rtc: s3c: Jump to central exit point on getting src clock error
[linux-2.6/btrfs-unstable.git] / mm / page_isolation.c
blob5092e4ef00c832fefb624a1d9d8f618402ad4402
1 /*
2 * linux/mm/page_isolation.c
3 */
5 #include <linux/mm.h>
6 #include <linux/page-isolation.h>
7 #include <linux/pageblock-flags.h>
8 #include <linux/memory.h>
9 #include <linux/hugetlb.h>
10 #include <linux/page_owner.h>
11 #include "internal.h"
13 #define CREATE_TRACE_POINTS
14 #include <trace/events/page_isolation.h>
16 static int set_migratetype_isolate(struct page *page,
17 bool skip_hwpoisoned_pages)
19 struct zone *zone;
20 unsigned long flags, pfn;
21 struct memory_isolate_notify arg;
22 int notifier_ret;
23 int ret = -EBUSY;
25 zone = page_zone(page);
27 spin_lock_irqsave(&zone->lock, flags);
29 pfn = page_to_pfn(page);
30 arg.start_pfn = pfn;
31 arg.nr_pages = pageblock_nr_pages;
32 arg.pages_found = 0;
35 * It may be possible to isolate a pageblock even if the
36 * migratetype is not MIGRATE_MOVABLE. The memory isolation
37 * notifier chain is used by balloon drivers to return the
38 * number of pages in a range that are held by the balloon
39 * driver to shrink memory. If all the pages are accounted for
40 * by balloons, are free, or on the LRU, isolation can continue.
41 * Later, for example, when memory hotplug notifier runs, these
42 * pages reported as "can be isolated" should be isolated(freed)
43 * by the balloon driver through the memory notifier chain.
45 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
46 notifier_ret = notifier_to_errno(notifier_ret);
47 if (notifier_ret)
48 goto out;
50 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
51 * We just check MOVABLE pages.
53 if (!has_unmovable_pages(zone, page, arg.pages_found,
54 skip_hwpoisoned_pages))
55 ret = 0;
58 * immobile means "not-on-lru" pages. If immobile is larger than
59 * removable-by-driver pages reported by notifier, we'll fail.
62 out:
63 if (!ret) {
64 unsigned long nr_pages;
65 int migratetype = get_pageblock_migratetype(page);
67 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
68 zone->nr_isolate_pageblock++;
69 nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE,
70 NULL);
72 __mod_zone_freepage_state(zone, -nr_pages, migratetype);
75 spin_unlock_irqrestore(&zone->lock, flags);
76 if (!ret)
77 drain_all_pages(zone);
78 return ret;
81 static void unset_migratetype_isolate(struct page *page, unsigned migratetype)
83 struct zone *zone;
84 unsigned long flags, nr_pages;
85 bool isolated_page = false;
86 unsigned int order;
87 unsigned long pfn, buddy_pfn;
88 struct page *buddy;
90 zone = page_zone(page);
91 spin_lock_irqsave(&zone->lock, flags);
92 if (!is_migrate_isolate_page(page))
93 goto out;
96 * Because freepage with more than pageblock_order on isolated
97 * pageblock is restricted to merge due to freepage counting problem,
98 * it is possible that there is free buddy page.
99 * move_freepages_block() doesn't care of merge so we need other
100 * approach in order to merge them. Isolation and free will make
101 * these pages to be merged.
103 if (PageBuddy(page)) {
104 order = page_order(page);
105 if (order >= pageblock_order) {
106 pfn = page_to_pfn(page);
107 buddy_pfn = __find_buddy_pfn(pfn, order);
108 buddy = page + (buddy_pfn - pfn);
110 if (pfn_valid_within(buddy_pfn) &&
111 !is_migrate_isolate_page(buddy)) {
112 __isolate_free_page(page, order);
113 isolated_page = true;
119 * If we isolate freepage with more than pageblock_order, there
120 * should be no freepage in the range, so we could avoid costly
121 * pageblock scanning for freepage moving.
123 if (!isolated_page) {
124 nr_pages = move_freepages_block(zone, page, migratetype, NULL);
125 __mod_zone_freepage_state(zone, nr_pages, migratetype);
127 set_pageblock_migratetype(page, migratetype);
128 zone->nr_isolate_pageblock--;
129 out:
130 spin_unlock_irqrestore(&zone->lock, flags);
131 if (isolated_page) {
132 post_alloc_hook(page, order, __GFP_MOVABLE);
133 __free_pages(page, order);
137 static inline struct page *
138 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
140 int i;
141 for (i = 0; i < nr_pages; i++)
142 if (pfn_valid_within(pfn + i))
143 break;
144 if (unlikely(i == nr_pages))
145 return NULL;
146 return pfn_to_page(pfn + i);
150 * start_isolate_page_range() -- make page-allocation-type of range of pages
151 * to be MIGRATE_ISOLATE.
152 * @start_pfn: The lower PFN of the range to be isolated.
153 * @end_pfn: The upper PFN of the range to be isolated.
154 * @migratetype: migrate type to set in error recovery.
156 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
157 * the range will never be allocated. Any free pages and pages freed in the
158 * future will not be allocated again.
160 * start_pfn/end_pfn must be aligned to pageblock_order.
161 * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
163 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
164 unsigned migratetype, bool skip_hwpoisoned_pages)
166 unsigned long pfn;
167 unsigned long undo_pfn;
168 struct page *page;
170 BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages));
171 BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages));
173 for (pfn = start_pfn;
174 pfn < end_pfn;
175 pfn += pageblock_nr_pages) {
176 page = __first_valid_page(pfn, pageblock_nr_pages);
177 if (page &&
178 set_migratetype_isolate(page, skip_hwpoisoned_pages)) {
179 undo_pfn = pfn;
180 goto undo;
183 return 0;
184 undo:
185 for (pfn = start_pfn;
186 pfn < undo_pfn;
187 pfn += pageblock_nr_pages)
188 unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
190 return -EBUSY;
194 * Make isolated pages available again.
196 int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
197 unsigned migratetype)
199 unsigned long pfn;
200 struct page *page;
202 BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages));
203 BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages));
205 for (pfn = start_pfn;
206 pfn < end_pfn;
207 pfn += pageblock_nr_pages) {
208 page = __first_valid_page(pfn, pageblock_nr_pages);
209 if (!page || !is_migrate_isolate_page(page))
210 continue;
211 unset_migratetype_isolate(page, migratetype);
213 return 0;
216 * Test all pages in the range is free(means isolated) or not.
217 * all pages in [start_pfn...end_pfn) must be in the same zone.
218 * zone->lock must be held before call this.
220 * Returns the last tested pfn.
222 static unsigned long
223 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
224 bool skip_hwpoisoned_pages)
226 struct page *page;
228 while (pfn < end_pfn) {
229 if (!pfn_valid_within(pfn)) {
230 pfn++;
231 continue;
233 page = pfn_to_page(pfn);
234 if (PageBuddy(page))
236 * If the page is on a free list, it has to be on
237 * the correct MIGRATE_ISOLATE freelist. There is no
238 * simple way to verify that as VM_BUG_ON(), though.
240 pfn += 1 << page_order(page);
241 else if (skip_hwpoisoned_pages && PageHWPoison(page))
242 /* A HWPoisoned page cannot be also PageBuddy */
243 pfn++;
244 else
245 break;
248 return pfn;
251 /* Caller should ensure that requested range is in a single zone */
252 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
253 bool skip_hwpoisoned_pages)
255 unsigned long pfn, flags;
256 struct page *page;
257 struct zone *zone;
260 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
261 * are not aligned to pageblock_nr_pages.
262 * Then we just check migratetype first.
264 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
265 page = __first_valid_page(pfn, pageblock_nr_pages);
266 if (page && !is_migrate_isolate_page(page))
267 break;
269 page = __first_valid_page(start_pfn, end_pfn - start_pfn);
270 if ((pfn < end_pfn) || !page)
271 return -EBUSY;
272 /* Check all pages are free or marked as ISOLATED */
273 zone = page_zone(page);
274 spin_lock_irqsave(&zone->lock, flags);
275 pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn,
276 skip_hwpoisoned_pages);
277 spin_unlock_irqrestore(&zone->lock, flags);
279 trace_test_pages_isolated(start_pfn, end_pfn, pfn);
281 return pfn < end_pfn ? -EBUSY : 0;
284 struct page *alloc_migrate_target(struct page *page, unsigned long private,
285 int **resultp)
287 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
290 * TODO: allocate a destination hugepage from a nearest neighbor node,
291 * accordance with memory policy of the user process if possible. For
292 * now as a simple work-around, we use the next node for destination.
294 if (PageHuge(page))
295 return alloc_huge_page_node(page_hstate(compound_head(page)),
296 next_node_in(page_to_nid(page),
297 node_online_map));
299 if (PageHighMem(page))
300 gfp_mask |= __GFP_HIGHMEM;
302 return alloc_page(gfp_mask);