arm-cci: Fix CCI PMU event validation
[linux-2.6/btrfs-unstable.git] / fs / f2fs / segment.h
blob7fd35111cf6241c486c22ec4477c71527528fb79
1 /*
2 * fs/f2fs/segment.h
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
13 /* constant macro */
14 #define NULL_SEGNO ((unsigned int)(~0))
15 #define NULL_SECNO ((unsigned int)(~0))
17 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
26 #define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34 #define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
46 sbi->segs_per_sec)) \
48 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
49 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
51 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
52 #define MAIN_SECS(sbi) (sbi->total_sections)
54 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
55 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
58 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
59 sbi->log_blocks_per_seg))
61 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
62 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64 #define NEXT_FREE_BLKADDR(sbi, curseg) \
65 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
68 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
69 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
70 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
71 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73 #define GET_SEGNO(sbi, blk_addr) \
74 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
75 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
76 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
77 #define GET_SECNO(sbi, segno) \
78 ((segno) / sbi->segs_per_sec)
79 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
80 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82 #define GET_SUM_BLOCK(sbi, segno) \
83 ((sbi->sm_info->ssa_blkaddr) + segno)
85 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
86 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88 #define SIT_ENTRY_OFFSET(sit_i, segno) \
89 (segno % sit_i->sents_per_block)
90 #define SIT_BLOCK_OFFSET(segno) \
91 (segno / SIT_ENTRY_PER_BLOCK)
92 #define START_SEGNO(segno) \
93 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
94 #define SIT_BLK_CNT(sbi) \
95 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
96 #define f2fs_bitmap_size(nr) \
97 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
99 #define SECTOR_FROM_BLOCK(blk_addr) \
100 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
101 #define SECTOR_TO_BLOCK(sectors) \
102 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
103 #define MAX_BIO_BLOCKS(sbi) \
104 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
107 * indicate a block allocation direction: RIGHT and LEFT.
108 * RIGHT means allocating new sections towards the end of volume.
109 * LEFT means the opposite direction.
111 enum {
112 ALLOC_RIGHT = 0,
113 ALLOC_LEFT
117 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
118 * LFS writes data sequentially with cleaning operations.
119 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121 enum {
122 LFS = 0,
127 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
128 * GC_CB is based on cost-benefit algorithm.
129 * GC_GREEDY is based on greedy algorithm.
131 enum {
132 GC_CB = 0,
133 GC_GREEDY
137 * BG_GC means the background cleaning job.
138 * FG_GC means the on-demand cleaning job.
140 enum {
141 BG_GC = 0,
142 FG_GC
145 /* for a function parameter to select a victim segment */
146 struct victim_sel_policy {
147 int alloc_mode; /* LFS or SSR */
148 int gc_mode; /* GC_CB or GC_GREEDY */
149 unsigned long *dirty_segmap; /* dirty segment bitmap */
150 unsigned int max_search; /* maximum # of segments to search */
151 unsigned int offset; /* last scanned bitmap offset */
152 unsigned int ofs_unit; /* bitmap search unit */
153 unsigned int min_cost; /* minimum cost */
154 unsigned int min_segno; /* segment # having min. cost */
157 struct seg_entry {
158 unsigned short valid_blocks; /* # of valid blocks */
159 unsigned char *cur_valid_map; /* validity bitmap of blocks */
161 * # of valid blocks and the validity bitmap stored in the the last
162 * checkpoint pack. This information is used by the SSR mode.
164 unsigned short ckpt_valid_blocks;
165 unsigned char *ckpt_valid_map;
166 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
167 unsigned long long mtime; /* modification time of the segment */
170 struct sec_entry {
171 unsigned int valid_blocks; /* # of valid blocks in a section */
174 struct segment_allocation {
175 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
178 struct inmem_pages {
179 struct list_head list;
180 struct page *page;
183 struct sit_info {
184 const struct segment_allocation *s_ops;
186 block_t sit_base_addr; /* start block address of SIT area */
187 block_t sit_blocks; /* # of blocks used by SIT area */
188 block_t written_valid_blocks; /* # of valid blocks in main area */
189 char *sit_bitmap; /* SIT bitmap pointer */
190 unsigned int bitmap_size; /* SIT bitmap size */
192 unsigned long *tmp_map; /* bitmap for temporal use */
193 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
194 unsigned int dirty_sentries; /* # of dirty sentries */
195 unsigned int sents_per_block; /* # of SIT entries per block */
196 struct mutex sentry_lock; /* to protect SIT cache */
197 struct seg_entry *sentries; /* SIT segment-level cache */
198 struct sec_entry *sec_entries; /* SIT section-level cache */
200 /* for cost-benefit algorithm in cleaning procedure */
201 unsigned long long elapsed_time; /* elapsed time after mount */
202 unsigned long long mounted_time; /* mount time */
203 unsigned long long min_mtime; /* min. modification time */
204 unsigned long long max_mtime; /* max. modification time */
207 struct free_segmap_info {
208 unsigned int start_segno; /* start segment number logically */
209 unsigned int free_segments; /* # of free segments */
210 unsigned int free_sections; /* # of free sections */
211 spinlock_t segmap_lock; /* free segmap lock */
212 unsigned long *free_segmap; /* free segment bitmap */
213 unsigned long *free_secmap; /* free section bitmap */
216 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
217 enum dirty_type {
218 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
219 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
220 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
221 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
222 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
223 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
224 DIRTY, /* to count # of dirty segments */
225 PRE, /* to count # of entirely obsolete segments */
226 NR_DIRTY_TYPE
229 struct dirty_seglist_info {
230 const struct victim_selection *v_ops; /* victim selction operation */
231 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
232 struct mutex seglist_lock; /* lock for segment bitmaps */
233 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
234 unsigned long *victim_secmap; /* background GC victims */
237 /* victim selection function for cleaning and SSR */
238 struct victim_selection {
239 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
240 int, int, char);
243 /* for active log information */
244 struct curseg_info {
245 struct mutex curseg_mutex; /* lock for consistency */
246 struct f2fs_summary_block *sum_blk; /* cached summary block */
247 unsigned char alloc_type; /* current allocation type */
248 unsigned int segno; /* current segment number */
249 unsigned short next_blkoff; /* next block offset to write */
250 unsigned int zone; /* current zone number */
251 unsigned int next_segno; /* preallocated segment */
254 struct sit_entry_set {
255 struct list_head set_list; /* link with all sit sets */
256 unsigned int start_segno; /* start segno of sits in set */
257 unsigned int entry_cnt; /* the # of sit entries in set */
261 * inline functions
263 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
265 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
268 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
269 unsigned int segno)
271 struct sit_info *sit_i = SIT_I(sbi);
272 return &sit_i->sentries[segno];
275 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
276 unsigned int segno)
278 struct sit_info *sit_i = SIT_I(sbi);
279 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
282 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
283 unsigned int segno, int section)
286 * In order to get # of valid blocks in a section instantly from many
287 * segments, f2fs manages two counting structures separately.
289 if (section > 1)
290 return get_sec_entry(sbi, segno)->valid_blocks;
291 else
292 return get_seg_entry(sbi, segno)->valid_blocks;
295 static inline void seg_info_from_raw_sit(struct seg_entry *se,
296 struct f2fs_sit_entry *rs)
298 se->valid_blocks = GET_SIT_VBLOCKS(rs);
299 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
300 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
301 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
302 se->type = GET_SIT_TYPE(rs);
303 se->mtime = le64_to_cpu(rs->mtime);
306 static inline void seg_info_to_raw_sit(struct seg_entry *se,
307 struct f2fs_sit_entry *rs)
309 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
310 se->valid_blocks;
311 rs->vblocks = cpu_to_le16(raw_vblocks);
312 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
313 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
314 se->ckpt_valid_blocks = se->valid_blocks;
315 rs->mtime = cpu_to_le64(se->mtime);
318 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
319 unsigned int max, unsigned int segno)
321 unsigned int ret;
322 spin_lock(&free_i->segmap_lock);
323 ret = find_next_bit(free_i->free_segmap, max, segno);
324 spin_unlock(&free_i->segmap_lock);
325 return ret;
328 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
330 struct free_segmap_info *free_i = FREE_I(sbi);
331 unsigned int secno = segno / sbi->segs_per_sec;
332 unsigned int start_segno = secno * sbi->segs_per_sec;
333 unsigned int next;
335 spin_lock(&free_i->segmap_lock);
336 clear_bit(segno, free_i->free_segmap);
337 free_i->free_segments++;
339 next = find_next_bit(free_i->free_segmap, MAIN_SEGS(sbi), start_segno);
340 if (next >= start_segno + sbi->segs_per_sec) {
341 clear_bit(secno, free_i->free_secmap);
342 free_i->free_sections++;
344 spin_unlock(&free_i->segmap_lock);
347 static inline void __set_inuse(struct f2fs_sb_info *sbi,
348 unsigned int segno)
350 struct free_segmap_info *free_i = FREE_I(sbi);
351 unsigned int secno = segno / sbi->segs_per_sec;
352 set_bit(segno, free_i->free_segmap);
353 free_i->free_segments--;
354 if (!test_and_set_bit(secno, free_i->free_secmap))
355 free_i->free_sections--;
358 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
359 unsigned int segno)
361 struct free_segmap_info *free_i = FREE_I(sbi);
362 unsigned int secno = segno / sbi->segs_per_sec;
363 unsigned int start_segno = secno * sbi->segs_per_sec;
364 unsigned int next;
366 spin_lock(&free_i->segmap_lock);
367 if (test_and_clear_bit(segno, free_i->free_segmap)) {
368 free_i->free_segments++;
370 next = find_next_bit(free_i->free_segmap,
371 start_segno + sbi->segs_per_sec, start_segno);
372 if (next >= start_segno + sbi->segs_per_sec) {
373 if (test_and_clear_bit(secno, free_i->free_secmap))
374 free_i->free_sections++;
377 spin_unlock(&free_i->segmap_lock);
380 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
381 unsigned int segno)
383 struct free_segmap_info *free_i = FREE_I(sbi);
384 unsigned int secno = segno / sbi->segs_per_sec;
385 spin_lock(&free_i->segmap_lock);
386 if (!test_and_set_bit(segno, free_i->free_segmap)) {
387 free_i->free_segments--;
388 if (!test_and_set_bit(secno, free_i->free_secmap))
389 free_i->free_sections--;
391 spin_unlock(&free_i->segmap_lock);
394 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
395 void *dst_addr)
397 struct sit_info *sit_i = SIT_I(sbi);
398 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
401 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
403 return SIT_I(sbi)->written_valid_blocks;
406 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
408 return FREE_I(sbi)->free_segments;
411 static inline int reserved_segments(struct f2fs_sb_info *sbi)
413 return SM_I(sbi)->reserved_segments;
416 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
418 return FREE_I(sbi)->free_sections;
421 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
423 return DIRTY_I(sbi)->nr_dirty[PRE];
426 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
428 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
429 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
430 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
431 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
432 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
433 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
436 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
438 return SM_I(sbi)->ovp_segments;
441 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
443 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
446 static inline int reserved_sections(struct f2fs_sb_info *sbi)
448 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
451 static inline bool need_SSR(struct f2fs_sb_info *sbi)
453 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
454 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
455 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
456 reserved_sections(sbi) + 1);
459 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
461 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
462 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
464 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
465 return false;
467 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
468 reserved_sections(sbi));
471 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
473 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
476 static inline int utilization(struct f2fs_sb_info *sbi)
478 return div_u64((u64)valid_user_blocks(sbi) * 100,
479 sbi->user_block_count);
483 * Sometimes f2fs may be better to drop out-of-place update policy.
484 * And, users can control the policy through sysfs entries.
485 * There are five policies with triggering conditions as follows.
486 * F2FS_IPU_FORCE - all the time,
487 * F2FS_IPU_SSR - if SSR mode is activated,
488 * F2FS_IPU_UTIL - if FS utilization is over threashold,
489 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
490 * threashold,
491 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
492 * storages. IPU will be triggered only if the # of dirty
493 * pages over min_fsync_blocks.
494 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
496 #define DEF_MIN_IPU_UTIL 70
497 #define DEF_MIN_FSYNC_BLOCKS 8
499 enum {
500 F2FS_IPU_FORCE,
501 F2FS_IPU_SSR,
502 F2FS_IPU_UTIL,
503 F2FS_IPU_SSR_UTIL,
504 F2FS_IPU_FSYNC,
507 static inline bool need_inplace_update(struct inode *inode)
509 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
510 unsigned int policy = SM_I(sbi)->ipu_policy;
512 /* IPU can be done only for the user data */
513 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
514 return false;
516 if (policy & (0x1 << F2FS_IPU_FORCE))
517 return true;
518 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
519 return true;
520 if (policy & (0x1 << F2FS_IPU_UTIL) &&
521 utilization(sbi) > SM_I(sbi)->min_ipu_util)
522 return true;
523 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
524 utilization(sbi) > SM_I(sbi)->min_ipu_util)
525 return true;
527 /* this is only set during fdatasync */
528 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
529 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
530 return true;
532 return false;
535 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
536 int type)
538 struct curseg_info *curseg = CURSEG_I(sbi, type);
539 return curseg->segno;
542 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
543 int type)
545 struct curseg_info *curseg = CURSEG_I(sbi, type);
546 return curseg->alloc_type;
549 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
551 struct curseg_info *curseg = CURSEG_I(sbi, type);
552 return curseg->next_blkoff;
555 #ifdef CONFIG_F2FS_CHECK_FS
556 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
558 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
561 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
563 BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
564 BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
568 * Summary block is always treated as an invalid block
570 static inline void check_block_count(struct f2fs_sb_info *sbi,
571 int segno, struct f2fs_sit_entry *raw_sit)
573 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
574 int valid_blocks = 0;
575 int cur_pos = 0, next_pos;
577 /* check segment usage */
578 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
580 /* check boundary of a given segment number */
581 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
583 /* check bitmap with valid block count */
584 do {
585 if (is_valid) {
586 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
587 sbi->blocks_per_seg,
588 cur_pos);
589 valid_blocks += next_pos - cur_pos;
590 } else
591 next_pos = find_next_bit_le(&raw_sit->valid_map,
592 sbi->blocks_per_seg,
593 cur_pos);
594 cur_pos = next_pos;
595 is_valid = !is_valid;
596 } while (cur_pos < sbi->blocks_per_seg);
597 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
599 #else
600 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
602 if (segno > TOTAL_SEGS(sbi) - 1)
603 set_sbi_flag(sbi, SBI_NEED_FSCK);
606 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
608 if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
609 set_sbi_flag(sbi, SBI_NEED_FSCK);
613 * Summary block is always treated as an invalid block
615 static inline void check_block_count(struct f2fs_sb_info *sbi,
616 int segno, struct f2fs_sit_entry *raw_sit)
618 /* check segment usage */
619 if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
620 set_sbi_flag(sbi, SBI_NEED_FSCK);
622 /* check boundary of a given segment number */
623 if (segno > TOTAL_SEGS(sbi) - 1)
624 set_sbi_flag(sbi, SBI_NEED_FSCK);
626 #endif
628 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
629 unsigned int start)
631 struct sit_info *sit_i = SIT_I(sbi);
632 unsigned int offset = SIT_BLOCK_OFFSET(start);
633 block_t blk_addr = sit_i->sit_base_addr + offset;
635 check_seg_range(sbi, start);
637 /* calculate sit block address */
638 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
639 blk_addr += sit_i->sit_blocks;
641 return blk_addr;
644 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
645 pgoff_t block_addr)
647 struct sit_info *sit_i = SIT_I(sbi);
648 block_addr -= sit_i->sit_base_addr;
649 if (block_addr < sit_i->sit_blocks)
650 block_addr += sit_i->sit_blocks;
651 else
652 block_addr -= sit_i->sit_blocks;
654 return block_addr + sit_i->sit_base_addr;
657 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
659 unsigned int block_off = SIT_BLOCK_OFFSET(start);
661 f2fs_change_bit(block_off, sit_i->sit_bitmap);
664 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
666 struct sit_info *sit_i = SIT_I(sbi);
667 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
668 sit_i->mounted_time;
671 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
672 unsigned int ofs_in_node, unsigned char version)
674 sum->nid = cpu_to_le32(nid);
675 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
676 sum->version = version;
679 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
681 return __start_cp_addr(sbi) +
682 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
685 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
687 return __start_cp_addr(sbi) +
688 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
689 - (base + 1) + type;
692 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
694 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
695 return true;
696 return false;
699 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
701 struct block_device *bdev = sbi->sb->s_bdev;
702 struct request_queue *q = bdev_get_queue(bdev);
703 return SECTOR_TO_BLOCK(queue_max_sectors(q));
707 * It is very important to gather dirty pages and write at once, so that we can
708 * submit a big bio without interfering other data writes.
709 * By default, 512 pages for directory data,
710 * 512 pages (2MB) * 3 for three types of nodes, and
711 * max_bio_blocks for meta are set.
713 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
715 if (sbi->sb->s_bdi->dirty_exceeded)
716 return 0;
718 if (type == DATA)
719 return sbi->blocks_per_seg;
720 else if (type == NODE)
721 return 3 * sbi->blocks_per_seg;
722 else if (type == META)
723 return MAX_BIO_BLOCKS(sbi);
724 else
725 return 0;
729 * When writing pages, it'd better align nr_to_write for segment size.
731 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
732 struct writeback_control *wbc)
734 long nr_to_write, desired;
736 if (wbc->sync_mode != WB_SYNC_NONE)
737 return 0;
739 nr_to_write = wbc->nr_to_write;
741 if (type == DATA)
742 desired = 4096;
743 else if (type == NODE)
744 desired = 3 * max_hw_blocks(sbi);
745 else
746 desired = MAX_BIO_BLOCKS(sbi);
748 wbc->nr_to_write = desired;
749 return desired - nr_to_write;