2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
57 #define ZSPAGE_MAGIC 0x58
60 * This must be power of 2 and greater than of equal to sizeof(link_free).
61 * These two conditions ensure that any 'struct link_free' itself doesn't
62 * span more than 1 page which avoids complex case of mapping 2 pages simply
63 * to restore link_free pointer values.
68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 * Object location (<PFN>, <obj_idx>) is encoded as
78 * as single (unsigned long) handle value.
80 * Note that object index <obj_idx> starts from 0.
82 * This is made more complicated by various memory models and PAE.
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
99 * Memory for allocating for handle keeps object position by
100 * encoding <page, obj_idx> and the encoded value has a room
101 * in least bit(ie, look at obj_to_location).
102 * We use the bit to synchronize between object access by
103 * user and migration.
105 #define HANDLE_PIN_BIT 0
108 * Head in allocated object should have OBJ_ALLOCATED_TAG
109 * to identify the object was allocated or not.
110 * It's okay to add the status bit in the least bit because
111 * header keeps handle which is 4byte-aligned address so we
112 * have room for two bit at least.
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
121 #define ZS_MIN_ALLOC_SIZE \
122 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
123 /* each chunk includes extra space to keep handle */
124 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
127 * On systems with 4K page size, this gives 255 size classes! There is a
129 * - Large number of size classes is potentially wasteful as free page are
130 * spread across these classes
131 * - Small number of size classes causes large internal fragmentation
132 * - Probably its better to use specific size classes (empirically
133 * determined). NOTE: all those class sizes must be set as multiple of
134 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
136 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
139 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
141 enum fullness_group
{
159 struct zs_size_stat
{
160 unsigned long objs
[NR_ZS_STAT_TYPE
];
163 #ifdef CONFIG_ZSMALLOC_STAT
164 static struct dentry
*zs_stat_root
;
167 #ifdef CONFIG_COMPACTION
168 static struct vfsmount
*zsmalloc_mnt
;
172 * number of size_classes
174 static int zs_size_classes
;
177 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
179 * n = number of allocated objects
180 * N = total number of objects zspage can store
181 * f = fullness_threshold_frac
183 * Similarly, we assign zspage to:
184 * ZS_ALMOST_FULL when n > N / f
185 * ZS_EMPTY when n == 0
186 * ZS_FULL when n == N
188 * (see: fix_fullness_group())
190 static const int fullness_threshold_frac
= 4;
194 struct list_head fullness_list
[NR_ZS_FULLNESS
];
196 * Size of objects stored in this class. Must be multiple
201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 int pages_per_zspage
;
205 struct zs_size_stat stats
;
208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
209 static void SetPageHugeObject(struct page
*page
)
211 SetPageOwnerPriv1(page
);
214 static void ClearPageHugeObject(struct page
*page
)
216 ClearPageOwnerPriv1(page
);
219 static int PageHugeObject(struct page
*page
)
221 return PageOwnerPriv1(page
);
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, zspage->freeobj gives head of this list.
228 * This must be power of 2 and less than or equal to ZS_ALIGN
234 * It's valid for non-allocated object
238 * Handle of allocated object.
240 unsigned long handle
;
247 struct size_class
**size_class
;
248 struct kmem_cache
*handle_cachep
;
249 struct kmem_cache
*zspage_cachep
;
251 atomic_long_t pages_allocated
;
253 struct zs_pool_stats stats
;
255 /* Compact classes */
256 struct shrinker shrinker
;
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
261 bool shrinker_enabled
;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry
*stat_dentry
;
265 #ifdef CONFIG_COMPACTION
267 struct work_struct free_work
;
271 #define FULLNESS_BITS 2
273 #define ISOLATED_BITS 3
274 #define MAGIC_VAL_BITS 8
278 unsigned int fullness
:FULLNESS_BITS
;
279 unsigned int class:CLASS_BITS
+ 1;
280 unsigned int isolated
:ISOLATED_BITS
;
281 unsigned int magic
:MAGIC_VAL_BITS
;
284 unsigned int freeobj
;
285 struct page
*first_page
;
286 struct list_head list
; /* fullness list */
287 #ifdef CONFIG_COMPACTION
292 struct mapping_area
{
293 #ifdef CONFIG_PGTABLE_MAPPING
294 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
296 char *vm_buf
; /* copy buffer for objects that span pages */
298 char *vm_addr
; /* address of kmap_atomic()'ed pages */
299 enum zs_mapmode vm_mm
; /* mapping mode */
302 #ifdef CONFIG_COMPACTION
303 static int zs_register_migration(struct zs_pool
*pool
);
304 static void zs_unregister_migration(struct zs_pool
*pool
);
305 static void migrate_lock_init(struct zspage
*zspage
);
306 static void migrate_read_lock(struct zspage
*zspage
);
307 static void migrate_read_unlock(struct zspage
*zspage
);
308 static void kick_deferred_free(struct zs_pool
*pool
);
309 static void init_deferred_free(struct zs_pool
*pool
);
310 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
312 static int zsmalloc_mount(void) { return 0; }
313 static void zsmalloc_unmount(void) {}
314 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
315 static void zs_unregister_migration(struct zs_pool
*pool
) {}
316 static void migrate_lock_init(struct zspage
*zspage
) {}
317 static void migrate_read_lock(struct zspage
*zspage
) {}
318 static void migrate_read_unlock(struct zspage
*zspage
) {}
319 static void kick_deferred_free(struct zs_pool
*pool
) {}
320 static void init_deferred_free(struct zs_pool
*pool
) {}
321 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
324 static int create_cache(struct zs_pool
*pool
)
326 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
328 if (!pool
->handle_cachep
)
331 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
333 if (!pool
->zspage_cachep
) {
334 kmem_cache_destroy(pool
->handle_cachep
);
335 pool
->handle_cachep
= NULL
;
342 static void destroy_cache(struct zs_pool
*pool
)
344 kmem_cache_destroy(pool
->handle_cachep
);
345 kmem_cache_destroy(pool
->zspage_cachep
);
348 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
350 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
351 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
354 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
356 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
359 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
361 return kmem_cache_alloc(pool
->zspage_cachep
,
362 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
365 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
367 kmem_cache_free(pool
->zspage_cachep
, zspage
);
370 static void record_obj(unsigned long handle
, unsigned long obj
)
373 * lsb of @obj represents handle lock while other bits
374 * represent object value the handle is pointing so
375 * updating shouldn't do store tearing.
377 WRITE_ONCE(*(unsigned long *)handle
, obj
);
384 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
385 const struct zpool_ops
*zpool_ops
,
389 * Ignore global gfp flags: zs_malloc() may be invoked from
390 * different contexts and its caller must provide a valid
393 return zs_create_pool(name
);
396 static void zs_zpool_destroy(void *pool
)
398 zs_destroy_pool(pool
);
401 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
402 unsigned long *handle
)
404 *handle
= zs_malloc(pool
, size
, gfp
);
405 return *handle
? 0 : -1;
407 static void zs_zpool_free(void *pool
, unsigned long handle
)
409 zs_free(pool
, handle
);
412 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
413 unsigned int *reclaimed
)
418 static void *zs_zpool_map(void *pool
, unsigned long handle
,
419 enum zpool_mapmode mm
)
421 enum zs_mapmode zs_mm
;
430 case ZPOOL_MM_RW
: /* fallthru */
436 return zs_map_object(pool
, handle
, zs_mm
);
438 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
440 zs_unmap_object(pool
, handle
);
443 static u64
zs_zpool_total_size(void *pool
)
445 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
448 static struct zpool_driver zs_zpool_driver
= {
450 .owner
= THIS_MODULE
,
451 .create
= zs_zpool_create
,
452 .destroy
= zs_zpool_destroy
,
453 .malloc
= zs_zpool_malloc
,
454 .free
= zs_zpool_free
,
455 .shrink
= zs_zpool_shrink
,
457 .unmap
= zs_zpool_unmap
,
458 .total_size
= zs_zpool_total_size
,
461 MODULE_ALIAS("zpool-zsmalloc");
462 #endif /* CONFIG_ZPOOL */
464 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
465 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
467 static bool is_zspage_isolated(struct zspage
*zspage
)
469 return zspage
->isolated
;
472 static int is_first_page(struct page
*page
)
474 return PagePrivate(page
);
477 /* Protected by class->lock */
478 static inline int get_zspage_inuse(struct zspage
*zspage
)
480 return zspage
->inuse
;
483 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
488 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
490 zspage
->inuse
+= val
;
493 static inline struct page
*get_first_page(struct zspage
*zspage
)
495 struct page
*first_page
= zspage
->first_page
;
497 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
501 static inline int get_first_obj_offset(struct page
*page
)
506 static inline void set_first_obj_offset(struct page
*page
, int offset
)
508 page
->units
= offset
;
511 static inline unsigned int get_freeobj(struct zspage
*zspage
)
513 return zspage
->freeobj
;
516 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
518 zspage
->freeobj
= obj
;
521 static void get_zspage_mapping(struct zspage
*zspage
,
522 unsigned int *class_idx
,
523 enum fullness_group
*fullness
)
525 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
527 *fullness
= zspage
->fullness
;
528 *class_idx
= zspage
->class;
531 static void set_zspage_mapping(struct zspage
*zspage
,
532 unsigned int class_idx
,
533 enum fullness_group fullness
)
535 zspage
->class = class_idx
;
536 zspage
->fullness
= fullness
;
540 * zsmalloc divides the pool into various size classes where each
541 * class maintains a list of zspages where each zspage is divided
542 * into equal sized chunks. Each allocation falls into one of these
543 * classes depending on its size. This function returns index of the
544 * size class which has chunk size big enough to hold the give size.
546 static int get_size_class_index(int size
)
550 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
551 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
552 ZS_SIZE_CLASS_DELTA
);
554 return min(zs_size_classes
- 1, idx
);
557 static inline void zs_stat_inc(struct size_class
*class,
558 enum zs_stat_type type
, unsigned long cnt
)
560 class->stats
.objs
[type
] += cnt
;
563 static inline void zs_stat_dec(struct size_class
*class,
564 enum zs_stat_type type
, unsigned long cnt
)
566 class->stats
.objs
[type
] -= cnt
;
569 static inline unsigned long zs_stat_get(struct size_class
*class,
570 enum zs_stat_type type
)
572 return class->stats
.objs
[type
];
575 #ifdef CONFIG_ZSMALLOC_STAT
577 static void __init
zs_stat_init(void)
579 if (!debugfs_initialized()) {
580 pr_warn("debugfs not available, stat dir not created\n");
584 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
586 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
589 static void __exit
zs_stat_exit(void)
591 debugfs_remove_recursive(zs_stat_root
);
594 static unsigned long zs_can_compact(struct size_class
*class);
596 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
599 struct zs_pool
*pool
= s
->private;
600 struct size_class
*class;
602 unsigned long class_almost_full
, class_almost_empty
;
603 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
604 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
605 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
606 unsigned long total_freeable
= 0;
608 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
609 "class", "size", "almost_full", "almost_empty",
610 "obj_allocated", "obj_used", "pages_used",
611 "pages_per_zspage", "freeable");
613 for (i
= 0; i
< zs_size_classes
; i
++) {
614 class = pool
->size_class
[i
];
616 if (class->index
!= i
)
619 spin_lock(&class->lock
);
620 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
621 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
622 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
623 obj_used
= zs_stat_get(class, OBJ_USED
);
624 freeable
= zs_can_compact(class);
625 spin_unlock(&class->lock
);
627 objs_per_zspage
= class->objs_per_zspage
;
628 pages_used
= obj_allocated
/ objs_per_zspage
*
629 class->pages_per_zspage
;
631 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
632 " %10lu %10lu %16d %8lu\n",
633 i
, class->size
, class_almost_full
, class_almost_empty
,
634 obj_allocated
, obj_used
, pages_used
,
635 class->pages_per_zspage
, freeable
);
637 total_class_almost_full
+= class_almost_full
;
638 total_class_almost_empty
+= class_almost_empty
;
639 total_objs
+= obj_allocated
;
640 total_used_objs
+= obj_used
;
641 total_pages
+= pages_used
;
642 total_freeable
+= freeable
;
646 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
647 "Total", "", total_class_almost_full
,
648 total_class_almost_empty
, total_objs
,
649 total_used_objs
, total_pages
, "", total_freeable
);
654 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
656 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
659 static const struct file_operations zs_stat_size_ops
= {
660 .open
= zs_stats_size_open
,
663 .release
= single_release
,
666 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
668 struct dentry
*entry
;
671 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
675 entry
= debugfs_create_dir(name
, zs_stat_root
);
677 pr_warn("debugfs dir <%s> creation failed\n", name
);
680 pool
->stat_dentry
= entry
;
682 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
683 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
685 pr_warn("%s: debugfs file entry <%s> creation failed\n",
687 debugfs_remove_recursive(pool
->stat_dentry
);
688 pool
->stat_dentry
= NULL
;
692 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
694 debugfs_remove_recursive(pool
->stat_dentry
);
697 #else /* CONFIG_ZSMALLOC_STAT */
698 static void __init
zs_stat_init(void)
702 static void __exit
zs_stat_exit(void)
706 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
710 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
717 * For each size class, zspages are divided into different groups
718 * depending on how "full" they are. This was done so that we could
719 * easily find empty or nearly empty zspages when we try to shrink
720 * the pool (not yet implemented). This function returns fullness
721 * status of the given page.
723 static enum fullness_group
get_fullness_group(struct size_class
*class,
724 struct zspage
*zspage
)
726 int inuse
, objs_per_zspage
;
727 enum fullness_group fg
;
729 inuse
= get_zspage_inuse(zspage
);
730 objs_per_zspage
= class->objs_per_zspage
;
734 else if (inuse
== objs_per_zspage
)
736 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
737 fg
= ZS_ALMOST_EMPTY
;
745 * Each size class maintains various freelists and zspages are assigned
746 * to one of these freelists based on the number of live objects they
747 * have. This functions inserts the given zspage into the freelist
748 * identified by <class, fullness_group>.
750 static void insert_zspage(struct size_class
*class,
751 struct zspage
*zspage
,
752 enum fullness_group fullness
)
756 zs_stat_inc(class, fullness
, 1);
757 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
758 struct zspage
, list
);
760 * We want to see more ZS_FULL pages and less almost empty/full.
761 * Put pages with higher ->inuse first.
764 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
765 list_add(&zspage
->list
, &head
->list
);
769 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
773 * This function removes the given zspage from the freelist identified
774 * by <class, fullness_group>.
776 static void remove_zspage(struct size_class
*class,
777 struct zspage
*zspage
,
778 enum fullness_group fullness
)
780 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
781 VM_BUG_ON(is_zspage_isolated(zspage
));
783 list_del_init(&zspage
->list
);
784 zs_stat_dec(class, fullness
, 1);
788 * Each size class maintains zspages in different fullness groups depending
789 * on the number of live objects they contain. When allocating or freeing
790 * objects, the fullness status of the page can change, say, from ALMOST_FULL
791 * to ALMOST_EMPTY when freeing an object. This function checks if such
792 * a status change has occurred for the given page and accordingly moves the
793 * page from the freelist of the old fullness group to that of the new
796 static enum fullness_group
fix_fullness_group(struct size_class
*class,
797 struct zspage
*zspage
)
800 enum fullness_group currfg
, newfg
;
802 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
803 newfg
= get_fullness_group(class, zspage
);
807 if (!is_zspage_isolated(zspage
)) {
808 remove_zspage(class, zspage
, currfg
);
809 insert_zspage(class, zspage
, newfg
);
812 set_zspage_mapping(zspage
, class_idx
, newfg
);
819 * We have to decide on how many pages to link together
820 * to form a zspage for each size class. This is important
821 * to reduce wastage due to unusable space left at end of
822 * each zspage which is given as:
823 * wastage = Zp % class_size
824 * usage = Zp - wastage
825 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
827 * For example, for size class of 3/8 * PAGE_SIZE, we should
828 * link together 3 PAGE_SIZE sized pages to form a zspage
829 * since then we can perfectly fit in 8 such objects.
831 static int get_pages_per_zspage(int class_size
)
833 int i
, max_usedpc
= 0;
834 /* zspage order which gives maximum used size per KB */
835 int max_usedpc_order
= 1;
837 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
841 zspage_size
= i
* PAGE_SIZE
;
842 waste
= zspage_size
% class_size
;
843 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
845 if (usedpc
> max_usedpc
) {
847 max_usedpc_order
= i
;
851 return max_usedpc_order
;
854 static struct zspage
*get_zspage(struct page
*page
)
856 struct zspage
*zspage
= (struct zspage
*)page
->private;
858 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
862 static struct page
*get_next_page(struct page
*page
)
864 if (unlikely(PageHugeObject(page
)))
867 return page
->freelist
;
871 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
872 * @page: page object resides in zspage
873 * @obj_idx: object index
875 static void obj_to_location(unsigned long obj
, struct page
**page
,
876 unsigned int *obj_idx
)
878 obj
>>= OBJ_TAG_BITS
;
879 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
880 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
884 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
885 * @page: page object resides in zspage
886 * @obj_idx: object index
888 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
892 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
893 obj
|= obj_idx
& OBJ_INDEX_MASK
;
894 obj
<<= OBJ_TAG_BITS
;
899 static unsigned long handle_to_obj(unsigned long handle
)
901 return *(unsigned long *)handle
;
904 static unsigned long obj_to_head(struct page
*page
, void *obj
)
906 if (unlikely(PageHugeObject(page
))) {
907 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
910 return *(unsigned long *)obj
;
913 static inline int testpin_tag(unsigned long handle
)
915 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
918 static inline int trypin_tag(unsigned long handle
)
920 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
923 static void pin_tag(unsigned long handle
)
925 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
928 static void unpin_tag(unsigned long handle
)
930 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
933 static void reset_page(struct page
*page
)
935 __ClearPageMovable(page
);
936 ClearPagePrivate(page
);
937 set_page_private(page
, 0);
938 page_mapcount_reset(page
);
939 ClearPageHugeObject(page
);
940 page
->freelist
= NULL
;
944 * To prevent zspage destroy during migration, zspage freeing should
945 * hold locks of all pages in the zspage.
947 void lock_zspage(struct zspage
*zspage
)
949 struct page
*page
= get_first_page(zspage
);
953 } while ((page
= get_next_page(page
)) != NULL
);
956 int trylock_zspage(struct zspage
*zspage
)
958 struct page
*cursor
, *fail
;
960 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
961 get_next_page(cursor
)) {
962 if (!trylock_page(cursor
)) {
970 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
971 get_next_page(cursor
))
977 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
978 struct zspage
*zspage
)
980 struct page
*page
, *next
;
981 enum fullness_group fg
;
982 unsigned int class_idx
;
984 get_zspage_mapping(zspage
, &class_idx
, &fg
);
986 assert_spin_locked(&class->lock
);
988 VM_BUG_ON(get_zspage_inuse(zspage
));
989 VM_BUG_ON(fg
!= ZS_EMPTY
);
991 next
= page
= get_first_page(zspage
);
993 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
994 next
= get_next_page(page
);
997 dec_zone_page_state(page
, NR_ZSPAGES
);
1000 } while (page
!= NULL
);
1002 cache_free_zspage(pool
, zspage
);
1004 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1005 atomic_long_sub(class->pages_per_zspage
,
1006 &pool
->pages_allocated
);
1009 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
1010 struct zspage
*zspage
)
1012 VM_BUG_ON(get_zspage_inuse(zspage
));
1013 VM_BUG_ON(list_empty(&zspage
->list
));
1015 if (!trylock_zspage(zspage
)) {
1016 kick_deferred_free(pool
);
1020 remove_zspage(class, zspage
, ZS_EMPTY
);
1021 __free_zspage(pool
, class, zspage
);
1024 /* Initialize a newly allocated zspage */
1025 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
1027 unsigned int freeobj
= 1;
1028 unsigned long off
= 0;
1029 struct page
*page
= get_first_page(zspage
);
1032 struct page
*next_page
;
1033 struct link_free
*link
;
1036 set_first_obj_offset(page
, off
);
1038 vaddr
= kmap_atomic(page
);
1039 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1041 while ((off
+= class->size
) < PAGE_SIZE
) {
1042 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1043 link
+= class->size
/ sizeof(*link
);
1047 * We now come to the last (full or partial) object on this
1048 * page, which must point to the first object on the next
1051 next_page
= get_next_page(page
);
1053 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1056 * Reset OBJ_TAG_BITS bit to last link to tell
1057 * whether it's allocated object or not.
1059 link
->next
= -1 << OBJ_TAG_BITS
;
1061 kunmap_atomic(vaddr
);
1066 set_freeobj(zspage
, 0);
1069 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1070 struct page
*pages
[])
1074 struct page
*prev_page
= NULL
;
1075 int nr_pages
= class->pages_per_zspage
;
1078 * Allocate individual pages and link them together as:
1079 * 1. all pages are linked together using page->freelist
1080 * 2. each sub-page point to zspage using page->private
1082 * we set PG_private to identify the first page (i.e. no other sub-page
1083 * has this flag set).
1085 for (i
= 0; i
< nr_pages
; i
++) {
1087 set_page_private(page
, (unsigned long)zspage
);
1088 page
->freelist
= NULL
;
1090 zspage
->first_page
= page
;
1091 SetPagePrivate(page
);
1092 if (unlikely(class->objs_per_zspage
== 1 &&
1093 class->pages_per_zspage
== 1))
1094 SetPageHugeObject(page
);
1096 prev_page
->freelist
= page
;
1103 * Allocate a zspage for the given size class
1105 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1106 struct size_class
*class,
1110 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1111 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1116 memset(zspage
, 0, sizeof(struct zspage
));
1117 zspage
->magic
= ZSPAGE_MAGIC
;
1118 migrate_lock_init(zspage
);
1120 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1123 page
= alloc_page(gfp
);
1126 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1127 __free_page(pages
[i
]);
1129 cache_free_zspage(pool
, zspage
);
1133 inc_zone_page_state(page
, NR_ZSPAGES
);
1137 create_page_chain(class, zspage
, pages
);
1138 init_zspage(class, zspage
);
1143 static struct zspage
*find_get_zspage(struct size_class
*class)
1146 struct zspage
*zspage
;
1148 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1149 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1150 struct zspage
, list
);
1158 #ifdef CONFIG_PGTABLE_MAPPING
1159 static inline int __zs_cpu_up(struct mapping_area
*area
)
1162 * Make sure we don't leak memory if a cpu UP notification
1163 * and zs_init() race and both call zs_cpu_up() on the same cpu
1167 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1173 static inline void __zs_cpu_down(struct mapping_area
*area
)
1176 free_vm_area(area
->vm
);
1180 static inline void *__zs_map_object(struct mapping_area
*area
,
1181 struct page
*pages
[2], int off
, int size
)
1183 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1184 area
->vm_addr
= area
->vm
->addr
;
1185 return area
->vm_addr
+ off
;
1188 static inline void __zs_unmap_object(struct mapping_area
*area
,
1189 struct page
*pages
[2], int off
, int size
)
1191 unsigned long addr
= (unsigned long)area
->vm_addr
;
1193 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1196 #else /* CONFIG_PGTABLE_MAPPING */
1198 static inline int __zs_cpu_up(struct mapping_area
*area
)
1201 * Make sure we don't leak memory if a cpu UP notification
1202 * and zs_init() race and both call zs_cpu_up() on the same cpu
1206 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1212 static inline void __zs_cpu_down(struct mapping_area
*area
)
1214 kfree(area
->vm_buf
);
1215 area
->vm_buf
= NULL
;
1218 static void *__zs_map_object(struct mapping_area
*area
,
1219 struct page
*pages
[2], int off
, int size
)
1223 char *buf
= area
->vm_buf
;
1225 /* disable page faults to match kmap_atomic() return conditions */
1226 pagefault_disable();
1228 /* no read fastpath */
1229 if (area
->vm_mm
== ZS_MM_WO
)
1232 sizes
[0] = PAGE_SIZE
- off
;
1233 sizes
[1] = size
- sizes
[0];
1235 /* copy object to per-cpu buffer */
1236 addr
= kmap_atomic(pages
[0]);
1237 memcpy(buf
, addr
+ off
, sizes
[0]);
1238 kunmap_atomic(addr
);
1239 addr
= kmap_atomic(pages
[1]);
1240 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1241 kunmap_atomic(addr
);
1243 return area
->vm_buf
;
1246 static void __zs_unmap_object(struct mapping_area
*area
,
1247 struct page
*pages
[2], int off
, int size
)
1253 /* no write fastpath */
1254 if (area
->vm_mm
== ZS_MM_RO
)
1258 buf
= buf
+ ZS_HANDLE_SIZE
;
1259 size
-= ZS_HANDLE_SIZE
;
1260 off
+= ZS_HANDLE_SIZE
;
1262 sizes
[0] = PAGE_SIZE
- off
;
1263 sizes
[1] = size
- sizes
[0];
1265 /* copy per-cpu buffer to object */
1266 addr
= kmap_atomic(pages
[0]);
1267 memcpy(addr
+ off
, buf
, sizes
[0]);
1268 kunmap_atomic(addr
);
1269 addr
= kmap_atomic(pages
[1]);
1270 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1271 kunmap_atomic(addr
);
1274 /* enable page faults to match kunmap_atomic() return conditions */
1278 #endif /* CONFIG_PGTABLE_MAPPING */
1280 static int zs_cpu_prepare(unsigned int cpu
)
1282 struct mapping_area
*area
;
1284 area
= &per_cpu(zs_map_area
, cpu
);
1285 return __zs_cpu_up(area
);
1288 static int zs_cpu_dead(unsigned int cpu
)
1290 struct mapping_area
*area
;
1292 area
= &per_cpu(zs_map_area
, cpu
);
1293 __zs_cpu_down(area
);
1297 static void __init
init_zs_size_classes(void)
1301 nr
= (ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) / ZS_SIZE_CLASS_DELTA
+ 1;
1302 if ((ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) % ZS_SIZE_CLASS_DELTA
)
1305 zs_size_classes
= nr
;
1308 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1309 int objs_per_zspage
)
1311 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1312 prev
->objs_per_zspage
== objs_per_zspage
)
1318 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1320 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1323 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1325 return atomic_long_read(&pool
->pages_allocated
);
1327 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1330 * zs_map_object - get address of allocated object from handle.
1331 * @pool: pool from which the object was allocated
1332 * @handle: handle returned from zs_malloc
1334 * Before using an object allocated from zs_malloc, it must be mapped using
1335 * this function. When done with the object, it must be unmapped using
1338 * Only one object can be mapped per cpu at a time. There is no protection
1339 * against nested mappings.
1341 * This function returns with preemption and page faults disabled.
1343 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1346 struct zspage
*zspage
;
1348 unsigned long obj
, off
;
1349 unsigned int obj_idx
;
1351 unsigned int class_idx
;
1352 enum fullness_group fg
;
1353 struct size_class
*class;
1354 struct mapping_area
*area
;
1355 struct page
*pages
[2];
1359 * Because we use per-cpu mapping areas shared among the
1360 * pools/users, we can't allow mapping in interrupt context
1361 * because it can corrupt another users mappings.
1363 WARN_ON_ONCE(in_interrupt());
1365 /* From now on, migration cannot move the object */
1368 obj
= handle_to_obj(handle
);
1369 obj_to_location(obj
, &page
, &obj_idx
);
1370 zspage
= get_zspage(page
);
1372 /* migration cannot move any subpage in this zspage */
1373 migrate_read_lock(zspage
);
1375 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1376 class = pool
->size_class
[class_idx
];
1377 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1379 area
= &get_cpu_var(zs_map_area
);
1381 if (off
+ class->size
<= PAGE_SIZE
) {
1382 /* this object is contained entirely within a page */
1383 area
->vm_addr
= kmap_atomic(page
);
1384 ret
= area
->vm_addr
+ off
;
1388 /* this object spans two pages */
1390 pages
[1] = get_next_page(page
);
1393 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1395 if (likely(!PageHugeObject(page
)))
1396 ret
+= ZS_HANDLE_SIZE
;
1400 EXPORT_SYMBOL_GPL(zs_map_object
);
1402 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1404 struct zspage
*zspage
;
1406 unsigned long obj
, off
;
1407 unsigned int obj_idx
;
1409 unsigned int class_idx
;
1410 enum fullness_group fg
;
1411 struct size_class
*class;
1412 struct mapping_area
*area
;
1414 obj
= handle_to_obj(handle
);
1415 obj_to_location(obj
, &page
, &obj_idx
);
1416 zspage
= get_zspage(page
);
1417 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1418 class = pool
->size_class
[class_idx
];
1419 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1421 area
= this_cpu_ptr(&zs_map_area
);
1422 if (off
+ class->size
<= PAGE_SIZE
)
1423 kunmap_atomic(area
->vm_addr
);
1425 struct page
*pages
[2];
1428 pages
[1] = get_next_page(page
);
1431 __zs_unmap_object(area
, pages
, off
, class->size
);
1433 put_cpu_var(zs_map_area
);
1435 migrate_read_unlock(zspage
);
1438 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1440 static unsigned long obj_malloc(struct size_class
*class,
1441 struct zspage
*zspage
, unsigned long handle
)
1443 int i
, nr_page
, offset
;
1445 struct link_free
*link
;
1447 struct page
*m_page
;
1448 unsigned long m_offset
;
1451 handle
|= OBJ_ALLOCATED_TAG
;
1452 obj
= get_freeobj(zspage
);
1454 offset
= obj
* class->size
;
1455 nr_page
= offset
>> PAGE_SHIFT
;
1456 m_offset
= offset
& ~PAGE_MASK
;
1457 m_page
= get_first_page(zspage
);
1459 for (i
= 0; i
< nr_page
; i
++)
1460 m_page
= get_next_page(m_page
);
1462 vaddr
= kmap_atomic(m_page
);
1463 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1464 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1465 if (likely(!PageHugeObject(m_page
)))
1466 /* record handle in the header of allocated chunk */
1467 link
->handle
= handle
;
1469 /* record handle to page->index */
1470 zspage
->first_page
->index
= handle
;
1472 kunmap_atomic(vaddr
);
1473 mod_zspage_inuse(zspage
, 1);
1474 zs_stat_inc(class, OBJ_USED
, 1);
1476 obj
= location_to_obj(m_page
, obj
);
1483 * zs_malloc - Allocate block of given size from pool.
1484 * @pool: pool to allocate from
1485 * @size: size of block to allocate
1486 * @gfp: gfp flags when allocating object
1488 * On success, handle to the allocated object is returned,
1490 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1492 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1494 unsigned long handle
, obj
;
1495 struct size_class
*class;
1496 enum fullness_group newfg
;
1497 struct zspage
*zspage
;
1499 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1502 handle
= cache_alloc_handle(pool
, gfp
);
1506 /* extra space in chunk to keep the handle */
1507 size
+= ZS_HANDLE_SIZE
;
1508 class = pool
->size_class
[get_size_class_index(size
)];
1510 spin_lock(&class->lock
);
1511 zspage
= find_get_zspage(class);
1512 if (likely(zspage
)) {
1513 obj
= obj_malloc(class, zspage
, handle
);
1514 /* Now move the zspage to another fullness group, if required */
1515 fix_fullness_group(class, zspage
);
1516 record_obj(handle
, obj
);
1517 spin_unlock(&class->lock
);
1522 spin_unlock(&class->lock
);
1524 zspage
= alloc_zspage(pool
, class, gfp
);
1526 cache_free_handle(pool
, handle
);
1530 spin_lock(&class->lock
);
1531 obj
= obj_malloc(class, zspage
, handle
);
1532 newfg
= get_fullness_group(class, zspage
);
1533 insert_zspage(class, zspage
, newfg
);
1534 set_zspage_mapping(zspage
, class->index
, newfg
);
1535 record_obj(handle
, obj
);
1536 atomic_long_add(class->pages_per_zspage
,
1537 &pool
->pages_allocated
);
1538 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1540 /* We completely set up zspage so mark them as movable */
1541 SetZsPageMovable(pool
, zspage
);
1542 spin_unlock(&class->lock
);
1546 EXPORT_SYMBOL_GPL(zs_malloc
);
1548 static void obj_free(struct size_class
*class, unsigned long obj
)
1550 struct link_free
*link
;
1551 struct zspage
*zspage
;
1552 struct page
*f_page
;
1553 unsigned long f_offset
;
1554 unsigned int f_objidx
;
1557 obj
&= ~OBJ_ALLOCATED_TAG
;
1558 obj_to_location(obj
, &f_page
, &f_objidx
);
1559 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1560 zspage
= get_zspage(f_page
);
1562 vaddr
= kmap_atomic(f_page
);
1564 /* Insert this object in containing zspage's freelist */
1565 link
= (struct link_free
*)(vaddr
+ f_offset
);
1566 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1567 kunmap_atomic(vaddr
);
1568 set_freeobj(zspage
, f_objidx
);
1569 mod_zspage_inuse(zspage
, -1);
1570 zs_stat_dec(class, OBJ_USED
, 1);
1573 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1575 struct zspage
*zspage
;
1576 struct page
*f_page
;
1578 unsigned int f_objidx
;
1580 struct size_class
*class;
1581 enum fullness_group fullness
;
1584 if (unlikely(!handle
))
1588 obj
= handle_to_obj(handle
);
1589 obj_to_location(obj
, &f_page
, &f_objidx
);
1590 zspage
= get_zspage(f_page
);
1592 migrate_read_lock(zspage
);
1594 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1595 class = pool
->size_class
[class_idx
];
1597 spin_lock(&class->lock
);
1598 obj_free(class, obj
);
1599 fullness
= fix_fullness_group(class, zspage
);
1600 if (fullness
!= ZS_EMPTY
) {
1601 migrate_read_unlock(zspage
);
1605 isolated
= is_zspage_isolated(zspage
);
1606 migrate_read_unlock(zspage
);
1607 /* If zspage is isolated, zs_page_putback will free the zspage */
1608 if (likely(!isolated
))
1609 free_zspage(pool
, class, zspage
);
1612 spin_unlock(&class->lock
);
1614 cache_free_handle(pool
, handle
);
1616 EXPORT_SYMBOL_GPL(zs_free
);
1618 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1621 struct page
*s_page
, *d_page
;
1622 unsigned int s_objidx
, d_objidx
;
1623 unsigned long s_off
, d_off
;
1624 void *s_addr
, *d_addr
;
1625 int s_size
, d_size
, size
;
1628 s_size
= d_size
= class->size
;
1630 obj_to_location(src
, &s_page
, &s_objidx
);
1631 obj_to_location(dst
, &d_page
, &d_objidx
);
1633 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1634 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1636 if (s_off
+ class->size
> PAGE_SIZE
)
1637 s_size
= PAGE_SIZE
- s_off
;
1639 if (d_off
+ class->size
> PAGE_SIZE
)
1640 d_size
= PAGE_SIZE
- d_off
;
1642 s_addr
= kmap_atomic(s_page
);
1643 d_addr
= kmap_atomic(d_page
);
1646 size
= min(s_size
, d_size
);
1647 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1650 if (written
== class->size
)
1658 if (s_off
>= PAGE_SIZE
) {
1659 kunmap_atomic(d_addr
);
1660 kunmap_atomic(s_addr
);
1661 s_page
= get_next_page(s_page
);
1662 s_addr
= kmap_atomic(s_page
);
1663 d_addr
= kmap_atomic(d_page
);
1664 s_size
= class->size
- written
;
1668 if (d_off
>= PAGE_SIZE
) {
1669 kunmap_atomic(d_addr
);
1670 d_page
= get_next_page(d_page
);
1671 d_addr
= kmap_atomic(d_page
);
1672 d_size
= class->size
- written
;
1677 kunmap_atomic(d_addr
);
1678 kunmap_atomic(s_addr
);
1682 * Find alloced object in zspage from index object and
1685 static unsigned long find_alloced_obj(struct size_class
*class,
1686 struct page
*page
, int *obj_idx
)
1690 int index
= *obj_idx
;
1691 unsigned long handle
= 0;
1692 void *addr
= kmap_atomic(page
);
1694 offset
= get_first_obj_offset(page
);
1695 offset
+= class->size
* index
;
1697 while (offset
< PAGE_SIZE
) {
1698 head
= obj_to_head(page
, addr
+ offset
);
1699 if (head
& OBJ_ALLOCATED_TAG
) {
1700 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1701 if (trypin_tag(handle
))
1706 offset
+= class->size
;
1710 kunmap_atomic(addr
);
1717 struct zs_compact_control
{
1718 /* Source spage for migration which could be a subpage of zspage */
1719 struct page
*s_page
;
1720 /* Destination page for migration which should be a first page
1722 struct page
*d_page
;
1723 /* Starting object index within @s_page which used for live object
1724 * in the subpage. */
1728 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1729 struct zs_compact_control
*cc
)
1731 unsigned long used_obj
, free_obj
;
1732 unsigned long handle
;
1733 struct page
*s_page
= cc
->s_page
;
1734 struct page
*d_page
= cc
->d_page
;
1735 int obj_idx
= cc
->obj_idx
;
1739 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1741 s_page
= get_next_page(s_page
);
1748 /* Stop if there is no more space */
1749 if (zspage_full(class, get_zspage(d_page
))) {
1755 used_obj
= handle_to_obj(handle
);
1756 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1757 zs_object_copy(class, free_obj
, used_obj
);
1760 * record_obj updates handle's value to free_obj and it will
1761 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1762 * breaks synchronization using pin_tag(e,g, zs_free) so
1763 * let's keep the lock bit.
1765 free_obj
|= BIT(HANDLE_PIN_BIT
);
1766 record_obj(handle
, free_obj
);
1768 obj_free(class, used_obj
);
1771 /* Remember last position in this iteration */
1772 cc
->s_page
= s_page
;
1773 cc
->obj_idx
= obj_idx
;
1778 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1781 struct zspage
*zspage
;
1782 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1785 fg
[0] = ZS_ALMOST_FULL
;
1786 fg
[1] = ZS_ALMOST_EMPTY
;
1789 for (i
= 0; i
< 2; i
++) {
1790 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1791 struct zspage
, list
);
1793 VM_BUG_ON(is_zspage_isolated(zspage
));
1794 remove_zspage(class, zspage
, fg
[i
]);
1803 * putback_zspage - add @zspage into right class's fullness list
1804 * @class: destination class
1805 * @zspage: target page
1807 * Return @zspage's fullness_group
1809 static enum fullness_group
putback_zspage(struct size_class
*class,
1810 struct zspage
*zspage
)
1812 enum fullness_group fullness
;
1814 VM_BUG_ON(is_zspage_isolated(zspage
));
1816 fullness
= get_fullness_group(class, zspage
);
1817 insert_zspage(class, zspage
, fullness
);
1818 set_zspage_mapping(zspage
, class->index
, fullness
);
1823 #ifdef CONFIG_COMPACTION
1824 static struct dentry
*zs_mount(struct file_system_type
*fs_type
,
1825 int flags
, const char *dev_name
, void *data
)
1827 static const struct dentry_operations ops
= {
1828 .d_dname
= simple_dname
,
1831 return mount_pseudo(fs_type
, "zsmalloc:", NULL
, &ops
, ZSMALLOC_MAGIC
);
1834 static struct file_system_type zsmalloc_fs
= {
1837 .kill_sb
= kill_anon_super
,
1840 static int zsmalloc_mount(void)
1844 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1845 if (IS_ERR(zsmalloc_mnt
))
1846 ret
= PTR_ERR(zsmalloc_mnt
);
1851 static void zsmalloc_unmount(void)
1853 kern_unmount(zsmalloc_mnt
);
1856 static void migrate_lock_init(struct zspage
*zspage
)
1858 rwlock_init(&zspage
->lock
);
1861 static void migrate_read_lock(struct zspage
*zspage
)
1863 read_lock(&zspage
->lock
);
1866 static void migrate_read_unlock(struct zspage
*zspage
)
1868 read_unlock(&zspage
->lock
);
1871 static void migrate_write_lock(struct zspage
*zspage
)
1873 write_lock(&zspage
->lock
);
1876 static void migrate_write_unlock(struct zspage
*zspage
)
1878 write_unlock(&zspage
->lock
);
1881 /* Number of isolated subpage for *page migration* in this zspage */
1882 static void inc_zspage_isolation(struct zspage
*zspage
)
1887 static void dec_zspage_isolation(struct zspage
*zspage
)
1892 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1893 struct page
*newpage
, struct page
*oldpage
)
1896 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1899 page
= get_first_page(zspage
);
1901 if (page
== oldpage
)
1902 pages
[idx
] = newpage
;
1906 } while ((page
= get_next_page(page
)) != NULL
);
1908 create_page_chain(class, zspage
, pages
);
1909 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1910 if (unlikely(PageHugeObject(oldpage
)))
1911 newpage
->index
= oldpage
->index
;
1912 __SetPageMovable(newpage
, page_mapping(oldpage
));
1915 bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1917 struct zs_pool
*pool
;
1918 struct size_class
*class;
1920 enum fullness_group fullness
;
1921 struct zspage
*zspage
;
1922 struct address_space
*mapping
;
1925 * Page is locked so zspage couldn't be destroyed. For detail, look at
1926 * lock_zspage in free_zspage.
1928 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1929 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1931 zspage
= get_zspage(page
);
1934 * Without class lock, fullness could be stale while class_idx is okay
1935 * because class_idx is constant unless page is freed so we should get
1936 * fullness again under class lock.
1938 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1939 mapping
= page_mapping(page
);
1940 pool
= mapping
->private_data
;
1941 class = pool
->size_class
[class_idx
];
1943 spin_lock(&class->lock
);
1944 if (get_zspage_inuse(zspage
) == 0) {
1945 spin_unlock(&class->lock
);
1949 /* zspage is isolated for object migration */
1950 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1951 spin_unlock(&class->lock
);
1956 * If this is first time isolation for the zspage, isolate zspage from
1957 * size_class to prevent further object allocation from the zspage.
1959 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1960 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1961 remove_zspage(class, zspage
, fullness
);
1964 inc_zspage_isolation(zspage
);
1965 spin_unlock(&class->lock
);
1970 int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1971 struct page
*page
, enum migrate_mode mode
)
1973 struct zs_pool
*pool
;
1974 struct size_class
*class;
1976 enum fullness_group fullness
;
1977 struct zspage
*zspage
;
1979 void *s_addr
, *d_addr
, *addr
;
1981 unsigned long handle
, head
;
1982 unsigned long old_obj
, new_obj
;
1983 unsigned int obj_idx
;
1986 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1987 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
1989 zspage
= get_zspage(page
);
1991 /* Concurrent compactor cannot migrate any subpage in zspage */
1992 migrate_write_lock(zspage
);
1993 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1994 pool
= mapping
->private_data
;
1995 class = pool
->size_class
[class_idx
];
1996 offset
= get_first_obj_offset(page
);
1998 spin_lock(&class->lock
);
1999 if (!get_zspage_inuse(zspage
)) {
2005 s_addr
= kmap_atomic(page
);
2006 while (pos
< PAGE_SIZE
) {
2007 head
= obj_to_head(page
, s_addr
+ pos
);
2008 if (head
& OBJ_ALLOCATED_TAG
) {
2009 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2010 if (!trypin_tag(handle
))
2017 * Here, any user cannot access all objects in the zspage so let's move.
2019 d_addr
= kmap_atomic(newpage
);
2020 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2021 kunmap_atomic(d_addr
);
2023 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2024 addr
+= class->size
) {
2025 head
= obj_to_head(page
, addr
);
2026 if (head
& OBJ_ALLOCATED_TAG
) {
2027 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2028 if (!testpin_tag(handle
))
2031 old_obj
= handle_to_obj(handle
);
2032 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2033 new_obj
= (unsigned long)location_to_obj(newpage
,
2035 new_obj
|= BIT(HANDLE_PIN_BIT
);
2036 record_obj(handle
, new_obj
);
2040 replace_sub_page(class, zspage
, newpage
, page
);
2043 dec_zspage_isolation(zspage
);
2046 * Page migration is done so let's putback isolated zspage to
2047 * the list if @page is final isolated subpage in the zspage.
2049 if (!is_zspage_isolated(zspage
))
2050 putback_zspage(class, zspage
);
2056 ret
= MIGRATEPAGE_SUCCESS
;
2058 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2059 addr
+= class->size
) {
2060 head
= obj_to_head(page
, addr
);
2061 if (head
& OBJ_ALLOCATED_TAG
) {
2062 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2063 if (!testpin_tag(handle
))
2068 kunmap_atomic(s_addr
);
2070 spin_unlock(&class->lock
);
2071 migrate_write_unlock(zspage
);
2076 void zs_page_putback(struct page
*page
)
2078 struct zs_pool
*pool
;
2079 struct size_class
*class;
2081 enum fullness_group fg
;
2082 struct address_space
*mapping
;
2083 struct zspage
*zspage
;
2085 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2086 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2088 zspage
= get_zspage(page
);
2089 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2090 mapping
= page_mapping(page
);
2091 pool
= mapping
->private_data
;
2092 class = pool
->size_class
[class_idx
];
2094 spin_lock(&class->lock
);
2095 dec_zspage_isolation(zspage
);
2096 if (!is_zspage_isolated(zspage
)) {
2097 fg
= putback_zspage(class, zspage
);
2099 * Due to page_lock, we cannot free zspage immediately
2103 schedule_work(&pool
->free_work
);
2105 spin_unlock(&class->lock
);
2108 const struct address_space_operations zsmalloc_aops
= {
2109 .isolate_page
= zs_page_isolate
,
2110 .migratepage
= zs_page_migrate
,
2111 .putback_page
= zs_page_putback
,
2114 static int zs_register_migration(struct zs_pool
*pool
)
2116 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2117 if (IS_ERR(pool
->inode
)) {
2122 pool
->inode
->i_mapping
->private_data
= pool
;
2123 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2127 static void zs_unregister_migration(struct zs_pool
*pool
)
2129 flush_work(&pool
->free_work
);
2134 * Caller should hold page_lock of all pages in the zspage
2135 * In here, we cannot use zspage meta data.
2137 static void async_free_zspage(struct work_struct
*work
)
2140 struct size_class
*class;
2141 unsigned int class_idx
;
2142 enum fullness_group fullness
;
2143 struct zspage
*zspage
, *tmp
;
2144 LIST_HEAD(free_pages
);
2145 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2148 for (i
= 0; i
< zs_size_classes
; i
++) {
2149 class = pool
->size_class
[i
];
2150 if (class->index
!= i
)
2153 spin_lock(&class->lock
);
2154 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2155 spin_unlock(&class->lock
);
2159 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2160 list_del(&zspage
->list
);
2161 lock_zspage(zspage
);
2163 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2164 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2165 class = pool
->size_class
[class_idx
];
2166 spin_lock(&class->lock
);
2167 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2168 spin_unlock(&class->lock
);
2172 static void kick_deferred_free(struct zs_pool
*pool
)
2174 schedule_work(&pool
->free_work
);
2177 static void init_deferred_free(struct zs_pool
*pool
)
2179 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2182 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2184 struct page
*page
= get_first_page(zspage
);
2187 WARN_ON(!trylock_page(page
));
2188 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2190 } while ((page
= get_next_page(page
)) != NULL
);
2196 * Based on the number of unused allocated objects calculate
2197 * and return the number of pages that we can free.
2199 static unsigned long zs_can_compact(struct size_class
*class)
2201 unsigned long obj_wasted
;
2202 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2203 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2205 if (obj_allocated
<= obj_used
)
2208 obj_wasted
= obj_allocated
- obj_used
;
2209 obj_wasted
/= class->objs_per_zspage
;
2211 return obj_wasted
* class->pages_per_zspage
;
2214 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2216 struct zs_compact_control cc
;
2217 struct zspage
*src_zspage
;
2218 struct zspage
*dst_zspage
= NULL
;
2220 spin_lock(&class->lock
);
2221 while ((src_zspage
= isolate_zspage(class, true))) {
2223 if (!zs_can_compact(class))
2227 cc
.s_page
= get_first_page(src_zspage
);
2229 while ((dst_zspage
= isolate_zspage(class, false))) {
2230 cc
.d_page
= get_first_page(dst_zspage
);
2232 * If there is no more space in dst_page, resched
2233 * and see if anyone had allocated another zspage.
2235 if (!migrate_zspage(pool
, class, &cc
))
2238 putback_zspage(class, dst_zspage
);
2241 /* Stop if we couldn't find slot */
2242 if (dst_zspage
== NULL
)
2245 putback_zspage(class, dst_zspage
);
2246 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2247 free_zspage(pool
, class, src_zspage
);
2248 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2250 spin_unlock(&class->lock
);
2252 spin_lock(&class->lock
);
2256 putback_zspage(class, src_zspage
);
2258 spin_unlock(&class->lock
);
2261 unsigned long zs_compact(struct zs_pool
*pool
)
2264 struct size_class
*class;
2266 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
2267 class = pool
->size_class
[i
];
2270 if (class->index
!= i
)
2272 __zs_compact(pool
, class);
2275 return pool
->stats
.pages_compacted
;
2277 EXPORT_SYMBOL_GPL(zs_compact
);
2279 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2281 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2283 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2285 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2286 struct shrink_control
*sc
)
2288 unsigned long pages_freed
;
2289 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2292 pages_freed
= pool
->stats
.pages_compacted
;
2294 * Compact classes and calculate compaction delta.
2295 * Can run concurrently with a manually triggered
2296 * (by user) compaction.
2298 pages_freed
= zs_compact(pool
) - pages_freed
;
2300 return pages_freed
? pages_freed
: SHRINK_STOP
;
2303 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2304 struct shrink_control
*sc
)
2307 struct size_class
*class;
2308 unsigned long pages_to_free
= 0;
2309 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2312 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
2313 class = pool
->size_class
[i
];
2316 if (class->index
!= i
)
2319 pages_to_free
+= zs_can_compact(class);
2322 return pages_to_free
;
2325 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2327 if (pool
->shrinker_enabled
) {
2328 unregister_shrinker(&pool
->shrinker
);
2329 pool
->shrinker_enabled
= false;
2333 static int zs_register_shrinker(struct zs_pool
*pool
)
2335 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2336 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2337 pool
->shrinker
.batch
= 0;
2338 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2340 return register_shrinker(&pool
->shrinker
);
2344 * zs_create_pool - Creates an allocation pool to work from.
2345 * @name: pool name to be created
2347 * This function must be called before anything when using
2348 * the zsmalloc allocator.
2350 * On success, a pointer to the newly created pool is returned,
2353 struct zs_pool
*zs_create_pool(const char *name
)
2356 struct zs_pool
*pool
;
2357 struct size_class
*prev_class
= NULL
;
2359 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2363 init_deferred_free(pool
);
2364 pool
->size_class
= kcalloc(zs_size_classes
, sizeof(struct size_class
*),
2366 if (!pool
->size_class
) {
2371 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2375 if (create_cache(pool
))
2379 * Iterate reversely, because, size of size_class that we want to use
2380 * for merging should be larger or equal to current size.
2382 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
2384 int pages_per_zspage
;
2385 int objs_per_zspage
;
2386 struct size_class
*class;
2389 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2390 if (size
> ZS_MAX_ALLOC_SIZE
)
2391 size
= ZS_MAX_ALLOC_SIZE
;
2392 pages_per_zspage
= get_pages_per_zspage(size
);
2393 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2396 * size_class is used for normal zsmalloc operation such
2397 * as alloc/free for that size. Although it is natural that we
2398 * have one size_class for each size, there is a chance that we
2399 * can get more memory utilization if we use one size_class for
2400 * many different sizes whose size_class have same
2401 * characteristics. So, we makes size_class point to
2402 * previous size_class if possible.
2405 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2406 pool
->size_class
[i
] = prev_class
;
2411 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2417 class->pages_per_zspage
= pages_per_zspage
;
2418 class->objs_per_zspage
= objs_per_zspage
;
2419 spin_lock_init(&class->lock
);
2420 pool
->size_class
[i
] = class;
2421 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2423 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2428 /* debug only, don't abort if it fails */
2429 zs_pool_stat_create(pool
, name
);
2431 if (zs_register_migration(pool
))
2435 * Not critical, we still can use the pool
2436 * and user can trigger compaction manually.
2438 if (zs_register_shrinker(pool
) == 0)
2439 pool
->shrinker_enabled
= true;
2443 zs_destroy_pool(pool
);
2446 EXPORT_SYMBOL_GPL(zs_create_pool
);
2448 void zs_destroy_pool(struct zs_pool
*pool
)
2452 zs_unregister_shrinker(pool
);
2453 zs_unregister_migration(pool
);
2454 zs_pool_stat_destroy(pool
);
2456 for (i
= 0; i
< zs_size_classes
; i
++) {
2458 struct size_class
*class = pool
->size_class
[i
];
2463 if (class->index
!= i
)
2466 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2467 if (!list_empty(&class->fullness_list
[fg
])) {
2468 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2475 destroy_cache(pool
);
2476 kfree(pool
->size_class
);
2480 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2482 static int __init
zs_init(void)
2486 ret
= zsmalloc_mount();
2490 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2491 zs_cpu_prepare
, zs_cpu_dead
);
2495 init_zs_size_classes();
2498 zpool_register_driver(&zs_zpool_driver
);
2511 static void __exit
zs_exit(void)
2514 zpool_unregister_driver(&zs_zpool_driver
);
2517 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2522 module_init(zs_init
);
2523 module_exit(zs_exit
);
2525 MODULE_LICENSE("Dual BSD/GPL");
2526 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");