2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40 static struct vfsmount
*shm_mnt
;
44 * This virtual memory filesystem is heavily based on the ramfs. It
45 * extends ramfs by the ability to use swap and honor resource limits
46 * which makes it a completely usable filesystem.
49 #include <linux/xattr.h>
50 #include <linux/exportfs.h>
51 #include <linux/posix_acl.h>
52 #include <linux/posix_acl_xattr.h>
53 #include <linux/mman.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <linux/backing-dev.h>
57 #include <linux/shmem_fs.h>
58 #include <linux/writeback.h>
59 #include <linux/blkdev.h>
60 #include <linux/pagevec.h>
61 #include <linux/percpu_counter.h>
62 #include <linux/falloc.h>
63 #include <linux/splice.h>
64 #include <linux/security.h>
65 #include <linux/swapops.h>
66 #include <linux/mempolicy.h>
67 #include <linux/namei.h>
68 #include <linux/ctype.h>
69 #include <linux/migrate.h>
70 #include <linux/highmem.h>
71 #include <linux/seq_file.h>
72 #include <linux/magic.h>
73 #include <linux/syscalls.h>
74 #include <linux/fcntl.h>
75 #include <uapi/linux/memfd.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/rmap.h>
79 #include <linux/uaccess.h>
80 #include <asm/pgtable.h>
84 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
85 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
87 /* Pretend that each entry is of this size in directory's i_size */
88 #define BOGO_DIRENT_SIZE 20
90 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
91 #define SHORT_SYMLINK_LEN 128
94 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
95 * inode->i_private (with i_mutex making sure that it has only one user at
96 * a time): we would prefer not to enlarge the shmem inode just for that.
99 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
100 pgoff_t start
; /* start of range currently being fallocated */
101 pgoff_t next
; /* the next page offset to be fallocated */
102 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
103 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
107 static unsigned long shmem_default_max_blocks(void)
109 return totalram_pages
/ 2;
112 static unsigned long shmem_default_max_inodes(void)
114 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
118 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
119 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
120 struct shmem_inode_info
*info
, pgoff_t index
);
121 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
122 struct page
**pagep
, enum sgp_type sgp
,
123 gfp_t gfp
, struct vm_area_struct
*vma
,
124 struct vm_fault
*vmf
, int *fault_type
);
126 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
127 struct page
**pagep
, enum sgp_type sgp
)
129 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
130 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
133 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
135 return sb
->s_fs_info
;
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
144 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
146 return (flags
& VM_NORESERVE
) ?
147 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
150 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
152 if (!(flags
& VM_NORESERVE
))
153 vm_unacct_memory(VM_ACCT(size
));
156 static inline int shmem_reacct_size(unsigned long flags
,
157 loff_t oldsize
, loff_t newsize
)
159 if (!(flags
& VM_NORESERVE
)) {
160 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
161 return security_vm_enough_memory_mm(current
->mm
,
162 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
163 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
164 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
170 * ... whereas tmpfs objects are accounted incrementally as
171 * pages are allocated, in order to allow large sparse files.
172 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
173 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 static inline int shmem_acct_block(unsigned long flags
, long pages
)
177 if (!(flags
& VM_NORESERVE
))
180 return security_vm_enough_memory_mm(current
->mm
,
181 pages
* VM_ACCT(PAGE_SIZE
));
184 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
186 if (flags
& VM_NORESERVE
)
187 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
190 static const struct super_operations shmem_ops
;
191 static const struct address_space_operations shmem_aops
;
192 static const struct file_operations shmem_file_operations
;
193 static const struct inode_operations shmem_inode_operations
;
194 static const struct inode_operations shmem_dir_inode_operations
;
195 static const struct inode_operations shmem_special_inode_operations
;
196 static const struct vm_operations_struct shmem_vm_ops
;
197 static struct file_system_type shmem_fs_type
;
199 bool vma_is_shmem(struct vm_area_struct
*vma
)
201 return vma
->vm_ops
== &shmem_vm_ops
;
204 static LIST_HEAD(shmem_swaplist
);
205 static DEFINE_MUTEX(shmem_swaplist_mutex
);
207 static int shmem_reserve_inode(struct super_block
*sb
)
209 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
210 if (sbinfo
->max_inodes
) {
211 spin_lock(&sbinfo
->stat_lock
);
212 if (!sbinfo
->free_inodes
) {
213 spin_unlock(&sbinfo
->stat_lock
);
216 sbinfo
->free_inodes
--;
217 spin_unlock(&sbinfo
->stat_lock
);
222 static void shmem_free_inode(struct super_block
*sb
)
224 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
225 if (sbinfo
->max_inodes
) {
226 spin_lock(&sbinfo
->stat_lock
);
227 sbinfo
->free_inodes
++;
228 spin_unlock(&sbinfo
->stat_lock
);
233 * shmem_recalc_inode - recalculate the block usage of an inode
234 * @inode: inode to recalc
236 * We have to calculate the free blocks since the mm can drop
237 * undirtied hole pages behind our back.
239 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
240 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
242 * It has to be called with the spinlock held.
244 static void shmem_recalc_inode(struct inode
*inode
)
246 struct shmem_inode_info
*info
= SHMEM_I(inode
);
249 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
251 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
252 if (sbinfo
->max_blocks
)
253 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
254 info
->alloced
-= freed
;
255 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
256 shmem_unacct_blocks(info
->flags
, freed
);
260 bool shmem_charge(struct inode
*inode
, long pages
)
262 struct shmem_inode_info
*info
= SHMEM_I(inode
);
263 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
266 if (shmem_acct_block(info
->flags
, pages
))
268 spin_lock_irqsave(&info
->lock
, flags
);
269 info
->alloced
+= pages
;
270 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
271 shmem_recalc_inode(inode
);
272 spin_unlock_irqrestore(&info
->lock
, flags
);
273 inode
->i_mapping
->nrpages
+= pages
;
275 if (!sbinfo
->max_blocks
)
277 if (percpu_counter_compare(&sbinfo
->used_blocks
,
278 sbinfo
->max_blocks
- pages
) > 0) {
279 inode
->i_mapping
->nrpages
-= pages
;
280 spin_lock_irqsave(&info
->lock
, flags
);
281 info
->alloced
-= pages
;
282 shmem_recalc_inode(inode
);
283 spin_unlock_irqrestore(&info
->lock
, flags
);
284 shmem_unacct_blocks(info
->flags
, pages
);
287 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
291 void shmem_uncharge(struct inode
*inode
, long pages
)
293 struct shmem_inode_info
*info
= SHMEM_I(inode
);
294 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
297 spin_lock_irqsave(&info
->lock
, flags
);
298 info
->alloced
-= pages
;
299 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
300 shmem_recalc_inode(inode
);
301 spin_unlock_irqrestore(&info
->lock
, flags
);
303 if (sbinfo
->max_blocks
)
304 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
305 shmem_unacct_blocks(info
->flags
, pages
);
309 * Replace item expected in radix tree by a new item, while holding tree lock.
311 static int shmem_radix_tree_replace(struct address_space
*mapping
,
312 pgoff_t index
, void *expected
, void *replacement
)
314 struct radix_tree_node
*node
;
318 VM_BUG_ON(!expected
);
319 VM_BUG_ON(!replacement
);
320 item
= __radix_tree_lookup(&mapping
->page_tree
, index
, &node
, &pslot
);
323 if (item
!= expected
)
325 __radix_tree_replace(&mapping
->page_tree
, node
, pslot
,
326 replacement
, NULL
, NULL
);
331 * Sometimes, before we decide whether to proceed or to fail, we must check
332 * that an entry was not already brought back from swap by a racing thread.
334 * Checking page is not enough: by the time a SwapCache page is locked, it
335 * might be reused, and again be SwapCache, using the same swap as before.
337 static bool shmem_confirm_swap(struct address_space
*mapping
,
338 pgoff_t index
, swp_entry_t swap
)
343 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
345 return item
== swp_to_radix_entry(swap
);
349 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
352 * disables huge pages for the mount;
354 * enables huge pages for the mount;
355 * SHMEM_HUGE_WITHIN_SIZE:
356 * only allocate huge pages if the page will be fully within i_size,
357 * also respect fadvise()/madvise() hints;
359 * only allocate huge pages if requested with fadvise()/madvise();
362 #define SHMEM_HUGE_NEVER 0
363 #define SHMEM_HUGE_ALWAYS 1
364 #define SHMEM_HUGE_WITHIN_SIZE 2
365 #define SHMEM_HUGE_ADVISE 3
369 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
372 * disables huge on shm_mnt and all mounts, for emergency use;
374 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
377 #define SHMEM_HUGE_DENY (-1)
378 #define SHMEM_HUGE_FORCE (-2)
380 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
381 /* ifdef here to avoid bloating shmem.o when not necessary */
383 int shmem_huge __read_mostly
;
385 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
386 static int shmem_parse_huge(const char *str
)
388 if (!strcmp(str
, "never"))
389 return SHMEM_HUGE_NEVER
;
390 if (!strcmp(str
, "always"))
391 return SHMEM_HUGE_ALWAYS
;
392 if (!strcmp(str
, "within_size"))
393 return SHMEM_HUGE_WITHIN_SIZE
;
394 if (!strcmp(str
, "advise"))
395 return SHMEM_HUGE_ADVISE
;
396 if (!strcmp(str
, "deny"))
397 return SHMEM_HUGE_DENY
;
398 if (!strcmp(str
, "force"))
399 return SHMEM_HUGE_FORCE
;
403 static const char *shmem_format_huge(int huge
)
406 case SHMEM_HUGE_NEVER
:
408 case SHMEM_HUGE_ALWAYS
:
410 case SHMEM_HUGE_WITHIN_SIZE
:
411 return "within_size";
412 case SHMEM_HUGE_ADVISE
:
414 case SHMEM_HUGE_DENY
:
416 case SHMEM_HUGE_FORCE
:
425 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
426 struct shrink_control
*sc
, unsigned long nr_to_split
)
428 LIST_HEAD(list
), *pos
, *next
;
429 LIST_HEAD(to_remove
);
431 struct shmem_inode_info
*info
;
433 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
434 int removed
= 0, split
= 0;
436 if (list_empty(&sbinfo
->shrinklist
))
439 spin_lock(&sbinfo
->shrinklist_lock
);
440 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
441 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
444 inode
= igrab(&info
->vfs_inode
);
446 /* inode is about to be evicted */
448 list_del_init(&info
->shrinklist
);
453 /* Check if there's anything to gain */
454 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
455 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
456 list_move(&info
->shrinklist
, &to_remove
);
461 list_move(&info
->shrinklist
, &list
);
466 spin_unlock(&sbinfo
->shrinklist_lock
);
468 list_for_each_safe(pos
, next
, &to_remove
) {
469 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
470 inode
= &info
->vfs_inode
;
471 list_del_init(&info
->shrinklist
);
475 list_for_each_safe(pos
, next
, &list
) {
478 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
479 inode
= &info
->vfs_inode
;
481 if (nr_to_split
&& split
>= nr_to_split
) {
486 page
= find_lock_page(inode
->i_mapping
,
487 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
491 if (!PageTransHuge(page
)) {
497 ret
= split_huge_page(page
);
502 /* split failed: leave it on the list */
509 list_del_init(&info
->shrinklist
);
514 spin_lock(&sbinfo
->shrinklist_lock
);
515 list_splice_tail(&list
, &sbinfo
->shrinklist
);
516 sbinfo
->shrinklist_len
-= removed
;
517 spin_unlock(&sbinfo
->shrinklist_lock
);
522 static long shmem_unused_huge_scan(struct super_block
*sb
,
523 struct shrink_control
*sc
)
525 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
527 if (!READ_ONCE(sbinfo
->shrinklist_len
))
530 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
533 static long shmem_unused_huge_count(struct super_block
*sb
,
534 struct shrink_control
*sc
)
536 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
537 return READ_ONCE(sbinfo
->shrinklist_len
);
539 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
541 #define shmem_huge SHMEM_HUGE_DENY
543 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
544 struct shrink_control
*sc
, unsigned long nr_to_split
)
548 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
551 * Like add_to_page_cache_locked, but error if expected item has gone.
553 static int shmem_add_to_page_cache(struct page
*page
,
554 struct address_space
*mapping
,
555 pgoff_t index
, void *expected
)
557 int error
, nr
= hpage_nr_pages(page
);
559 VM_BUG_ON_PAGE(PageTail(page
), page
);
560 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
561 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
562 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
563 VM_BUG_ON(expected
&& PageTransHuge(page
));
565 page_ref_add(page
, nr
);
566 page
->mapping
= mapping
;
569 spin_lock_irq(&mapping
->tree_lock
);
570 if (PageTransHuge(page
)) {
571 void __rcu
**results
;
576 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
,
577 &results
, &idx
, index
, 1) &&
578 idx
< index
+ HPAGE_PMD_NR
) {
583 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
584 error
= radix_tree_insert(&mapping
->page_tree
,
585 index
+ i
, page
+ i
);
588 count_vm_event(THP_FILE_ALLOC
);
590 } else if (!expected
) {
591 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
593 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
598 mapping
->nrpages
+= nr
;
599 if (PageTransHuge(page
))
600 __inc_node_page_state(page
, NR_SHMEM_THPS
);
601 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
602 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
603 spin_unlock_irq(&mapping
->tree_lock
);
605 page
->mapping
= NULL
;
606 spin_unlock_irq(&mapping
->tree_lock
);
607 page_ref_sub(page
, nr
);
613 * Like delete_from_page_cache, but substitutes swap for page.
615 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
617 struct address_space
*mapping
= page
->mapping
;
620 VM_BUG_ON_PAGE(PageCompound(page
), page
);
622 spin_lock_irq(&mapping
->tree_lock
);
623 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
624 page
->mapping
= NULL
;
626 __dec_node_page_state(page
, NR_FILE_PAGES
);
627 __dec_node_page_state(page
, NR_SHMEM
);
628 spin_unlock_irq(&mapping
->tree_lock
);
634 * Remove swap entry from radix tree, free the swap and its page cache.
636 static int shmem_free_swap(struct address_space
*mapping
,
637 pgoff_t index
, void *radswap
)
641 spin_lock_irq(&mapping
->tree_lock
);
642 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
643 spin_unlock_irq(&mapping
->tree_lock
);
646 free_swap_and_cache(radix_to_swp_entry(radswap
));
651 * Determine (in bytes) how many of the shmem object's pages mapped by the
652 * given offsets are swapped out.
654 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
655 * as long as the inode doesn't go away and racy results are not a problem.
657 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
658 pgoff_t start
, pgoff_t end
)
660 struct radix_tree_iter iter
;
663 unsigned long swapped
= 0;
667 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
668 if (iter
.index
>= end
)
671 page
= radix_tree_deref_slot(slot
);
673 if (radix_tree_deref_retry(page
)) {
674 slot
= radix_tree_iter_retry(&iter
);
678 if (radix_tree_exceptional_entry(page
))
681 if (need_resched()) {
682 slot
= radix_tree_iter_resume(slot
, &iter
);
689 return swapped
<< PAGE_SHIFT
;
693 * Determine (in bytes) how many of the shmem object's pages mapped by the
694 * given vma is swapped out.
696 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
697 * as long as the inode doesn't go away and racy results are not a problem.
699 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
701 struct inode
*inode
= file_inode(vma
->vm_file
);
702 struct shmem_inode_info
*info
= SHMEM_I(inode
);
703 struct address_space
*mapping
= inode
->i_mapping
;
704 unsigned long swapped
;
706 /* Be careful as we don't hold info->lock */
707 swapped
= READ_ONCE(info
->swapped
);
710 * The easier cases are when the shmem object has nothing in swap, or
711 * the vma maps it whole. Then we can simply use the stats that we
717 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
718 return swapped
<< PAGE_SHIFT
;
720 /* Here comes the more involved part */
721 return shmem_partial_swap_usage(mapping
,
722 linear_page_index(vma
, vma
->vm_start
),
723 linear_page_index(vma
, vma
->vm_end
));
727 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
729 void shmem_unlock_mapping(struct address_space
*mapping
)
732 pgoff_t indices
[PAGEVEC_SIZE
];
735 pagevec_init(&pvec
, 0);
737 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
739 while (!mapping_unevictable(mapping
)) {
741 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
742 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
744 pvec
.nr
= find_get_entries(mapping
, index
,
745 PAGEVEC_SIZE
, pvec
.pages
, indices
);
748 index
= indices
[pvec
.nr
- 1] + 1;
749 pagevec_remove_exceptionals(&pvec
);
750 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
751 pagevec_release(&pvec
);
757 * Remove range of pages and swap entries from radix tree, and free them.
758 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
760 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
763 struct address_space
*mapping
= inode
->i_mapping
;
764 struct shmem_inode_info
*info
= SHMEM_I(inode
);
765 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
766 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
767 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
768 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
770 pgoff_t indices
[PAGEVEC_SIZE
];
771 long nr_swaps_freed
= 0;
776 end
= -1; /* unsigned, so actually very big */
778 pagevec_init(&pvec
, 0);
780 while (index
< end
) {
781 pvec
.nr
= find_get_entries(mapping
, index
,
782 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
783 pvec
.pages
, indices
);
786 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
787 struct page
*page
= pvec
.pages
[i
];
793 if (radix_tree_exceptional_entry(page
)) {
796 nr_swaps_freed
+= !shmem_free_swap(mapping
,
801 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
803 if (!trylock_page(page
))
806 if (PageTransTail(page
)) {
807 /* Middle of THP: zero out the page */
808 clear_highpage(page
);
811 } else if (PageTransHuge(page
)) {
812 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
814 * Range ends in the middle of THP:
817 clear_highpage(page
);
821 index
+= HPAGE_PMD_NR
- 1;
822 i
+= HPAGE_PMD_NR
- 1;
825 if (!unfalloc
|| !PageUptodate(page
)) {
826 VM_BUG_ON_PAGE(PageTail(page
), page
);
827 if (page_mapping(page
) == mapping
) {
828 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
829 truncate_inode_page(mapping
, page
);
834 pagevec_remove_exceptionals(&pvec
);
835 pagevec_release(&pvec
);
841 struct page
*page
= NULL
;
842 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
844 unsigned int top
= PAGE_SIZE
;
849 zero_user_segment(page
, partial_start
, top
);
850 set_page_dirty(page
);
856 struct page
*page
= NULL
;
857 shmem_getpage(inode
, end
, &page
, SGP_READ
);
859 zero_user_segment(page
, 0, partial_end
);
860 set_page_dirty(page
);
869 while (index
< end
) {
872 pvec
.nr
= find_get_entries(mapping
, index
,
873 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
874 pvec
.pages
, indices
);
876 /* If all gone or hole-punch or unfalloc, we're done */
877 if (index
== start
|| end
!= -1)
879 /* But if truncating, restart to make sure all gone */
883 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
884 struct page
*page
= pvec
.pages
[i
];
890 if (radix_tree_exceptional_entry(page
)) {
893 if (shmem_free_swap(mapping
, index
, page
)) {
894 /* Swap was replaced by page: retry */
904 if (PageTransTail(page
)) {
905 /* Middle of THP: zero out the page */
906 clear_highpage(page
);
909 * Partial thp truncate due 'start' in middle
910 * of THP: don't need to look on these pages
911 * again on !pvec.nr restart.
913 if (index
!= round_down(end
, HPAGE_PMD_NR
))
916 } else if (PageTransHuge(page
)) {
917 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
919 * Range ends in the middle of THP:
922 clear_highpage(page
);
926 index
+= HPAGE_PMD_NR
- 1;
927 i
+= HPAGE_PMD_NR
- 1;
930 if (!unfalloc
|| !PageUptodate(page
)) {
931 VM_BUG_ON_PAGE(PageTail(page
), page
);
932 if (page_mapping(page
) == mapping
) {
933 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
934 truncate_inode_page(mapping
, page
);
936 /* Page was replaced by swap: retry */
944 pagevec_remove_exceptionals(&pvec
);
945 pagevec_release(&pvec
);
949 spin_lock_irq(&info
->lock
);
950 info
->swapped
-= nr_swaps_freed
;
951 shmem_recalc_inode(inode
);
952 spin_unlock_irq(&info
->lock
);
955 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
957 shmem_undo_range(inode
, lstart
, lend
, false);
958 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
960 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
962 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
963 u32 request_mask
, unsigned int query_flags
)
965 struct inode
*inode
= path
->dentry
->d_inode
;
966 struct shmem_inode_info
*info
= SHMEM_I(inode
);
968 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
969 spin_lock_irq(&info
->lock
);
970 shmem_recalc_inode(inode
);
971 spin_unlock_irq(&info
->lock
);
973 generic_fillattr(inode
, stat
);
977 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
979 struct inode
*inode
= d_inode(dentry
);
980 struct shmem_inode_info
*info
= SHMEM_I(inode
);
981 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
984 error
= setattr_prepare(dentry
, attr
);
988 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
989 loff_t oldsize
= inode
->i_size
;
990 loff_t newsize
= attr
->ia_size
;
992 /* protected by i_mutex */
993 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
994 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
997 if (newsize
!= oldsize
) {
998 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1002 i_size_write(inode
, newsize
);
1003 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1005 if (newsize
<= oldsize
) {
1006 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1007 if (oldsize
> holebegin
)
1008 unmap_mapping_range(inode
->i_mapping
,
1011 shmem_truncate_range(inode
,
1012 newsize
, (loff_t
)-1);
1013 /* unmap again to remove racily COWed private pages */
1014 if (oldsize
> holebegin
)
1015 unmap_mapping_range(inode
->i_mapping
,
1019 * Part of the huge page can be beyond i_size: subject
1020 * to shrink under memory pressure.
1022 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1023 spin_lock(&sbinfo
->shrinklist_lock
);
1024 if (list_empty(&info
->shrinklist
)) {
1025 list_add_tail(&info
->shrinklist
,
1026 &sbinfo
->shrinklist
);
1027 sbinfo
->shrinklist_len
++;
1029 spin_unlock(&sbinfo
->shrinklist_lock
);
1034 setattr_copy(inode
, attr
);
1035 if (attr
->ia_valid
& ATTR_MODE
)
1036 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1040 static void shmem_evict_inode(struct inode
*inode
)
1042 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1043 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1045 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1046 shmem_unacct_size(info
->flags
, inode
->i_size
);
1048 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1049 if (!list_empty(&info
->shrinklist
)) {
1050 spin_lock(&sbinfo
->shrinklist_lock
);
1051 if (!list_empty(&info
->shrinklist
)) {
1052 list_del_init(&info
->shrinklist
);
1053 sbinfo
->shrinklist_len
--;
1055 spin_unlock(&sbinfo
->shrinklist_lock
);
1057 if (!list_empty(&info
->swaplist
)) {
1058 mutex_lock(&shmem_swaplist_mutex
);
1059 list_del_init(&info
->swaplist
);
1060 mutex_unlock(&shmem_swaplist_mutex
);
1064 simple_xattrs_free(&info
->xattrs
);
1065 WARN_ON(inode
->i_blocks
);
1066 shmem_free_inode(inode
->i_sb
);
1070 static unsigned long find_swap_entry(struct radix_tree_root
*root
, void *item
)
1072 struct radix_tree_iter iter
;
1074 unsigned long found
= -1;
1075 unsigned int checked
= 0;
1078 radix_tree_for_each_slot(slot
, root
, &iter
, 0) {
1079 if (*slot
== item
) {
1084 if ((checked
% 4096) != 0)
1086 slot
= radix_tree_iter_resume(slot
, &iter
);
1095 * If swap found in inode, free it and move page from swapcache to filecache.
1097 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1098 swp_entry_t swap
, struct page
**pagep
)
1100 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1106 radswap
= swp_to_radix_entry(swap
);
1107 index
= find_swap_entry(&mapping
->page_tree
, radswap
);
1109 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1112 * Move _head_ to start search for next from here.
1113 * But be careful: shmem_evict_inode checks list_empty without taking
1114 * mutex, and there's an instant in list_move_tail when info->swaplist
1115 * would appear empty, if it were the only one on shmem_swaplist.
1117 if (shmem_swaplist
.next
!= &info
->swaplist
)
1118 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1120 gfp
= mapping_gfp_mask(mapping
);
1121 if (shmem_should_replace_page(*pagep
, gfp
)) {
1122 mutex_unlock(&shmem_swaplist_mutex
);
1123 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1124 mutex_lock(&shmem_swaplist_mutex
);
1126 * We needed to drop mutex to make that restrictive page
1127 * allocation, but the inode might have been freed while we
1128 * dropped it: although a racing shmem_evict_inode() cannot
1129 * complete without emptying the radix_tree, our page lock
1130 * on this swapcache page is not enough to prevent that -
1131 * free_swap_and_cache() of our swap entry will only
1132 * trylock_page(), removing swap from radix_tree whatever.
1134 * We must not proceed to shmem_add_to_page_cache() if the
1135 * inode has been freed, but of course we cannot rely on
1136 * inode or mapping or info to check that. However, we can
1137 * safely check if our swap entry is still in use (and here
1138 * it can't have got reused for another page): if it's still
1139 * in use, then the inode cannot have been freed yet, and we
1140 * can safely proceed (if it's no longer in use, that tells
1141 * nothing about the inode, but we don't need to unuse swap).
1143 if (!page_swapcount(*pagep
))
1148 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1149 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1150 * beneath us (pagelock doesn't help until the page is in pagecache).
1153 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1155 if (error
!= -ENOMEM
) {
1157 * Truncation and eviction use free_swap_and_cache(), which
1158 * only does trylock page: if we raced, best clean up here.
1160 delete_from_swap_cache(*pagep
);
1161 set_page_dirty(*pagep
);
1163 spin_lock_irq(&info
->lock
);
1165 spin_unlock_irq(&info
->lock
);
1173 * Search through swapped inodes to find and replace swap by page.
1175 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1177 struct list_head
*this, *next
;
1178 struct shmem_inode_info
*info
;
1179 struct mem_cgroup
*memcg
;
1183 * There's a faint possibility that swap page was replaced before
1184 * caller locked it: caller will come back later with the right page.
1186 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1190 * Charge page using GFP_KERNEL while we can wait, before taking
1191 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1192 * Charged back to the user (not to caller) when swap account is used.
1194 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1198 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1201 mutex_lock(&shmem_swaplist_mutex
);
1202 list_for_each_safe(this, next
, &shmem_swaplist
) {
1203 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1205 error
= shmem_unuse_inode(info
, swap
, &page
);
1207 list_del_init(&info
->swaplist
);
1209 if (error
!= -EAGAIN
)
1211 /* found nothing in this: move on to search the next */
1213 mutex_unlock(&shmem_swaplist_mutex
);
1216 if (error
!= -ENOMEM
)
1218 mem_cgroup_cancel_charge(page
, memcg
, false);
1220 mem_cgroup_commit_charge(page
, memcg
, true, false);
1228 * Move the page from the page cache to the swap cache.
1230 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1232 struct shmem_inode_info
*info
;
1233 struct address_space
*mapping
;
1234 struct inode
*inode
;
1238 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1239 BUG_ON(!PageLocked(page
));
1240 mapping
= page
->mapping
;
1241 index
= page
->index
;
1242 inode
= mapping
->host
;
1243 info
= SHMEM_I(inode
);
1244 if (info
->flags
& VM_LOCKED
)
1246 if (!total_swap_pages
)
1250 * Our capabilities prevent regular writeback or sync from ever calling
1251 * shmem_writepage; but a stacking filesystem might use ->writepage of
1252 * its underlying filesystem, in which case tmpfs should write out to
1253 * swap only in response to memory pressure, and not for the writeback
1256 if (!wbc
->for_reclaim
) {
1257 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1262 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1263 * value into swapfile.c, the only way we can correctly account for a
1264 * fallocated page arriving here is now to initialize it and write it.
1266 * That's okay for a page already fallocated earlier, but if we have
1267 * not yet completed the fallocation, then (a) we want to keep track
1268 * of this page in case we have to undo it, and (b) it may not be a
1269 * good idea to continue anyway, once we're pushing into swap. So
1270 * reactivate the page, and let shmem_fallocate() quit when too many.
1272 if (!PageUptodate(page
)) {
1273 if (inode
->i_private
) {
1274 struct shmem_falloc
*shmem_falloc
;
1275 spin_lock(&inode
->i_lock
);
1276 shmem_falloc
= inode
->i_private
;
1278 !shmem_falloc
->waitq
&&
1279 index
>= shmem_falloc
->start
&&
1280 index
< shmem_falloc
->next
)
1281 shmem_falloc
->nr_unswapped
++;
1283 shmem_falloc
= NULL
;
1284 spin_unlock(&inode
->i_lock
);
1288 clear_highpage(page
);
1289 flush_dcache_page(page
);
1290 SetPageUptodate(page
);
1293 swap
= get_swap_page();
1297 if (mem_cgroup_try_charge_swap(page
, swap
))
1301 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1302 * if it's not already there. Do it now before the page is
1303 * moved to swap cache, when its pagelock no longer protects
1304 * the inode from eviction. But don't unlock the mutex until
1305 * we've incremented swapped, because shmem_unuse_inode() will
1306 * prune a !swapped inode from the swaplist under this mutex.
1308 mutex_lock(&shmem_swaplist_mutex
);
1309 if (list_empty(&info
->swaplist
))
1310 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1312 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1313 spin_lock_irq(&info
->lock
);
1314 shmem_recalc_inode(inode
);
1316 spin_unlock_irq(&info
->lock
);
1318 swap_shmem_alloc(swap
);
1319 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1321 mutex_unlock(&shmem_swaplist_mutex
);
1322 BUG_ON(page_mapped(page
));
1323 swap_writepage(page
, wbc
);
1327 mutex_unlock(&shmem_swaplist_mutex
);
1329 swapcache_free(swap
);
1331 set_page_dirty(page
);
1332 if (wbc
->for_reclaim
)
1333 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1338 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1339 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1343 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1344 return; /* show nothing */
1346 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1348 seq_printf(seq
, ",mpol=%s", buffer
);
1351 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1353 struct mempolicy
*mpol
= NULL
;
1355 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1356 mpol
= sbinfo
->mpol
;
1358 spin_unlock(&sbinfo
->stat_lock
);
1362 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1363 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1366 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1370 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1372 #define vm_policy vm_private_data
1375 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1376 struct shmem_inode_info
*info
, pgoff_t index
)
1378 /* Create a pseudo vma that just contains the policy */
1380 /* Bias interleave by inode number to distribute better across nodes */
1381 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1383 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1386 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1388 /* Drop reference taken by mpol_shared_policy_lookup() */
1389 mpol_cond_put(vma
->vm_policy
);
1392 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1393 struct shmem_inode_info
*info
, pgoff_t index
)
1395 struct vm_area_struct pvma
;
1398 shmem_pseudo_vma_init(&pvma
, info
, index
);
1399 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
1400 shmem_pseudo_vma_destroy(&pvma
);
1405 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1406 struct shmem_inode_info
*info
, pgoff_t index
)
1408 struct vm_area_struct pvma
;
1409 struct inode
*inode
= &info
->vfs_inode
;
1410 struct address_space
*mapping
= inode
->i_mapping
;
1411 pgoff_t idx
, hindex
;
1412 void __rcu
**results
;
1415 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1418 hindex
= round_down(index
, HPAGE_PMD_NR
);
1420 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
, &results
, &idx
,
1421 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1427 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1428 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1429 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1430 shmem_pseudo_vma_destroy(&pvma
);
1432 prep_transhuge_page(page
);
1436 static struct page
*shmem_alloc_page(gfp_t gfp
,
1437 struct shmem_inode_info
*info
, pgoff_t index
)
1439 struct vm_area_struct pvma
;
1442 shmem_pseudo_vma_init(&pvma
, info
, index
);
1443 page
= alloc_page_vma(gfp
, &pvma
, 0);
1444 shmem_pseudo_vma_destroy(&pvma
);
1449 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1450 struct shmem_inode_info
*info
, struct shmem_sb_info
*sbinfo
,
1451 pgoff_t index
, bool huge
)
1457 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1459 nr
= huge
? HPAGE_PMD_NR
: 1;
1461 if (shmem_acct_block(info
->flags
, nr
))
1463 if (sbinfo
->max_blocks
) {
1464 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1465 sbinfo
->max_blocks
- nr
) > 0)
1467 percpu_counter_add(&sbinfo
->used_blocks
, nr
);
1471 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1473 page
= shmem_alloc_page(gfp
, info
, index
);
1475 __SetPageLocked(page
);
1476 __SetPageSwapBacked(page
);
1481 if (sbinfo
->max_blocks
)
1482 percpu_counter_add(&sbinfo
->used_blocks
, -nr
);
1484 shmem_unacct_blocks(info
->flags
, nr
);
1486 return ERR_PTR(err
);
1490 * When a page is moved from swapcache to shmem filecache (either by the
1491 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1492 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1493 * ignorance of the mapping it belongs to. If that mapping has special
1494 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1495 * we may need to copy to a suitable page before moving to filecache.
1497 * In a future release, this may well be extended to respect cpuset and
1498 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1499 * but for now it is a simple matter of zone.
1501 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1503 return page_zonenum(page
) > gfp_zone(gfp
);
1506 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1507 struct shmem_inode_info
*info
, pgoff_t index
)
1509 struct page
*oldpage
, *newpage
;
1510 struct address_space
*swap_mapping
;
1515 swap_index
= page_private(oldpage
);
1516 swap_mapping
= page_mapping(oldpage
);
1519 * We have arrived here because our zones are constrained, so don't
1520 * limit chance of success by further cpuset and node constraints.
1522 gfp
&= ~GFP_CONSTRAINT_MASK
;
1523 newpage
= shmem_alloc_page(gfp
, info
, index
);
1528 copy_highpage(newpage
, oldpage
);
1529 flush_dcache_page(newpage
);
1531 __SetPageLocked(newpage
);
1532 __SetPageSwapBacked(newpage
);
1533 SetPageUptodate(newpage
);
1534 set_page_private(newpage
, swap_index
);
1535 SetPageSwapCache(newpage
);
1538 * Our caller will very soon move newpage out of swapcache, but it's
1539 * a nice clean interface for us to replace oldpage by newpage there.
1541 spin_lock_irq(&swap_mapping
->tree_lock
);
1542 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1545 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1546 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1548 spin_unlock_irq(&swap_mapping
->tree_lock
);
1550 if (unlikely(error
)) {
1552 * Is this possible? I think not, now that our callers check
1553 * both PageSwapCache and page_private after getting page lock;
1554 * but be defensive. Reverse old to newpage for clear and free.
1558 mem_cgroup_migrate(oldpage
, newpage
);
1559 lru_cache_add_anon(newpage
);
1563 ClearPageSwapCache(oldpage
);
1564 set_page_private(oldpage
, 0);
1566 unlock_page(oldpage
);
1573 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1575 * If we allocate a new one we do not mark it dirty. That's up to the
1576 * vm. If we swap it in we mark it dirty since we also free the swap
1577 * entry since a page cannot live in both the swap and page cache.
1579 * fault_mm and fault_type are only supplied by shmem_fault:
1580 * otherwise they are NULL.
1582 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1583 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1584 struct vm_area_struct
*vma
, struct vm_fault
*vmf
, int *fault_type
)
1586 struct address_space
*mapping
= inode
->i_mapping
;
1587 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1588 struct shmem_sb_info
*sbinfo
;
1589 struct mm_struct
*charge_mm
;
1590 struct mem_cgroup
*memcg
;
1593 enum sgp_type sgp_huge
= sgp
;
1594 pgoff_t hindex
= index
;
1599 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1601 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1605 page
= find_lock_entry(mapping
, index
);
1606 if (radix_tree_exceptional_entry(page
)) {
1607 swap
= radix_to_swp_entry(page
);
1611 if (sgp
<= SGP_CACHE
&&
1612 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1617 if (page
&& sgp
== SGP_WRITE
)
1618 mark_page_accessed(page
);
1620 /* fallocated page? */
1621 if (page
&& !PageUptodate(page
)) {
1622 if (sgp
!= SGP_READ
)
1628 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1634 * Fast cache lookup did not find it:
1635 * bring it back from swap or allocate.
1637 sbinfo
= SHMEM_SB(inode
->i_sb
);
1638 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1641 /* Look it up and read it in.. */
1642 page
= lookup_swap_cache(swap
);
1644 /* Or update major stats only when swapin succeeds?? */
1646 *fault_type
|= VM_FAULT_MAJOR
;
1647 count_vm_event(PGMAJFAULT
);
1648 mem_cgroup_count_vm_event(charge_mm
,
1651 /* Here we actually start the io */
1652 page
= shmem_swapin(swap
, gfp
, info
, index
);
1659 /* We have to do this with page locked to prevent races */
1661 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1662 !shmem_confirm_swap(mapping
, index
, swap
)) {
1663 error
= -EEXIST
; /* try again */
1666 if (!PageUptodate(page
)) {
1670 wait_on_page_writeback(page
);
1672 if (shmem_should_replace_page(page
, gfp
)) {
1673 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1678 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1681 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1682 swp_to_radix_entry(swap
));
1684 * We already confirmed swap under page lock, and make
1685 * no memory allocation here, so usually no possibility
1686 * of error; but free_swap_and_cache() only trylocks a
1687 * page, so it is just possible that the entry has been
1688 * truncated or holepunched since swap was confirmed.
1689 * shmem_undo_range() will have done some of the
1690 * unaccounting, now delete_from_swap_cache() will do
1692 * Reset swap.val? No, leave it so "failed" goes back to
1693 * "repeat": reading a hole and writing should succeed.
1696 mem_cgroup_cancel_charge(page
, memcg
, false);
1697 delete_from_swap_cache(page
);
1703 mem_cgroup_commit_charge(page
, memcg
, true, false);
1705 spin_lock_irq(&info
->lock
);
1707 shmem_recalc_inode(inode
);
1708 spin_unlock_irq(&info
->lock
);
1710 if (sgp
== SGP_WRITE
)
1711 mark_page_accessed(page
);
1713 delete_from_swap_cache(page
);
1714 set_page_dirty(page
);
1718 if (vma
&& userfaultfd_missing(vma
)) {
1719 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1723 /* shmem_symlink() */
1724 if (mapping
->a_ops
!= &shmem_aops
)
1726 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1728 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1730 switch (sbinfo
->huge
) {
1733 case SHMEM_HUGE_NEVER
:
1735 case SHMEM_HUGE_WITHIN_SIZE
:
1736 off
= round_up(index
, HPAGE_PMD_NR
);
1737 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1738 if (i_size
>= HPAGE_PMD_SIZE
&&
1739 i_size
>> PAGE_SHIFT
>= off
)
1742 case SHMEM_HUGE_ADVISE
:
1743 if (sgp_huge
== SGP_HUGE
)
1745 /* TODO: implement fadvise() hints */
1750 page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1753 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1758 error
= PTR_ERR(page
);
1760 if (error
!= -ENOSPC
)
1763 * Try to reclaim some spece by splitting a huge page
1764 * beyond i_size on the filesystem.
1768 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1769 if (ret
== SHRINK_STOP
)
1777 if (PageTransHuge(page
))
1778 hindex
= round_down(index
, HPAGE_PMD_NR
);
1782 if (sgp
== SGP_WRITE
)
1783 __SetPageReferenced(page
);
1785 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1786 PageTransHuge(page
));
1789 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1790 compound_order(page
));
1792 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1794 radix_tree_preload_end();
1797 mem_cgroup_cancel_charge(page
, memcg
,
1798 PageTransHuge(page
));
1801 mem_cgroup_commit_charge(page
, memcg
, false,
1802 PageTransHuge(page
));
1803 lru_cache_add_anon(page
);
1805 spin_lock_irq(&info
->lock
);
1806 info
->alloced
+= 1 << compound_order(page
);
1807 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1808 shmem_recalc_inode(inode
);
1809 spin_unlock_irq(&info
->lock
);
1812 if (PageTransHuge(page
) &&
1813 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1814 hindex
+ HPAGE_PMD_NR
- 1) {
1816 * Part of the huge page is beyond i_size: subject
1817 * to shrink under memory pressure.
1819 spin_lock(&sbinfo
->shrinklist_lock
);
1820 if (list_empty(&info
->shrinklist
)) {
1821 list_add_tail(&info
->shrinklist
,
1822 &sbinfo
->shrinklist
);
1823 sbinfo
->shrinklist_len
++;
1825 spin_unlock(&sbinfo
->shrinklist_lock
);
1829 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1831 if (sgp
== SGP_FALLOC
)
1835 * Let SGP_WRITE caller clear ends if write does not fill page;
1836 * but SGP_FALLOC on a page fallocated earlier must initialize
1837 * it now, lest undo on failure cancel our earlier guarantee.
1839 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1840 struct page
*head
= compound_head(page
);
1843 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1844 clear_highpage(head
+ i
);
1845 flush_dcache_page(head
+ i
);
1847 SetPageUptodate(head
);
1851 /* Perhaps the file has been truncated since we checked */
1852 if (sgp
<= SGP_CACHE
&&
1853 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1855 ClearPageDirty(page
);
1856 delete_from_page_cache(page
);
1857 spin_lock_irq(&info
->lock
);
1858 shmem_recalc_inode(inode
);
1859 spin_unlock_irq(&info
->lock
);
1864 *pagep
= page
+ index
- hindex
;
1871 if (sbinfo
->max_blocks
)
1872 percpu_counter_sub(&sbinfo
->used_blocks
,
1873 1 << compound_order(page
));
1874 shmem_unacct_blocks(info
->flags
, 1 << compound_order(page
));
1876 if (PageTransHuge(page
)) {
1882 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1889 if (error
== -ENOSPC
&& !once
++) {
1890 spin_lock_irq(&info
->lock
);
1891 shmem_recalc_inode(inode
);
1892 spin_unlock_irq(&info
->lock
);
1895 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1901 * This is like autoremove_wake_function, but it removes the wait queue
1902 * entry unconditionally - even if something else had already woken the
1905 static int synchronous_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
1907 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1908 list_del_init(&wait
->task_list
);
1912 static int shmem_fault(struct vm_fault
*vmf
)
1914 struct vm_area_struct
*vma
= vmf
->vma
;
1915 struct inode
*inode
= file_inode(vma
->vm_file
);
1916 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1919 int ret
= VM_FAULT_LOCKED
;
1922 * Trinity finds that probing a hole which tmpfs is punching can
1923 * prevent the hole-punch from ever completing: which in turn
1924 * locks writers out with its hold on i_mutex. So refrain from
1925 * faulting pages into the hole while it's being punched. Although
1926 * shmem_undo_range() does remove the additions, it may be unable to
1927 * keep up, as each new page needs its own unmap_mapping_range() call,
1928 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1930 * It does not matter if we sometimes reach this check just before the
1931 * hole-punch begins, so that one fault then races with the punch:
1932 * we just need to make racing faults a rare case.
1934 * The implementation below would be much simpler if we just used a
1935 * standard mutex or completion: but we cannot take i_mutex in fault,
1936 * and bloating every shmem inode for this unlikely case would be sad.
1938 if (unlikely(inode
->i_private
)) {
1939 struct shmem_falloc
*shmem_falloc
;
1941 spin_lock(&inode
->i_lock
);
1942 shmem_falloc
= inode
->i_private
;
1944 shmem_falloc
->waitq
&&
1945 vmf
->pgoff
>= shmem_falloc
->start
&&
1946 vmf
->pgoff
< shmem_falloc
->next
) {
1947 wait_queue_head_t
*shmem_falloc_waitq
;
1948 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1950 ret
= VM_FAULT_NOPAGE
;
1951 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1952 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1953 /* It's polite to up mmap_sem if we can */
1954 up_read(&vma
->vm_mm
->mmap_sem
);
1955 ret
= VM_FAULT_RETRY
;
1958 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1959 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1960 TASK_UNINTERRUPTIBLE
);
1961 spin_unlock(&inode
->i_lock
);
1965 * shmem_falloc_waitq points into the shmem_fallocate()
1966 * stack of the hole-punching task: shmem_falloc_waitq
1967 * is usually invalid by the time we reach here, but
1968 * finish_wait() does not dereference it in that case;
1969 * though i_lock needed lest racing with wake_up_all().
1971 spin_lock(&inode
->i_lock
);
1972 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1973 spin_unlock(&inode
->i_lock
);
1976 spin_unlock(&inode
->i_lock
);
1980 if (vma
->vm_flags
& VM_HUGEPAGE
)
1982 else if (vma
->vm_flags
& VM_NOHUGEPAGE
)
1985 error
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
1986 gfp
, vma
, vmf
, &ret
);
1988 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1992 unsigned long shmem_get_unmapped_area(struct file
*file
,
1993 unsigned long uaddr
, unsigned long len
,
1994 unsigned long pgoff
, unsigned long flags
)
1996 unsigned long (*get_area
)(struct file
*,
1997 unsigned long, unsigned long, unsigned long, unsigned long);
1999 unsigned long offset
;
2000 unsigned long inflated_len
;
2001 unsigned long inflated_addr
;
2002 unsigned long inflated_offset
;
2004 if (len
> TASK_SIZE
)
2007 get_area
= current
->mm
->get_unmapped_area
;
2008 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2010 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2012 if (IS_ERR_VALUE(addr
))
2014 if (addr
& ~PAGE_MASK
)
2016 if (addr
> TASK_SIZE
- len
)
2019 if (shmem_huge
== SHMEM_HUGE_DENY
)
2021 if (len
< HPAGE_PMD_SIZE
)
2023 if (flags
& MAP_FIXED
)
2026 * Our priority is to support MAP_SHARED mapped hugely;
2027 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2028 * But if caller specified an address hint, respect that as before.
2033 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2034 struct super_block
*sb
;
2037 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2038 sb
= file_inode(file
)->i_sb
;
2041 * Called directly from mm/mmap.c, or drivers/char/mem.c
2042 * for "/dev/zero", to create a shared anonymous object.
2044 if (IS_ERR(shm_mnt
))
2046 sb
= shm_mnt
->mnt_sb
;
2048 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2052 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2053 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2055 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2058 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2059 if (inflated_len
> TASK_SIZE
)
2061 if (inflated_len
< len
)
2064 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2065 if (IS_ERR_VALUE(inflated_addr
))
2067 if (inflated_addr
& ~PAGE_MASK
)
2070 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2071 inflated_addr
+= offset
- inflated_offset
;
2072 if (inflated_offset
> offset
)
2073 inflated_addr
+= HPAGE_PMD_SIZE
;
2075 if (inflated_addr
> TASK_SIZE
- len
)
2077 return inflated_addr
;
2081 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2083 struct inode
*inode
= file_inode(vma
->vm_file
);
2084 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2087 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2090 struct inode
*inode
= file_inode(vma
->vm_file
);
2093 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2094 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2098 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2100 struct inode
*inode
= file_inode(file
);
2101 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2102 int retval
= -ENOMEM
;
2104 spin_lock_irq(&info
->lock
);
2105 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2106 if (!user_shm_lock(inode
->i_size
, user
))
2108 info
->flags
|= VM_LOCKED
;
2109 mapping_set_unevictable(file
->f_mapping
);
2111 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2112 user_shm_unlock(inode
->i_size
, user
);
2113 info
->flags
&= ~VM_LOCKED
;
2114 mapping_clear_unevictable(file
->f_mapping
);
2119 spin_unlock_irq(&info
->lock
);
2123 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2125 file_accessed(file
);
2126 vma
->vm_ops
= &shmem_vm_ops
;
2127 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2128 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2129 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2130 khugepaged_enter(vma
, vma
->vm_flags
);
2135 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2136 umode_t mode
, dev_t dev
, unsigned long flags
)
2138 struct inode
*inode
;
2139 struct shmem_inode_info
*info
;
2140 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2142 if (shmem_reserve_inode(sb
))
2145 inode
= new_inode(sb
);
2147 inode
->i_ino
= get_next_ino();
2148 inode_init_owner(inode
, dir
, mode
);
2149 inode
->i_blocks
= 0;
2150 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2151 inode
->i_generation
= get_seconds();
2152 info
= SHMEM_I(inode
);
2153 memset(info
, 0, (char *)inode
- (char *)info
);
2154 spin_lock_init(&info
->lock
);
2155 info
->seals
= F_SEAL_SEAL
;
2156 info
->flags
= flags
& VM_NORESERVE
;
2157 INIT_LIST_HEAD(&info
->shrinklist
);
2158 INIT_LIST_HEAD(&info
->swaplist
);
2159 simple_xattrs_init(&info
->xattrs
);
2160 cache_no_acl(inode
);
2162 switch (mode
& S_IFMT
) {
2164 inode
->i_op
= &shmem_special_inode_operations
;
2165 init_special_inode(inode
, mode
, dev
);
2168 inode
->i_mapping
->a_ops
= &shmem_aops
;
2169 inode
->i_op
= &shmem_inode_operations
;
2170 inode
->i_fop
= &shmem_file_operations
;
2171 mpol_shared_policy_init(&info
->policy
,
2172 shmem_get_sbmpol(sbinfo
));
2176 /* Some things misbehave if size == 0 on a directory */
2177 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2178 inode
->i_op
= &shmem_dir_inode_operations
;
2179 inode
->i_fop
= &simple_dir_operations
;
2183 * Must not load anything in the rbtree,
2184 * mpol_free_shared_policy will not be called.
2186 mpol_shared_policy_init(&info
->policy
, NULL
);
2190 shmem_free_inode(sb
);
2194 bool shmem_mapping(struct address_space
*mapping
)
2196 return mapping
->a_ops
== &shmem_aops
;
2199 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2201 struct vm_area_struct
*dst_vma
,
2202 unsigned long dst_addr
,
2203 unsigned long src_addr
,
2204 struct page
**pagep
)
2206 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2207 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2208 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2209 struct address_space
*mapping
= inode
->i_mapping
;
2210 gfp_t gfp
= mapping_gfp_mask(mapping
);
2211 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2212 struct mem_cgroup
*memcg
;
2216 pte_t _dst_pte
, *dst_pte
;
2220 if (shmem_acct_block(info
->flags
, 1))
2222 if (sbinfo
->max_blocks
) {
2223 if (percpu_counter_compare(&sbinfo
->used_blocks
,
2224 sbinfo
->max_blocks
) >= 0)
2225 goto out_unacct_blocks
;
2226 percpu_counter_inc(&sbinfo
->used_blocks
);
2230 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2232 goto out_dec_used_blocks
;
2234 page_kaddr
= kmap_atomic(page
);
2235 ret
= copy_from_user(page_kaddr
, (const void __user
*)src_addr
,
2237 kunmap_atomic(page_kaddr
);
2239 /* fallback to copy_from_user outside mmap_sem */
2240 if (unlikely(ret
)) {
2242 if (sbinfo
->max_blocks
)
2243 percpu_counter_add(&sbinfo
->used_blocks
, -1);
2244 shmem_unacct_blocks(info
->flags
, 1);
2245 /* don't free the page */
2253 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2254 __SetPageLocked(page
);
2255 __SetPageSwapBacked(page
);
2256 __SetPageUptodate(page
);
2258 ret
= mem_cgroup_try_charge(page
, dst_mm
, gfp
, &memcg
, false);
2262 ret
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
2264 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
);
2265 radix_tree_preload_end();
2268 goto out_release_uncharge
;
2270 mem_cgroup_commit_charge(page
, memcg
, false, false);
2272 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2273 if (dst_vma
->vm_flags
& VM_WRITE
)
2274 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2277 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2278 if (!pte_none(*dst_pte
))
2279 goto out_release_uncharge_unlock
;
2281 lru_cache_add_anon(page
);
2283 spin_lock(&info
->lock
);
2285 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2286 shmem_recalc_inode(inode
);
2287 spin_unlock(&info
->lock
);
2289 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2290 page_add_file_rmap(page
, false);
2291 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2293 /* No need to invalidate - it was non-present before */
2294 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2296 pte_unmap_unlock(dst_pte
, ptl
);
2300 out_release_uncharge_unlock
:
2301 pte_unmap_unlock(dst_pte
, ptl
);
2302 out_release_uncharge
:
2303 mem_cgroup_cancel_charge(page
, memcg
, false);
2307 out_dec_used_blocks
:
2308 if (sbinfo
->max_blocks
)
2309 percpu_counter_add(&sbinfo
->used_blocks
, -1);
2311 shmem_unacct_blocks(info
->flags
, 1);
2316 static const struct inode_operations shmem_symlink_inode_operations
;
2317 static const struct inode_operations shmem_short_symlink_operations
;
2319 #ifdef CONFIG_TMPFS_XATTR
2320 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2322 #define shmem_initxattrs NULL
2326 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2327 loff_t pos
, unsigned len
, unsigned flags
,
2328 struct page
**pagep
, void **fsdata
)
2330 struct inode
*inode
= mapping
->host
;
2331 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2332 pgoff_t index
= pos
>> PAGE_SHIFT
;
2334 /* i_mutex is held by caller */
2335 if (unlikely(info
->seals
& (F_SEAL_WRITE
| F_SEAL_GROW
))) {
2336 if (info
->seals
& F_SEAL_WRITE
)
2338 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2342 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2346 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2347 loff_t pos
, unsigned len
, unsigned copied
,
2348 struct page
*page
, void *fsdata
)
2350 struct inode
*inode
= mapping
->host
;
2352 if (pos
+ copied
> inode
->i_size
)
2353 i_size_write(inode
, pos
+ copied
);
2355 if (!PageUptodate(page
)) {
2356 struct page
*head
= compound_head(page
);
2357 if (PageTransCompound(page
)) {
2360 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2361 if (head
+ i
== page
)
2363 clear_highpage(head
+ i
);
2364 flush_dcache_page(head
+ i
);
2367 if (copied
< PAGE_SIZE
) {
2368 unsigned from
= pos
& (PAGE_SIZE
- 1);
2369 zero_user_segments(page
, 0, from
,
2370 from
+ copied
, PAGE_SIZE
);
2372 SetPageUptodate(head
);
2374 set_page_dirty(page
);
2381 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2383 struct file
*file
= iocb
->ki_filp
;
2384 struct inode
*inode
= file_inode(file
);
2385 struct address_space
*mapping
= inode
->i_mapping
;
2387 unsigned long offset
;
2388 enum sgp_type sgp
= SGP_READ
;
2391 loff_t
*ppos
= &iocb
->ki_pos
;
2394 * Might this read be for a stacking filesystem? Then when reading
2395 * holes of a sparse file, we actually need to allocate those pages,
2396 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2398 if (!iter_is_iovec(to
))
2401 index
= *ppos
>> PAGE_SHIFT
;
2402 offset
= *ppos
& ~PAGE_MASK
;
2405 struct page
*page
= NULL
;
2407 unsigned long nr
, ret
;
2408 loff_t i_size
= i_size_read(inode
);
2410 end_index
= i_size
>> PAGE_SHIFT
;
2411 if (index
> end_index
)
2413 if (index
== end_index
) {
2414 nr
= i_size
& ~PAGE_MASK
;
2419 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2421 if (error
== -EINVAL
)
2426 if (sgp
== SGP_CACHE
)
2427 set_page_dirty(page
);
2432 * We must evaluate after, since reads (unlike writes)
2433 * are called without i_mutex protection against truncate
2436 i_size
= i_size_read(inode
);
2437 end_index
= i_size
>> PAGE_SHIFT
;
2438 if (index
== end_index
) {
2439 nr
= i_size
& ~PAGE_MASK
;
2450 * If users can be writing to this page using arbitrary
2451 * virtual addresses, take care about potential aliasing
2452 * before reading the page on the kernel side.
2454 if (mapping_writably_mapped(mapping
))
2455 flush_dcache_page(page
);
2457 * Mark the page accessed if we read the beginning.
2460 mark_page_accessed(page
);
2462 page
= ZERO_PAGE(0);
2467 * Ok, we have the page, and it's up-to-date, so
2468 * now we can copy it to user space...
2470 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2473 index
+= offset
>> PAGE_SHIFT
;
2474 offset
&= ~PAGE_MASK
;
2477 if (!iov_iter_count(to
))
2486 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2487 file_accessed(file
);
2488 return retval
? retval
: error
;
2492 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2494 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2495 pgoff_t index
, pgoff_t end
, int whence
)
2498 struct pagevec pvec
;
2499 pgoff_t indices
[PAGEVEC_SIZE
];
2503 pagevec_init(&pvec
, 0);
2504 pvec
.nr
= 1; /* start small: we may be there already */
2506 pvec
.nr
= find_get_entries(mapping
, index
,
2507 pvec
.nr
, pvec
.pages
, indices
);
2509 if (whence
== SEEK_DATA
)
2513 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2514 if (index
< indices
[i
]) {
2515 if (whence
== SEEK_HOLE
) {
2521 page
= pvec
.pages
[i
];
2522 if (page
&& !radix_tree_exceptional_entry(page
)) {
2523 if (!PageUptodate(page
))
2527 (page
&& whence
== SEEK_DATA
) ||
2528 (!page
&& whence
== SEEK_HOLE
)) {
2533 pagevec_remove_exceptionals(&pvec
);
2534 pagevec_release(&pvec
);
2535 pvec
.nr
= PAGEVEC_SIZE
;
2541 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2543 struct address_space
*mapping
= file
->f_mapping
;
2544 struct inode
*inode
= mapping
->host
;
2548 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2549 return generic_file_llseek_size(file
, offset
, whence
,
2550 MAX_LFS_FILESIZE
, i_size_read(inode
));
2552 /* We're holding i_mutex so we can access i_size directly */
2556 else if (offset
>= inode
->i_size
)
2559 start
= offset
>> PAGE_SHIFT
;
2560 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2561 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2562 new_offset
<<= PAGE_SHIFT
;
2563 if (new_offset
> offset
) {
2564 if (new_offset
< inode
->i_size
)
2565 offset
= new_offset
;
2566 else if (whence
== SEEK_DATA
)
2569 offset
= inode
->i_size
;
2574 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2575 inode_unlock(inode
);
2580 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2581 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2583 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2584 #define LAST_SCAN 4 /* about 150ms max */
2586 static void shmem_tag_pins(struct address_space
*mapping
)
2588 struct radix_tree_iter iter
;
2597 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
2598 page
= radix_tree_deref_slot(slot
);
2599 if (!page
|| radix_tree_exception(page
)) {
2600 if (radix_tree_deref_retry(page
)) {
2601 slot
= radix_tree_iter_retry(&iter
);
2604 } else if (page_count(page
) - page_mapcount(page
) > 1) {
2605 spin_lock_irq(&mapping
->tree_lock
);
2606 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
2608 spin_unlock_irq(&mapping
->tree_lock
);
2611 if (need_resched()) {
2612 slot
= radix_tree_iter_resume(slot
, &iter
);
2620 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2621 * via get_user_pages(), drivers might have some pending I/O without any active
2622 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2623 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2624 * them to be dropped.
2625 * The caller must guarantee that no new user will acquire writable references
2626 * to those pages to avoid races.
2628 static int shmem_wait_for_pins(struct address_space
*mapping
)
2630 struct radix_tree_iter iter
;
2636 shmem_tag_pins(mapping
);
2639 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
2640 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
2644 lru_add_drain_all();
2645 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2650 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
2651 start
, SHMEM_TAG_PINNED
) {
2653 page
= radix_tree_deref_slot(slot
);
2654 if (radix_tree_exception(page
)) {
2655 if (radix_tree_deref_retry(page
)) {
2656 slot
= radix_tree_iter_retry(&iter
);
2664 page_count(page
) - page_mapcount(page
) != 1) {
2665 if (scan
< LAST_SCAN
)
2666 goto continue_resched
;
2669 * On the last scan, we clean up all those tags
2670 * we inserted; but make a note that we still
2671 * found pages pinned.
2676 spin_lock_irq(&mapping
->tree_lock
);
2677 radix_tree_tag_clear(&mapping
->page_tree
,
2678 iter
.index
, SHMEM_TAG_PINNED
);
2679 spin_unlock_irq(&mapping
->tree_lock
);
2681 if (need_resched()) {
2682 slot
= radix_tree_iter_resume(slot
, &iter
);
2692 #define F_ALL_SEALS (F_SEAL_SEAL | \
2697 int shmem_add_seals(struct file
*file
, unsigned int seals
)
2699 struct inode
*inode
= file_inode(file
);
2700 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2705 * Sealing allows multiple parties to share a shmem-file but restrict
2706 * access to a specific subset of file operations. Seals can only be
2707 * added, but never removed. This way, mutually untrusted parties can
2708 * share common memory regions with a well-defined policy. A malicious
2709 * peer can thus never perform unwanted operations on a shared object.
2711 * Seals are only supported on special shmem-files and always affect
2712 * the whole underlying inode. Once a seal is set, it may prevent some
2713 * kinds of access to the file. Currently, the following seals are
2715 * SEAL_SEAL: Prevent further seals from being set on this file
2716 * SEAL_SHRINK: Prevent the file from shrinking
2717 * SEAL_GROW: Prevent the file from growing
2718 * SEAL_WRITE: Prevent write access to the file
2720 * As we don't require any trust relationship between two parties, we
2721 * must prevent seals from being removed. Therefore, sealing a file
2722 * only adds a given set of seals to the file, it never touches
2723 * existing seals. Furthermore, the "setting seals"-operation can be
2724 * sealed itself, which basically prevents any further seal from being
2727 * Semantics of sealing are only defined on volatile files. Only
2728 * anonymous shmem files support sealing. More importantly, seals are
2729 * never written to disk. Therefore, there's no plan to support it on
2733 if (file
->f_op
!= &shmem_file_operations
)
2735 if (!(file
->f_mode
& FMODE_WRITE
))
2737 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2742 if (info
->seals
& F_SEAL_SEAL
) {
2747 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2748 error
= mapping_deny_writable(file
->f_mapping
);
2752 error
= shmem_wait_for_pins(file
->f_mapping
);
2754 mapping_allow_writable(file
->f_mapping
);
2759 info
->seals
|= seals
;
2763 inode_unlock(inode
);
2766 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2768 int shmem_get_seals(struct file
*file
)
2770 if (file
->f_op
!= &shmem_file_operations
)
2773 return SHMEM_I(file_inode(file
))->seals
;
2775 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2777 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2783 /* disallow upper 32bit */
2787 error
= shmem_add_seals(file
, arg
);
2790 error
= shmem_get_seals(file
);
2800 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2803 struct inode
*inode
= file_inode(file
);
2804 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2805 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2806 struct shmem_falloc shmem_falloc
;
2807 pgoff_t start
, index
, end
;
2810 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2815 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2816 struct address_space
*mapping
= file
->f_mapping
;
2817 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2818 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2819 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2821 /* protected by i_mutex */
2822 if (info
->seals
& F_SEAL_WRITE
) {
2827 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2828 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2829 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2830 spin_lock(&inode
->i_lock
);
2831 inode
->i_private
= &shmem_falloc
;
2832 spin_unlock(&inode
->i_lock
);
2834 if ((u64
)unmap_end
> (u64
)unmap_start
)
2835 unmap_mapping_range(mapping
, unmap_start
,
2836 1 + unmap_end
- unmap_start
, 0);
2837 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2838 /* No need to unmap again: hole-punching leaves COWed pages */
2840 spin_lock(&inode
->i_lock
);
2841 inode
->i_private
= NULL
;
2842 wake_up_all(&shmem_falloc_waitq
);
2843 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.task_list
));
2844 spin_unlock(&inode
->i_lock
);
2849 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2850 error
= inode_newsize_ok(inode
, offset
+ len
);
2854 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2859 start
= offset
>> PAGE_SHIFT
;
2860 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2861 /* Try to avoid a swapstorm if len is impossible to satisfy */
2862 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2867 shmem_falloc
.waitq
= NULL
;
2868 shmem_falloc
.start
= start
;
2869 shmem_falloc
.next
= start
;
2870 shmem_falloc
.nr_falloced
= 0;
2871 shmem_falloc
.nr_unswapped
= 0;
2872 spin_lock(&inode
->i_lock
);
2873 inode
->i_private
= &shmem_falloc
;
2874 spin_unlock(&inode
->i_lock
);
2876 for (index
= start
; index
< end
; index
++) {
2880 * Good, the fallocate(2) manpage permits EINTR: we may have
2881 * been interrupted because we are using up too much memory.
2883 if (signal_pending(current
))
2885 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2888 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2890 /* Remove the !PageUptodate pages we added */
2891 if (index
> start
) {
2892 shmem_undo_range(inode
,
2893 (loff_t
)start
<< PAGE_SHIFT
,
2894 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2900 * Inform shmem_writepage() how far we have reached.
2901 * No need for lock or barrier: we have the page lock.
2903 shmem_falloc
.next
++;
2904 if (!PageUptodate(page
))
2905 shmem_falloc
.nr_falloced
++;
2908 * If !PageUptodate, leave it that way so that freeable pages
2909 * can be recognized if we need to rollback on error later.
2910 * But set_page_dirty so that memory pressure will swap rather
2911 * than free the pages we are allocating (and SGP_CACHE pages
2912 * might still be clean: we now need to mark those dirty too).
2914 set_page_dirty(page
);
2920 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2921 i_size_write(inode
, offset
+ len
);
2922 inode
->i_ctime
= current_time(inode
);
2924 spin_lock(&inode
->i_lock
);
2925 inode
->i_private
= NULL
;
2926 spin_unlock(&inode
->i_lock
);
2928 inode_unlock(inode
);
2932 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2934 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2936 buf
->f_type
= TMPFS_MAGIC
;
2937 buf
->f_bsize
= PAGE_SIZE
;
2938 buf
->f_namelen
= NAME_MAX
;
2939 if (sbinfo
->max_blocks
) {
2940 buf
->f_blocks
= sbinfo
->max_blocks
;
2942 buf
->f_bfree
= sbinfo
->max_blocks
-
2943 percpu_counter_sum(&sbinfo
->used_blocks
);
2945 if (sbinfo
->max_inodes
) {
2946 buf
->f_files
= sbinfo
->max_inodes
;
2947 buf
->f_ffree
= sbinfo
->free_inodes
;
2949 /* else leave those fields 0 like simple_statfs */
2954 * File creation. Allocate an inode, and we're done..
2957 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2959 struct inode
*inode
;
2960 int error
= -ENOSPC
;
2962 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2964 error
= simple_acl_create(dir
, inode
);
2967 error
= security_inode_init_security(inode
, dir
,
2969 shmem_initxattrs
, NULL
);
2970 if (error
&& error
!= -EOPNOTSUPP
)
2974 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2975 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2976 d_instantiate(dentry
, inode
);
2977 dget(dentry
); /* Extra count - pin the dentry in core */
2986 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2988 struct inode
*inode
;
2989 int error
= -ENOSPC
;
2991 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2993 error
= security_inode_init_security(inode
, dir
,
2995 shmem_initxattrs
, NULL
);
2996 if (error
&& error
!= -EOPNOTSUPP
)
2998 error
= simple_acl_create(dir
, inode
);
3001 d_tmpfile(dentry
, inode
);
3009 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
3013 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
3019 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
3022 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
3028 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
3030 struct inode
*inode
= d_inode(old_dentry
);
3034 * No ordinary (disk based) filesystem counts links as inodes;
3035 * but each new link needs a new dentry, pinning lowmem, and
3036 * tmpfs dentries cannot be pruned until they are unlinked.
3038 ret
= shmem_reserve_inode(inode
->i_sb
);
3042 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3043 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3045 ihold(inode
); /* New dentry reference */
3046 dget(dentry
); /* Extra pinning count for the created dentry */
3047 d_instantiate(dentry
, inode
);
3052 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
3054 struct inode
*inode
= d_inode(dentry
);
3056 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
3057 shmem_free_inode(inode
->i_sb
);
3059 dir
->i_size
-= BOGO_DIRENT_SIZE
;
3060 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3062 dput(dentry
); /* Undo the count from "create" - this does all the work */
3066 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3068 if (!simple_empty(dentry
))
3071 drop_nlink(d_inode(dentry
));
3073 return shmem_unlink(dir
, dentry
);
3076 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
3078 bool old_is_dir
= d_is_dir(old_dentry
);
3079 bool new_is_dir
= d_is_dir(new_dentry
);
3081 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
3083 drop_nlink(old_dir
);
3086 drop_nlink(new_dir
);
3090 old_dir
->i_ctime
= old_dir
->i_mtime
=
3091 new_dir
->i_ctime
= new_dir
->i_mtime
=
3092 d_inode(old_dentry
)->i_ctime
=
3093 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
3098 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
3100 struct dentry
*whiteout
;
3103 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
3107 error
= shmem_mknod(old_dir
, whiteout
,
3108 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
3114 * Cheat and hash the whiteout while the old dentry is still in
3115 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3117 * d_lookup() will consistently find one of them at this point,
3118 * not sure which one, but that isn't even important.
3125 * The VFS layer already does all the dentry stuff for rename,
3126 * we just have to decrement the usage count for the target if
3127 * it exists so that the VFS layer correctly free's it when it
3130 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
3132 struct inode
*inode
= d_inode(old_dentry
);
3133 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3135 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3138 if (flags
& RENAME_EXCHANGE
)
3139 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3141 if (!simple_empty(new_dentry
))
3144 if (flags
& RENAME_WHITEOUT
) {
3147 error
= shmem_whiteout(old_dir
, old_dentry
);
3152 if (d_really_is_positive(new_dentry
)) {
3153 (void) shmem_unlink(new_dir
, new_dentry
);
3154 if (they_are_dirs
) {
3155 drop_nlink(d_inode(new_dentry
));
3156 drop_nlink(old_dir
);
3158 } else if (they_are_dirs
) {
3159 drop_nlink(old_dir
);
3163 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3164 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3165 old_dir
->i_ctime
= old_dir
->i_mtime
=
3166 new_dir
->i_ctime
= new_dir
->i_mtime
=
3167 inode
->i_ctime
= current_time(old_dir
);
3171 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3175 struct inode
*inode
;
3177 struct shmem_inode_info
*info
;
3179 len
= strlen(symname
) + 1;
3180 if (len
> PAGE_SIZE
)
3181 return -ENAMETOOLONG
;
3183 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
3187 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3188 shmem_initxattrs
, NULL
);
3190 if (error
!= -EOPNOTSUPP
) {
3197 info
= SHMEM_I(inode
);
3198 inode
->i_size
= len
-1;
3199 if (len
<= SHORT_SYMLINK_LEN
) {
3200 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3201 if (!inode
->i_link
) {
3205 inode
->i_op
= &shmem_short_symlink_operations
;
3207 inode_nohighmem(inode
);
3208 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3213 inode
->i_mapping
->a_ops
= &shmem_aops
;
3214 inode
->i_op
= &shmem_symlink_inode_operations
;
3215 memcpy(page_address(page
), symname
, len
);
3216 SetPageUptodate(page
);
3217 set_page_dirty(page
);
3221 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3222 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3223 d_instantiate(dentry
, inode
);
3228 static void shmem_put_link(void *arg
)
3230 mark_page_accessed(arg
);
3234 static const char *shmem_get_link(struct dentry
*dentry
,
3235 struct inode
*inode
,
3236 struct delayed_call
*done
)
3238 struct page
*page
= NULL
;
3241 page
= find_get_page(inode
->i_mapping
, 0);
3243 return ERR_PTR(-ECHILD
);
3244 if (!PageUptodate(page
)) {
3246 return ERR_PTR(-ECHILD
);
3249 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3251 return ERR_PTR(error
);
3254 set_delayed_call(done
, shmem_put_link
, page
);
3255 return page_address(page
);
3258 #ifdef CONFIG_TMPFS_XATTR
3260 * Superblocks without xattr inode operations may get some security.* xattr
3261 * support from the LSM "for free". As soon as we have any other xattrs
3262 * like ACLs, we also need to implement the security.* handlers at
3263 * filesystem level, though.
3267 * Callback for security_inode_init_security() for acquiring xattrs.
3269 static int shmem_initxattrs(struct inode
*inode
,
3270 const struct xattr
*xattr_array
,
3273 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3274 const struct xattr
*xattr
;
3275 struct simple_xattr
*new_xattr
;
3278 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3279 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3283 len
= strlen(xattr
->name
) + 1;
3284 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3286 if (!new_xattr
->name
) {
3291 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3292 XATTR_SECURITY_PREFIX_LEN
);
3293 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3296 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3302 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3303 struct dentry
*unused
, struct inode
*inode
,
3304 const char *name
, void *buffer
, size_t size
)
3306 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3308 name
= xattr_full_name(handler
, name
);
3309 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3312 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3313 struct dentry
*unused
, struct inode
*inode
,
3314 const char *name
, const void *value
,
3315 size_t size
, int flags
)
3317 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3319 name
= xattr_full_name(handler
, name
);
3320 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3323 static const struct xattr_handler shmem_security_xattr_handler
= {
3324 .prefix
= XATTR_SECURITY_PREFIX
,
3325 .get
= shmem_xattr_handler_get
,
3326 .set
= shmem_xattr_handler_set
,
3329 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3330 .prefix
= XATTR_TRUSTED_PREFIX
,
3331 .get
= shmem_xattr_handler_get
,
3332 .set
= shmem_xattr_handler_set
,
3335 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3336 #ifdef CONFIG_TMPFS_POSIX_ACL
3337 &posix_acl_access_xattr_handler
,
3338 &posix_acl_default_xattr_handler
,
3340 &shmem_security_xattr_handler
,
3341 &shmem_trusted_xattr_handler
,
3345 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3347 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3348 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3350 #endif /* CONFIG_TMPFS_XATTR */
3352 static const struct inode_operations shmem_short_symlink_operations
= {
3353 .get_link
= simple_get_link
,
3354 #ifdef CONFIG_TMPFS_XATTR
3355 .listxattr
= shmem_listxattr
,
3359 static const struct inode_operations shmem_symlink_inode_operations
= {
3360 .get_link
= shmem_get_link
,
3361 #ifdef CONFIG_TMPFS_XATTR
3362 .listxattr
= shmem_listxattr
,
3366 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3368 return ERR_PTR(-ESTALE
);
3371 static int shmem_match(struct inode
*ino
, void *vfh
)
3375 inum
= (inum
<< 32) | fh
[1];
3376 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3379 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3380 struct fid
*fid
, int fh_len
, int fh_type
)
3382 struct inode
*inode
;
3383 struct dentry
*dentry
= NULL
;
3390 inum
= (inum
<< 32) | fid
->raw
[1];
3392 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3393 shmem_match
, fid
->raw
);
3395 dentry
= d_find_alias(inode
);
3402 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3403 struct inode
*parent
)
3407 return FILEID_INVALID
;
3410 if (inode_unhashed(inode
)) {
3411 /* Unfortunately insert_inode_hash is not idempotent,
3412 * so as we hash inodes here rather than at creation
3413 * time, we need a lock to ensure we only try
3416 static DEFINE_SPINLOCK(lock
);
3418 if (inode_unhashed(inode
))
3419 __insert_inode_hash(inode
,
3420 inode
->i_ino
+ inode
->i_generation
);
3424 fh
[0] = inode
->i_generation
;
3425 fh
[1] = inode
->i_ino
;
3426 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3432 static const struct export_operations shmem_export_ops
= {
3433 .get_parent
= shmem_get_parent
,
3434 .encode_fh
= shmem_encode_fh
,
3435 .fh_to_dentry
= shmem_fh_to_dentry
,
3438 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3441 char *this_char
, *value
, *rest
;
3442 struct mempolicy
*mpol
= NULL
;
3446 while (options
!= NULL
) {
3447 this_char
= options
;
3450 * NUL-terminate this option: unfortunately,
3451 * mount options form a comma-separated list,
3452 * but mpol's nodelist may also contain commas.
3454 options
= strchr(options
, ',');
3455 if (options
== NULL
)
3458 if (!isdigit(*options
)) {
3465 if ((value
= strchr(this_char
,'=')) != NULL
) {
3468 pr_err("tmpfs: No value for mount option '%s'\n",
3473 if (!strcmp(this_char
,"size")) {
3474 unsigned long long size
;
3475 size
= memparse(value
,&rest
);
3477 size
<<= PAGE_SHIFT
;
3478 size
*= totalram_pages
;
3484 sbinfo
->max_blocks
=
3485 DIV_ROUND_UP(size
, PAGE_SIZE
);
3486 } else if (!strcmp(this_char
,"nr_blocks")) {
3487 sbinfo
->max_blocks
= memparse(value
, &rest
);
3490 } else if (!strcmp(this_char
,"nr_inodes")) {
3491 sbinfo
->max_inodes
= memparse(value
, &rest
);
3494 } else if (!strcmp(this_char
,"mode")) {
3497 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3500 } else if (!strcmp(this_char
,"uid")) {
3503 uid
= simple_strtoul(value
, &rest
, 0);
3506 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3507 if (!uid_valid(sbinfo
->uid
))
3509 } else if (!strcmp(this_char
,"gid")) {
3512 gid
= simple_strtoul(value
, &rest
, 0);
3515 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3516 if (!gid_valid(sbinfo
->gid
))
3518 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3519 } else if (!strcmp(this_char
, "huge")) {
3521 huge
= shmem_parse_huge(value
);
3524 if (!has_transparent_hugepage() &&
3525 huge
!= SHMEM_HUGE_NEVER
)
3527 sbinfo
->huge
= huge
;
3530 } else if (!strcmp(this_char
,"mpol")) {
3533 if (mpol_parse_str(value
, &mpol
))
3537 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3541 sbinfo
->mpol
= mpol
;
3545 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3553 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3555 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3556 struct shmem_sb_info config
= *sbinfo
;
3557 unsigned long inodes
;
3558 int error
= -EINVAL
;
3561 if (shmem_parse_options(data
, &config
, true))
3564 spin_lock(&sbinfo
->stat_lock
);
3565 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3566 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3568 if (config
.max_inodes
< inodes
)
3571 * Those tests disallow limited->unlimited while any are in use;
3572 * but we must separately disallow unlimited->limited, because
3573 * in that case we have no record of how much is already in use.
3575 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3577 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3581 sbinfo
->huge
= config
.huge
;
3582 sbinfo
->max_blocks
= config
.max_blocks
;
3583 sbinfo
->max_inodes
= config
.max_inodes
;
3584 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3587 * Preserve previous mempolicy unless mpol remount option was specified.
3590 mpol_put(sbinfo
->mpol
);
3591 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3594 spin_unlock(&sbinfo
->stat_lock
);
3598 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3600 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3602 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3603 seq_printf(seq
, ",size=%luk",
3604 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3605 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3606 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3607 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
3608 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3609 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3610 seq_printf(seq
, ",uid=%u",
3611 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3612 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3613 seq_printf(seq
, ",gid=%u",
3614 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3615 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3616 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3618 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3620 shmem_show_mpol(seq
, sbinfo
->mpol
);
3624 #define MFD_NAME_PREFIX "memfd:"
3625 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3626 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3628 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3630 SYSCALL_DEFINE2(memfd_create
,
3631 const char __user
*, uname
,
3632 unsigned int, flags
)
3634 struct shmem_inode_info
*info
;
3640 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
3643 /* length includes terminating zero */
3644 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
3647 if (len
> MFD_NAME_MAX_LEN
+ 1)
3650 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
3654 strcpy(name
, MFD_NAME_PREFIX
);
3655 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3660 /* terminating-zero may have changed after strnlen_user() returned */
3661 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3666 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3672 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3674 error
= PTR_ERR(file
);
3677 info
= SHMEM_I(file_inode(file
));
3678 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3679 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3680 if (flags
& MFD_ALLOW_SEALING
)
3681 info
->seals
&= ~F_SEAL_SEAL
;
3683 fd_install(fd
, file
);
3694 #endif /* CONFIG_TMPFS */
3696 static void shmem_put_super(struct super_block
*sb
)
3698 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3700 percpu_counter_destroy(&sbinfo
->used_blocks
);
3701 mpol_put(sbinfo
->mpol
);
3703 sb
->s_fs_info
= NULL
;
3706 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3708 struct inode
*inode
;
3709 struct shmem_sb_info
*sbinfo
;
3712 /* Round up to L1_CACHE_BYTES to resist false sharing */
3713 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3714 L1_CACHE_BYTES
), GFP_KERNEL
);
3718 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3719 sbinfo
->uid
= current_fsuid();
3720 sbinfo
->gid
= current_fsgid();
3721 sb
->s_fs_info
= sbinfo
;
3725 * Per default we only allow half of the physical ram per
3726 * tmpfs instance, limiting inodes to one per page of lowmem;
3727 * but the internal instance is left unlimited.
3729 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3730 sbinfo
->max_blocks
= shmem_default_max_blocks();
3731 sbinfo
->max_inodes
= shmem_default_max_inodes();
3732 if (shmem_parse_options(data
, sbinfo
, false)) {
3737 sb
->s_flags
|= MS_NOUSER
;
3739 sb
->s_export_op
= &shmem_export_ops
;
3740 sb
->s_flags
|= MS_NOSEC
;
3742 sb
->s_flags
|= MS_NOUSER
;
3745 spin_lock_init(&sbinfo
->stat_lock
);
3746 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3748 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3749 spin_lock_init(&sbinfo
->shrinklist_lock
);
3750 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3752 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3753 sb
->s_blocksize
= PAGE_SIZE
;
3754 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3755 sb
->s_magic
= TMPFS_MAGIC
;
3756 sb
->s_op
= &shmem_ops
;
3757 sb
->s_time_gran
= 1;
3758 #ifdef CONFIG_TMPFS_XATTR
3759 sb
->s_xattr
= shmem_xattr_handlers
;
3761 #ifdef CONFIG_TMPFS_POSIX_ACL
3762 sb
->s_flags
|= MS_POSIXACL
;
3765 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3768 inode
->i_uid
= sbinfo
->uid
;
3769 inode
->i_gid
= sbinfo
->gid
;
3770 sb
->s_root
= d_make_root(inode
);
3776 shmem_put_super(sb
);
3780 static struct kmem_cache
*shmem_inode_cachep
;
3782 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3784 struct shmem_inode_info
*info
;
3785 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3788 return &info
->vfs_inode
;
3791 static void shmem_destroy_callback(struct rcu_head
*head
)
3793 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3794 if (S_ISLNK(inode
->i_mode
))
3795 kfree(inode
->i_link
);
3796 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3799 static void shmem_destroy_inode(struct inode
*inode
)
3801 if (S_ISREG(inode
->i_mode
))
3802 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3803 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3806 static void shmem_init_inode(void *foo
)
3808 struct shmem_inode_info
*info
= foo
;
3809 inode_init_once(&info
->vfs_inode
);
3812 static int shmem_init_inodecache(void)
3814 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3815 sizeof(struct shmem_inode_info
),
3816 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3820 static void shmem_destroy_inodecache(void)
3822 kmem_cache_destroy(shmem_inode_cachep
);
3825 static const struct address_space_operations shmem_aops
= {
3826 .writepage
= shmem_writepage
,
3827 .set_page_dirty
= __set_page_dirty_no_writeback
,
3829 .write_begin
= shmem_write_begin
,
3830 .write_end
= shmem_write_end
,
3832 #ifdef CONFIG_MIGRATION
3833 .migratepage
= migrate_page
,
3835 .error_remove_page
= generic_error_remove_page
,
3838 static const struct file_operations shmem_file_operations
= {
3840 .get_unmapped_area
= shmem_get_unmapped_area
,
3842 .llseek
= shmem_file_llseek
,
3843 .read_iter
= shmem_file_read_iter
,
3844 .write_iter
= generic_file_write_iter
,
3845 .fsync
= noop_fsync
,
3846 .splice_read
= generic_file_splice_read
,
3847 .splice_write
= iter_file_splice_write
,
3848 .fallocate
= shmem_fallocate
,
3852 static const struct inode_operations shmem_inode_operations
= {
3853 .getattr
= shmem_getattr
,
3854 .setattr
= shmem_setattr
,
3855 #ifdef CONFIG_TMPFS_XATTR
3856 .listxattr
= shmem_listxattr
,
3857 .set_acl
= simple_set_acl
,
3861 static const struct inode_operations shmem_dir_inode_operations
= {
3863 .create
= shmem_create
,
3864 .lookup
= simple_lookup
,
3866 .unlink
= shmem_unlink
,
3867 .symlink
= shmem_symlink
,
3868 .mkdir
= shmem_mkdir
,
3869 .rmdir
= shmem_rmdir
,
3870 .mknod
= shmem_mknod
,
3871 .rename
= shmem_rename2
,
3872 .tmpfile
= shmem_tmpfile
,
3874 #ifdef CONFIG_TMPFS_XATTR
3875 .listxattr
= shmem_listxattr
,
3877 #ifdef CONFIG_TMPFS_POSIX_ACL
3878 .setattr
= shmem_setattr
,
3879 .set_acl
= simple_set_acl
,
3883 static const struct inode_operations shmem_special_inode_operations
= {
3884 #ifdef CONFIG_TMPFS_XATTR
3885 .listxattr
= shmem_listxattr
,
3887 #ifdef CONFIG_TMPFS_POSIX_ACL
3888 .setattr
= shmem_setattr
,
3889 .set_acl
= simple_set_acl
,
3893 static const struct super_operations shmem_ops
= {
3894 .alloc_inode
= shmem_alloc_inode
,
3895 .destroy_inode
= shmem_destroy_inode
,
3897 .statfs
= shmem_statfs
,
3898 .remount_fs
= shmem_remount_fs
,
3899 .show_options
= shmem_show_options
,
3901 .evict_inode
= shmem_evict_inode
,
3902 .drop_inode
= generic_delete_inode
,
3903 .put_super
= shmem_put_super
,
3904 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3905 .nr_cached_objects
= shmem_unused_huge_count
,
3906 .free_cached_objects
= shmem_unused_huge_scan
,
3910 static const struct vm_operations_struct shmem_vm_ops
= {
3911 .fault
= shmem_fault
,
3912 .map_pages
= filemap_map_pages
,
3914 .set_policy
= shmem_set_policy
,
3915 .get_policy
= shmem_get_policy
,
3919 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3920 int flags
, const char *dev_name
, void *data
)
3922 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3925 static struct file_system_type shmem_fs_type
= {
3926 .owner
= THIS_MODULE
,
3928 .mount
= shmem_mount
,
3929 .kill_sb
= kill_litter_super
,
3930 .fs_flags
= FS_USERNS_MOUNT
,
3933 int __init
shmem_init(void)
3937 /* If rootfs called this, don't re-init */
3938 if (shmem_inode_cachep
)
3941 error
= shmem_init_inodecache();
3945 error
= register_filesystem(&shmem_fs_type
);
3947 pr_err("Could not register tmpfs\n");
3951 shm_mnt
= kern_mount(&shmem_fs_type
);
3952 if (IS_ERR(shm_mnt
)) {
3953 error
= PTR_ERR(shm_mnt
);
3954 pr_err("Could not kern_mount tmpfs\n");
3958 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3959 if (has_transparent_hugepage() && shmem_huge
< SHMEM_HUGE_DENY
)
3960 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3962 shmem_huge
= 0; /* just in case it was patched */
3967 unregister_filesystem(&shmem_fs_type
);
3969 shmem_destroy_inodecache();
3971 shm_mnt
= ERR_PTR(error
);
3975 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3976 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3977 struct kobj_attribute
*attr
, char *buf
)
3981 SHMEM_HUGE_WITHIN_SIZE
,
3989 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3990 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3992 count
+= sprintf(buf
+ count
, fmt
,
3993 shmem_format_huge(values
[i
]));
3995 buf
[count
- 1] = '\n';
3999 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
4000 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
4005 if (count
+ 1 > sizeof(tmp
))
4007 memcpy(tmp
, buf
, count
);
4009 if (count
&& tmp
[count
- 1] == '\n')
4010 tmp
[count
- 1] = '\0';
4012 huge
= shmem_parse_huge(tmp
);
4013 if (huge
== -EINVAL
)
4015 if (!has_transparent_hugepage() &&
4016 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
4020 if (shmem_huge
< SHMEM_HUGE_DENY
)
4021 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
4025 struct kobj_attribute shmem_enabled_attr
=
4026 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
4027 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4029 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4030 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
4032 struct inode
*inode
= file_inode(vma
->vm_file
);
4033 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
4037 if (shmem_huge
== SHMEM_HUGE_FORCE
)
4039 if (shmem_huge
== SHMEM_HUGE_DENY
)
4041 switch (sbinfo
->huge
) {
4042 case SHMEM_HUGE_NEVER
:
4044 case SHMEM_HUGE_ALWAYS
:
4046 case SHMEM_HUGE_WITHIN_SIZE
:
4047 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
4048 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
4049 if (i_size
>= HPAGE_PMD_SIZE
&&
4050 i_size
>> PAGE_SHIFT
>= off
)
4052 case SHMEM_HUGE_ADVISE
:
4053 /* TODO: implement fadvise() hints */
4054 return (vma
->vm_flags
& VM_HUGEPAGE
);
4060 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4062 #else /* !CONFIG_SHMEM */
4065 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4067 * This is intended for small system where the benefits of the full
4068 * shmem code (swap-backed and resource-limited) are outweighed by
4069 * their complexity. On systems without swap this code should be
4070 * effectively equivalent, but much lighter weight.
4073 static struct file_system_type shmem_fs_type
= {
4075 .mount
= ramfs_mount
,
4076 .kill_sb
= kill_litter_super
,
4077 .fs_flags
= FS_USERNS_MOUNT
,
4080 int __init
shmem_init(void)
4082 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
4084 shm_mnt
= kern_mount(&shmem_fs_type
);
4085 BUG_ON(IS_ERR(shm_mnt
));
4090 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
4095 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
4100 void shmem_unlock_mapping(struct address_space
*mapping
)
4105 unsigned long shmem_get_unmapped_area(struct file
*file
,
4106 unsigned long addr
, unsigned long len
,
4107 unsigned long pgoff
, unsigned long flags
)
4109 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
4113 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
4115 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
4117 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
4119 #define shmem_vm_ops generic_file_vm_ops
4120 #define shmem_file_operations ramfs_file_operations
4121 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4122 #define shmem_acct_size(flags, size) 0
4123 #define shmem_unacct_size(flags, size) do {} while (0)
4125 #endif /* CONFIG_SHMEM */
4129 static const struct dentry_operations anon_ops
= {
4130 .d_dname
= simple_dname
4133 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
4134 unsigned long flags
, unsigned int i_flags
)
4137 struct inode
*inode
;
4139 struct super_block
*sb
;
4142 if (IS_ERR(shm_mnt
))
4143 return ERR_CAST(shm_mnt
);
4145 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
4146 return ERR_PTR(-EINVAL
);
4148 if (shmem_acct_size(flags
, size
))
4149 return ERR_PTR(-ENOMEM
);
4151 res
= ERR_PTR(-ENOMEM
);
4153 this.len
= strlen(name
);
4154 this.hash
= 0; /* will go */
4155 sb
= shm_mnt
->mnt_sb
;
4156 path
.mnt
= mntget(shm_mnt
);
4157 path
.dentry
= d_alloc_pseudo(sb
, &this);
4160 d_set_d_op(path
.dentry
, &anon_ops
);
4162 res
= ERR_PTR(-ENOSPC
);
4163 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
4167 inode
->i_flags
|= i_flags
;
4168 d_instantiate(path
.dentry
, inode
);
4169 inode
->i_size
= size
;
4170 clear_nlink(inode
); /* It is unlinked */
4171 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4175 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
4176 &shmem_file_operations
);
4183 shmem_unacct_size(flags
, size
);
4190 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4191 * kernel internal. There will be NO LSM permission checks against the
4192 * underlying inode. So users of this interface must do LSM checks at a
4193 * higher layer. The users are the big_key and shm implementations. LSM
4194 * checks are provided at the key or shm level rather than the inode.
4195 * @name: name for dentry (to be seen in /proc/<pid>/maps
4196 * @size: size to be set for the file
4197 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4199 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4201 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
4205 * shmem_file_setup - get an unlinked file living in tmpfs
4206 * @name: name for dentry (to be seen in /proc/<pid>/maps
4207 * @size: size to be set for the file
4208 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4210 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4212 return __shmem_file_setup(name
, size
, flags
, 0);
4214 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4217 * shmem_zero_setup - setup a shared anonymous mapping
4218 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4220 int shmem_zero_setup(struct vm_area_struct
*vma
)
4223 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4226 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4227 * between XFS directory reading and selinux: since this file is only
4228 * accessible to the user through its mapping, use S_PRIVATE flag to
4229 * bypass file security, in the same way as shmem_kernel_file_setup().
4231 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
4233 return PTR_ERR(file
);
4237 vma
->vm_file
= file
;
4238 vma
->vm_ops
= &shmem_vm_ops
;
4240 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4241 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4242 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4243 khugepaged_enter(vma
, vma
->vm_flags
);
4250 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4251 * @mapping: the page's address_space
4252 * @index: the page index
4253 * @gfp: the page allocator flags to use if allocating
4255 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4256 * with any new page allocations done using the specified allocation flags.
4257 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4258 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4259 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4261 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4262 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4264 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4265 pgoff_t index
, gfp_t gfp
)
4268 struct inode
*inode
= mapping
->host
;
4272 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4273 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4274 gfp
, NULL
, NULL
, NULL
);
4276 page
= ERR_PTR(error
);
4282 * The tiny !SHMEM case uses ramfs without swap
4284 return read_cache_page_gfp(mapping
, index
, gfp
);
4287 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);