 * than totalpages, there is no ZONE_MOVABLE.
6206 if (!required_kernelcore || required_kernelcore >= totalpages)
6207 goto out;
6209 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6210 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6212 restart:
6213 /* Spread kernelcore memory as evenly as possible throughout nodes */
6214 kernelcore_node = required_kernelcore / usable_nodes;
6215 for_each_node_state(nid, N_MEMORY) {
6216 unsigned long start_pfn, end_pfn;
6219 * Recalculate kernelcore_node if the division per node
6220 * now exceeds what is necessary to satisfy the requested
6221 * amount of memory for the kernel
6223 if (required_kernelcore < kernelcore_node)
6224 kernelcore_node = required_kernelcore / usable_nodes;
6227 * As the map is walked, we track how much memory is usable
6228 * by the kernel using kernelcore_remaining. When it is
6229 * 0, the rest of the node is usable by ZONE_MOVABLE
6231 kernelcore_remaining = kernelcore_node;
6233 /* Go through each range of PFNs within this node */
6234 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6235 unsigned long size_pages;
6237 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6238 if (start_pfn >= end_pfn)
6239 continue;
6241 /* Account for what is only usable for kernelcore */
6242 if (start_pfn < usable_startpfn) {
6243 unsigned long kernel_pages;
6244 kernel_pages = min(end_pfn, usable_startpfn)
6245 - start_pfn;
6247 kernelcore_remaining -= min(kernel_pages,
6248 kernelcore_remaining);
6249 required_kernelcore -= min(kernel_pages,
6250 required_kernelcore);
6252 /* Continue if range is now fully accounted */
6253 if (end_pfn <= usable_startpfn) {
6256 * Push zone_movable_pfn to the end so
6257 * that if we have to rebalance
6258 * kernelcore across nodes, we will
6259 * not double account here
6261 zone_movable_pfn[nid] = end_pfn;
6262 continue;
6264 start_pfn = usable_startpfn;
6268 * The usable PFN range for ZONE_MOVABLE is from
6269 * start_pfn->end_pfn. Calculate size_pages as the
6270 * number of pages used as kernelcore
6272 size_pages = end_pfn - start_pfn;
6273 if (size_pages > kernelcore_remaining)
6274 size_pages = kernelcore_remaining;
6275 zone_movable_pfn[nid] = start_pfn + size_pages;
6278 * Some kernelcore has been met, update counts and
6279 * break if the kernelcore for this node has been
6280 * satisfied
6282 required_kernelcore -= min(required_kernelcore,
6283 size_pages);
6284 kernelcore_remaining -= size_pages;
6285 if (!kernelcore_remaining)
6286 break;
6291 * If there is still required_kernelcore, we do another pass with one
6292 * less node in the count. This will push zone_movable_pfn[nid] further
6293 * along on the nodes that still have memory until kernelcore is
6294 * satisfied
6296 usable_nodes--;
6297 if (usable_nodes && required_kernelcore > usable_nodes)
6298 goto restart;
6300 out2:
6301 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6302 for (nid = 0; nid < MAX_NUMNODES; nid++)
6303 zone_movable_pfn[nid] =
6304 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6306 out:
6307 /* restore the node_state */
6308 node_states[N_MEMORY] = saved_node_state;
6311 /* Any regular or high memory on that node ? */
6312 static void check_for_memory(pg_data_t *pgdat, int nid)
6314 enum zone_type zone_type;
6316 if (N_MEMORY == N_NORMAL_MEMORY)
6317 return;
6319 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6320 struct zone *zone = &pgdat->node_zones[zone_type];
6321 if (populated_zone(zone)) {
6322 node_set_state(nid, N_HIGH_MEMORY);
6323 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6324 zone_type <= ZONE_NORMAL)
6325 node_set_state(nid, N_NORMAL_MEMORY);
6326 break;
6332 * free_area_init_nodes - Initialise all pg_data_t and zone data
6333 * @max_zone_pfn: an array of max PFNs for each zone
6335 * This will call free_area_init_node() for each active node in the system.
6336 * Using the page ranges provided by memblock_set_node(), the size of each
6337 * zone in each node and their holes is calculated. If the maximum PFN
6338 * between two adjacent zones match, it is assumed that the zone is empty.
6339 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6340 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6341 * starts where the previous one ended. For example, ZONE_DMA32 starts
6342 * at arch_max_dma_pfn.
6344 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6346 unsigned long start_pfn, end_pfn;
6347 int i, nid;
6349 /* Record where the zone boundaries are */
6350 memset(arch_zone_lowest_possible_pfn, 0,
6351 sizeof(arch_zone_lowest_possible_pfn));
6352 memset(arch_zone_highest_possible_pfn, 0,
6353 sizeof(arch_zone_highest_possible_pfn));
6355 start_pfn = find_min_pfn_with_active_regions();
6357 for (i = 0; i < MAX_NR_ZONES; i++) {
6358 if (i == ZONE_MOVABLE)
6359 continue;
6361 end_pfn = max(max_zone_pfn[i], start_pfn);
6362 arch_zone_lowest_possible_pfn[i] = start_pfn;
6363 arch_zone_highest_possible_pfn[i] = end_pfn;
6365 start_pfn = end_pfn;
6367 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6368 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6370 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6371 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6372 find_zone_movable_pfns_for_nodes();
6374 /* Print out the zone ranges */
6375 pr_info("Zone ranges:\n");
6376 for (i = 0; i < MAX_NR_ZONES; i++) {
6377 if (i == ZONE_MOVABLE)
6378 continue;
6379 pr_info(" %-8s ", zone_names[i]);
6380 if (arch_zone_lowest_possible_pfn[i] ==
6381 arch_zone_highest_possible_pfn[i])
6382 pr_cont("empty\n");
6383 else
6384 pr_cont("[mem %#018Lx-%#018Lx]\n",
6385 (u64)arch_zone_lowest_possible_pfn[i]
6386 << PAGE_SHIFT,
6387 ((u64)arch_zone_highest_possible_pfn[i]
6388 << PAGE_SHIFT) - 1);
6391 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6392 pr_info("Movable zone start for each node\n");
6393 for (i = 0; i < MAX_NUMNODES; i++) {
6394 if (zone_movable_pfn[i])
6395 pr_info(" Node %d: %#018Lx\n", i,
6396 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6399 /* Print out the early node map */
6400 pr_info("Early memory node ranges\n");
6401 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6402 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6403 (u64)start_pfn << PAGE_SHIFT,
6404 ((u64)end_pfn << PAGE_SHIFT) - 1);
6406 /* Initialise every node */
6407 mminit_verify_pageflags_layout();
6408 setup_nr_node_ids();
6409 for_each_online_node(nid) {
6410 pg_data_t *pgdat = NODE_DATA(nid);
6411 free_area_init_node(nid, NULL,
6412 find_min_pfn_for_node(nid), NULL);
6414 /* Any memory on that node */
6415 if (pgdat->node_present_pages)
6416 node_set_state(nid, N_MEMORY);
6417 check_for_memory(pgdat, nid);
6421 static int __init cmdline_parse_core(char *p, unsigned long *core)
6423 unsigned long long coremem;
6424 if (!p)
6425 return -EINVAL;
6427 coremem = memparse(p, &p);
6428 *core = coremem >> PAGE_SHIFT;
6430 /* Paranoid check that UL is enough for the coremem value */
6431 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6433 return 0;
6437 * kernelcore=size sets the amount of memory for use for allocations that
6438 * cannot be reclaimed or migrated.
6440 static int __init cmdline_parse_kernelcore(char *p)
6442 /* parse kernelcore=mirror */
6443 if (parse_option_str(p, "mirror")) {
6444 mirrored_kernelcore = true;
6445 return 0;
6448 return cmdline_parse_core(p, &required_kernelcore);
6452 * movablecore=size sets the amount of memory for use for allocations that
6453 * can be reclaimed or migrated.
6455 static int __init cmdline_parse_movablecore(char *p)
6457 return cmdline_parse_core(p, &required_movablecore);
6460 early_param("kernelcore", cmdline_parse_kernelcore);
6461 early_param("movablecore", cmdline_parse_movablecore);
6463 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6465 void adjust_managed_page_count(struct page *page, long count)
6467 spin_lock(&managed_page_count_lock);
6468 page_zone(page)->managed_pages += count;
6469 totalram_pages += count;
6470 #ifdef CONFIG_HIGHMEM
6471 if (PageHighMem(page))
6472 totalhigh_pages += count;
6473 #endif
6474 spin_unlock(&managed_page_count_lock);
6476 EXPORT_SYMBOL(adjust_managed_page_count);
6478 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6480 void *pos;
6481 unsigned long pages = 0;
6483 start = (void *)PAGE_ALIGN((unsigned long)start);
6484 end = (void *)((unsigned long)end & PAGE_MASK);
6485 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6486 if ((unsigned int)poison <= 0xFF)
6487 memset(pos, poison, PAGE_SIZE);
6488 free_reserved_page(virt_to_page(pos));
6491 if (pages && s)
6492 pr_info("Freeing %s memory: %ldK\n",
6493 s, pages << (PAGE_SHIFT - 10));
6495 return pages;
6497 EXPORT_SYMBOL(free_reserved_area);
6499 #ifdef CONFIG_HIGHMEM
6500 void free_highmem_page(struct page *page)
6502 __free_reserved_page(page);
6503 totalram_pages++;
6504 page_zone(page)->managed_pages++;
6505 totalhigh_pages++;
6507 #endif
6510 void __init mem_init_print_info(const char *str)
6512 unsigned long physpages, codesize, datasize, rosize, bss_size;
6513 unsigned long init_code_size, init_data_size;
6515 physpages = get_num_physpages();
6516 codesize = _etext - _stext;
6517 datasize = _edata - _sdata;
6518 rosize = __end_rodata - __start_rodata;
6519 bss_size = __bss_stop - __bss_start;
6520 init_data_size = __init_end - __init_begin;
6521 init_code_size = _einittext - _sinittext;
6524 * Detect special cases and adjust section sizes accordingly:
6525 * 1) .init.* may be embedded into .data sections
6526 * 2) .init.text.* may be out of [__init_begin, __init_end],
6527 * please refer to arch/tile/kernel/vmlinux.lds.S.
6528 * 3) .rodata.* may be embedded into .text or .data sections.
6530 #define adj_init_size(start, end, size, pos, adj) \
6531 do { \
6532 if (start <= pos && pos < end && size > adj) \
6533 size -= adj; \
6534 } while (0)
6536 adj_init_size(__init_begin, __init_end, init_data_size,
6537 _sinittext, init_code_size);
6538 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6539 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6540 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6541 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6543 #undef adj_init_size
6545 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6546 #ifdef CONFIG_HIGHMEM
6547 ", %luK highmem"
6548 #endif
6549 "%s%s)\n",
6550 nr_free_pages() << (PAGE_SHIFT - 10),
6551 physpages << (PAGE_SHIFT - 10),
6552 codesize >> 10, datasize >> 10, rosize >> 10,
6553 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6554 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6555 totalcma_pages << (PAGE_SHIFT - 10),
6556 #ifdef CONFIG_HIGHMEM
6557 totalhigh_pages << (PAGE_SHIFT - 10),
6558 #endif
6559 str ? ", " : "", str ? str : "");
6563 * set_dma_reserve - set the specified number of pages reserved in the first zone
6564 * @new_dma_reserve: The number of pages to mark reserved
6566 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6567 * In the DMA zone, a significant percentage may be consumed by kernel image
6568 * and other unfreeable allocations which can skew the watermarks badly. This
6569 * function may optionally be used to account for unfreeable pages in the
6570 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6571 * smaller per-cpu batchsize.
6573 void __init set_dma_reserve(unsigned long new_dma_reserve)
6575 dma_reserve = new_dma_reserve;
6578 void __init free_area_init(unsigned long *zones_size)
6580 free_area_init_node(0, zones_size,
6581 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6584 static int page_alloc_cpu_dead(unsigned int cpu)
6587 lru_add_drain_cpu(cpu);
6588 drain_pages(cpu);
6591 * Spill the event counters of the dead processor
6592 * into the current processors event counters.
6593 * This artificially elevates the count of the current
6594 * processor.
6596 vm_events_fold_cpu(cpu);
6599 * Zero the differential counters of the dead processor
6600 * so that the vm statistics are consistent.
6602 * This is only okay since the processor is dead and cannot
6603 * race with what we are doing.
6605 cpu_vm_stats_fold(cpu);
6606 return 0;
6609 void __init page_alloc_init(void)
6611 int ret;
6613 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6614 "mm/page_alloc:dead", NULL,
6615 page_alloc_cpu_dead);
6616 WARN_ON(ret < 0);
6620 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6621 * or min_free_kbytes changes.
6623 static void calculate_totalreserve_pages(void)
6625 struct pglist_data *pgdat;
6626 unsigned long reserve_pages = 0;
6627 enum zone_type i, j;
6629 for_each_online_pgdat(pgdat) {
6631 pgdat->totalreserve_pages = 0;
6633 for (i = 0; i < MAX_NR_ZONES; i++) {
6634 struct zone *zone = pgdat->node_zones + i;
6635 long max = 0;
6637 /* Find valid and maximum lowmem_reserve in the zone */
6638 for (j = i; j < MAX_NR_ZONES; j++) {
6639 if (zone->lowmem_reserve[j] > max)
6640 max = zone->lowmem_reserve[j];
6643 /* we treat the high watermark as reserved pages. */
6644 max += high_wmark_pages(zone);
6646 if (max > zone->managed_pages)
6647 max = zone->managed_pages;
6649 pgdat->totalreserve_pages += max;
6651 reserve_pages += max;
6654 totalreserve_pages = reserve_pages;
6658 * setup_per_zone_lowmem_reserve - called whenever
6659 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6660 * has a correct pages reserved value, so an adequate number of
6661 * pages are left in the zone after a successful __alloc_pages().
6663 static void setup_per_zone_lowmem_reserve(void)
6665 struct pglist_data *pgdat;
6666 enum zone_type j, idx;
6668 for_each_online_pgdat(pgdat) {
6669 for (j = 0; j < MAX_NR_ZONES; j++) {
6670 struct zone *zone = pgdat->node_zones + j;
6671 unsigned long managed_pages = zone->managed_pages;
6673 zone->lowmem_reserve[j] = 0;
6675 idx = j;
6676 while (idx) {
6677 struct zone *lower_zone;
6679 idx--;
6681 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6682 sysctl_lowmem_reserve_ratio[idx] = 1;
6684 lower_zone = pgdat->node_zones + idx;
6685 lower_zone->lowmem_reserve[j] = managed_pages /
6686 sysctl_lowmem_reserve_ratio[idx];
6687 managed_pages += lower_zone->managed_pages;
6692 /* update totalreserve_pages */
6693 calculate_totalreserve_pages();
6696 static void __setup_per_zone_wmarks(void)
6698 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6699 unsigned long lowmem_pages = 0;
6700 struct zone *zone;
6701 unsigned long flags;
6703 /* Calculate total number of !ZONE_HIGHMEM pages */
6704 for_each_zone(zone) {
6705 if (!is_highmem(zone))
6706 lowmem_pages += zone->managed_pages;
6709 for_each_zone(zone) {
6710 u64 tmp;
6712 spin_lock_irqsave(&zone->lock, flags);
6713 tmp = (u64)pages_min * zone->managed_pages;
6714 do_div(tmp, lowmem_pages);
6715 if (is_highmem(zone)) {
6717 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6718 * need highmem pages, so cap pages_min to a small
6719 * value here.
6721 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6722 * deltas control asynch page reclaim, and so should
6723 * not be capped for highmem.
6725 unsigned long min_pages;
6727 min_pages = zone->managed_pages / 1024;
6728 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6729 zone->watermark[WMARK_MIN] = min_pages;
6730 } else {
6732 * If it's a lowmem zone, reserve a number of pages
6733 * proportionate to the zone's size.
6735 zone->watermark[WMARK_MIN] = tmp;
6739 * Set the kswapd watermarks distance according to the
6740 * scale factor in proportion to available memory, but
6741 * ensure a minimum size on small systems.
6743 tmp = max_t(u64, tmp >> 2,
6744 mult_frac(zone->managed_pages,
6745 watermark_scale_factor, 10000));
6747 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6748 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6750 spin_unlock_irqrestore(&zone->lock, flags);
6753 /* update totalreserve_pages */
6754 calculate_totalreserve_pages();
6758 * setup_per_zone_wmarks - called when min_free_kbytes changes
6759 * or when memory is hot-{added|removed}
6761 * Ensures that the watermark[min,low,high] values for each zone are set
6762 * correctly with respect to min_free_kbytes.
6764 void setup_per_zone_wmarks(void)
6766 mutex_lock(&zonelists_mutex);
6767 __setup_per_zone_wmarks();
6768 mutex_unlock(&zonelists_mutex);
6772 * Initialise min_free_kbytes.
6774 * For small machines we want it small (128k min). For large machines
6775 * we want it large (64MB max). But it is not linear, because network
6776 * bandwidth does not increase linearly with machine size. We use
6778 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6779 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6781 * which yields
6783 * 16MB: 512k
6784 * 32MB: 724k
6785 * 64MB: 1024k
6786 * 128MB: 1448k
6787 * 256MB: 2048k
6788 * 512MB: 2896k
6789 * 1024MB: 4096k
6790 * 2048MB: 5792k
6791 * 4096MB: 8192k
6792 * 8192MB: 11584k
6793 * 16384MB: 16384k
6795 int __meminit init_per_zone_wmark_min(void)
6797 unsigned long lowmem_kbytes;
6798 int new_min_free_kbytes;
6800 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6801 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6803 if (new_min_free_kbytes > user_min_free_kbytes) {
6804 min_free_kbytes = new_min_free_kbytes;
6805 if (min_free_kbytes < 128)
6806 min_free_kbytes = 128;
6807 if (min_free_kbytes > 65536)
6808 min_free_kbytes = 65536;
6809 } else {
6810 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6811 new_min_free_kbytes, user_min_free_kbytes);
6813 setup_per_zone_wmarks();
6814 refresh_zone_stat_thresholds();
6815 setup_per_zone_lowmem_reserve();
6817 #ifdef CONFIG_NUMA
6818 setup_min_unmapped_ratio();
6819 setup_min_slab_ratio();
6820 #endif
6822 return 0;
6824 core_initcall(init_per_zone_wmark_min)
6827 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6828 * that we can call two helper functions whenever min_free_kbytes
6829 * changes.
6831 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6832 void __user *buffer, size_t *length, loff_t *ppos)
6834 int rc;
6836 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6837 if (rc)
6838 return rc;
6840 if (write) {
6841 user_min_free_kbytes = min_free_kbytes;
6842 setup_per_zone_wmarks();
6844 return 0;
6847 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6848 void __user *buffer, size_t *length, loff_t *ppos)
6850 int rc;
6852 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6853 if (rc)
6854 return rc;
6856 if (write)
6857 setup_per_zone_wmarks();
6859 return 0;
6862 #ifdef CONFIG_NUMA
6863 static void setup_min_unmapped_ratio(void)
6865 pg_data_t *pgdat;
6866 struct zone *zone;
6868 for_each_online_pgdat(pgdat)
6869 pgdat->min_unmapped_pages = 0;
6871 for_each_zone(zone)
6872 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6873 sysctl_min_unmapped_ratio) / 100;
6877 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6878 void __user *buffer, size_t *length, loff_t *ppos)
6880 int rc;
6882 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6883 if (rc)
6884 return rc;
6886 setup_min_unmapped_ratio();
6888 return 0;
6891 static void setup_min_slab_ratio(void)
6893 pg_data_t *pgdat;
6894 struct zone *zone;
6896 for_each_online_pgdat(pgdat)
6897 pgdat->min_slab_pages = 0;
6899 for_each_zone(zone)
6900 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6901 sysctl_min_slab_ratio) / 100;
6904 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6905 void __user *buffer, size_t *length, loff_t *ppos)
6907 int rc;
6909 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6910 if (rc)
6911 return rc;
6913 setup_min_slab_ratio();
6915 return 0;
6917 #endif
6920 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6921 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6922 * whenever sysctl_lowmem_reserve_ratio changes.
6924 * The reserve ratio obviously has absolutely no relation with the
6925 * minimum watermarks. The lowmem reserve ratio can only make sense
6926 * if in function of the boot time zone sizes.
6928 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6929 void __user *buffer, size_t *length, loff_t *ppos)
6931 proc_dointvec_minmax(table, write, buffer, length, ppos);
6932 setup_per_zone_lowmem_reserve();
6933 return 0;
6937 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6938 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6939 * pagelist can have before it gets flushed back to buddy allocator.
6941 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6942 void __user *buffer, size_t *length, loff_t *ppos)
6944 struct zone *zone;
6945 int old_percpu_pagelist_fraction;
6946 int ret;
6948 mutex_lock(&pcp_batch_high_lock);
6949 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6951 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6952 if (!write || ret < 0)
6953 goto out;
6955 /* Sanity checking to avoid pcp imbalance */
6956 if (percpu_pagelist_fraction &&
6957 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6958 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6959 ret = -EINVAL;
6960 goto out;
6963 /* No change? */
6964 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6965 goto out;
6967 for_each_populated_zone(zone) {
6968 unsigned int cpu;
6970 for_each_possible_cpu(cpu)
6971 pageset_set_high_and_batch(zone,
6972 per_cpu_ptr(zone->pageset, cpu));
6974 out:
6975 mutex_unlock(&pcp_batch_high_lock);
6976 return ret;
6979 #ifdef CONFIG_NUMA
6980 int hashdist = HASHDIST_DEFAULT;
6982 static int __init set_hashdist(char *str)
6984 if (!str)
6985 return 0;
6986 hashdist = simple_strtoul(str, &str, 0);
6987 return 1;
6989 __setup("hashdist=", set_hashdist);
6990 #endif
6992 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6994 * Returns the number of pages that arch has reserved but
6995 * is not known to alloc_large_system_hash().
6997 static unsigned long __init arch_reserved_kernel_pages(void)
6999 return 0;
7001 #endif
7004 * allocate a large system hash table from bootmem
7005 * - it is assumed that the hash table must contain an exact power-of-2
7006 * quantity of entries
7007 * - limit is the number of hash buckets, not the total allocation size
7009 void *__init alloc_large_system_hash(const char *tablename,
7010 unsigned long bucketsize,
7011 unsigned long numentries,
7012 int scale,
7013 int flags,
7014 unsigned int *_hash_shift,
7015 unsigned int *_hash_mask,
7016 unsigned long low_limit,
7017 unsigned long high_limit)
7019 unsigned long long max = high_limit;
7020 unsigned long log2qty, size;
7021 void *table = NULL;
7023 /* allow the kernel cmdline to have a say */
7024 if (!numentries) {
7025 /* round applicable memory size up to nearest megabyte */
7026 numentries = nr_kernel_pages;
7027 numentries -= arch_reserved_kernel_pages();
7029 /* It isn't necessary when PAGE_SIZE >= 1MB */
7030 if (PAGE_SHIFT < 20)
7031 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7033 /* limit to 1 bucket per 2^scale bytes of low memory */
7034 if (scale > PAGE_SHIFT)
7035 numentries >>= (scale - PAGE_SHIFT);
7036 else
7037 numentries <<= (PAGE_SHIFT - scale);
7039 /* Make sure we've got at least a 0-order allocation.. */
7040 if (unlikely(flags & HASH_SMALL)) {
7041 /* Makes no sense without HASH_EARLY */
7042 WARN_ON(!(flags & HASH_EARLY));
7043 if (!(numentries >> *_hash_shift)) {
7044 numentries = 1UL << *_hash_shift;
7045 BUG_ON(!numentries);
7047 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7048 numentries = PAGE_SIZE / bucketsize;
7050 numentries = roundup_pow_of_two(numentries);
7052 /* limit allocation size to 1/16 total memory by default */
7053 if (max == 0) {
7054 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7055 do_div(max, bucketsize);
7057 max = min(max, 0x80000000ULL);
7059 if (numentries < low_limit)
7060 numentries = low_limit;
7061 if (numentries > max)
7062 numentries = max;
7064 log2qty = ilog2(numentries);
7066 do {
7067 size = bucketsize << log2qty;
7068 if (flags & HASH_EARLY)
7069 table = memblock_virt_alloc_nopanic(size, 0);
7070 else if (hashdist)
7071 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7072 else {
7074 * If bucketsize is not a power-of-two, we may free
7075 * some pages at the end of hash table which
7076 * alloc_pages_exact() automatically does
7078 if (get_order(size) < MAX_ORDER) {
7079 table = alloc_pages_exact(size, GFP_ATOMIC);
7080 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7083 } while (!table && size > PAGE_SIZE && --log2qty);
7085 if (!table)
7086 panic("Failed to allocate %s hash table\n", tablename);
7088 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7089 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7091 if (_hash_shift)
7092 *_hash_shift = log2qty;
7093 if (_hash_mask)
7094 *_hash_mask = (1 << log2qty) - 1;
7096 return table;
7100 * This function checks whether pageblock includes unmovable pages or not.
7101 * If @count is not zero, it is okay to include less @count unmovable pages
7103 * PageLRU check without isolation or lru_lock could race so that
7104 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7105 * expect this function should be exact.
7107 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7108 bool skip_hwpoisoned_pages)
7110 unsigned long pfn, iter, found;
7111 int mt;
7114 * For avoiding noise data, lru_add_drain_all() should be called
7115 * If ZONE_MOVABLE, the zone never contains unmovable pages
7117 if (zone_idx(zone) == ZONE_MOVABLE)
7118 return false;
7119 mt = get_pageblock_migratetype(page);
7120 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7121 return false;
7123 pfn = page_to_pfn(page);
7124 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7125 unsigned long check = pfn + iter;
7127 if (!pfn_valid_within(check))
7128 continue;
7130 page = pfn_to_page(check);
7133 * Hugepages are not in LRU lists, but they're movable.
7134 * We need not scan over tail pages bacause we don't
7135 * handle each tail page individually in migration.
7137 if (PageHuge(page)) {
7138 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7139 continue;
7143 * We can't use page_count without pin a page
7144 * because another CPU can free compound page.
7145 * This check already skips compound tails of THP
7146 * because their page->_refcount is zero at all time.
7148 if (!page_ref_count(page)) {
7149 if (PageBuddy(page))
7150 iter += (1 << page_order(page)) - 1;
7151 continue;
7155 * The HWPoisoned page may be not in buddy system, and
7156 * page_count() is not 0.
7158 if (skip_hwpoisoned_pages && PageHWPoison(page))
7159 continue;
7161 if (!PageLRU(page))
7162 found++;
7164 * If there are RECLAIMABLE pages, we need to check
7165 * it. But now, memory offline itself doesn't call
7166 * shrink_node_slabs() and it still to be fixed.
7169 * If the page is not RAM, page_count()should be 0.
7170 * we don't need more check. This is an _used_ not-movable page.
7172 * The problematic thing here is PG_reserved pages. PG_reserved
7173 * is set to both of a memory hole page and a _used_ kernel
7174 * page at boot.
7176 if (found > count)
7177 return true;
7179 return false;
7182 bool is_pageblock_removable_nolock(struct page *page)
7184 struct zone *zone;
7185 unsigned long pfn;
7188 * We have to be careful here because we are iterating over memory
7189 * sections which are not zone aware so we might end up outside of
7190 * the zone but still within the section.
7191 * We have to take care about the node as well. If the node is offline
7192 * its NODE_DATA will be NULL - see page_zone.
7194 if (!node_online(page_to_nid(page)))
7195 return false;
7197 zone = page_zone(page);
7198 pfn = page_to_pfn(page);
7199 if (!zone_spans_pfn(zone, pfn))
7200 return false;
7202 return !has_unmovable_pages(zone, page, 0, true);
7205 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7207 static unsigned long pfn_max_align_down(unsigned long pfn)
7209 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7210 pageblock_nr_pages) - 1);
7213 static unsigned long pfn_max_align_up(unsigned long pfn)
7215 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7216 pageblock_nr_pages));
7219 /* [start, end) must belong to a single zone. */
7220 static int __alloc_contig_migrate_range(struct compact_control *cc,
7221 unsigned long start, unsigned long end)
7223 /* This function is based on compact_zone() from compaction.c. */
7224 unsigned long nr_reclaimed;
7225 unsigned long pfn = start;
7226 unsigned int tries = 0;
7227 int ret = 0;
7229 migrate_prep();
7231 while (pfn < end || !list_empty(&cc->migratepages)) {
7232 if (fatal_signal_pending(current)) {
7233 ret = -EINTR;
7234 break;
7237 if (list_empty(&cc->migratepages)) {
7238 cc->nr_migratepages = 0;
7239 pfn = isolate_migratepages_range(cc, pfn, end);
7240 if (!pfn) {
7241 ret = -EINTR;
7242 break;
7244 tries = 0;
7245 } else if (++tries == 5) {
7246 ret = ret < 0 ? ret : -EBUSY;
7247 break;
7250 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7251 &cc->migratepages);
7252 cc->nr_migratepages -= nr_reclaimed;
7254 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7255 NULL, 0, cc->mode, MR_CMA);
7257 if (ret < 0) {
7258 putback_movable_pages(&cc->migratepages);
7259 return ret;
7261 return 0;
7265 * alloc_contig_range() -- tries to allocate given range of pages
7266 * @start: start PFN to allocate
7267 * @end: one-past-the-last PFN to allocate
7268 * @migratetype: migratetype of the underlaying pageblocks (either
7269 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7270 * in range must have the same migratetype and it must
7271 * be either of the two.
7273 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7274 * aligned, however it's the caller's responsibility to guarantee that
7275 * we are the only thread that changes migrate type of pageblocks the
7276 * pages fall in.
7278 * The PFN range must belong to a single zone.
7280 * Returns zero on success or negative error code. On success all
7281 * pages which PFN is in [start, end) are allocated for the caller and
7282 * need to be freed with free_contig_range().
7284 int alloc_contig_range(unsigned long start, unsigned long end,
7285 unsigned migratetype)
7287 unsigned long outer_start, outer_end;
7288 unsigned int order;
7289 int ret = 0;
7291 struct compact_control cc = {
7292 .nr_migratepages = 0,
7293 .order = -1,
7294 .zone = page_zone(pfn_to_page(start)),
7295 .mode = MIGRATE_SYNC,
7296 .ignore_skip_hint = true,
7297 .gfp_mask = GFP_KERNEL,
7299 INIT_LIST_HEAD(&cc.migratepages);
7302 * What we do here is we mark all pageblocks in range as
7303 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7304 * have different sizes, and due to the way page allocator
7305 * work, we align the range to biggest of the two pages so
7306 * that page allocator won't try to merge buddies from
7307 * different pageblocks and change MIGRATE_ISOLATE to some
7308 * other migration type.
7310 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7311 * migrate the pages from an unaligned range (ie. pages that
7312 * we are interested in). This will put all the pages in
7313 * range back to page allocator as MIGRATE_ISOLATE.
7315 * When this is done, we take the pages in range from page
7316 * allocator removing them from the buddy system. This way
7317 * page allocator will never consider using them.
7319 * This lets us mark the pageblocks back as
7320 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7321 * aligned range but not in the unaligned, original range are
7322 * put back to page allocator so that buddy can use them.
7325 ret = start_isolate_page_range(pfn_max_align_down(start),
7326 pfn_max_align_up(end), migratetype,
7327 false);
7328 if (ret)
7329 return ret;
7332 * In case of -EBUSY, we'd like to know which page causes problem.
7333 * So, just fall through. We will check it in test_pages_isolated().
7335 ret = __alloc_contig_migrate_range(&cc, start, end);
7336 if (ret && ret != -EBUSY)
7337 goto done;
7340 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7341 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7342 * more, all pages in [start, end) are free in page allocator.
7343 * What we are going to do is to allocate all pages from
7344 * [start, end) (that is remove them from page allocator).
7346 * The only problem is that pages at the beginning and at the
7347 * end of interesting range may be not aligned with pages that
7348 * page allocator holds, ie. they can be part of higher order
7349 * pages. Because of this, we reserve the bigger range and
7350 * once this is done free the pages we are not interested in.
7352 * We don't have to hold zone->lock here because the pages are
7353 * isolated thus they won't get removed from buddy.
7356 lru_add_drain_all();
7357 drain_all_pages(cc.zone);
7359 order = 0;
7360 outer_start = start;
7361 while (!PageBuddy(pfn_to_page(outer_start))) {
7362 if (++order >= MAX_ORDER) {
7363 outer_start = start;
7364 break;
7366 outer_start &= ~0UL << order;
7369 if (outer_start != start) {
7370 order = page_order(pfn_to_page(outer_start));
7373 * outer_start page could be small order buddy page and
7374 * it doesn't include start page. Adjust outer_start
7375 * in this case to report failed page properly
7376 * on tracepoint in test_pages_isolated()
7378 if (outer_start + (1UL << order) <= start)
7379 outer_start = start;
7382 /* Make sure the range is really isolated. */
7383 if (test_pages_isolated(outer_start, end, false)) {
7384 pr_info("%s: [%lx, %lx) PFNs busy\n",
7385 __func__, outer_start, end);
7386 ret = -EBUSY;
7387 goto done;
7390 /* Grab isolated pages from freelists. */
7391 outer_end = isolate_freepages_range(&cc, outer_start, end);
7392 if (!outer_end) {
7393 ret = -EBUSY;
7394 goto done;
7397 /* Free head and tail (if any) */
7398 if (start != outer_start)
7399 free_contig_range(outer_start, start - outer_start);
7400 if (end != outer_end)
7401 free_contig_range(end, outer_end - end);
7403 done:
7404 undo_isolate_page_range(pfn_max_align_down(start),
7405 pfn_max_align_up(end), migratetype);
7406 return ret;
7409 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7411 unsigned int count = 0;
7413 for (; nr_pages--; pfn++) {
7414 struct page *page = pfn_to_page(pfn);
7416 count += page_count(page) != 1;
7417 __free_page(page);
7419 WARN(count != 0, "%d pages are still in use!\n", count);
7421 #endif
7423 #ifdef CONFIG_MEMORY_HOTPLUG
7425 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7426 * page high values need to be recalulated.
7428 void __meminit zone_pcp_update(struct zone *zone)
7430 unsigned cpu;
7431 mutex_lock(&pcp_batch_high_lock);
7432 for_each_possible_cpu(cpu)
7433 pageset_set_high_and_batch(zone,
7434 per_cpu_ptr(zone->pageset, cpu));
7435 mutex_unlock(&pcp_batch_high_lock);
7437 #endif
7439 void zone_pcp_reset(struct zone *zone)
7441 unsigned long flags;
7442 int cpu;
7443 struct per_cpu_pageset *pset;
7445 /* avoid races with drain_pages() */
7446 local_irq_save(flags);
7447 if (zone->pageset != &boot_pageset) {
7448 for_each_online_cpu(cpu) {
7449 pset = per_cpu_ptr(zone->pageset, cpu);
7450 drain_zonestat(zone, pset);
7452 free_percpu(zone->pageset);
7453 zone->pageset = &boot_pageset;
7455 local_irq_restore(flags);
7458 #ifdef CONFIG_MEMORY_HOTREMOVE
7460 * All pages in the range must be in a single zone and isolated
7461 * before calling this.
7463 void
7464 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7466 struct page *page;
7467 struct zone *zone;
7468 unsigned int order, i;
7469 unsigned long pfn;
7470 unsigned long flags;
7471 /* find the first valid pfn */
7472 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7473 if (pfn_valid(pfn))
7474 break;
7475 if (pfn == end_pfn)
7476 return;
7477 zone = page_zone(pfn_to_page(pfn));
7478 spin_lock_irqsave(&zone->lock, flags);
7479 pfn = start_pfn;
7480 while (pfn < end_pfn) {
7481 if (!pfn_valid(pfn)) {
7482 pfn++;
7483 continue;
7485 page = pfn_to_page(pfn);
7487 * The HWPoisoned page may be not in buddy system, and
7488 * page_count() is not 0.
7490 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7491 pfn++;
7492 SetPageReserved(page);
7493 continue;
7496 BUG_ON(page_count(page));
7497 BUG_ON(!PageBuddy(page));
7498 order = page_order(page);
7499 #ifdef CONFIG_DEBUG_VM
7500 pr_info("remove from free list %lx %d %lx\n",
7501 pfn, 1 << order, end_pfn);
7502 #endif
7503 list_del(&page->lru);
7504 rmv_page_order(page);
7505 zone->free_area[order].nr_free--;
7506 for (i = 0; i < (1 << order); i++)
7507 SetPageReserved((page+i));
7508 pfn += (1 << order);
7510 spin_unlock_irqrestore(&zone->lock, flags);
7512 #endif
7514 bool is_free_buddy_page(struct page *page)
7516 struct zone *zone = page_zone(page);
7517 unsigned long pfn = page_to_pfn(page);
7518 unsigned long flags;
7519 unsigned int order;
7521 spin_lock_irqsave(&zone->lock, flags);
7522 for (order = 0; order < MAX_ORDER; order++) {
7523 struct page *page_head = page - (pfn & ((1 << order) - 1));
7525 if (PageBuddy(page_head) && page_order(page_head) >= order)
7526 break;
7528 spin_unlock_irqrestore(&zone->lock, flags);
7530 return order < MAX_ORDER;