[media] lmedm04: add read snr, signal strength and ber call backs
[linux-2.6/btrfs-unstable.git] / kernel / time / posix-cpu-timers.c
bloba16b67859e2a79929331c5008f96fd7f29ebbfc1
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
20 * well.
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
24 cputime_t cputime = secs_to_cputime(rlim_new);
26 spin_lock_irq(&task->sighand->siglock);
27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 spin_unlock_irq(&task->sighand->siglock);
31 static int check_clock(const clockid_t which_clock)
33 int error = 0;
34 struct task_struct *p;
35 const pid_t pid = CPUCLOCK_PID(which_clock);
37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 return -EINVAL;
40 if (pid == 0)
41 return 0;
43 rcu_read_lock();
44 p = find_task_by_vpid(pid);
45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 same_thread_group(p, current) : has_group_leader_pid(p))) {
47 error = -EINVAL;
49 rcu_read_unlock();
51 return error;
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
57 unsigned long long ret;
59 ret = 0; /* high half always zero when .cpu used */
60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 } else {
63 ret = cputime_to_expires(timespec_to_cputime(tp));
65 return ret;
68 static void sample_to_timespec(const clockid_t which_clock,
69 unsigned long long expires,
70 struct timespec *tp)
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 *tp = ns_to_timespec(expires);
74 else
75 cputime_to_timespec((__force cputime_t)expires, tp);
79 * Update expiry time from increment, and increase overrun count,
80 * given the current clock sample.
82 static void bump_cpu_timer(struct k_itimer *timer,
83 unsigned long long now)
85 int i;
86 unsigned long long delta, incr;
88 if (timer->it.cpu.incr == 0)
89 return;
91 if (now < timer->it.cpu.expires)
92 return;
94 incr = timer->it.cpu.incr;
95 delta = now + incr - timer->it.cpu.expires;
97 /* Don't use (incr*2 < delta), incr*2 might overflow. */
98 for (i = 0; incr < delta - incr; i++)
99 incr = incr << 1;
101 for (; i >= 0; incr >>= 1, i--) {
102 if (delta < incr)
103 continue;
105 timer->it.cpu.expires += incr;
106 timer->it_overrun += 1 << i;
107 delta -= incr;
112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
114 * @cputime: The struct to compare.
116 * Checks @cputime to see if all fields are zero. Returns true if all fields
117 * are zero, false if any field is nonzero.
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 return 1;
123 return 0;
126 static inline unsigned long long prof_ticks(struct task_struct *p)
128 cputime_t utime, stime;
130 task_cputime(p, &utime, &stime);
132 return cputime_to_expires(utime + stime);
134 static inline unsigned long long virt_ticks(struct task_struct *p)
136 cputime_t utime;
138 task_cputime(p, &utime, NULL);
140 return cputime_to_expires(utime);
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
146 int error = check_clock(which_clock);
147 if (!error) {
148 tp->tv_sec = 0;
149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
152 * If sched_clock is using a cycle counter, we
153 * don't have any idea of its true resolution
154 * exported, but it is much more than 1s/HZ.
156 tp->tv_nsec = 1;
159 return error;
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
166 * You can never reset a CPU clock, but we check for other errors
167 * in the call before failing with EPERM.
169 int error = check_clock(which_clock);
170 if (error == 0) {
171 error = -EPERM;
173 return error;
178 * Sample a per-thread clock for the given task.
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 unsigned long long *sample)
183 switch (CPUCLOCK_WHICH(which_clock)) {
184 default:
185 return -EINVAL;
186 case CPUCLOCK_PROF:
187 *sample = prof_ticks(p);
188 break;
189 case CPUCLOCK_VIRT:
190 *sample = virt_ticks(p);
191 break;
192 case CPUCLOCK_SCHED:
193 *sample = task_sched_runtime(p);
194 break;
196 return 0;
199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
201 if (b->utime > a->utime)
202 a->utime = b->utime;
204 if (b->stime > a->stime)
205 a->stime = b->stime;
207 if (b->sum_exec_runtime > a->sum_exec_runtime)
208 a->sum_exec_runtime = b->sum_exec_runtime;
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 struct task_cputime sum;
215 unsigned long flags;
217 if (!cputimer->running) {
219 * The POSIX timer interface allows for absolute time expiry
220 * values through the TIMER_ABSTIME flag, therefore we have
221 * to synchronize the timer to the clock every time we start
222 * it.
224 thread_group_cputime(tsk, &sum);
225 raw_spin_lock_irqsave(&cputimer->lock, flags);
226 cputimer->running = 1;
227 update_gt_cputime(&cputimer->cputime, &sum);
228 } else
229 raw_spin_lock_irqsave(&cputimer->lock, flags);
230 *times = cputimer->cputime;
231 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
235 * Sample a process (thread group) clock for the given group_leader task.
236 * Must be called with task sighand lock held for safe while_each_thread()
237 * traversal.
239 static int cpu_clock_sample_group(const clockid_t which_clock,
240 struct task_struct *p,
241 unsigned long long *sample)
243 struct task_cputime cputime;
245 switch (CPUCLOCK_WHICH(which_clock)) {
246 default:
247 return -EINVAL;
248 case CPUCLOCK_PROF:
249 thread_group_cputime(p, &cputime);
250 *sample = cputime_to_expires(cputime.utime + cputime.stime);
251 break;
252 case CPUCLOCK_VIRT:
253 thread_group_cputime(p, &cputime);
254 *sample = cputime_to_expires(cputime.utime);
255 break;
256 case CPUCLOCK_SCHED:
257 thread_group_cputime(p, &cputime);
258 *sample = cputime.sum_exec_runtime;
259 break;
261 return 0;
264 static int posix_cpu_clock_get_task(struct task_struct *tsk,
265 const clockid_t which_clock,
266 struct timespec *tp)
268 int err = -EINVAL;
269 unsigned long long rtn;
271 if (CPUCLOCK_PERTHREAD(which_clock)) {
272 if (same_thread_group(tsk, current))
273 err = cpu_clock_sample(which_clock, tsk, &rtn);
274 } else {
275 if (tsk == current || thread_group_leader(tsk))
276 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
279 if (!err)
280 sample_to_timespec(which_clock, rtn, tp);
282 return err;
286 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
288 const pid_t pid = CPUCLOCK_PID(which_clock);
289 int err = -EINVAL;
291 if (pid == 0) {
293 * Special case constant value for our own clocks.
294 * We don't have to do any lookup to find ourselves.
296 err = posix_cpu_clock_get_task(current, which_clock, tp);
297 } else {
299 * Find the given PID, and validate that the caller
300 * should be able to see it.
302 struct task_struct *p;
303 rcu_read_lock();
304 p = find_task_by_vpid(pid);
305 if (p)
306 err = posix_cpu_clock_get_task(p, which_clock, tp);
307 rcu_read_unlock();
310 return err;
315 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
316 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
317 * new timer already all-zeros initialized.
319 static int posix_cpu_timer_create(struct k_itimer *new_timer)
321 int ret = 0;
322 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
323 struct task_struct *p;
325 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
326 return -EINVAL;
328 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
330 rcu_read_lock();
331 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
332 if (pid == 0) {
333 p = current;
334 } else {
335 p = find_task_by_vpid(pid);
336 if (p && !same_thread_group(p, current))
337 p = NULL;
339 } else {
340 if (pid == 0) {
341 p = current->group_leader;
342 } else {
343 p = find_task_by_vpid(pid);
344 if (p && !has_group_leader_pid(p))
345 p = NULL;
348 new_timer->it.cpu.task = p;
349 if (p) {
350 get_task_struct(p);
351 } else {
352 ret = -EINVAL;
354 rcu_read_unlock();
356 return ret;
360 * Clean up a CPU-clock timer that is about to be destroyed.
361 * This is called from timer deletion with the timer already locked.
362 * If we return TIMER_RETRY, it's necessary to release the timer's lock
363 * and try again. (This happens when the timer is in the middle of firing.)
365 static int posix_cpu_timer_del(struct k_itimer *timer)
367 int ret = 0;
368 unsigned long flags;
369 struct sighand_struct *sighand;
370 struct task_struct *p = timer->it.cpu.task;
372 WARN_ON_ONCE(p == NULL);
375 * Protect against sighand release/switch in exit/exec and process/
376 * thread timer list entry concurrent read/writes.
378 sighand = lock_task_sighand(p, &flags);
379 if (unlikely(sighand == NULL)) {
381 * We raced with the reaping of the task.
382 * The deletion should have cleared us off the list.
384 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
385 } else {
386 if (timer->it.cpu.firing)
387 ret = TIMER_RETRY;
388 else
389 list_del(&timer->it.cpu.entry);
391 unlock_task_sighand(p, &flags);
394 if (!ret)
395 put_task_struct(p);
397 return ret;
400 static void cleanup_timers_list(struct list_head *head)
402 struct cpu_timer_list *timer, *next;
404 list_for_each_entry_safe(timer, next, head, entry)
405 list_del_init(&timer->entry);
409 * Clean out CPU timers still ticking when a thread exited. The task
410 * pointer is cleared, and the expiry time is replaced with the residual
411 * time for later timer_gettime calls to return.
412 * This must be called with the siglock held.
414 static void cleanup_timers(struct list_head *head)
416 cleanup_timers_list(head);
417 cleanup_timers_list(++head);
418 cleanup_timers_list(++head);
422 * These are both called with the siglock held, when the current thread
423 * is being reaped. When the final (leader) thread in the group is reaped,
424 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
426 void posix_cpu_timers_exit(struct task_struct *tsk)
428 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
429 sizeof(unsigned long long));
430 cleanup_timers(tsk->cpu_timers);
433 void posix_cpu_timers_exit_group(struct task_struct *tsk)
435 cleanup_timers(tsk->signal->cpu_timers);
438 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
440 return expires == 0 || expires > new_exp;
444 * Insert the timer on the appropriate list before any timers that
445 * expire later. This must be called with the sighand lock held.
447 static void arm_timer(struct k_itimer *timer)
449 struct task_struct *p = timer->it.cpu.task;
450 struct list_head *head, *listpos;
451 struct task_cputime *cputime_expires;
452 struct cpu_timer_list *const nt = &timer->it.cpu;
453 struct cpu_timer_list *next;
455 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
456 head = p->cpu_timers;
457 cputime_expires = &p->cputime_expires;
458 } else {
459 head = p->signal->cpu_timers;
460 cputime_expires = &p->signal->cputime_expires;
462 head += CPUCLOCK_WHICH(timer->it_clock);
464 listpos = head;
465 list_for_each_entry(next, head, entry) {
466 if (nt->expires < next->expires)
467 break;
468 listpos = &next->entry;
470 list_add(&nt->entry, listpos);
472 if (listpos == head) {
473 unsigned long long exp = nt->expires;
476 * We are the new earliest-expiring POSIX 1.b timer, hence
477 * need to update expiration cache. Take into account that
478 * for process timers we share expiration cache with itimers
479 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
482 switch (CPUCLOCK_WHICH(timer->it_clock)) {
483 case CPUCLOCK_PROF:
484 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
485 cputime_expires->prof_exp = expires_to_cputime(exp);
486 break;
487 case CPUCLOCK_VIRT:
488 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
489 cputime_expires->virt_exp = expires_to_cputime(exp);
490 break;
491 case CPUCLOCK_SCHED:
492 if (cputime_expires->sched_exp == 0 ||
493 cputime_expires->sched_exp > exp)
494 cputime_expires->sched_exp = exp;
495 break;
501 * The timer is locked, fire it and arrange for its reload.
503 static void cpu_timer_fire(struct k_itimer *timer)
505 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
507 * User don't want any signal.
509 timer->it.cpu.expires = 0;
510 } else if (unlikely(timer->sigq == NULL)) {
512 * This a special case for clock_nanosleep,
513 * not a normal timer from sys_timer_create.
515 wake_up_process(timer->it_process);
516 timer->it.cpu.expires = 0;
517 } else if (timer->it.cpu.incr == 0) {
519 * One-shot timer. Clear it as soon as it's fired.
521 posix_timer_event(timer, 0);
522 timer->it.cpu.expires = 0;
523 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
525 * The signal did not get queued because the signal
526 * was ignored, so we won't get any callback to
527 * reload the timer. But we need to keep it
528 * ticking in case the signal is deliverable next time.
530 posix_cpu_timer_schedule(timer);
535 * Sample a process (thread group) timer for the given group_leader task.
536 * Must be called with task sighand lock held for safe while_each_thread()
537 * traversal.
539 static int cpu_timer_sample_group(const clockid_t which_clock,
540 struct task_struct *p,
541 unsigned long long *sample)
543 struct task_cputime cputime;
545 thread_group_cputimer(p, &cputime);
546 switch (CPUCLOCK_WHICH(which_clock)) {
547 default:
548 return -EINVAL;
549 case CPUCLOCK_PROF:
550 *sample = cputime_to_expires(cputime.utime + cputime.stime);
551 break;
552 case CPUCLOCK_VIRT:
553 *sample = cputime_to_expires(cputime.utime);
554 break;
555 case CPUCLOCK_SCHED:
556 *sample = cputime.sum_exec_runtime;
557 break;
559 return 0;
562 #ifdef CONFIG_NO_HZ_FULL
563 static void nohz_kick_work_fn(struct work_struct *work)
565 tick_nohz_full_kick_all();
568 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
571 * We need the IPIs to be sent from sane process context.
572 * The posix cpu timers are always set with irqs disabled.
574 static void posix_cpu_timer_kick_nohz(void)
576 if (context_tracking_is_enabled())
577 schedule_work(&nohz_kick_work);
580 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
582 if (!task_cputime_zero(&tsk->cputime_expires))
583 return false;
585 if (tsk->signal->cputimer.running)
586 return false;
588 return true;
590 #else
591 static inline void posix_cpu_timer_kick_nohz(void) { }
592 #endif
595 * Guts of sys_timer_settime for CPU timers.
596 * This is called with the timer locked and interrupts disabled.
597 * If we return TIMER_RETRY, it's necessary to release the timer's lock
598 * and try again. (This happens when the timer is in the middle of firing.)
600 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
601 struct itimerspec *new, struct itimerspec *old)
603 unsigned long flags;
604 struct sighand_struct *sighand;
605 struct task_struct *p = timer->it.cpu.task;
606 unsigned long long old_expires, new_expires, old_incr, val;
607 int ret;
609 WARN_ON_ONCE(p == NULL);
611 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
614 * Protect against sighand release/switch in exit/exec and p->cpu_timers
615 * and p->signal->cpu_timers read/write in arm_timer()
617 sighand = lock_task_sighand(p, &flags);
619 * If p has just been reaped, we can no
620 * longer get any information about it at all.
622 if (unlikely(sighand == NULL)) {
623 return -ESRCH;
627 * Disarm any old timer after extracting its expiry time.
629 WARN_ON_ONCE(!irqs_disabled());
631 ret = 0;
632 old_incr = timer->it.cpu.incr;
633 old_expires = timer->it.cpu.expires;
634 if (unlikely(timer->it.cpu.firing)) {
635 timer->it.cpu.firing = -1;
636 ret = TIMER_RETRY;
637 } else
638 list_del_init(&timer->it.cpu.entry);
641 * We need to sample the current value to convert the new
642 * value from to relative and absolute, and to convert the
643 * old value from absolute to relative. To set a process
644 * timer, we need a sample to balance the thread expiry
645 * times (in arm_timer). With an absolute time, we must
646 * check if it's already passed. In short, we need a sample.
648 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
649 cpu_clock_sample(timer->it_clock, p, &val);
650 } else {
651 cpu_timer_sample_group(timer->it_clock, p, &val);
654 if (old) {
655 if (old_expires == 0) {
656 old->it_value.tv_sec = 0;
657 old->it_value.tv_nsec = 0;
658 } else {
660 * Update the timer in case it has
661 * overrun already. If it has,
662 * we'll report it as having overrun
663 * and with the next reloaded timer
664 * already ticking, though we are
665 * swallowing that pending
666 * notification here to install the
667 * new setting.
669 bump_cpu_timer(timer, val);
670 if (val < timer->it.cpu.expires) {
671 old_expires = timer->it.cpu.expires - val;
672 sample_to_timespec(timer->it_clock,
673 old_expires,
674 &old->it_value);
675 } else {
676 old->it_value.tv_nsec = 1;
677 old->it_value.tv_sec = 0;
682 if (unlikely(ret)) {
684 * We are colliding with the timer actually firing.
685 * Punt after filling in the timer's old value, and
686 * disable this firing since we are already reporting
687 * it as an overrun (thanks to bump_cpu_timer above).
689 unlock_task_sighand(p, &flags);
690 goto out;
693 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
694 new_expires += val;
698 * Install the new expiry time (or zero).
699 * For a timer with no notification action, we don't actually
700 * arm the timer (we'll just fake it for timer_gettime).
702 timer->it.cpu.expires = new_expires;
703 if (new_expires != 0 && val < new_expires) {
704 arm_timer(timer);
707 unlock_task_sighand(p, &flags);
709 * Install the new reload setting, and
710 * set up the signal and overrun bookkeeping.
712 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
713 &new->it_interval);
716 * This acts as a modification timestamp for the timer,
717 * so any automatic reload attempt will punt on seeing
718 * that we have reset the timer manually.
720 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
721 ~REQUEUE_PENDING;
722 timer->it_overrun_last = 0;
723 timer->it_overrun = -1;
725 if (new_expires != 0 && !(val < new_expires)) {
727 * The designated time already passed, so we notify
728 * immediately, even if the thread never runs to
729 * accumulate more time on this clock.
731 cpu_timer_fire(timer);
734 ret = 0;
735 out:
736 if (old) {
737 sample_to_timespec(timer->it_clock,
738 old_incr, &old->it_interval);
740 if (!ret)
741 posix_cpu_timer_kick_nohz();
742 return ret;
745 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
747 unsigned long long now;
748 struct task_struct *p = timer->it.cpu.task;
750 WARN_ON_ONCE(p == NULL);
753 * Easy part: convert the reload time.
755 sample_to_timespec(timer->it_clock,
756 timer->it.cpu.incr, &itp->it_interval);
758 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
759 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
760 return;
764 * Sample the clock to take the difference with the expiry time.
766 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
767 cpu_clock_sample(timer->it_clock, p, &now);
768 } else {
769 struct sighand_struct *sighand;
770 unsigned long flags;
773 * Protect against sighand release/switch in exit/exec and
774 * also make timer sampling safe if it ends up calling
775 * thread_group_cputime().
777 sighand = lock_task_sighand(p, &flags);
778 if (unlikely(sighand == NULL)) {
780 * The process has been reaped.
781 * We can't even collect a sample any more.
782 * Call the timer disarmed, nothing else to do.
784 timer->it.cpu.expires = 0;
785 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
786 &itp->it_value);
787 } else {
788 cpu_timer_sample_group(timer->it_clock, p, &now);
789 unlock_task_sighand(p, &flags);
793 if (now < timer->it.cpu.expires) {
794 sample_to_timespec(timer->it_clock,
795 timer->it.cpu.expires - now,
796 &itp->it_value);
797 } else {
799 * The timer should have expired already, but the firing
800 * hasn't taken place yet. Say it's just about to expire.
802 itp->it_value.tv_nsec = 1;
803 itp->it_value.tv_sec = 0;
807 static unsigned long long
808 check_timers_list(struct list_head *timers,
809 struct list_head *firing,
810 unsigned long long curr)
812 int maxfire = 20;
814 while (!list_empty(timers)) {
815 struct cpu_timer_list *t;
817 t = list_first_entry(timers, struct cpu_timer_list, entry);
819 if (!--maxfire || curr < t->expires)
820 return t->expires;
822 t->firing = 1;
823 list_move_tail(&t->entry, firing);
826 return 0;
830 * Check for any per-thread CPU timers that have fired and move them off
831 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
832 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
834 static void check_thread_timers(struct task_struct *tsk,
835 struct list_head *firing)
837 struct list_head *timers = tsk->cpu_timers;
838 struct signal_struct *const sig = tsk->signal;
839 struct task_cputime *tsk_expires = &tsk->cputime_expires;
840 unsigned long long expires;
841 unsigned long soft;
843 expires = check_timers_list(timers, firing, prof_ticks(tsk));
844 tsk_expires->prof_exp = expires_to_cputime(expires);
846 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
847 tsk_expires->virt_exp = expires_to_cputime(expires);
849 tsk_expires->sched_exp = check_timers_list(++timers, firing,
850 tsk->se.sum_exec_runtime);
853 * Check for the special case thread timers.
855 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
856 if (soft != RLIM_INFINITY) {
857 unsigned long hard =
858 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
860 if (hard != RLIM_INFINITY &&
861 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
863 * At the hard limit, we just die.
864 * No need to calculate anything else now.
866 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
867 return;
869 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
871 * At the soft limit, send a SIGXCPU every second.
873 if (soft < hard) {
874 soft += USEC_PER_SEC;
875 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
877 printk(KERN_INFO
878 "RT Watchdog Timeout: %s[%d]\n",
879 tsk->comm, task_pid_nr(tsk));
880 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
885 static void stop_process_timers(struct signal_struct *sig)
887 struct thread_group_cputimer *cputimer = &sig->cputimer;
888 unsigned long flags;
890 raw_spin_lock_irqsave(&cputimer->lock, flags);
891 cputimer->running = 0;
892 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
895 static u32 onecputick;
897 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
898 unsigned long long *expires,
899 unsigned long long cur_time, int signo)
901 if (!it->expires)
902 return;
904 if (cur_time >= it->expires) {
905 if (it->incr) {
906 it->expires += it->incr;
907 it->error += it->incr_error;
908 if (it->error >= onecputick) {
909 it->expires -= cputime_one_jiffy;
910 it->error -= onecputick;
912 } else {
913 it->expires = 0;
916 trace_itimer_expire(signo == SIGPROF ?
917 ITIMER_PROF : ITIMER_VIRTUAL,
918 tsk->signal->leader_pid, cur_time);
919 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
922 if (it->expires && (!*expires || it->expires < *expires)) {
923 *expires = it->expires;
928 * Check for any per-thread CPU timers that have fired and move them
929 * off the tsk->*_timers list onto the firing list. Per-thread timers
930 * have already been taken off.
932 static void check_process_timers(struct task_struct *tsk,
933 struct list_head *firing)
935 struct signal_struct *const sig = tsk->signal;
936 unsigned long long utime, ptime, virt_expires, prof_expires;
937 unsigned long long sum_sched_runtime, sched_expires;
938 struct list_head *timers = sig->cpu_timers;
939 struct task_cputime cputime;
940 unsigned long soft;
943 * Collect the current process totals.
945 thread_group_cputimer(tsk, &cputime);
946 utime = cputime_to_expires(cputime.utime);
947 ptime = utime + cputime_to_expires(cputime.stime);
948 sum_sched_runtime = cputime.sum_exec_runtime;
950 prof_expires = check_timers_list(timers, firing, ptime);
951 virt_expires = check_timers_list(++timers, firing, utime);
952 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
955 * Check for the special case process timers.
957 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
958 SIGPROF);
959 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
960 SIGVTALRM);
961 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
962 if (soft != RLIM_INFINITY) {
963 unsigned long psecs = cputime_to_secs(ptime);
964 unsigned long hard =
965 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
966 cputime_t x;
967 if (psecs >= hard) {
969 * At the hard limit, we just die.
970 * No need to calculate anything else now.
972 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
973 return;
975 if (psecs >= soft) {
977 * At the soft limit, send a SIGXCPU every second.
979 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
980 if (soft < hard) {
981 soft++;
982 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
985 x = secs_to_cputime(soft);
986 if (!prof_expires || x < prof_expires) {
987 prof_expires = x;
991 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
992 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
993 sig->cputime_expires.sched_exp = sched_expires;
994 if (task_cputime_zero(&sig->cputime_expires))
995 stop_process_timers(sig);
999 * This is called from the signal code (via do_schedule_next_timer)
1000 * when the last timer signal was delivered and we have to reload the timer.
1002 void posix_cpu_timer_schedule(struct k_itimer *timer)
1004 struct sighand_struct *sighand;
1005 unsigned long flags;
1006 struct task_struct *p = timer->it.cpu.task;
1007 unsigned long long now;
1009 WARN_ON_ONCE(p == NULL);
1012 * Fetch the current sample and update the timer's expiry time.
1014 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1015 cpu_clock_sample(timer->it_clock, p, &now);
1016 bump_cpu_timer(timer, now);
1017 if (unlikely(p->exit_state))
1018 goto out;
1020 /* Protect timer list r/w in arm_timer() */
1021 sighand = lock_task_sighand(p, &flags);
1022 if (!sighand)
1023 goto out;
1024 } else {
1026 * Protect arm_timer() and timer sampling in case of call to
1027 * thread_group_cputime().
1029 sighand = lock_task_sighand(p, &flags);
1030 if (unlikely(sighand == NULL)) {
1032 * The process has been reaped.
1033 * We can't even collect a sample any more.
1035 timer->it.cpu.expires = 0;
1036 goto out;
1037 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1038 unlock_task_sighand(p, &flags);
1039 /* Optimizations: if the process is dying, no need to rearm */
1040 goto out;
1042 cpu_timer_sample_group(timer->it_clock, p, &now);
1043 bump_cpu_timer(timer, now);
1044 /* Leave the sighand locked for the call below. */
1048 * Now re-arm for the new expiry time.
1050 WARN_ON_ONCE(!irqs_disabled());
1051 arm_timer(timer);
1052 unlock_task_sighand(p, &flags);
1054 /* Kick full dynticks CPUs in case they need to tick on the new timer */
1055 posix_cpu_timer_kick_nohz();
1056 out:
1057 timer->it_overrun_last = timer->it_overrun;
1058 timer->it_overrun = -1;
1059 ++timer->it_requeue_pending;
1063 * task_cputime_expired - Compare two task_cputime entities.
1065 * @sample: The task_cputime structure to be checked for expiration.
1066 * @expires: Expiration times, against which @sample will be checked.
1068 * Checks @sample against @expires to see if any field of @sample has expired.
1069 * Returns true if any field of the former is greater than the corresponding
1070 * field of the latter if the latter field is set. Otherwise returns false.
1072 static inline int task_cputime_expired(const struct task_cputime *sample,
1073 const struct task_cputime *expires)
1075 if (expires->utime && sample->utime >= expires->utime)
1076 return 1;
1077 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1078 return 1;
1079 if (expires->sum_exec_runtime != 0 &&
1080 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1081 return 1;
1082 return 0;
1086 * fastpath_timer_check - POSIX CPU timers fast path.
1088 * @tsk: The task (thread) being checked.
1090 * Check the task and thread group timers. If both are zero (there are no
1091 * timers set) return false. Otherwise snapshot the task and thread group
1092 * timers and compare them with the corresponding expiration times. Return
1093 * true if a timer has expired, else return false.
1095 static inline int fastpath_timer_check(struct task_struct *tsk)
1097 struct signal_struct *sig;
1098 cputime_t utime, stime;
1100 task_cputime(tsk, &utime, &stime);
1102 if (!task_cputime_zero(&tsk->cputime_expires)) {
1103 struct task_cputime task_sample = {
1104 .utime = utime,
1105 .stime = stime,
1106 .sum_exec_runtime = tsk->se.sum_exec_runtime
1109 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1110 return 1;
1113 sig = tsk->signal;
1114 if (sig->cputimer.running) {
1115 struct task_cputime group_sample;
1117 raw_spin_lock(&sig->cputimer.lock);
1118 group_sample = sig->cputimer.cputime;
1119 raw_spin_unlock(&sig->cputimer.lock);
1121 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1122 return 1;
1125 return 0;
1129 * This is called from the timer interrupt handler. The irq handler has
1130 * already updated our counts. We need to check if any timers fire now.
1131 * Interrupts are disabled.
1133 void run_posix_cpu_timers(struct task_struct *tsk)
1135 LIST_HEAD(firing);
1136 struct k_itimer *timer, *next;
1137 unsigned long flags;
1139 WARN_ON_ONCE(!irqs_disabled());
1142 * The fast path checks that there are no expired thread or thread
1143 * group timers. If that's so, just return.
1145 if (!fastpath_timer_check(tsk))
1146 return;
1148 if (!lock_task_sighand(tsk, &flags))
1149 return;
1151 * Here we take off tsk->signal->cpu_timers[N] and
1152 * tsk->cpu_timers[N] all the timers that are firing, and
1153 * put them on the firing list.
1155 check_thread_timers(tsk, &firing);
1157 * If there are any active process wide timers (POSIX 1.b, itimers,
1158 * RLIMIT_CPU) cputimer must be running.
1160 if (tsk->signal->cputimer.running)
1161 check_process_timers(tsk, &firing);
1164 * We must release these locks before taking any timer's lock.
1165 * There is a potential race with timer deletion here, as the
1166 * siglock now protects our private firing list. We have set
1167 * the firing flag in each timer, so that a deletion attempt
1168 * that gets the timer lock before we do will give it up and
1169 * spin until we've taken care of that timer below.
1171 unlock_task_sighand(tsk, &flags);
1174 * Now that all the timers on our list have the firing flag,
1175 * no one will touch their list entries but us. We'll take
1176 * each timer's lock before clearing its firing flag, so no
1177 * timer call will interfere.
1179 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1180 int cpu_firing;
1182 spin_lock(&timer->it_lock);
1183 list_del_init(&timer->it.cpu.entry);
1184 cpu_firing = timer->it.cpu.firing;
1185 timer->it.cpu.firing = 0;
1187 * The firing flag is -1 if we collided with a reset
1188 * of the timer, which already reported this
1189 * almost-firing as an overrun. So don't generate an event.
1191 if (likely(cpu_firing >= 0))
1192 cpu_timer_fire(timer);
1193 spin_unlock(&timer->it_lock);
1198 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1199 * The tsk->sighand->siglock must be held by the caller.
1201 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1202 cputime_t *newval, cputime_t *oldval)
1204 unsigned long long now;
1206 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1207 cpu_timer_sample_group(clock_idx, tsk, &now);
1209 if (oldval) {
1211 * We are setting itimer. The *oldval is absolute and we update
1212 * it to be relative, *newval argument is relative and we update
1213 * it to be absolute.
1215 if (*oldval) {
1216 if (*oldval <= now) {
1217 /* Just about to fire. */
1218 *oldval = cputime_one_jiffy;
1219 } else {
1220 *oldval -= now;
1224 if (!*newval)
1225 goto out;
1226 *newval += now;
1230 * Update expiration cache if we are the earliest timer, or eventually
1231 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1233 switch (clock_idx) {
1234 case CPUCLOCK_PROF:
1235 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1236 tsk->signal->cputime_expires.prof_exp = *newval;
1237 break;
1238 case CPUCLOCK_VIRT:
1239 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1240 tsk->signal->cputime_expires.virt_exp = *newval;
1241 break;
1243 out:
1244 posix_cpu_timer_kick_nohz();
1247 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1248 struct timespec *rqtp, struct itimerspec *it)
1250 struct k_itimer timer;
1251 int error;
1254 * Set up a temporary timer and then wait for it to go off.
1256 memset(&timer, 0, sizeof timer);
1257 spin_lock_init(&timer.it_lock);
1258 timer.it_clock = which_clock;
1259 timer.it_overrun = -1;
1260 error = posix_cpu_timer_create(&timer);
1261 timer.it_process = current;
1262 if (!error) {
1263 static struct itimerspec zero_it;
1265 memset(it, 0, sizeof *it);
1266 it->it_value = *rqtp;
1268 spin_lock_irq(&timer.it_lock);
1269 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1270 if (error) {
1271 spin_unlock_irq(&timer.it_lock);
1272 return error;
1275 while (!signal_pending(current)) {
1276 if (timer.it.cpu.expires == 0) {
1278 * Our timer fired and was reset, below
1279 * deletion can not fail.
1281 posix_cpu_timer_del(&timer);
1282 spin_unlock_irq(&timer.it_lock);
1283 return 0;
1287 * Block until cpu_timer_fire (or a signal) wakes us.
1289 __set_current_state(TASK_INTERRUPTIBLE);
1290 spin_unlock_irq(&timer.it_lock);
1291 schedule();
1292 spin_lock_irq(&timer.it_lock);
1296 * We were interrupted by a signal.
1298 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1299 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1300 if (!error) {
1302 * Timer is now unarmed, deletion can not fail.
1304 posix_cpu_timer_del(&timer);
1306 spin_unlock_irq(&timer.it_lock);
1308 while (error == TIMER_RETRY) {
1310 * We need to handle case when timer was or is in the
1311 * middle of firing. In other cases we already freed
1312 * resources.
1314 spin_lock_irq(&timer.it_lock);
1315 error = posix_cpu_timer_del(&timer);
1316 spin_unlock_irq(&timer.it_lock);
1319 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1321 * It actually did fire already.
1323 return 0;
1326 error = -ERESTART_RESTARTBLOCK;
1329 return error;
1332 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1334 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1335 struct timespec *rqtp, struct timespec __user *rmtp)
1337 struct restart_block *restart_block =
1338 &current_thread_info()->restart_block;
1339 struct itimerspec it;
1340 int error;
1343 * Diagnose required errors first.
1345 if (CPUCLOCK_PERTHREAD(which_clock) &&
1346 (CPUCLOCK_PID(which_clock) == 0 ||
1347 CPUCLOCK_PID(which_clock) == current->pid))
1348 return -EINVAL;
1350 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1352 if (error == -ERESTART_RESTARTBLOCK) {
1354 if (flags & TIMER_ABSTIME)
1355 return -ERESTARTNOHAND;
1357 * Report back to the user the time still remaining.
1359 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1360 return -EFAULT;
1362 restart_block->fn = posix_cpu_nsleep_restart;
1363 restart_block->nanosleep.clockid = which_clock;
1364 restart_block->nanosleep.rmtp = rmtp;
1365 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1367 return error;
1370 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1372 clockid_t which_clock = restart_block->nanosleep.clockid;
1373 struct timespec t;
1374 struct itimerspec it;
1375 int error;
1377 t = ns_to_timespec(restart_block->nanosleep.expires);
1379 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1381 if (error == -ERESTART_RESTARTBLOCK) {
1382 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1384 * Report back to the user the time still remaining.
1386 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1387 return -EFAULT;
1389 restart_block->nanosleep.expires = timespec_to_ns(&t);
1391 return error;
1395 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1396 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1398 static int process_cpu_clock_getres(const clockid_t which_clock,
1399 struct timespec *tp)
1401 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1403 static int process_cpu_clock_get(const clockid_t which_clock,
1404 struct timespec *tp)
1406 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1408 static int process_cpu_timer_create(struct k_itimer *timer)
1410 timer->it_clock = PROCESS_CLOCK;
1411 return posix_cpu_timer_create(timer);
1413 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1414 struct timespec *rqtp,
1415 struct timespec __user *rmtp)
1417 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1419 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1421 return -EINVAL;
1423 static int thread_cpu_clock_getres(const clockid_t which_clock,
1424 struct timespec *tp)
1426 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1428 static int thread_cpu_clock_get(const clockid_t which_clock,
1429 struct timespec *tp)
1431 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1433 static int thread_cpu_timer_create(struct k_itimer *timer)
1435 timer->it_clock = THREAD_CLOCK;
1436 return posix_cpu_timer_create(timer);
1439 struct k_clock clock_posix_cpu = {
1440 .clock_getres = posix_cpu_clock_getres,
1441 .clock_set = posix_cpu_clock_set,
1442 .clock_get = posix_cpu_clock_get,
1443 .timer_create = posix_cpu_timer_create,
1444 .nsleep = posix_cpu_nsleep,
1445 .nsleep_restart = posix_cpu_nsleep_restart,
1446 .timer_set = posix_cpu_timer_set,
1447 .timer_del = posix_cpu_timer_del,
1448 .timer_get = posix_cpu_timer_get,
1451 static __init int init_posix_cpu_timers(void)
1453 struct k_clock process = {
1454 .clock_getres = process_cpu_clock_getres,
1455 .clock_get = process_cpu_clock_get,
1456 .timer_create = process_cpu_timer_create,
1457 .nsleep = process_cpu_nsleep,
1458 .nsleep_restart = process_cpu_nsleep_restart,
1460 struct k_clock thread = {
1461 .clock_getres = thread_cpu_clock_getres,
1462 .clock_get = thread_cpu_clock_get,
1463 .timer_create = thread_cpu_timer_create,
1465 struct timespec ts;
1467 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1468 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1470 cputime_to_timespec(cputime_one_jiffy, &ts);
1471 onecputick = ts.tv_nsec;
1472 WARN_ON(ts.tv_sec != 0);
1474 return 0;
1476 __initcall(init_posix_cpu_timers);